JP2006258940A - Optical material - Google Patents

Optical material Download PDF

Info

Publication number
JP2006258940A
JP2006258940A JP2005073321A JP2005073321A JP2006258940A JP 2006258940 A JP2006258940 A JP 2006258940A JP 2005073321 A JP2005073321 A JP 2005073321A JP 2005073321 A JP2005073321 A JP 2005073321A JP 2006258940 A JP2006258940 A JP 2006258940A
Authority
JP
Japan
Prior art keywords
optical material
birefringence
resin
polytrimethylene terephthalate
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005073321A
Other languages
Japanese (ja)
Inventor
Tatsuya Yamazaki
達也 山崎
Jun Yonezawa
順 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2005073321A priority Critical patent/JP2006258940A/en
Publication of JP2006258940A publication Critical patent/JP2006258940A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical material which is composed of a polytrimethylene terephthalate based resin and of which the birefringence is adjusted. <P>SOLUTION: The invention comprises: (1) the optical material which is composed of the polytrimethylene terephthalate based resin; (2) the optical material of (1) which is characterized by being stretched; (3) the resin of which the slope K obtained by least squares approximation satisfies an equation and an inequality shown below as follows, K=Δn(S)/S, 5.0×10<SP>-5</SP><K, in relation to the birefringence (Δn(S)) and a stretching ratio (S) in the case the polytrimethylene terephthalate based resin is stretched; (4) the optical material of (1) to (3) formed into a film or a sheet with extrusion; and (5) the optical material of (1) to (4) with birefringence of 0.002 or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学特性に優れる光学材料に関する。   The present invention relates to an optical material having excellent optical characteristics.

最近、ディスプレイ市場の拡大に伴い、より画像を鮮明にみたいという要求が高まっており、単なる透明材料ではなく、より高度な光学特性が付与された光学材料が求められている。一般に高分子は分子主鎖方向とそれに垂直方向とで屈折率が異なるために複屈折を生じる。用途によっては、この複屈折を厳密にコントロールすることが求められており、偏光板により偏光された光を円偏光にかえる機能を持つ1/4波長板は、高分子材料成形体に意識的に複屈折を生じさせることで機能を付与している。
また、近年光通信システムが普及し広帯域・高速通信に使用する光デバイスの需要が高まっている。例えばプレナー光波回路(PLC)であるアレイ導波路回折格子(AWG)では、偏波依存性を解決するために波長板が光導波路の中に挿入される。この際、生じる放射損失を出来るだけ少なくするために波長板の厚みを薄くしギャップ幅を狭くすることが望ましく、厚みが薄くかつ面内複屈折が大きい材料が求められている。
Recently, with the expansion of the display market, there has been an increasing demand for clearer images, and there is a need for optical materials with higher optical properties than simple transparent materials. In general, a polymer has birefringence because its refractive index is different between the direction of the molecular main chain and the direction perpendicular thereto. Depending on the application, it is required to strictly control this birefringence, and a quarter-wave plate having a function of changing light polarized by a polarizing plate into circularly polarized light is consciously applied to a polymer material molded body. The function is given by generating birefringence.
In recent years, optical communication systems have become widespread, and the demand for optical devices used for broadband and high-speed communication is increasing. For example, in an arrayed waveguide diffraction grating (AWG) that is a planar lightwave circuit (PLC), a wave plate is inserted into the optical waveguide in order to solve the polarization dependence. At this time, in order to reduce the generated radiation loss as much as possible, it is desirable to reduce the thickness of the wave plate and narrow the gap width, and there is a demand for a material having a small thickness and a large in-plane birefringence.

以上のように複屈折が制御され、厚み均一性、透明性に優れる光学材料が求められていた。
一方、特許文献1では厚み均一性、透明性に優れるフィルムとして、ポリトリメチレンテレフタレート系樹脂よりなるフィルムが開示されている。しかしながら、ポリトリメチレンテレフタレート系樹脂が光学材料として好適に用いられることに関する記載も示唆も無かった。
特開平11−156934号公報
As described above, an optical material having controlled birefringence and excellent thickness uniformity and transparency has been demanded.
On the other hand, Patent Document 1 discloses a film made of polytrimethylene terephthalate resin as a film having excellent thickness uniformity and transparency. However, there was no description or suggestion that polytrimethylene terephthalate resin is suitably used as an optical material.
JP-A-11-156934

本発明は、複屈折が制御されたポリトリメチレンテレフタレート系樹脂の光学材料を提供することを目的とする。   An object of the present invention is to provide an optical material of a polytrimethylene terephthalate resin with controlled birefringence.

本発明者らは、驚くべきことに複屈折が制御されたポリトリメチレンテレフタレート系樹脂からなる成形体が光学材料として好適に用いられることを見出し、本発明を完成するに至った。
すなわち、本発明は、
[1] ポリトリメチレンテレフタレート系樹脂よりなる光学材料、
[2] 延伸したことを特徴とする[1]記載の光学材料、
[3] ポリトリメチレンテレフタレート系樹脂を延伸した場合の複屈折(Δn(S))と延伸倍率(S)の関係において、その最小二乗近似より求めた傾きKの値が以下の式をみたす樹脂であることを特徴とする[1]または[2]記載の光学材料、
K=Δn(S)/S
5.0×10−5<K
[4] 押し出し成形で成形されたフィルムまたはシートであることを特徴とする[1]〜[3]のいずれかに記載の光学材料、
[5] 複屈折の絶対値が0.002以上であることを特徴とする[1]〜[4]のいずれかに記載の光学材料、
である。
The present inventors have surprisingly found that a molded article made of a polytrimethylene terephthalate resin having controlled birefringence can be suitably used as an optical material, and has completed the present invention.
That is, the present invention
[1] An optical material comprising a polytrimethylene terephthalate resin,
[2] The optical material according to [1], which is stretched,
[3] Resin in which the value of the slope K obtained from the least square approximation in the relationship between the birefringence (Δn (S)) and the draw ratio (S) when the polytrimethylene terephthalate resin is drawn satisfies the following formula: The optical material according to [1] or [2], wherein
K = Δn (S) / S
5.0 × 10 −5 <K
[4] The optical material according to any one of [1] to [3], which is a film or sheet formed by extrusion molding
[5] The optical material according to any one of [1] to [4], wherein the absolute value of birefringence is 0.002 or more,
It is.

本発明により、複屈折の制御された光学材料の提供が可能になる。   The present invention makes it possible to provide an optical material with controlled birefringence.

以下、本発明について具体的に説明する。
本発明におけるポリトリメチレンテレフタレートとは、酸成分としてテレフタル酸を用い、グリコール成分としてトリメチレングリコール(1,3−プロパンジオールとも呼ぶ)を用いて重合したポリトリメチレンテレフタレート(以下、PTTと略称することがある。)を示している。
本発明のPTT系樹脂はPTTのほかに、本発明の目的を損なわない範囲で、酸成分として、テレフタル酸以外の芳香族ジカルボン酸、例えばフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルメタンジカルボン酸、ジフェニルケトンジカルボン酸、ジフェニルスルフォンジカルボン酸等;コハク酸、アジピン酸、セバシン酸等の脂肪族ジカルボン酸;シクロヘキサンジカルボン酸等の脂環族ジカルボン酸;ε−オキシカプロン酸、ヒドロキシ安息香酸、ヒドロキシエトキシ安息香酸等のオキシジカルボン酸を用い、グリコール成分として、エチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、オクタメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、キシリレングリコール、ジエチレングリコール、ポリオキシアルキレングリコール、ハイドロキノン等を一部用いて共重合することができる。
Hereinafter, the present invention will be specifically described.
The polytrimethylene terephthalate in the present invention is a polytrimethylene terephthalate polymerized using terephthalic acid as an acid component and trimethylene glycol (also referred to as 1,3-propanediol) as a glycol component (hereinafter abbreviated as PTT). May be.)
In addition to PTT, the PTT resin of the present invention is an aromatic dicarboxylic acid other than terephthalic acid, such as phthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, as long as it does not impair the purpose of the present invention. Diphenyl dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenoxyethane dicarboxylic acid, diphenylmethane dicarboxylic acid, diphenyl ketone dicarboxylic acid, diphenyl sulfone dicarboxylic acid and the like; aliphatic dicarboxylic acids such as succinic acid, adipic acid and sebacic acid; fats such as cyclohexane dicarboxylic acid Cyclic dicarboxylic acid; using oxydicarboxylic acid such as ε-oxycaproic acid, hydroxybenzoic acid, hydroxyethoxybenzoic acid, etc., and glycol component, ethylene glycol, tetramethylene glycol, pentamethylene glycol, Hexamethylene glycol, octamethylene glycol, neopentyl glycol, cyclohexanedimethanol, xylylene glycol, diethylene glycol, polyoxyalkylene glycol, may be copolymerized with some hydroquinone.

共重合する場合の共重合の量は、本発明の目的を損なわない範囲であれば特に制限はないが、通常、全酸成分の20モル%以下、あるいは全グリコール成分の20モル%以下であることが好ましい。
また、上述のポリエステル成分に分岐成分、例えばトリカルバリル酸、トリメシン酸、トリメリット酸等の、三官能または四官能のエステル形成能を持つ酸、またはグリセリン、トリメチロールプロパン、ペンタエリトリット等の三官能または四官能のエステル形成能を持つアルコールを共重合してもよく、その場合、これらの分岐成分の量は全酸成分、または全グリコール成分の1.0モル%以下、好ましくは、0.5モル%以下、さらに好ましくは、0.3モル%以下である。更に、PTT系樹脂はこれら共重合成分を2種類以上組み合わせて使用しても構わない。
The amount of copolymerization in the case of copolymerization is not particularly limited as long as it does not impair the purpose of the present invention, but is usually 20 mol% or less of the total acid component or 20 mol% or less of the total glycol component. It is preferable.
In addition, the above-described polyester component may be added to a branched component, for example, an acid having trifunctional or tetrafunctional ester-forming ability such as tricarballylic acid, trimesic acid, trimellitic acid, or glycerin, trimethylolpropane, pentaerythritol, etc. Alcohols having a functional or tetrafunctional ester-forming ability may be copolymerized, and in this case, the amount of these branching components is 1.0 mol% or less of the total acid component or the total glycol component, preferably 0.8. It is 5 mol% or less, More preferably, it is 0.3 mol% or less. Further, the PTT resin may be used in combination of two or more of these copolymer components.

本発明に用いられるPTT系樹脂の製造方法は、特に限定されるものではないが、例えば、特開昭51−140992号公報、特開平5−262862号公報、特開平8−311177号公報等に記載されている方法に従って得ることができる。
例えば、テレフタル酸またはそのエステル形成性誘導体(例えばジメチルエステル、モノメチルエステル等の低級アルキルエステル)とトリメチレングリコールまたはそのエステル形成性誘導体とを、触媒の存在下、好適な温度・時間で加熱反応させ、更に得られるテレフタル酸のグリコールエステルを触媒の存在下、好適な温度・時間で所望の重合度まで重縮合反応させる方法が挙げられる。
重合方法についても、特に限定されず、溶融重合、界面重合、溶液重合、塊状重合、固相重合、及びこれらを組み合わせた方法を利用することができる。
The method for producing the PTT resin used in the present invention is not particularly limited. For example, JP-A-51-140992, JP-A-5-262862, JP-A-8-311177, etc. Can be obtained according to the methods described.
For example, terephthalic acid or an ester-forming derivative thereof (for example, a lower alkyl ester such as dimethyl ester or monomethyl ester) is reacted with trimethylene glycol or an ester-forming derivative thereof at a suitable temperature and time in the presence of a catalyst. Further, there is a method in which the glycol ester of terephthalic acid obtained is subjected to a polycondensation reaction to a desired degree of polymerization at a suitable temperature and time in the presence of a catalyst.
The polymerization method is not particularly limited, and melt polymerization, interfacial polymerization, solution polymerization, bulk polymerization, solid phase polymerization, and a combination thereof can be used.

本発明のポリトリメチレンテレフタレート系樹脂は、その極限粘度[η]が0.60dl/g以上であることが機械特性、特に靭性面から好ましく、[η]が0.68dl/g以上であることがより好ましく、さらに成形性から[η]が0.75dl/g以上であることが最も好ましい。
本発明の光学材料においては、複屈折が0.002以上であることが好ましい。複屈折(Δn)に関しては種種の文献に記載がある(例えば化学総説、No.39、1998(学会出版センター発行))。光学材料の複屈折の絶対値は0.005以上であることがさらに好ましく、0.01以上であることがとりわけ好ましい。
本発明の光学材料の製造においては、延伸した場合の複屈折(Δn(S))と延伸倍率(S)の関係において、その最小二乗近似より求めた傾きKの値が以下の式をみたす樹脂を用いることが好ましい。
K=Δn(S)/S
5.0×10−5<K
延伸倍率(S)は、延伸前のチャック間距離をL0、延伸後のチャック間距離をL1とすると、以下の式で表される値である。
The intrinsic viscosity [η] of the polytrimethylene terephthalate resin of the present invention is preferably 0.60 dl / g or more from the viewpoint of mechanical properties, particularly toughness, and [η] is 0.68 dl / g or more. More preferably, [η] is most preferably 0.75 dl / g or more from the viewpoint of moldability.
In the optical material of the present invention, the birefringence is preferably 0.002 or more. Birefringence (Δn) is described in various documents (for example, Chemical Review, No. 39, 1998 (published by Academic Publishing Center)). The absolute value of the birefringence of the optical material is more preferably 0.005 or more, and particularly preferably 0.01 or more.
In the production of the optical material of the present invention, in the relationship between the birefringence (Δn (S)) when stretched and the stretch ratio (S), the value of the slope K obtained from the least square approximation satisfies the following equation: Is preferably used.
K = Δn (S) / S
5.0 × 10 −5 <K
The draw ratio (S) is a value represented by the following equation, where L0 is the distance between chucks before stretching and L1 is the distance between chucks after stretching.

Figure 2006258940
Figure 2006258940

傾きKの値は、さらに好ましくは1.0×10−4<Kであり、とりわけ好ましくは2.0×10−4<Kである。たとえば、アレイ導波路回折格子(AWG)の波長板にフィルムを用いる場合、Kの値がこの範囲にある材料は延伸や配向による複屈折の変化が大きく、出来るだけフィルムの厚みを薄くして要求される充分な大きさの複屈折が得られるために好ましい。
また、本発明のPTT系樹脂においてはポリトリメチレンテレフタレート以外の重合体を、本発明の目的を損なわない範囲で混合することができる。PTT以外の重合体としては、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリスチレン、スチレンアクリロニトリル共重合体等のスチレン系樹脂、ポリアミド、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルイミド、ポリアセタール等の熱可塑性樹脂、およびフェノール樹脂、メラミン樹脂、シリコーン樹脂、エポキシ樹脂等の熱硬化性樹脂などの少なくとも1種以上をさらに添加することができる。
The value of the slope K is more preferably 1.0 × 10 −4 <K, and particularly preferably 2.0 × 10 −4 <K. For example, when a film is used for a wave plate of an arrayed waveguide grating (AWG), a material having a K value in this range has a large change in birefringence due to stretching and orientation, and the film thickness is required to be as thin as possible. This is preferable because a sufficiently large birefringence can be obtained.
In the PTT resin of the present invention, a polymer other than polytrimethylene terephthalate can be mixed within a range that does not impair the object of the present invention. Polymers other than PTT include polyolefins such as polyethylene and polypropylene, styrene resins such as polystyrene and styrene acrylonitrile copolymer, polyamide, polyphenylene sulfide resin, polyether ether ketone resin, polyester, polysulfone, polyphenylene oxide, polyimide, poly At least one or more of thermoplastic resins such as ether imide and polyacetal, and thermosetting resins such as phenol resin, melamine resin, silicone resin, and epoxy resin can be further added.

さらに、本発明の効果を著しく損なわない範囲内で、各種目的に応じて任意の添加剤を配合することができる。添加剤の種類は,樹脂やゴム状重合体の配合に一般的に用いられるものであれば特に制限はない。無機充填剤,酸化鉄等の顔料,ステアリン酸,ベヘニン酸,ステアリン酸亜鉛,ステアリン酸カルシウム,ステアリン酸マグネシウム,エチレンビスステアロアミド等の滑剤,離型剤,パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル、パラフィン、有機ポリシロキサン,ミネラルオイル等の軟化剤・可塑剤,ヒンダードフェノール系酸化防止剤、りん系熱安定剤等の酸化防止剤,ヒンダードアミン系光安定剤、ベンゾトリアゾール系紫外線吸収剤,難燃剤,帯電防止剤,有機繊維,ガラス繊維,炭素繊維,金属ウィスカ等の補強剤,着色剤、その他添加剤或いはこれらの混合物等が挙げられる。   Furthermore, arbitrary additives can be mix | blended according to various objectives within the range which does not impair the effect of this invention remarkably. The type of additive is not particularly limited as long as it is generally used for blending resins and rubber-like polymers. Inorganic fillers, pigments such as iron oxide, stearic acid, behenic acid, zinc stearate, calcium stearate, magnesium stearate, ethylene bisstearamide, lubricants, mold release agents, paraffinic process oil, naphthenic process oil, Softeners and plasticizers such as aromatic process oil, paraffin, organic polysiloxane, mineral oil, hindered phenol antioxidants, antioxidants such as phosphorus heat stabilizers, hindered amine light stabilizers, benzotriazoles Examples include ultraviolet absorbers, flame retardants, antistatic agents, reinforcing agents such as organic fibers, glass fibers, carbon fibers, and metal whiskers, coloring agents, other additives, and mixtures thereof.

本発明における光学材料の製造方法は、特に制限されるものではなく、公知の方法が利用できる。例えば単軸押出機、二軸押出機、バンバリーミキサー、ブラベンダー、各種ニーダー等の溶融混練機を用いて製造することができる。
また本発明における光学材料は、射出成形、シート成形、ブロー成形、インジェクションブロー成形、インフレーション成形、押し出し成形、発泡成形等、公知の方法で成形することが可能であり、圧空成形、真空成形等の二次加工成形法も用いることができる。
本発明の光学材料の形態がフィルムまたはシートの場合は好ましい製法として、押し出し成形等の手法が用いられる。例えば、Tダイ、円形ダイ等が装着された押出機等を用いて、未延伸フィルムを押し出し成形することができる。また、ポリトリメチレンテレフタレート系樹脂に可溶な溶媒、例えばクロロホルムと二塩化メチレンとの混合溶媒やヘキサフルオロイソプロパノール、o−クロロフェノール等の溶媒を用いて、ポリトリメチレンテレフタレート系樹脂を溶解後、キャスト乾燥固化することにより光学材料をキャスト成形もすることができる。
The method for producing an optical material in the present invention is not particularly limited, and a known method can be used. For example, it can be produced using a melt kneader such as a single screw extruder, a twin screw extruder, a Banbury mixer, a Brabender, or various kneaders.
The optical material in the present invention can be molded by a known method such as injection molding, sheet molding, blow molding, injection blow molding, inflation molding, extrusion molding, foam molding, etc. Secondary processing and molding methods can also be used.
When the form of the optical material of the present invention is a film or a sheet, a preferable method is a method such as extrusion. For example, an unstretched film can be extruded by using an extruder equipped with a T die, a circular die, or the like. Further, after dissolving the polytrimethylene terephthalate resin using a solvent soluble in the polytrimethylene terephthalate resin, for example, a mixed solvent of chloroform and methylene dichloride, a solvent such as hexafluoroisopropanol, o-chlorophenol, etc. The optical material can also be cast by solidification by casting and solidifying.

上記の方法で得られたフィルムを更に、機械的流れ方向に縦一軸延伸、機械的流れ方向に直行する方向に横一軸延伸することができ、またロール延伸とテンター延伸の逐次2軸延伸法、テンター延伸による同時2軸延伸法、チューブラー延伸による2軸延伸法等によって延伸することにより2軸延伸フィルムを製造することができる。延伸を行うことによりフィルムの強度が向上させることができる。最終的な延伸倍率は得られた成形体の熱収縮率より判断することができる。延伸倍率は少なくともどちらか一方向に0.1%以上1000%以下であることが好ましく、0.2%以上600%以下であることがさらに好ましく、0.3%以上300%以下であることがとりわけ好ましい。この範囲に設計することにより、複屈折、リターデーション、耐熱性、強度の観点で好ましい延伸光学材料が得られる。   The film obtained by the above method can further be longitudinally uniaxially stretched in the mechanical flow direction, transversely uniaxially stretched in the direction orthogonal to the mechanical flow direction, and a sequential biaxial stretching method of roll stretching and tenter stretching, A biaxially stretched film can be produced by stretching by a simultaneous biaxial stretching method by tenter stretching, a biaxial stretching method by tubular stretching, or the like. The strength of the film can be improved by stretching. The final draw ratio can be determined from the heat shrinkage rate of the obtained molded body. The draw ratio is preferably 0.1% or more and 1000% or less in at least one direction, more preferably 0.2% or more and 600% or less, and more preferably 0.3% or more and 300% or less. Especially preferred. By designing in this range, a stretched optical material preferable in terms of birefringence, retardation, heat resistance, and strength can be obtained.

本発明において、フィルムとシートの違いは厚さのみであり、フィルムは300μm以下の厚さのものを言い、シートは300μmを超える厚さのものである。フィルムの厚さは0.1〜300μmの範囲が好ましく、0.2〜250μmの範囲がさらに好ましく、0.3〜200μmの範囲がとりわけ好ましい。シートは、望ましくは10mm以下、より望ましくは5mm以下の厚さである。
本発明の光学材料は、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ、リアプロジェクションテレビ等のディスプレイに用いられる偏光板保護フィルム、液晶光学補償フィルム、ディスプレイ前面板、ディスプレイ基盤、レンズ等、プレナー光波回路(PLC)であるアレイ導波路回折格子(AWG)、導波路に用いる波長板、波長可変フィルター、光スイッチ、フレキシブル光導波路等である。本発明の光学材料は、例えば反射防止処理、透明導電処理、電磁波遮蔽処理、ガスバリア処理等の表面機能化処理をすることもできる。
In the present invention, the difference between a film and a sheet is only the thickness, the film means a thickness of 300 μm or less, and the sheet has a thickness exceeding 300 μm. The thickness of the film is preferably in the range of 0.1 to 300 μm, more preferably in the range of 0.2 to 250 μm, and particularly preferably in the range of 0.3 to 200 μm. The sheet is desirably 10 mm or less, more desirably 5 mm or less.
The optical material of the present invention includes a polarizing plate protective film, a liquid crystal optical compensation film, a display front plate, a display substrate, a lens and the like used for a display such as a liquid crystal display, a plasma display, an organic EL display, a field emission display, and a rear projection television. An arrayed waveguide diffraction grating (AWG) which is a planar lightwave circuit (PLC), a wave plate used for the waveguide, a wavelength tunable filter, an optical switch, a flexible optical waveguide, and the like. The optical material of the present invention can be subjected to surface functionalization treatment such as antireflection treatment, transparent conductive treatment, electromagnetic wave shielding treatment, and gas barrier treatment.

次に実施例によって本発明を説明する。
本願発明および実施例で用いた評価法をまず説明する。
(A)評価。
(1)複屈折の測定
Polymer Engineering and Science 1999,39,2349-2357に詳細の記載のある複屈折測定装置を用いた。複屈折(Δn)の絶対値(|Δn|)は以下のように求めた。
|Δn|=|nx−ny|
(2)極限粘度
極限粘度[η]については、オストワルド粘度計を用い、35℃、o−クロロフェノール中に該組成物を溶質(PTT樹脂成分)/溶液=1.00g/dlになるように溶解させ、不溶分(無機質強化材等)が沈殿した後、その上澄み液を用いて比粘度ηspを測定し、下記式により求めた。
[η]=0.713×ηsp/C+0.1086
C=1.00g/dl
Next, the present invention will be described by way of examples.
First, the evaluation methods used in the present invention and examples will be described.
(A) Evaluation.
(1) Measurement of birefringence
A birefringence measuring apparatus described in detail in Polymer Engineering and Science 1999, 39, 2349-2357 was used. The absolute value (| Δn |) of birefringence (Δn) was obtained as follows.
| Δn | = | nx−ny |
(2) Intrinsic Viscosity For the intrinsic viscosity [η], use an Ostwald viscometer so that the composition is solute (PTT resin component) /solution=1.00 g / dl in o-chlorophenol at 35 ° C. After being dissolved and insoluble matter (inorganic reinforcing material or the like) was precipitated, the specific viscosity ηsp was measured using the supernatant and determined by the following formula.
[Η] = 0.713 × ηsp / C + 0.1086
C = 1.00 g / dl

(B) 用いた原材料など
(1)ポリトリメチレンテレフタレート樹脂(A−1)
[η]=1.2dl/gのポリトリメチレンテレフタレート樹脂を使用した。
(2)ポリカーボネート樹脂(B−1)
比較に用いたポリカーボネート樹脂には、メルトフローレート10g/10分(ASTM D1238に準拠、300℃、荷重1.2kg)のポリカーボネート樹脂を使用した。
(B) Used raw materials, etc. (1) Polytrimethylene terephthalate resin (A-1)
A polytrimethylene terephthalate resin with [η] = 1.2 dl / g was used.
(2) Polycarbonate resin (B-1)
As the polycarbonate resin used for comparison, a polycarbonate resin having a melt flow rate of 10 g / 10 min (according to ASTM D1238, 300 ° C., load 1.2 kg) was used.

[実施例1〜5および比較例1〜2]
テクノベル製Tダイ装着押し出し機(KZW15TW−25MG−NH型/幅150mmTダイ装着/リップ厚0.5mm)のホッパーに(A−1)または(B−1)のペレットを投入した。押し出し機のシリンダー内樹脂温度とTダイの温度を調整し押し出し成形し、得られた未延伸フィルムの一軸延伸(延伸速度5%/分)を引っ張り試験機を用いて行うことにより実施例1〜5、比較例1〜2のフィルムを得た。|Δn|=|nx−ny|を求めるのに必要なnxは一軸引っ張り方向の屈折率とし、nyは一軸引っ張り方向に垂直な方向の屈折率とした。組成、押し出し条件、延伸条件、フィルムの厚み、複屈折の絶対値を表1および表2に示した。また、表1および表2の結果から求めた、複屈折(Δn(S))と延伸倍率(S)の関係をプロットし、最小二乗近似によりKの値を求めた。その結果を表3に示した。複屈折(Δn(S))と延伸倍率(S)の関係を示すグラフ図を図1に示す。
[Examples 1-5 and Comparative Examples 1-2]
The pellets of (A-1) or (B-1) were put into a hopper of a Technobel T-die mounting extruder (KZW15TW-25MG-NH type / width 150 mm T-die mounting / lip thickness 0.5 mm). By adjusting the resin temperature in the cylinder of the extruder and the temperature of the T-die and performing extrusion molding, uniaxial stretching (stretching speed 5% / min) of the obtained unstretched film was performed using a tensile tester. 5. The film of Comparative Examples 1-2 was obtained. Nx necessary for obtaining | Δn | = | nx−ny | is a refractive index in a uniaxial tensile direction, and ny is a refractive index in a direction perpendicular to the uniaxial tensile direction. Tables 1 and 2 show the composition, extrusion conditions, stretching conditions, film thickness, and absolute values of birefringence. Further, the relationship between birefringence (Δn (S)) and stretch ratio (S) obtained from the results of Tables 1 and 2 was plotted, and the value of K was obtained by least square approximation. The results are shown in Table 3. A graph showing the relationship between birefringence (Δn (S)) and draw ratio (S) is shown in FIG.

Figure 2006258940
Figure 2006258940

Figure 2006258940
Figure 2006258940

Figure 2006258940
Figure 2006258940

本発明の光学材料とは、透明でかつ複屈折が制御されている優れた光学特性を持ち、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ、リアプロジェクションテレビ等のディスプレイに用いられる偏光板保護フィルム、視野角制御フィルム等の液晶光学補償フィルム、ディスプレイ前面板、ディスプレイ基盤、レンズ等、プレナー光波回路(PLC)であるアレイ導波路回折格子(AWG)、導波路に用いる波長板、波長可変フィルター、光スイッチ、フレキシブル光導波路である。   The optical material of the present invention is an optical material that is transparent and has excellent optical properties in which birefringence is controlled, and is a polarizing plate used in displays such as liquid crystal displays, plasma displays, organic EL displays, field emission displays, rear projection televisions, etc. Liquid crystal optical compensation film such as protective film, viewing angle control film, display front plate, display substrate, lens, etc., arrayed waveguide diffraction grating (AWG) which is a planar lightwave circuit (PLC), wavelength plate used for waveguide, variable wavelength Filters, optical switches, flexible optical waveguides.

実施例および比較例の延伸した場合の複屈折(Δn(S))と延伸倍率(S)の関係を示すグラフ図である。It is a graph which shows the relationship of birefringence ((DELTA) n (S)) at the time of extending | stretching of an Example and a comparative example, and a draw ratio (S).

Claims (5)

ポリトリメチレンテレフタレート系樹脂よりなる光学材料。   An optical material made of polytrimethylene terephthalate resin. 延伸したことを特徴とする請求項1記載の光学材料。   2. The optical material according to claim 1, wherein the optical material is stretched. ポリトリメチレンテレフタレート系樹脂を延伸した場合の複屈折(Δn(S))と延伸倍率(S)の関係において、その最小二乗近似より求めた傾きKの値が以下の式をみたす樹脂であることを特徴とする請求項1または2記載の光学材料。
K=Δn(S)/S
5.0×10−5<K
In the relationship between birefringence (Δn (S)) and stretch ratio (S) when a polytrimethylene terephthalate resin is stretched, the value of the slope K obtained from the least square approximation is a resin that satisfies the following equation: The optical material according to claim 1 or 2.
K = Δn (S) / S
5.0 × 10 −5 <K
押し出し成形で成形されたフィルムまたはシートであることを特徴とする請求項1〜3のいずれか1項に記載の光学材料。   The optical material according to any one of claims 1 to 3, wherein the optical material is a film or sheet formed by extrusion molding. 複屈折の絶対値が0.002以上であることを特徴とする請求項1〜4のいずれか1項に記載の光学材料。   The optical material according to any one of claims 1 to 4, wherein an absolute value of birefringence is 0.002 or more.
JP2005073321A 2005-03-15 2005-03-15 Optical material Pending JP2006258940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005073321A JP2006258940A (en) 2005-03-15 2005-03-15 Optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005073321A JP2006258940A (en) 2005-03-15 2005-03-15 Optical material

Publications (1)

Publication Number Publication Date
JP2006258940A true JP2006258940A (en) 2006-09-28

Family

ID=37098312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005073321A Pending JP2006258940A (en) 2005-03-15 2005-03-15 Optical material

Country Status (1)

Country Link
JP (1) JP2006258940A (en)

Similar Documents

Publication Publication Date Title
JP5492561B2 (en) the film
KR101238792B1 (en) Retardation film and polyester resin for optical use
WO2006077776A1 (en) Resin composition for optical material
CN112384568A (en) Polyester resin composition and molded product thereof
WO2006106776A1 (en) Foamed polyester sheet
KR20160049506A (en) (meth)acrylic resin
KR20130106393A (en) Stereocomplex polylactic acid film and resin composition
KR20080086903A (en) Polyester foam sheet and method for producing same
KR102227160B1 (en) Resin composition for optical material, optical film, and liquid crystal display device
JP3320538B2 (en) Liquid crystalline polyester resin composition
KR102197900B1 (en) Resin composition for optical material, optical film, and liquid crystal display device
JP2008015408A (en) Transparent optical film for flexible display
JP2007169586A (en) Resin composition for optical material
JP2004269766A (en) Biaxially oriented polyester film
KR20130140804A (en) Resin composition, phase-contrast film, method for manufacturing phase-contrast film, and long circularly-polarizing plate
JP2018076427A (en) Polyester resin composition
JP2006258940A (en) Optical material
JP2006284774A (en) Retardation film
EP4150003A2 (en) Thermoplastic polymer composition
JP3358314B2 (en) Thermoplastic resin composition
KR102415014B1 (en) Resin composition for optical material and optical film
JP2010181561A (en) Polylactic acid film for optical use and method for manufacturing the same
JP2006199788A (en) Stretched molding
JP2006243610A (en) Optical retardation film
CN112020416B (en) Method for producing antistatic molded article