JP2006258802A - Light receiving device and range finder - Google Patents

Light receiving device and range finder Download PDF

Info

Publication number
JP2006258802A
JP2006258802A JP2006038039A JP2006038039A JP2006258802A JP 2006258802 A JP2006258802 A JP 2006258802A JP 2006038039 A JP2006038039 A JP 2006038039A JP 2006038039 A JP2006038039 A JP 2006038039A JP 2006258802 A JP2006258802 A JP 2006258802A
Authority
JP
Japan
Prior art keywords
lens
wave
light
distance
diameter side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006038039A
Other languages
Japanese (ja)
Inventor
Takashi Ito
孝 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuyo Automatic Co Ltd
Original Assignee
Hokuyo Automatic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuyo Automatic Co Ltd filed Critical Hokuyo Automatic Co Ltd
Priority to JP2006038039A priority Critical patent/JP2006258802A/en
Publication of JP2006258802A publication Critical patent/JP2006258802A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light receiving device which can receive a light wave over a wide range. <P>SOLUTION: The light receiving device comprises a light receiving element 3, a lens 2 which concentrates the reflecting light 12, 13 into the light receiving element 3. A lens 2 includes at least three or more sections which are different in the focal lengths. The lens 2 includes at least three or more sections which are different in the focal lengths, so impinging of a stable light amount into the light receiving element 3 can be carried out over the wide range. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光、電磁波、音波などの波を受ける受波装置、及び、斯かる受波装置を用いた測距装置に関するものである。   The present invention relates to a wave receiving device that receives waves such as light, electromagnetic waves, and sound waves, and a distance measuring device using such a wave receiving device.

測距装置は、光、電磁波、音波などの波を測距対象物に向けて発し、測距対象物に反射した波を受け、発した波と受けた波との位相差に基づいて距離を測定している。   The distance measuring device emits light, electromagnetic waves, sound waves, etc. toward the object to be measured, receives the wave reflected by the object to be measured, and calculates the distance based on the phase difference between the emitted wave and the received wave. Measuring.

レーザ測距装置に用いられる光電子検出装置として、例えば、米国特許6759649号には、図6に示すように、受光素子101と、光を受光素子101に集光するレンズ102と、レンズ102の中央部近傍に配設したレーザダイオード103と、レンズ102の中央部に装着されレーザダイオード103から出射した光を平行光にするレンズ104と、レンズ104の前方に配設した傾斜ミラー105とを備えた装置が開示されている。   As a photoelectron detection device used in a laser distance measuring device, for example, in US Pat. No. 6,759,649, as shown in FIG. 6, a light receiving element 101, a lens 102 for condensing light on the light receiving element 101, and a center of the lens 102 A laser diode 103 disposed in the vicinity of the lens, a lens 104 that is attached to the center of the lens 102 and that collimates the light emitted from the laser diode 103, and an inclined mirror 105 disposed in front of the lens 104. An apparatus is disclosed.

レーザダイオード103から出射された光は、レンズ102を透過する際に平行光106になり、傾斜ミラー105を経由して図示されていない測距対象物に照射される。測距対象物で反射した光107は、傾斜ミラー105を経由し、レンズ102で集光されて受光素子101に入射する。距離計測ではレーザダイオード103に入力されて駆動する投光信号108と、受光素子101で変換された受光信号109の位相差に基づいて、光を出射してから受光するまでの時間を求め、この時間に光の速度を乗じて測距対象物までの距離を算出するとよい。
米国特許6759649号
The light emitted from the laser diode 103 becomes parallel light 106 when passing through the lens 102, and irradiates a distance measuring object (not shown) via the tilt mirror 105. The light 107 reflected by the distance measuring object passes through the tilt mirror 105 and is collected by the lens 102 and enters the light receiving element 101. In the distance measurement, based on the phase difference between the light projection signal 108 inputted and driven by the laser diode 103 and the light reception signal 109 converted by the light receiving element 101, the time from light emission to light reception is obtained. The distance to the object to be measured may be calculated by multiplying time by the speed of light.
US Pat. No. 6,759,649

斯かる測距装置において、レンズ102から測距対象物までの距離が、充分に遠い場合は、図6に示すように、測距対象物で反射した光107は、略平行な光となってレンズ102に入射し、レンズ102の所定の焦点距離により集光されて受光素子101に入射する。しかし、レンズ102から測距対象物までの距離が近くなると、図7に示すように、測距対象物で反射した光107は広がりながらレンズ102に入射する。測距対象物で反射した光が広がりながらレンズ102に入射すると、図7に示すように、レンズ102を通る光の焦点は受光素子101よりも遠い位置にずれる。   In such a distance measuring apparatus, when the distance from the lens 102 to the object to be measured is sufficiently long, as shown in FIG. 6, the light 107 reflected by the object to be measured becomes substantially parallel light. The light enters the lens 102, is condensed by a predetermined focal length of the lens 102, and enters the light receiving element 101. However, when the distance from the lens 102 to the object to be measured becomes short, the light 107 reflected by the object to be measured enters the lens 102 while spreading as shown in FIG. When the light reflected by the distance measuring object is incident on the lens 102 while spreading, the focus of the light passing through the lens 102 is shifted to a position farther than the light receiving element 101 as shown in FIG.

また、斯かる測距装置の用途では、レトロリフレクタ(回帰反射板)を測距対象物のレーザ光に反射板に用いられることがある。レトロリフレクタ(回帰反射板)は、図8に示すように、一般的に、反射光は観測角が0に近いほど反射率が高く、観測角が大きくなると反射率は低くなる。斯かるレトロリフレクタ(回帰反射板)が用いられている場合において、レンズ102から測距対象物までの距離が近くなり、測距対象物で反射した光が広がりながらレンズ102に入射すると、図7に示すように、レンズ102の外径側部分に、反射率が低い光が入射するとともに、焦点が受光素子101からずれるため、ほとんど受光素子101に入射しない状況になる。またレンズ102の中央部分近傍を通る光はレンズ102の中央部近傍に配設したレンズ104に阻害されて受光素子101に入射することができない。この結果、図9に示すように、測距対象物の距離がある一定の距離よりも近くなると、受光素子101に充分な光量が入射しない状況が生じる。   Moreover, in the use of such a distance measuring device, a retro reflector (regressive reflection plate) may be used as a reflection plate for laser light of a distance measurement object. As shown in FIG. 8, the retroreflector (regressive reflector) generally has a higher reflectivity as the observation angle is closer to 0, and the reflectivity decreases as the observation angle increases. When such a retroreflector (regressive reflection plate) is used, the distance from the lens 102 to the object to be measured becomes short, and the light reflected by the object to be measured is incident on the lens 102 while spreading. As shown in FIG. 4, light having low reflectance is incident on the outer diameter side portion of the lens 102 and the focal point is shifted from the light receiving element 101, so that the light hardly enters the light receiving element 101. Further, the light passing through the vicinity of the central portion of the lens 102 is blocked by the lens 104 disposed in the vicinity of the central portion of the lens 102 and cannot enter the light receiving element 101. As a result, as shown in FIG. 9, when the distance of the object to be measured becomes closer than a certain distance, a situation where a sufficient amount of light does not enter the light receiving element 101 occurs.

このように、受光素子101に光を集光させるレンズ102の中央部及び中央部近傍にレンズ104やレーザダイオード103を配設する構成では、測距対象物までの距離が所定の距離よりも近くなると、測距できない状況が生じる場合がある。なお、レーザ光などの光を用いた場合だけでなく、電磁波や音波などの種々の波を用いた場合も同様の事象が生じ得ると考えられる。   As described above, in the configuration in which the lens 104 and the laser diode 103 are disposed in the central portion of the lens 102 for condensing the light to the light receiving element 101 and in the vicinity of the central portion, the distance to the distance measuring object is closer than a predetermined distance. If so, there may be a situation in which distance measurement cannot be performed. It is considered that the same phenomenon can occur not only when laser light or the like is used but also when various waves such as electromagnetic waves or sound waves are used.

本発明は斯かる問題点を鑑み、波を集約させるレンズの中央部又は中央部近傍に波の進行を阻害する障害物が存在する場合に、広い範囲で受波手段に波が入射する受波装置を提供するものである。   In view of such a problem, the present invention receives a wave that is incident on a wave receiving means in a wide range when there is an obstacle that obstructs the progression of the wave in the central part of the lens that aggregates the wave or in the vicinity of the central part. A device is provided.

本発明に係る受波装置は、波を受ける受波手段と、受波手段に向けて波を集約させるレンズとを備え、レンズは焦点距離が異なった部分を少なくとも3つ以上備えていることを特徴としている。   The wave receiving apparatus according to the present invention includes a wave receiving unit that receives a wave and a lens that collects the wave toward the wave receiving unit, and the lens includes at least three portions having different focal lengths. It is a feature.

また、本発明に係る測距装置は、波を受ける受波手段と、受波手段に向けて波を集約させるレンズと、測距対象物に向けて波を発する波発射手段と、波発射手段から発した波と、波発射手段から波が発射され、発射された波が測距対象物で反射し前記レンズを介して受波手段で受けられるまでの経過時間に基づいて、測距対象物までの距離を導出する距離導出手段とを備え、レンズは焦点距離が異なった部分を少なくとも3つ以上備えていることを特徴としている。距離導出手段は、例えば、測距対象物で反射しレンズを介して受波手段に入射した波との位相差に基づいて、測距対象物までの距離を導出するものでもよい。   Further, the distance measuring device according to the present invention includes a wave receiving means for receiving a wave, a lens for concentrating the waves toward the wave receiving means, a wave emitting means for emitting a wave toward the distance measuring object, and a wave emitting means. The distance measurement object is based on the wave emitted from the wave and the elapsed time until the wave is emitted from the wave emission means, and the emitted wave is reflected by the distance measurement object and received by the wave reception means via the lens. Distance deriving means for deriving the distance to the lens, and the lens is characterized by comprising at least three portions having different focal lengths. The distance deriving means may derive the distance to the distance measuring object based on, for example, the phase difference from the wave reflected by the distance measuring object and incident on the wave receiving means via the lens.

また、レンズはレンズに入射した平行波を前記受波手段に集約させる部分と、当該部分よりも焦点距離が短く、それぞれ焦点距離が異なった部分を少なくとも2つ以上備えているとよい。   In addition, the lens may include at least two or more portions where the parallel waves incident on the lens are collected by the wave receiving means and portions where the focal length is shorter than the portion and the focal lengths are different from each other.

また、レンズは、レンズに入射した平行波を受波手段に集約させる部分をレンズの外径側部分に備え、レンズの内径側部分に、レンズの外径側部分よりも焦点距離が短く、それぞれ焦点距離が異なった部分を少なくとも2つ以上備えた構成としてもよい。   In addition, the lens is provided with a portion for concentrating the parallel wave incident on the lens in the receiving means on the outer diameter side portion of the lens, and the focal length is shorter on the inner diameter side portion of the lens than on the outer diameter side portion of the lens. It is good also as a structure provided with at least 2 or more parts from which a focal distance differs.

この受波装置によれば、レンズは焦点距離が異なった部分を少なくとも3つ以上備えているので、波源との距離に対し、広い範囲で受波手段に波を入射させることができる。例えば、レンズに入射した平行波を受波手段に集約させる部分をレンズの外径側部分に備え、レンズの内径側部分に、レンズの外径側部分よりも焦点距離が短く、それぞれ焦点距離が異なった部分を少なくとも2つ以上備えた構成にしたものでは、波源が充分に遠く、レンズに平行光が入射する場合には、レンズの外径側部分を通った波を受波手段に集約させることができる。また、波源が近づき、レンズの外径側部分に入射した波の焦点が受波手段から遠ざかるようにずれた場合には、レンズの外径側部分よりも焦点距離を短くしたレンズの内径側部分を通った波を受波手段に集約させることができる。また、レンズの内径側部分は、焦点距離が異なった部分が少なくとも2つ以上あるので、受波手段に波を集約させることができる範囲が広い。また、この受波装置は、波を受波手段に集約させるレンズの中央部及び中央部近傍に、波の進行を阻害する障害物が存在する場合でも、安定して波を受波手段に集約させることができる。   According to this wave receiving apparatus, since the lens includes at least three portions having different focal lengths, waves can be incident on the wave receiving means in a wide range with respect to the distance from the wave source. For example, a portion for concentrating the parallel waves incident on the lens on the receiving means is provided on the outer diameter side portion of the lens, and the inner diameter side portion of the lens has a shorter focal length than the outer diameter side portion of the lens, and each has a focal length of In a configuration having at least two different portions, when the wave source is sufficiently far and parallel light is incident on the lens, the waves passing through the outer diameter side portion of the lens are concentrated on the receiving means. be able to. Also, when the wave source approaches and the focal point of the wave incident on the outer diameter side portion of the lens shifts away from the wave receiving means, the inner diameter side portion of the lens whose focal length is shorter than the outer diameter side portion of the lens Waves that have passed through can be concentrated in the receiving means. Further, since the inner diameter side portion of the lens has at least two portions having different focal lengths, the range in which the waves can be collected by the wave receiving means is wide. In addition, this wave receiving device stably collects waves in the wave receiving means even when there are obstacles that obstruct the wave progression in the central part of the lens and in the vicinity of the central part of the lens. Can be made.

また、本発明に係る測距装置は、上記受波装置の構成を備えており、より広い範囲で測距対象物との距離を測定することができる。例えば、レンズに入射した平行波を受波手段に集約させる部分をレンズの外径側部分に備え、レンズの内径側部分に、レンズの外径側部分よりも焦点距離が短く、それぞれ焦点距離が異なった部分を少なくとも2つ以上備えた構成にしたものでは、測距対象物との距離が近くなり、反射波が広がりながらレンズに入射する場合、レンズの内径側部分に入射する波は、レンズの外径側部分に入射する波よりも反射率が高くなる。この測距装置は、測距対象物との距離が近くなり、反射波が広がりながらレンズに入射した場合には、レンズの内径側部分を通る波が受波手段に入射するようになっている。これにより、測距対象物との距離が近くなっても受波手段に入射した波から距離計測に必要な情報を得ることができ、より広い範囲で測距対象物との距離を測定することができる。   In addition, the distance measuring device according to the present invention has the configuration of the above-described wave receiving device, and can measure the distance to the distance measuring object in a wider range. For example, a portion for concentrating the parallel waves incident on the lens on the receiving means is provided on the outer diameter side portion of the lens, and the inner diameter side portion of the lens has a shorter focal length than the outer diameter side portion of the lens, and each has a focal length of In the structure having at least two different portions, when the distance to the object to be measured is close and the reflected wave is incident on the lens while spreading, the wave incident on the inner diameter side portion of the lens is The reflectance is higher than that of the wave incident on the outer diameter side portion. In this distance measuring device, when the distance to the object to be measured becomes close and the reflected wave is incident on the lens while spreading, the wave passing through the inner diameter side portion of the lens is incident on the wave receiving means. . This makes it possible to obtain the information necessary for distance measurement from the wave incident on the wave receiving means even when the distance to the distance measurement object is short, and to measure the distance to the distance measurement object in a wider range. Can do.

以下、本発明に係る受波装置および測距装置の一実施形態を図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of a wave receiving device and a distance measuring device according to the invention will be described with reference to the drawings.

この測距装置10は、レーザ光を用いて測距対象物との距離を測定するものであり、図1に示すように、波発射手段としての投光器1と、レンズ2と、受波手段としての受光素子3と、距離導出手段4とを備えている。図1中、5は測距対象物としての反射板である。この実施形態では、レンズ2と受光素子3が受波装置を構成している。受光素子3はレンズ2の中心軸線上でレンズ2から所定の距離離れた位置に配設している。投光器1はレンズ2と受光素子3の間で、レンズ2の中央部近傍に配設されている。   This distance measuring device 10 measures the distance to a distance measuring object using a laser beam. As shown in FIG. 1, a projector 1 as a wave emitting means, a lens 2, and a wave receiving means. The light receiving element 3 and the distance deriving means 4 are provided. In FIG. 1, reference numeral 5 denotes a reflector as a distance measuring object. In this embodiment, the lens 2 and the light receiving element 3 constitute a wave receiving device. The light receiving element 3 is disposed at a position away from the lens 2 by a predetermined distance on the central axis of the lens 2. The projector 1 is disposed near the center of the lens 2 between the lens 2 and the light receiving element 3.

投光器1は、レーザダイオード6とレンズ7を備えている。この実施形態では、レーザダイオード6は、発振すべきレーザ光に応じた所定の入力信号が入力され、入力された入力信号に応じた振幅に調整されたレーザ光を発振する。レーザダイオード6で発光した光は、レンズ7を通って平行光11となり、レンズ2を透過して、測距対象物たる反射板5に出射される。なお、この実施形態では、図示は省略するが、レーザダイオード6に光ファイバを介して備え付けた受光素子により、レーザダイオード6で出射された光を受光して光電変換することにより、レーザダイオード6で出射された光11の投光信号11aを得ている。   The projector 1 includes a laser diode 6 and a lens 7. In this embodiment, the laser diode 6 receives a predetermined input signal corresponding to the laser light to be oscillated, and oscillates the laser light adjusted to an amplitude corresponding to the input signal. The light emitted from the laser diode 6 passes through the lens 7 to become parallel light 11, passes through the lens 2, and is emitted to the reflecting plate 5 that is a distance measuring object. In this embodiment, although not shown, the light emitted from the laser diode 6 is received and photoelectrically converted by the light receiving element provided to the laser diode 6 via an optical fiber, so that the laser diode 6 A projection signal 11a of the emitted light 11 is obtained.

レンズ2は反射板5で反射した光12、13を受光素子3に向けて集約させるものであり、焦点距離が異なった部分を少なくとも3つ以上備えている。この実施形態では、図2に示すように、レンズ2は中央部に投光器1から出射される光を透過させる透過部16を備えている。レンズ2の外径側部分17は、図3に示すように、入射した平行光14を受光素子3に集約させる所定の焦点距離で形成している。レンズ2の内径側部分18は、レンズ2の外径側部分17よりも焦点距離を短く形成した部分を、同心円状に複数形成しており、外側から内側に向けて少しずつ焦点距離を小さくしている。   The lens 2 collects the light 12 and 13 reflected by the reflecting plate 5 toward the light receiving element 3, and includes at least three portions having different focal lengths. In this embodiment, as shown in FIG. 2, the lens 2 includes a transmission portion 16 that transmits light emitted from the projector 1 at the center. As shown in FIG. 3, the outer diameter side portion 17 of the lens 2 is formed with a predetermined focal length that causes the incident parallel light 14 to be concentrated on the light receiving element 3. The inner diameter side portion 18 of the lens 2 is formed by concentrically forming a plurality of portions having a shorter focal length than the outer diameter side portion 17 of the lens 2, and the focal length is gradually reduced from the outside toward the inside. ing.

レンズ2の内径側部分18は、外側から内側に向けて焦点距離が少しずつ小さくなっているので、図1に示すように、反射板5の距離が近くなり、反射光が広がりながらレンズ2に入射すると、レンズ2の外径側部分17を通った光12は受光素子3に入射しなくなるが、レンズ2の内径側部分18を通った光13が受光素子3に入射するようになる。また、反射板5にレトロリフレクタ(回帰反射板)が用いられていると、レンズ2の内径側部分18に入射する光13の方が、レンズ2の外径側部分17に入射する光12に比べて反射率が高くなる(図13参照)。このレンズ2を用いれば、図4に示すように、反射板5との距離が近くなっても、レンズ2の内径側部分18に入射する光13を受光素子3に入射させることができるので、反射板5にレトロリフレクタ(回帰反射板)を用いた場合でも、受光素子3に入射する光の反射率が低下せず、受光素子3に安定した光量を入射させることができる。   Since the focal length of the inner diameter side portion 18 of the lens 2 is gradually reduced from the outside toward the inside, the distance of the reflecting plate 5 becomes close as shown in FIG. When incident, the light 12 that has passed through the outer diameter side portion 17 of the lens 2 does not enter the light receiving element 3, but the light 13 that has passed through the inner diameter side portion 18 of the lens 2 enters the light receiving element 3. Further, when a retroreflector (regressive reflection plate) is used for the reflecting plate 5, the light 13 incident on the inner diameter side portion 18 of the lens 2 is changed to the light 12 incident on the outer diameter side portion 17 of the lens 2. The reflectance is higher than that (see FIG. 13). If this lens 2 is used, as shown in FIG. 4, the light 13 incident on the inner diameter side portion 18 of the lens 2 can be incident on the light receiving element 3 even when the distance from the reflector 5 is short. Even when a retroreflector (regressive reflection plate) is used for the reflection plate 5, the reflectance of light incident on the light receiving element 3 does not decrease, and a stable amount of light can be incident on the light receiving element 3.

受光素子3は、光を受光すると、受光した光を光電変換して受光信号を出力する素子である。   When receiving light, the light receiving element 3 is an element that photoelectrically converts the received light and outputs a light reception signal.

距離導出手段4は、波発射手段1から波が発射され、発射された波が測距対象物5で反射し、レンズ2を介して受波手段3で受けられるまでの経過時間に基づいて、測距対象物5までの距離を導出するものである。斯かる経過時間は、波発射手段1から発射された波と、測距対象物5で反射しレンズ2を介して受波手段3に入射した波との位相差に基づいて算出することができる。この実施形態では、距離導出手段4は、測距対象物5で反射しレンズ2を介して受波手段3に入射した波との位相差に基づいて、測距対象物5までの距離を導出している。具体的には、距離導出手段4は、レーザダイオード6で出射された光11の投光信号1aと、受光素子3で出力された受光信号3aに基づいて、レーザダイオード6を出射した光11と、反射板5で反射して受光素子3に入射した光12(13)の位相差を求め、レーザダイオード6で照射した光11が受光素子3に入射するまでの時間を算出する。そして、これに光の速度を乗じることにより、反射板5までの距離を求めている。   The distance deriving unit 4 emits a wave from the wave emitting unit 1, and the emitted wave is reflected by the distance measuring object 5 and is received by the wave receiving unit 3 through the lens 2. The distance to the distance measuring object 5 is derived. Such elapsed time can be calculated based on the phase difference between the wave emitted from the wave emitting means 1 and the wave reflected by the distance measuring object 5 and incident on the wave receiving means 3 via the lens 2. . In this embodiment, the distance deriving means 4 derives the distance to the distance measuring object 5 based on the phase difference from the wave reflected by the distance measuring object 5 and incident on the wave receiving means 3 via the lens 2. is doing. Specifically, the distance deriving unit 4 includes the light 11 emitted from the laser diode 6 based on the light projection signal 1 a of the light 11 emitted from the laser diode 6 and the light reception signal 3 a output from the light receiving element 3. Then, the phase difference of the light 12 (13) reflected by the reflecting plate 5 and incident on the light receiving element 3 is obtained, and the time until the light 11 irradiated by the laser diode 6 enters the light receiving element 3 is calculated. And the distance to the reflecting plate 5 is calculated | required by multiplying this with the speed of light.

この測距装置10は、反射板5までの距離が充分に遠い場合は、図3に示すように、レンズ2に略平行な反射光14が入射し、レンズ2の外径側部分17を通った光が受光素子3に入射する。また、受光素子3に光を集約させるレンズ2の内径側部分18が、外側から内側に向けて焦点距離が少しずつ小さくなっているので、反射板5の距離が近くなり、反射光が広がりながらレンズ2に入射した場合には、図1に示すように、徐々にレンズ2の内径側部分18を通った光13が受光素子3に入射するようになる。これにより反射板5との距離が近くなっても受光素子3に入射した光から距離計測に必要な情報を得ることができる。このように、広い範囲で受光素子3に安定した光量を入射させることができ、距離を測定できる範囲が広い測距装置を提供することができる。また、斯かる受波装置を用いていることにより、投光器1をレンズ2の中央部近傍に配設できるので、測距装置のコンパクト化を図ることができる。   In the distance measuring device 10, when the distance to the reflecting plate 5 is sufficiently long, reflected light 14 that is substantially parallel to the lens 2 is incident on the lens 2 and passes through the outer diameter side portion 17 of the lens 2, as shown in FIG. The incident light enters the light receiving element 3. Further, since the focal length of the inner diameter side portion 18 of the lens 2 for concentrating the light on the light receiving element 3 is gradually reduced from the outside toward the inside, the distance of the reflecting plate 5 becomes close and the reflected light spreads. When the light enters the lens 2, the light 13 that has passed through the inner diameter side portion 18 of the lens 2 gradually enters the light receiving element 3 as shown in FIG. 1. As a result, even when the distance to the reflecting plate 5 is short, information necessary for distance measurement can be obtained from the light incident on the light receiving element 3. As described above, it is possible to provide a distance measuring device in which a stable amount of light can be incident on the light receiving element 3 in a wide range and a range in which the distance can be measured is wide. Further, by using such a wave receiving device, the projector 1 can be disposed in the vicinity of the center portion of the lens 2, so that the distance measuring device can be made compact.

以上、本発明に係る受波装置および測距装置の一実施形態を図面に基づいて説明したが、本発明に係る受波装置および測距装置はこれに限定されるものではない。   As mentioned above, although one Embodiment of the wave receiving device and distance measuring device which concern on this invention was described based on drawing, the wave receiving device and distance measuring device which concern on this invention are not limited to this.

例えば、上記実施形態では、レンズの内径側部分は、レンズの外径側部分よりも焦点距離を短く形成した部分を同心円状に複数配設し、外側から内側に向けて焦点距離を少しずつ小さくしたものを例示したが、レンズは、レンズは焦点距離が異なった部分を少なくとも3つ以上備えていればよく、これに限定されるものではない。例えば、レンズの内径側部分を扇状に複数に分割し、それぞれ焦点距離を異ならせて、焦点距離が少しずつ小さくしてもよい。   For example, in the above-described embodiment, the inner diameter side portion of the lens has a plurality of concentrically arranged portions having a shorter focal length than the outer diameter side portion of the lens, and the focal length is gradually reduced from the outside toward the inside. However, the lens is not limited to this as long as the lens has at least three portions having different focal lengths. For example, the inner diameter side portion of the lens may be divided into a plurality of sectors, and the focal length may be made different so that the focal length is gradually reduced.

また、図5に示すように、レンズ31は、レンズ31の内径側部分32に焦点距離が異なる部分を設け、レンズ31の内径側部分32の焦点距離が異なる部分の境界領域では、内径側に向かうにつれて焦点距離を少しずつ小さくし、焦点距離を滑らかに連続させている。なお、このレンズ31は、焦点距離が異なる部分に略境界がなくなるので、受光素子に入射する光の光量を安定させることができる。また、投光器をレンズの中央部近傍に配設したものを例示したが、これに限定されるものではない。   As shown in FIG. 5, the lens 31 is provided with a portion having a different focal length in the inner diameter side portion 32 of the lens 31, and in the boundary region of the portion having a different focal length of the inner diameter side portion 32 of the lens 31, The focal length is gradually reduced as it goes to make the focal length smooth and continuous. In addition, since this lens 31 has substantially no boundary at a portion where the focal length is different, the amount of light incident on the light receiving element can be stabilized. Moreover, although what has arrange | positioned the light projector in the center part vicinity of the lens was illustrated, it is not limited to this.

また、測距装置として、レーザ光を用いたレーザ測距装置を例示したが、本発明に係る受波装置および測距装置は、レーザ光などの光を用いた場合だけでなく、電磁波や音波などの種々の波を用いる場合に応用可能である。   Further, the laser distance measuring device using laser light is exemplified as the distance measuring device. However, the wave receiving device and the distance measuring device according to the present invention are not limited to the case of using light such as laser light, but also electromagnetic waves and sound waves. It is applicable when using various waves such as.

例えば、マイクロ波と称される非常に周波数の高い電波を用いる場合は、上記実施形態における光学的レンズに代えて、電波の進行方向を光におけるレンズと同様に制御できる誘電体レンズを用いるとよい。誘電体レンズは、誘電率の違いにより、誘電体レンズ中の電波を屈折させるものである。この周知の現象により、部分的に焦点距離が異なる誘電体レンズを用いることにより、電磁波を対象として本発明を適用することができる。また、波発射手段としての投光器に代えてマイクロ波発信器を用いることができ、受波手段としての受光素子に代えてマイクロ波受信器を用いることができる。   For example, when using a very high frequency radio wave called a microwave, a dielectric lens that can control the traveling direction of the radio wave in the same manner as a lens in light may be used instead of the optical lens in the above embodiment. . The dielectric lens refracts radio waves in the dielectric lens due to a difference in dielectric constant. Due to this known phenomenon, the present invention can be applied to electromagnetic waves by using dielectric lenses having partially different focal lengths. Further, a microwave transmitter can be used instead of the projector as the wave emitting means, and a microwave receiver can be used instead of the light receiving element as the wave receiving means.

また、本発明は空気振動による音波を用いる場合にも適用可能である。この場合、上記実施形態における光学的レンズに代えて、音波の進行方向を光におけるレンズと同様に制御できる音響レンズを用いるとよい。例えば、音波の場合には、空気密度の違いにより、上記と同様に音波の進行速度が変化する。即ち、空気密度の高い空間領域があれば、音波に対し、レンズと同様の影響が得られることは、音響レンズとして周知である。この周知の現象により、部分的に焦点距離が異なる音響レンズを用いることにより、音波を対象として本発明を適用することができる。また、波発射手段としての投光器に代えて音波発信器を用いることができ、受波手段としての受光素子に代えて音波受信器を用いることができる。   The present invention is also applicable to the case of using sound waves generated by air vibration. In this case, an acoustic lens that can control the traveling direction of the sound wave in the same manner as the lens in the light may be used instead of the optical lens in the above embodiment. For example, in the case of sound waves, the traveling speed of sound waves changes in the same manner as described above due to the difference in air density. That is, if there is a spatial region with a high air density, it is well known as an acoustic lens that an effect similar to that of a lens can be obtained for sound waves. Due to this well-known phenomenon, the present invention can be applied to sound waves by using acoustic lenses having partially different focal lengths. Further, a sound wave transmitter can be used in place of the projector as the wave emitting means, and a sound wave receiver can be used in place of the light receiving element as the wave receiving means.

本発明の一実施形態に係る測距装置を示す図。The figure which shows the ranging apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る受波装置および測距装置に用いられるレンズを示す平面図。1 is a plan view showing a lens used in a wave receiving device and a distance measuring device according to an embodiment of the present invention. 本発明の一実施形態に係る測距装置を示す図。The figure which shows the ranging apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る測距装置における反射板との距離と受光素子に入射する光量との関係を示す図。The figure which shows the relationship between the distance with the reflecting plate in the distance measuring device which concerns on one Embodiment of this invention, and the light quantity which injects into a light receiving element. 本発明に係る受波装置および測距装置に用いられるレンズの他の実施形態を示す断面図。Sectional drawing which shows other embodiment of the lens used for the wave receiving device and distance measuring device which concern on this invention. 光電子検出装置の公知例を示す図。The figure which shows the well-known example of a photoelectron detector. 光電子検出装置の公知例を示す図。The figure which shows the well-known example of a photoelectron detector. 観測角と反射率の関係を示す図。The figure which shows the relationship between an observation angle and a reflectance. 従来のレーザ測距装置における反射板との距離と受光素子に入射する光量との関係を示す図。The figure which shows the relationship between the distance with the reflecting plate in the conventional laser ranging apparatus, and the light quantity which injects into a light receiving element.

符号の説明Explanation of symbols

1 投光器
1a 投光信号
2 レンズ
3 受光素子
3a 受光信号
4 距離導出手段
5 反射板
6 レーザダイオード
7 レンズ
10 測距装置
11 レーザダイオードで出射された光
11 平行光
11a 投光信号
12、13 反射光
14 平行光
16 透過部
17 外径側部分
18 内径側部分
DESCRIPTION OF SYMBOLS 1 Light projector 1a Light projection signal 2 Lens 3 Light receiving element 3a Light reception signal 4 Distance derivation means 5 Reflector 6 Laser diode 7 Lens 10 Distance measuring device 11 Light emitted by laser diode 11 Parallel light 11a Light projection signals 12, 13 Reflected light 14 Parallel light 16 Transmitting portion 17 Outer diameter side portion 18 Inner diameter side portion

Claims (10)

波を受ける受波手段と、前記受波手段に向けて波を集約させるレンズとを備え、
前記レンズは焦点距離が異なった部分を少なくとも3つ以上備えていることを特徴とする受波装置。
Receiving means for receiving waves, and a lens for concentrating the waves toward the receiving means,
The wave receiving device according to claim 1, wherein the lens includes at least three portions having different focal lengths.
前記レンズはレンズに入射した平行波を前記受波手段に集約させる部分と、当該部分よりも焦点距離が短く、それぞれ焦点距離が異なった部分を少なくとも2つ以上備えていることを特徴とする請求項1に記載の受波装置。   The lens includes a portion for concentrating parallel waves incident on the lens on the receiving means, and at least two portions having a focal length shorter than the portion and different focal lengths. Item 4. The wave receiving device according to Item 1. 前記レンズは、レンズに入射した平行波を受波手段に集約させる部分をレンズの外径側部分に備え、レンズの内径側部分に、レンズの外径側部分よりも焦点距離が短く、それぞれ焦点距離が異なった部分を少なくとも2つ以上備えていることを特徴とする請求項2に記載の受波装置。   The lens has a portion for concentrating parallel waves incident on the lens in the receiving means on the outer diameter side portion of the lens, the inner diameter side portion of the lens has a shorter focal length than the outer diameter side portion of the lens, The wave receiving device according to claim 2, comprising at least two portions having different distances. 前記レンズの内径側の焦点距離が異なる部分の境界領域は焦点距離が滑らかに連続していることを特徴とする請求項1〜3の何れかに記載の受波装置。   The wave receiving device according to any one of claims 1 to 3, wherein a focal length of a boundary region of a portion having a different focal length on the inner diameter side of the lens is smoothly continuous. 波を受ける受波手段と、
前記受波手段に向けて波を集約させるレンズと、
測距対象物に向けて波を発する波発射手段と、
前記波発射手段から波が発射され、発射された波が測距対象物で反射し前記レンズを介して受波手段で受けられるまでの経過時間に基づいて、測距対象物までの距離を導出する距離導出手段とを備え、
前記レンズは焦点距離が異なった部分を少なくとも3つ以上備えていることを特徴とする測距装置。
Receiving means for receiving waves,
A lens for concentrating waves toward the wave receiving means;
Wave launching means for emitting waves toward the object to be measured;
A wave is emitted from the wave emitting means, and a distance to the distance measuring object is derived based on an elapsed time until the emitted wave is reflected by the distance measuring object and received by the wave receiving means through the lens. A distance deriving means for
The lens has at least three parts having different focal lengths.
波を受ける受波手段と、
前記受波手段に向けて波を集約させるレンズと、
測距対象物に向けて波を発する波発射手段と、
前記波発射手段から発した波と、測距対象物で反射し前記レンズを介して受波手段に入社した波との位相差に基づいて、測距対象物までの距離を導出する距離導出手段とを備え、
前記レンズは焦点距離が異なった部分を少なくとも3つ以上備えていることを特徴とする測距装置。
Receiving means for receiving waves,
A lens for concentrating waves toward the wave receiving means;
Wave launching means for emitting waves toward the object to be measured;
Distance deriving means for deriving the distance to the distance measuring object based on the phase difference between the wave emitted from the wave emitting means and the wave reflected by the distance measuring object and entering the wave receiving means via the lens And
The lens has at least three portions having different focal lengths.
前記レンズはレンズに入射した平行波を前記受波手段に集約させる部分と、当該部分よりも焦点距離が短く、それぞれ焦点距離が異なった部分を少なくとも2つ以上備えていることを特徴とする請求項5又は6に記載の測距装置。   2. The lens according to claim 1, further comprising: a portion for concentrating parallel waves incident on the lens on the wave receiving means; and at least two portions having a focal length shorter than the portion and different focal lengths. Item 7. The distance measuring device according to Item 5 or 6. 前記レンズは、レンズに入射した平行波を受波手段に集約させる部分をレンズの外径側部分に備え、レンズの内径側部分に、レンズの外径側部分よりも焦点距離が短く、それぞれ焦点距離が異なった部分を少なくとも2つ以上備えていることを特徴とする請求項5又は6に記載の測距装置。   The lens has a portion for concentrating parallel waves incident on the lens in the receiving means on the outer diameter side portion of the lens, the inner diameter side portion of the lens has a shorter focal length than the outer diameter side portion of the lens, The distance measuring device according to claim 5 or 6, comprising at least two portions having different distances. 前記レンズは、焦点距離が異なる部分の焦点距離が滑らかに連続していることを特徴とする請求項5〜8の何れかに記載の測距装置。   9. The distance measuring device according to claim 5, wherein focal lengths of portions having different focal lengths of the lens are smoothly continuous. 前記波発射手段はレンズの中央部近傍に配設されていることを特徴とする請求項5〜8の何れかに記載の測距装置。   9. The distance measuring device according to claim 5, wherein the wave emitting means is disposed in the vicinity of the center of the lens.
JP2006038039A 2005-02-21 2006-02-15 Light receiving device and range finder Pending JP2006258802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006038039A JP2006258802A (en) 2005-02-21 2006-02-15 Light receiving device and range finder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005044429 2005-02-21
JP2006038039A JP2006258802A (en) 2005-02-21 2006-02-15 Light receiving device and range finder

Publications (1)

Publication Number Publication Date
JP2006258802A true JP2006258802A (en) 2006-09-28

Family

ID=37098204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006038039A Pending JP2006258802A (en) 2005-02-21 2006-02-15 Light receiving device and range finder

Country Status (1)

Country Link
JP (1) JP2006258802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149760A (en) * 2010-01-20 2011-08-04 Topcon Corp Light-wave distance measuring apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306513A (en) * 1989-02-20 1990-12-19 Omron Corp Reflex type photoelectric switch and fresnel lens and manufacture of it
JPH0368889A (en) * 1989-08-08 1991-03-25 Omron Corp Distance sensor
JPH05288512A (en) * 1992-04-13 1993-11-02 Nippon Telegr & Teleph Corp <Ntt> Position measuring device
JPH07270602A (en) * 1994-03-31 1995-10-20 Omron Corp Lens for receiving light, light receiving device, photoelectric sensor and laser radar using them and vehicle loading laser radar
JPH07280939A (en) * 1994-04-13 1995-10-27 Nippondenso Co Ltd Reflection measuring apparatus
JPH0882677A (en) * 1994-09-13 1996-03-26 Nippondenso Co Ltd Reflection measuring apparatus
JPH0921874A (en) * 1995-07-04 1997-01-21 Nippondenso Co Ltd Reflection measuring device
JP2000174548A (en) * 1998-12-01 2000-06-23 Honda Motor Co Ltd Radar system
JP2003202215A (en) * 2001-09-03 2003-07-18 Sick Ag Photoelectron detection apparatus
JP2004069611A (en) * 2002-08-08 2004-03-04 Topcon Corp Optical wave distance measurement device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306513A (en) * 1989-02-20 1990-12-19 Omron Corp Reflex type photoelectric switch and fresnel lens and manufacture of it
JPH0368889A (en) * 1989-08-08 1991-03-25 Omron Corp Distance sensor
JPH05288512A (en) * 1992-04-13 1993-11-02 Nippon Telegr & Teleph Corp <Ntt> Position measuring device
JPH07270602A (en) * 1994-03-31 1995-10-20 Omron Corp Lens for receiving light, light receiving device, photoelectric sensor and laser radar using them and vehicle loading laser radar
JPH07280939A (en) * 1994-04-13 1995-10-27 Nippondenso Co Ltd Reflection measuring apparatus
JPH0882677A (en) * 1994-09-13 1996-03-26 Nippondenso Co Ltd Reflection measuring apparatus
JPH0921874A (en) * 1995-07-04 1997-01-21 Nippondenso Co Ltd Reflection measuring device
JP2000174548A (en) * 1998-12-01 2000-06-23 Honda Motor Co Ltd Radar system
JP2003202215A (en) * 2001-09-03 2003-07-18 Sick Ag Photoelectron detection apparatus
JP2004069611A (en) * 2002-08-08 2004-03-04 Topcon Corp Optical wave distance measurement device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149760A (en) * 2010-01-20 2011-08-04 Topcon Corp Light-wave distance measuring apparatus

Similar Documents

Publication Publication Date Title
US20060186326A1 (en) Wave receiving apparatus and distance measuring apparatus
US6833909B2 (en) Device for optical distance measurement of distance over a large measuring range
RU2442107C2 (en) Device for optical distance measurement
US6894767B2 (en) Light wave distance-measuring system
US6226076B1 (en) Distance measuring apparatus using pulse light
US20070030474A1 (en) Optical range finder
US10031213B2 (en) Laser scanner
KR101979404B1 (en) Distance measuring sensor assembly and electronic equipment having the same
US20110188121A1 (en) Measuring device with a reduced share of stray light
US7268857B2 (en) Optical system for laser range finder
JP2009508124A (en) Electro-optical measuring device
EP2339366B1 (en) Optical distance measuring device
US10067222B2 (en) Laser rangefinder
JP2017106833A (en) Measuring apparatus
US20100157282A1 (en) Range finder
JP6396696B2 (en) Light wave distance meter
US20050225743A1 (en) Laser range finder having reflective micro-mirror and laser measuring method
JP6460445B2 (en) Laser range finder
JP2022000659A (en) Measurement device
JP2000193748A (en) Laser distance-measuring device for large measurement range
JP2017110964A (en) Light wave distance-measuring device
JP2007333592A (en) Distance measurement device
US7463339B2 (en) Device for measuring the distance to far-off objects and close objects
KR20190066349A (en) Lidar device
JP5154028B2 (en) Light wave distance meter

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070413