JP2006258733A - Sensor mounting structure and tire condition detection apparatus - Google Patents

Sensor mounting structure and tire condition detection apparatus Download PDF

Info

Publication number
JP2006258733A
JP2006258733A JP2005079715A JP2005079715A JP2006258733A JP 2006258733 A JP2006258733 A JP 2006258733A JP 2005079715 A JP2005079715 A JP 2005079715A JP 2005079715 A JP2005079715 A JP 2005079715A JP 2006258733 A JP2006258733 A JP 2006258733A
Authority
JP
Japan
Prior art keywords
tire
acoustic wave
surface acoustic
rubber
wave element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005079715A
Other languages
Japanese (ja)
Inventor
Ryo Muramatsu
凌 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2005079715A priority Critical patent/JP2006258733A/en
Publication of JP2006258733A publication Critical patent/JP2006258733A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor mounting structure capable of highly accurately transmitting stress required for detection to an element and maintaining a satisfactory state of adhesion of the element almost without being affected by the surface shape of tires and provide a tire condition detection apparatus having the same. <P>SOLUTION: In the sensor mounting structure, the surface acoustic element 11 for changing response signals to input signals according to distortions which occur in the direction A1 of detection is pasted to a tire T, and reinforcing rubber 16 having a hardness higher by 5° or more at least at both end parts 11a than in its periphery is interposed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、弾性表面波素子(SAW)センサをタイヤへ取り付けるためのセンサ取付構造、及び当該センサ取付構造を有し、タイヤの歪や応力等を検出するタイヤ状態の検出装置に関する。   The present invention relates to a sensor attachment structure for attaching a surface acoustic wave element (SAW) sensor to a tire, and a tire condition detection device that has the sensor attachment structure and detects tire distortion, stress, and the like.

タイヤの操縦安定性は非常に重要な特性であるが、一般的には専門的な教育を受けたテストドライバーの感覚で評価されることが多い。このため、操縦安定性をより客観的にかつ再現性良く評価する方法が望まれており、当該評価方法において、トレッドやサイドウォールの歪や応力の計測が重要となる。   Tire handling stability is a very important characteristic, but in general, it is often evaluated as a test driver with a specialized education. For this reason, a method for evaluating steering stability more objectively and with good reproducibility is desired, and in the evaluation method, measurement of strain and stress of the tread and the sidewall is important.

従来、加速度センサを用いて無線により検出信号を発信する方法なども存在したが、加速度センサでは間接的な情報しか得られず、また発信機や電源などによって、操縦安定性に大きく影響する、所謂バネ下重量が重たくなるため、実質的な評価ができているとは言い難い。   Conventionally, there has also been a method of transmitting a detection signal wirelessly using an acceleration sensor, but the acceleration sensor can only obtain indirect information, and the so-called transmitter or power source greatly affects steering stability. Since the unsprung weight increases, it is difficult to say that substantial evaluation has been made.

一方、受動素子(パッシブ)である弾性表面波素子(SAW)センサは、電源が不要で小型、軽量という利点があり、トレッドやサイドウォールの歪や応力を直接的に検出すれば、実質的に操縦安定性評価が可能となる。このため、SAWセンサのタイヤへの応用として、タイヤの接地状態の検出(例えば、特許文献1参照)、センサの一部品としての使用例(例えば、特許文献2参照)などが提案されている。   On the other hand, a surface acoustic wave element (SAW) sensor, which is a passive element (passive), has the advantage of being compact and lightweight without the need for a power source. If the distortion and stress of the tread and sidewall are directly detected, Steering stability can be evaluated. For this reason, as an application of the SAW sensor to a tire, detection of a ground contact state of the tire (for example, see Patent Document 1), an example of use as a part of the sensor (for example, see Patent Document 2), and the like have been proposed.

しかし、前者は、接地状態を検出するものであり、操縦安定性を評価するための情報としては不十分である。後者は、センサ装置そのものが大きく、質量も大きく操縦安定性評価には適当ではない。   However, the former detects the ground contact state and is insufficient as information for evaluating the steering stability. The latter is not suitable for evaluation of steering stability because the sensor device itself is large and has a large mass.

また、類似のセンサとして、内圧警報装置のセンサがあり、タイヤへの埋め込みの例として、比較的動きの少ないビード部やサイドウォール部への埋設の特許がある(例えば、特許文献3〜4参照)。なお、歪の少ない部位への埋設のため、接着力については考慮されていない。   Further, as a similar sensor, there is a sensor of an internal pressure alarm device, and as an example of embedding in a tire, there is a patent for embedding in a bead portion or a sidewall portion with relatively little movement (for example, see Patent Documents 3 to 4). ). In addition, since it is embed | buried in a site | part with few distortions, the adhesive force is not considered.

更に、SAWセンサ、整合回路、及びアンテナからなる応答器をタイヤに取り付けて、応答器に対して駆動信号を発信すると共に応答器からの信号を受信する送受信器を車両に設置し、空気圧等のタイヤ情報を検出するタイヤ情報検出装置が知られている(例えば、特許文献5参照)。この装置では、タイヤの空気圧等を検出するためのセンサ構造として、SAWセンサ素子をダイヤフラムと複合化して閉じた空間を形成し、センサ素子の他方側の空間をタイヤ内部に連通させることで、タイヤ内部の圧力に応じてセンサ素子が曲げ変形するセンサ構造が開示されている。   Furthermore, a transponder comprising a SAW sensor, a matching circuit, and an antenna is attached to the tire, and a transmitter / receiver that transmits a drive signal to the transponder and receives a signal from the transponder is installed in the vehicle. A tire information detection device for detecting tire information is known (see, for example, Patent Document 5). In this device, as a sensor structure for detecting tire air pressure and the like, the SAW sensor element is combined with a diaphragm to form a closed space, and the other side of the sensor element is communicated with the inside of the tire, thereby A sensor structure in which a sensor element bends and deforms according to an internal pressure is disclosed.

しかしながら、この特許文献5には、SAWセンサを用いて歪を計測する方法については、具体的に開示されていない。このため、例えばSAWセンサをタイヤ表面に接着して、直接的にトレッド部やサイドウォール部の歪を計測しようとすると、タイヤにはトレッドパターンやサイド部のデザイン、内面の空気抜き溝など複雑な凹凸があり、局部的に複雑な歪によって、本来生じる歪を正確に計測するのが困難となる。また、SAWセンサ素子は、小型でゴムに比べて非常に硬いため、歪がかかると局部的な歪や応力が大きくなり、その結果、SAWセンサとの接着界面が剥がれたり、SAWセンサが脱落するという問題があった。
特表2003−526560号公報 特開2003−285612号公報 特開2004−58997号公報 特開2004−82775号公報 特開2004−203165号公報
However, this Patent Document 5 does not specifically disclose a method of measuring strain using a SAW sensor. For this reason, for example, when a SAW sensor is bonded to the tire surface and the distortion of the tread or sidewall is measured directly, the tire has complicated irregularities such as tread pattern, side design, and air vent groove on the inner surface. Therefore, it is difficult to accurately measure the originally generated distortion due to the locally complicated distortion. In addition, since the SAW sensor element is small and extremely hard compared to rubber, when strain is applied, local strain and stress increase, and as a result, the adhesive interface with the SAW sensor peels off or the SAW sensor falls off. There was a problem.
Special Table 2003-526560 JP 2003-285612 A JP 2004-58997 A JP 2004-82775 A JP 2004-203165 A

そこで、本発明の目的は、タイヤの表面形状の影響を受けにくく、検出に必要な応力を精度良く素子に伝達することができ、素子の接着状態を良好に維持することができるセンサ取付構造、及び当該センサ取付構造を有するタイヤ状態の検出装置を提供することにある。   Therefore, the object of the present invention is to be less affected by the surface shape of the tire, can transmit stress necessary for detection to the element with high accuracy, and can maintain a good adhesion state of the element, Another object of the present invention is to provide a tire condition detection device having the sensor mounting structure.

上記目的は、下記の如き本発明により達成できる。   The above object can be achieved by the present invention as described below.

即ち、本発明のセンサ取付構造は、検出方向に生じる歪によって入力信号に対する応答信号を変化させる弾性表面波素子(以下、「素子」と略す場合がある)が、少なくともその両端部では周囲のゴムより硬度が5°以上高い補強ゴムを介在しつつ、タイヤに接着されていることを特徴とする。本発明において、ゴムの硬度は、JISK6253のタイプAデュロメータ硬さ試験に準じて測定した値を指す。   That is, in the sensor mounting structure of the present invention, a surface acoustic wave element (hereinafter, may be abbreviated as “element” in some cases) that changes a response signal to an input signal due to a strain generated in the detection direction has a surrounding rubber at least at both ends thereof. It is characterized by being bonded to the tire while interposing a reinforcing rubber having a hardness of 5 ° or higher. In the present invention, the hardness of rubber refers to a value measured according to a JIS K6253 type A durometer hardness test.

本発明のセンサ取付構造によると、素子の少なくとも両端部では周囲のゴムより硬度が5°以上高い補強ゴムを介在しつつ、タイヤに接着されているため、より広い範囲にわたる応力が全体的に素子の端部に負荷されるので、タイヤの表面形状の影響を受けにくく、検出に必要な応力を精度良く素子に伝達することができる。また、補強ゴムによって応力の集中を分散させることができ、接着界面の剥がれや素子の脱落を防止して、素子の接着状態を良好に維持することができる。   According to the sensor mounting structure of the present invention, at least both ends of the element are bonded to the tire while interposing a reinforcing rubber whose hardness is 5 ° or more higher than that of the surrounding rubber. Therefore, the stress required for detection can be accurately transmitted to the element. Further, the concentration of stress can be dispersed by the reinforced rubber, and the adhesion state of the element can be maintained well by preventing the adhesion interface from peeling off and the element from falling off.

上記において、前記補強ゴムは、前記弾性表面波素子の底面に対し0.5〜1.5mmの厚みで設けられていることが好ましい。このような厚みの範囲であると、歪の検出精度にさほど影響を与えずに、検出に必要な応力をより精度良く素子に伝達することができ、また応力集中の回避により、素子の接着状態を良好に維持することができる。   In the above, it is preferable that the reinforcing rubber is provided with a thickness of 0.5 to 1.5 mm with respect to the bottom surface of the surface acoustic wave element. Within such a thickness range, the stress required for detection can be transmitted to the element more accurately without significantly affecting the detection accuracy of the strain, and the adhesion state of the element can be avoided by avoiding stress concentration. Can be maintained well.

また、前記弾性表面波素子と前記補強ゴムとは、凹凸を有する界面で接着されていることが好ましい。この場合、界面に設けた凹凸による表面積の増加効果などによって、接着界面の剥がれや素子の脱落をより効果的に防止できることができる。   Further, it is preferable that the surface acoustic wave element and the reinforcing rubber are bonded at an uneven surface. In this case, peeling of the adhesive interface and falling off of the element can be more effectively prevented by an effect of increasing the surface area due to the unevenness provided at the interface.

更に、予め加硫接着した前記弾性表面波素子と前記補強ゴムとを、未加硫タイヤに配置して、タイヤの加硫時に加硫接着してあるか、または、予め加硫接着した前記弾性表面波素子と前記補強ゴムとを、加硫タイヤに対して接着してあることが好ましい。   Further, the elastic surface wave element and the reinforced rubber which are vulcanized and bonded in advance are arranged in an unvulcanized tire and vulcanized and bonded at the time of vulcanization of the tire, or the elastic material which has been vulcanized and bonded in advance. It is preferable that the surface wave element and the reinforcing rubber are bonded to the vulcanized tire.

予め前記弾性表面波素子と前記補強ゴムとを加硫接着した複合体とし、これを未加硫タイヤに配置して、タイヤの加硫時に加硫接着すると、複合体の構造精度が向上し、タイヤへの加硫接着の取扱い性が非常に向上する。また、複合体を加硫タイヤに対して接着する場合は、未加硫タイヤに配置して加硫する場合に比べて、加硫時におけるタイヤゴムの流れによる前記複合体の方向等の設計値に対するズレが防止され、センサの取付精度が大幅に向上する。また、生産性の面からも、通常の製品タイヤを多少加工し、複合体を接着処理するだけであり、大幅に生産性が向上する。   When the surface acoustic wave element and the reinforced rubber are vulcanized and bonded in advance, and this is placed in an unvulcanized tire and vulcanized and bonded when the tire is vulcanized, the structural accuracy of the composite is improved. Handleability of vulcanization adhesion to tire is greatly improved. Also, when the composite is bonded to the vulcanized tire, compared to the case where the composite is placed on an unvulcanized tire and vulcanized, the design value such as the direction of the composite due to the flow of the tire rubber at the time of vulcanization Misalignment is prevented and sensor mounting accuracy is greatly improved. Also, from the viewpoint of productivity, it is only necessary to process a normal product tire to some extent and bond the composite, which greatly improves productivity.

一方、本発明のタイヤ状態の検出装置は、弾性表面波素子及びこれに接続されるアンテナを有しタイヤ側に設置された応答器と、その応答器に対して駆動信号を発信するとともに応答器からの応答信号を受信して信号の処理を行うべく車体側に設置された送受信手段とを備えるタイヤ状態の検出装置において、前記弾性表面波素子は、検出方向に生じる歪によって入力信号に対する応答信号を変化させるものであり、この弾性表面波素子が、少なくともその両端部では周囲のゴムより硬度が5°以上高い補強ゴムを介在しつつ、タイヤに接着されていることを特徴とする。   On the other hand, the tire state detection device of the present invention includes a surface acoustic wave element and a responder having an antenna connected thereto and installed on the tire side, and transmits a drive signal to the responder and responds In the tire condition detection apparatus comprising a transmission / reception means installed on the vehicle body side for receiving a response signal from the vehicle body and processing the signal, the surface acoustic wave element is a response signal to the input signal due to strain generated in the detection direction. The surface acoustic wave element is bonded to a tire with a reinforcing rubber having a hardness of 5 ° or more higher than that of the surrounding rubber at least at both ends thereof.

本発明のタイヤ状態の検出装置において、検出方向に生じる歪によって入力信号に対する応答信号を変化させる弾性表面波素子を有する応答器に対し、送受信手段から駆動信号が発信されると、アンテナからの入力信号に対し、検出方向に生じる歪によって応答信号が変化し、これを送受信手段で受信して信号の処理を行うことで、検出方向に生じる歪を検出することができる。その際、弾性表面波素子が、少なくともその両端部では周囲のゴムより硬度が5°以上高い補強ゴムを介在しつつ、タイヤに接着されているため、より広い範囲にわたる応力が全体的に素子の端部に負荷されるので、タイヤの表面形状の影響を受けにくく、検出に必要な応力を精度良く素子に伝達することができる。また、補強ゴムによって応力の集中を分散させることができ、接着界面の剥がれや素子の脱落を防止して、素子の接着状態を良好に維持することができる。   In the tire condition detection device of the present invention, when a drive signal is transmitted from a transmission / reception means to a transponder having a surface acoustic wave element that changes a response signal to an input signal due to strain generated in the detection direction, the input from the antenna The response signal is changed by the distortion generated in the detection direction with respect to the signal, and the distortion generated in the detection direction can be detected by receiving the signal by the transmission / reception means and processing the signal. At that time, the surface acoustic wave element is bonded to the tire while interposing a reinforcing rubber having a hardness of 5 ° or more higher than that of the surrounding rubber at least at both ends thereof. Since the load is applied to the end portion, it is difficult to be affected by the surface shape of the tire, and stress necessary for detection can be transmitted to the element with high accuracy. Further, the concentration of stress can be dispersed by the reinforced rubber, and the adhesion state of the element can be maintained well by preventing the adhesion interface from peeling off and the element from falling off.

上記において、前記弾性表面波素子の接着位置に対して、タイヤ周方向に60°以上離れた位置に前記アンテナを設置すると共に、タイヤの回転で前記弾性表面波素子が最下端に位置するときに、前記アンテナの設置位置に略対向する位置に、前記送受信手段のアンテナを配置することが好ましい。   In the above, when the antenna is installed at a position separated by 60 ° or more in the tire circumferential direction with respect to the bonding position of the surface acoustic wave element, and when the surface acoustic wave element is positioned at the lowermost end by rotation of the tire Preferably, the antenna of the transmission / reception means is arranged at a position substantially opposite to the installation position of the antenna.

操縦安定性などの動的タイヤ特性を評価する上で、特にタイヤ接地部からの入力による歪や応力が重要となるが、応答器と送受信手段との距離が大きくなると、検出感度が低下するという問題があった。このため、上記のようにアンテナと素子の位置関係をズラした上で、両者のアンテナの位置関係を上記の如く配置することで、タイヤ接地部からの入力による歪や応力を、より高い感度で検出することができるようになる。   In evaluating dynamic tire characteristics such as steering stability, distortion and stress due to input from the tire contact area are particularly important, but detection sensitivity decreases as the distance between the responder and the transmission / reception means increases. There was a problem. For this reason, after shifting the positional relationship between the antenna and the element as described above and arranging the positional relationship between the two antennas as described above, distortion and stress due to input from the tire grounding portion can be increased with higher sensitivity. Can be detected.

以下、本発明の実施の形態について、図面を参照しながら説明する。図1は、本発明のタイヤ状態の検出装置の一例を示す概略構成図であり、図2は、本発明のタイヤ状態の検出装置の装着状態の一例を示す説明図である。図3は、本発明のセンサ取付構造の一例を示す図であり、(a)は正面視断面図、(b)は平面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram illustrating an example of a tire condition detection device of the present invention, and FIG. 2 is an explanatory diagram illustrating an example of a mounting state of the tire condition detection device of the present invention. 3A and 3B are diagrams showing an example of the sensor mounting structure of the present invention, where FIG. 3A is a front sectional view and FIG. 3B is a plan view.

まず、本発明のタイヤ状態の検出装置について説明する。本発明のタイヤ状態の検出装置は、図1に示すように、弾性表面波素子11及びこれに接続されるアンテナ12を有しタイヤ側に設置された応答器10と、その応答器10に対して駆動信号を発信するとともに応答器10からの応答信号を受信して信号の処理を行うべく車体側に設置された送受信手段20とを備えるものである。   First, the tire condition detection apparatus of the present invention will be described. As shown in FIG. 1, the tire state detection device of the present invention has a surface acoustic wave element 11 and an antenna 12 connected thereto, a responder 10 installed on the tire side, and the responder 10. And a transmission / reception means 20 installed on the vehicle body side for receiving the response signal from the responder 10 and processing the signal.

本実施形態の応答器10は、弾性表面波素子11とアンテナ12とのインピーダンス整合をとるための整合回路部13を設けた例を示している。弾性表面波素子11は後述するように、タイヤに生じる歪や応力を弾性表面波の伝搬特性の変化として検出する部分であり、アンテナ12は電波信号の送受信を行う部分である。   The responder 10 of the present embodiment shows an example in which a matching circuit unit 13 for impedance matching between the surface acoustic wave element 11 and the antenna 12 is provided. As will be described later, the surface acoustic wave element 11 is a part that detects strain and stress generated in the tire as a change in propagation characteristics of the surface acoustic wave, and the antenna 12 is a part that transmits and receives radio signals.

また、整合回路部13はインピーダンス整合をとるべく、抵抗、コンデンサ、コイル等の素子等より構成されるが、インピーダンス整合がとれている場合には、この整合回路部13は不要である。   The matching circuit unit 13 is composed of elements such as a resistor, a capacitor, and a coil in order to achieve impedance matching. However, the matching circuit unit 13 is not necessary when impedance matching is achieved.

一方、本実施形態の送受信手段20は、送受信回路22、演算回路等23及びアンテナ21により構成されている。送受信回路22は、発生させた駆動信号を応答器10へ送信し、及び応答器10からの受信を行う部分である。また、演算回路等23は応答器10からの応答信号を処理してタイヤ状態を決定するための演算を行う部分である。   On the other hand, the transmission / reception means 20 of this embodiment includes a transmission / reception circuit 22, an arithmetic circuit 23, and an antenna 21. The transmission / reception circuit 22 is a part that transmits the generated drive signal to the responder 10 and receives it from the responder 10. The arithmetic circuit 23 is a part that performs a calculation for processing the response signal from the responder 10 to determine the tire state.

これら応答器10と送受信手段20との信号の授受は、それぞれのアンテナ12,21間における送受信が無線通信によってなされるようになっている。   Transmission / reception of signals between the responder 10 and the transmission / reception means 20 is performed by wireless communication between the antennas 12 and 21.

本実施形態では、図2に示すように、弾性表面波素子11の接着位置に対して、タイヤ周方向に60°以上離れた位置にアンテナ12を設置すると共に、タイヤTの回転で前記弾性表面波素子11が最下端に位置するときに、アンテナ12の設置位置に略対向する位置に、車体Vに設けた送受信手段20のアンテナ21を配置する例を示す。つまり、弾性表面波素子11の接着位置とアンテナ12の設置位置とのなす角度θが、60°以上となる例である。   In the present embodiment, as shown in FIG. 2, the antenna 12 is installed at a position 60 ° or more away from the adhesion position of the surface acoustic wave element 11 in the tire circumferential direction. An example in which the antenna 21 of the transmission / reception means 20 provided on the vehicle body V is disposed at a position substantially opposite to the installation position of the antenna 12 when the wave element 11 is located at the lowermost end. That is, in this example, the angle θ between the adhesion position of the surface acoustic wave element 11 and the installation position of the antenna 12 is 60 ° or more.

弾性表面波素子11は、圧電基板とその表面に形成された櫛形電極及び反射器からなり、櫛形電極のランド部を介して整合回路13へ接続されているベアー素子、又はこれを基板と共に樹脂封止した封止素子が一般的である。櫛形電極と反射器とは一定間隔をおいてパターニングされている。これにより、各反射器で反射された弾性表面波を櫛形電極で信号に変換できるようになっている。   The surface acoustic wave element 11 is composed of a piezoelectric substrate, a comb-shaped electrode and a reflector formed on the surface of the piezoelectric substrate, and is connected to the matching circuit 13 via a land portion of the comb-shaped electrode, or this is resin-encapsulated together with the substrate. Stopped sealing elements are common. The comb electrode and the reflector are patterned at a constant interval. Thereby, the surface acoustic wave reflected by each reflector can be converted into a signal by the comb-shaped electrode.

圧電基板として用いられる圧電材料としては、測定対象の状態変化に応じて所定の物性係数を有するものが適用される。例えば、歪センサとする場合、例えばニオブ酸リチウム単結晶128°回転Yカット基板や、水晶、タンタル酸リチウム、四ホウ酸リチウム、ランガサイト等を使用することができる。   As the piezoelectric material used as the piezoelectric substrate, a material having a predetermined physical property coefficient according to a change in the state of the measurement target is applied. For example, in the case of a strain sensor, for example, a lithium niobate single crystal 128 ° rotated Y-cut substrate, crystal, lithium tantalate, lithium tetraborate, langasite, or the like can be used.

また、弾性表面波素子11を構成する櫛形電極及び反射器の構成材料としては、電気抵抗が小さく、軽量であり、パターニングが容易であることからアルミニウムが好適な例として挙げられるが、これに限定されるものではなく、銅、チタン、クロム、金等を適用してもよく、更にはこれら金属同士を混ぜ合わせたり、各種金属を添加したり、あるいは積層構造としてもよい。   Moreover, as a constituent material of the comb-shaped electrode and the reflector constituting the surface acoustic wave element 11, aluminum is a preferable example because it has a small electric resistance, is lightweight, and is easy to pattern, but is not limited thereto. However, copper, titanium, chromium, gold or the like may be applied, and these metals may be mixed together, various metals may be added, or a laminated structure may be used.

櫛形電極及び反射器は、設計に応じたインダクタンス、キャパシタンス等が得られるように、薄膜の材質、幅、厚さを調整するのが好ましい。薄膜形成方法としてはスパッタ法のほか蒸着等の真空薄膜形成技術や、めっき法、ペースト印刷法等も適用することができる。   It is preferable to adjust the material, width, and thickness of the thin film electrode and reflector so that inductance, capacitance, and the like according to design can be obtained. As a thin film forming method, a sputtering method, a vacuum thin film forming technique such as vapor deposition, a plating method, a paste printing method, or the like can be applied.

次に、弾性表面波素子11によってタイヤの歪等を検出する原理について説明する。弾性表面波素子11の圧電基板が外的環境の変化を受けると、その表面を伝搬する弾性表面波の位相速度、周波数等の伝搬特性が変化する。これら信号の例えば位相を比較することで、外的環境の情報を得ることができる。   Next, the principle of detecting tire distortion and the like by the surface acoustic wave element 11 will be described. When the piezoelectric substrate of the surface acoustic wave element 11 receives a change in the external environment, propagation characteristics such as the phase velocity and frequency of the surface acoustic wave propagating on the surface change. By comparing, for example, the phases of these signals, information on the external environment can be obtained.

本実施形態においては、反射波の位相差から歪等を検出することができる。なお、本例では位相比較により検出する方法を用いたが、これ以外に、反射波の遅延時間を比較する方法や、基準周波数からのずれを比較する方法等が適用できる。   In the present embodiment, distortion or the like can be detected from the phase difference of the reflected waves. In this example, a method of detecting by phase comparison is used. However, in addition to this, a method of comparing delay times of reflected waves, a method of comparing deviation from a reference frequency, and the like can be applied.

弾性表面波素子11を複数用いて検出を行う場合、各々の素子11を判別する必要がある。その場合、通常は、反射がある場合を1、無い場合を0として識別するので、Nビットの情報を入れ込むために最大2のN乗通りの反射器の配列が可能となる。   When detection is performed using a plurality of surface acoustic wave elements 11, it is necessary to determine each element 11. In this case, normally, the case where there is reflection is identified as 1 and the case where there is no reflection is identified as 0. Therefore, in order to insert N bits of information, it is possible to arrange a maximum of 2 N power reflectors.

次に、以上のように構成される本実施形態の作用について説明する。送受信手段20は、送受信回路22で生成したパルス状の駆動信号を及びアンテナ21を介して応答器10へ送信する。この駆動信号は応答器10のアンテナ12及び整合回路部13を介して弾性表面波素子11へ供給される。弾性表面波素子11は送受信電極である櫛形電極に駆動信号が入力されることにより、櫛形電極のパターン間隔に対応した波長の弾性表面波(SAW)を発生させる。圧電基板の中央で発生した弾性表面波は、圧電基板の一端側へ伝搬して反射器で反射し、送受信電極へ戻る。送受信電極は、反射器で反射された弾性表面波を検知して電気信号に変換し、当該変換された電気信号が応答信号として整合回路部13及びアンテナ12を介して送受信手段20へ送り返される。送受信手段20は、受信した応答信号を演算回路部23へ供給し、この演算回路部23にて応答信号の位相差などから歪等の大きさなどの情報を算出する。   Next, the operation of the present embodiment configured as described above will be described. The transmission / reception means 20 transmits the pulsed drive signal generated by the transmission / reception circuit 22 to the responder 10 via the antenna 21. This drive signal is supplied to the surface acoustic wave element 11 via the antenna 12 and the matching circuit unit 13 of the responder 10. The surface acoustic wave element 11 generates a surface acoustic wave (SAW) having a wavelength corresponding to the pattern interval of the comb-shaped electrodes when a drive signal is input to the comb-shaped electrodes that are transmitting and receiving electrodes. The surface acoustic wave generated at the center of the piezoelectric substrate propagates to one end side of the piezoelectric substrate, is reflected by the reflector, and returns to the transmitting and receiving electrodes. The transmission / reception electrode detects the surface acoustic wave reflected by the reflector and converts it into an electric signal, and the converted electric signal is sent back to the transmission / reception means 20 through the matching circuit unit 13 and the antenna 12 as a response signal. The transmission / reception means 20 supplies the received response signal to the arithmetic circuit unit 23, and the arithmetic circuit unit 23 calculates information such as the magnitude of distortion from the phase difference of the response signal.

本発明のタイヤ状態の検出装置は、このような装置に、本発明のセンサ取付構造を採用したものである。即ち、本発明のセンサ取付構造は、図3(a)〜(b)に示すように、検出方向A1に生じる歪によって入力信号に対する応答信号を変化させる弾性表面波素子11が、少なくともその両端部11aでは周囲のゴムより硬度が5°以上高い補強ゴム16を介在しつつ、タイヤTに接着されているセンサ取付構造である。   The tire condition detection device of the present invention employs the sensor mounting structure of the present invention in such a device. That is, in the sensor mounting structure of the present invention, as shown in FIGS. 3A to 3B, the surface acoustic wave element 11 that changes the response signal to the input signal due to the strain generated in the detection direction A1 includes at least both ends thereof. 11a is a sensor mounting structure that is bonded to the tire T while interposing a reinforcing rubber 16 having a hardness of 5 ° or more higher than that of the surrounding rubber.

本実施形態では、図3に示すように、弾性表面波素子11がベアー素子Bを基板11cと共に封止材11bで封止した封止素子であり、この封止素子の底面及び周囲に補強ゴム16が介在する例を示す。本発明では、接着界面の剥がれや素子の脱落を防止して、素子の接着状態を良好に維持する上で、弾性表面波素子11の両端部11aの外側にも補強ゴム16が介在することが好ましい。また、弾性表面波素子11の両端部11aの外側にも補強ゴム16を設ける場合、外側に出た部分の幅が0.5〜1.5mmが好ましい。   In the present embodiment, as shown in FIG. 3, the surface acoustic wave element 11 is a sealing element in which the bear element B is sealed with a sealing material 11b together with the substrate 11c, and a reinforcing rubber is provided on the bottom surface and the periphery of the sealing element. An example in which 16 is present is shown. In the present invention, the reinforcing rubber 16 may be interposed outside both ends 11a of the surface acoustic wave element 11 in order to prevent the peeling of the adhesive interface and the element from falling off and to maintain a good adhesion state of the element. preferable. Moreover, when providing the reinforcement rubber 16 also in the outer side of the both ends 11a of the surface acoustic wave element 11, the width | variety of the part which protruded outside is 0.5-1.5 mm.

まず、封止素子について説明する。封止素子では、ベアー素子Bの電極形成面が下側になるように、基板11cの上にバンプ等でボンデングされ、その際、ベアー素子Bと基板11cとの間には間隙11dが設けられる。この間隙11dを維持する状態で、エポキシ樹脂、フェノール樹脂などの封止材で封止されている。間隙11dの厚みは、0.3mm以上とするのが好ましい。   First, the sealing element will be described. In the sealing element, bonding is performed on the substrate 11c with bumps or the like so that the electrode formation surface of the bear element B is on the lower side, and a gap 11d is provided between the bear element B and the substrate 11c. . In a state where the gap 11d is maintained, sealing is performed with a sealing material such as epoxy resin or phenol resin. The thickness of the gap 11d is preferably 0.3 mm or more.

補強ゴム16としては、周囲のゴムの硬度より5°以上高いものを使用し、好ましくは10°以上高いものを使用し、より好ましくは15°以上高いものを使用する。補強ゴム16の硬度が、周囲のゴムの硬度より5°未満高い場合、補強ゴム16による接着界面の剥がれや素子の脱落の防止効果が得られなくなる。   As the reinforcing rubber 16, a rubber having a hardness of 5 ° or more higher than that of the surrounding rubber is used, preferably a rubber having a hardness of 10 ° or higher, more preferably a rubber having a hardness of 15 ° or higher. When the hardness of the reinforcing rubber 16 is less than 5 ° higher than the hardness of the surrounding rubber, the effect of preventing the peeling of the adhesive interface and the element from falling off by the reinforcing rubber 16 cannot be obtained.

補強ゴム16の素材は、特に限定されないが、タイヤを構成するゴムとの接着力を良好にする上で、当該ゴムと同種のゴムを使用して硬度を高めるのが好ましい。例えば、サイドウォールゴムに対しては、同じゴム配合においてカーボンブラックの配合量を大きくしたり、ブタジエンゴムの配合量を低下させることでこれが可能となる。   The material of the reinforcing rubber 16 is not particularly limited, but it is preferable to increase the hardness by using the same type of rubber as that of the rubber in order to improve the adhesive strength with the rubber constituting the tire. For example, with respect to the sidewall rubber, this can be achieved by increasing the amount of carbon black in the same rubber compounding or decreasing the compounding amount of butadiene rubber.

補強ゴム16は、弾性表面波素子11の底面に対し0.5〜1.5mmの厚みtで設けられていることが好ましい。補強ゴム16の厚みtが0.5mm未満であると、補強ゴム16による接着界面の剥がれや素子の脱落の防止効果が得られない傾向がある。また、補強ゴム16の厚みtが1.5mmを超えると、タイヤ歪に対する感度が低下する傾向がある。   The reinforcing rubber 16 is preferably provided with a thickness t of 0.5 to 1.5 mm with respect to the bottom surface of the surface acoustic wave element 11. When the thickness t of the reinforcing rubber 16 is less than 0.5 mm, there is a tendency that the effect of preventing the peeling of the adhesion interface or the element from falling off by the reinforcing rubber 16 cannot be obtained. Moreover, when the thickness t of the reinforcing rubber 16 exceeds 1.5 mm, the sensitivity to tire distortion tends to decrease.

本実施形態は、弾性表面波素子11の底面の全体に補強ゴム16が介在する例を示すものであるが、底面の全体に補強ゴム16を必要はなく、弾性表面波素子11の底面の面積の20〜80%に補強ゴム16が介在することが好ましい(例えば図4参照)。底面の面積の20%未満では、補強ゴム16による接着界面の剥がれや素子の脱落の防止効果が得られない傾向がある。   The present embodiment shows an example in which the reinforcing rubber 16 is interposed on the entire bottom surface of the surface acoustic wave element 11, but the reinforcing rubber 16 is not necessary on the entire bottom surface, and the area of the bottom surface of the surface acoustic wave element 11. It is preferable that 20 to 80% of the reinforcing rubber 16 is interposed (see, for example, FIG. 4). If the area of the bottom surface is less than 20%, there is a tendency that the effect of preventing the peeling of the adhesive interface and the element from falling off by the reinforcing rubber 16 cannot be obtained.

補強ゴム16を介在させる方法としては、弾性表面波素子11と補強ゴム16とを予め加硫接着しておき、これをタイヤの加硫時に加硫接着する方法、あるいは加硫後のタイヤにこれを接着する方法や、弾性表面波素子11と補強ゴム16とタイヤの接着をタイヤ加硫時に同時に行う方法が挙げられる。弾性表面波素子11と補強ゴム16との加硫接着は、ゴムセメントを用いる方法でもよく、未加硫の補強ゴム16を加硫接合する方法でもよい。   As a method for interposing the reinforcing rubber 16, the surface acoustic wave element 11 and the reinforcing rubber 16 are vulcanized and bonded in advance, and this is vulcanized and bonded when the tire is vulcanized, or this is applied to the vulcanized tire. And a method of simultaneously bonding the surface acoustic wave element 11, the reinforcing rubber 16, and the tire during tire vulcanization. The vulcanization adhesion between the surface acoustic wave element 11 and the reinforcing rubber 16 may be a method using rubber cement or a method of vulcanizing and joining the unvulcanized reinforcing rubber 16.

弾性表面波素子11と補強ゴム16とを予め加硫接着しておく場合、補強ゴム16の底面をバフ研磨し、加硫接着用のゴムセメントを塗布して、加硫接着させるのが好ましい。加硫後のタイヤに接着する場合、その表面をバフ研磨しておくのが好ましい。   When the surface acoustic wave element 11 and the reinforcing rubber 16 are vulcanized and bonded in advance, it is preferable that the bottom surface of the reinforcing rubber 16 is buffed and a rubber cement for vulcanization bonding is applied and vulcanized and bonded. When adhering to a vulcanized tire, it is preferable to buff the surface.

ゴムセメントは、一般的には、ゴム成分に各種促進剤と硫黄などを添加して溶剤に混合したものが使用できる。具体的には、例えば天然ゴム100重量部、カーボンブラック(N326)43重量部、オイル10重量部、ステアリン酸3重量部、ワックス1重量部、老化防止剤(6C)3重量部、粘着付与剤(コレシン)10重量部、亜鉛華5重量部、促進剤(DPG)0.6重量部、促進剤(TBZTD)0.3重量部、促進剤M0.5重量部、及び硫黄3重量部を混合してゴム配合Aを作製し、このゴム配合A137重量部とゴム揮発油1100重量部との混合してゴムセメントを調製することができる。   Generally, rubber cement can be used in which various accelerators and sulfur are added to a rubber component and mixed with a solvent. Specifically, for example, 100 parts by weight of natural rubber, 43 parts by weight of carbon black (N326), 10 parts by weight of oil, 3 parts by weight of stearic acid, 1 part by weight of wax, 3 parts by weight of anti-aging agent (6C), tackifier (Cholesin) 10 parts by weight, zinc white 5 parts by weight, accelerator (DPG) 0.6 part by weight, accelerator (TBZTD) 0.3 part by weight, accelerator M 0.5 part by weight, and sulfur 3 parts by weight Thus, rubber blend A can be prepared, and rubber cement can be prepared by mixing 137 parts by weight of rubber blend A and 1100 parts by weight of rubber volatile oil.

ゴムセメントを用いた加硫接着は、タイヤの加硫工程と同様の条件で行うことができるが、例えば105〜125℃で0.5〜3時間加熱することで行うことができる。   Vulcanization adhesion using rubber cement can be performed under the same conditions as in the vulcanization process of the tire. For example, it can be performed by heating at 105 to 125 ° C. for 0.5 to 3 hours.

本発明のセンサ取付構造において、弾性表面波素子11の電極パターン形成面は、外傷やよごれを防止する観点から、下側(タイヤ表面側)に配置するのが好ましい。   In the sensor mounting structure of the present invention, the electrode pattern forming surface of the surface acoustic wave element 11 is preferably disposed on the lower side (the tire surface side) from the viewpoint of preventing damage and dirt.

[他の実施形態]
(1)前述の実施形態では、弾性表面波素子として封止した素子を用いる例を示したが、本発明では、弾性表面波素子のベアー素子を用いることも可能である。その場合も、ベアー素子の電極形成面が下側になるように配置し、その表面に間隙を設けることが好ましい。このとき間隙の厚みは、0.3mm以上とするのが好ましい。
[Other Embodiments]
(1) In the above-described embodiment, an example in which an element sealed as a surface acoustic wave element is used has been described. However, in the present invention, a bare element of a surface acoustic wave element can also be used. Also in that case, it is preferable to arrange the bare element so that the electrode formation surface is on the lower side and provide a gap on the surface. At this time, the thickness of the gap is preferably 0.3 mm or more.

(2)前述の実施形態では、弾性表面波素子の底面の全体に補強ゴムが介在する例を示したが、本発明では、図4(a)〜(b)に示すように、弾性表面波素子11の両端部11aでは補強ゴム16が介在し、弾性表面波素子11の中間部11eでは補強ゴム16が介在しない構造が好ましい。この構造によると、検出に必要な応力を増幅して弾性表面波素子11に伝達することができ、検出感度をより向上させることができる。   (2) In the above-described embodiment, the example in which the reinforcing rubber is interposed in the entire bottom surface of the surface acoustic wave element has been shown. However, in the present invention, as shown in FIGS. A structure in which the reinforcing rubber 16 is interposed at both end portions 11a of the element 11 and the reinforcing rubber 16 is not interposed in the intermediate portion 11e of the surface acoustic wave element 11 is preferable. According to this structure, the stress required for detection can be amplified and transmitted to the surface acoustic wave element 11, and the detection sensitivity can be further improved.

(3)前述の実施形態では、弾性表面波素子の上面がタイヤ表面から露出した状態でタイヤに接着される例を示したが、本発明では、図5〜図6に示すように、弾性表面波素子11の上面がタイヤ表面から露出しない状態でタイヤに接着ていてもよい。   (3) In the above-described embodiment, an example in which the upper surface of the surface acoustic wave element is adhered to the tire in a state where the upper surface is exposed from the tire surface is shown. However, in the present invention, as shown in FIGS. The wave element 11 may be adhered to the tire in a state where the upper surface of the wave element 11 is not exposed from the tire surface.

図5に示す例は、弾性表面波素子11が補強ゴム16中に埋設された状態で接着されている例である。この場合も、弾性表面波素子11としてベアー素子を用いてもよい。   The example shown in FIG. 5 is an example in which the surface acoustic wave element 11 is bonded in a state of being embedded in the reinforcing rubber 16. In this case as well, a bare element may be used as the surface acoustic wave element 11.

図6に示す例は、図4に示す実施形態のように、弾性表面波素子11の中間部11eでは補強ゴム16が介在しない構造に対応するものであるが、弾性表面波素子11が補強ゴム16とタイヤゴム中に埋設された状態で接着されている例である。この場合も、弾性表面波素子11としてベアー素子を用いてもよい。   The example shown in FIG. 6 corresponds to a structure in which the reinforcing rubber 16 is not interposed in the intermediate portion 11e of the surface acoustic wave element 11 as in the embodiment shown in FIG. 16 is an example of being bonded in a state of being embedded in tire rubber. In this case as well, a bare element may be used as the surface acoustic wave element 11.

(4)前述の実施形態では、タイヤを構成するゴムより硬度の低いゴム層を使用しない例を示したが、本発明では、図7に示すように、弾性表面波素子11の中間部11eでは補強ゴム16が介在させずに、タイヤゴムより硬度の低い低硬度材料17(例えばゴム硬度で5°以上小さくする)を介在させる構造としてもよい。このようにすると、弾性率の高い補強ゴム16による歪の低減を少なくして、弾性表面波素子11に伝達することができ、検出感度をより向上させることができる。   (4) In the above-described embodiment, an example in which a rubber layer having a lower hardness than the rubber constituting the tire is not used is shown. However, in the present invention, as shown in FIG. A structure in which a low-hardness material 17 having a hardness lower than that of tire rubber (for example, a rubber hardness of 5 ° or more) is interposed without the reinforcement rubber 16 being interposed. By doing so, it is possible to reduce the strain reduction due to the reinforcing rubber 16 having a high elastic modulus and transmit it to the surface acoustic wave element 11, thereby further improving the detection sensitivity.

(5)前述の実施形態では、弾性表面波素子を1個だけ使用したタイヤ状態の検出装置の例を示したが、本発明では、複数の弾性表面波素子を複数の方向に接着して、複数方向の歪や応力を同時に検出するようにしてもよい。   (5) In the above-described embodiment, an example of a tire state detection device using only one surface acoustic wave element is shown, but in the present invention, a plurality of surface acoustic wave elements are bonded in a plurality of directions, You may make it detect simultaneously the distortion and stress of multiple directions.

その場合、応答器側のアンテナの位置をタイヤ周方向にズラすことで、各々の応答信号を区別するのが容易になる。また、各々の弾性表面波素子からの応答信号を識別するために、反射器の形成位置やパターンを変えるなどして、応答信号自体に識別情報を含ませるようにしてもよい。   In that case, each response signal can be easily distinguished by shifting the position of the antenna on the responder side in the tire circumferential direction. In addition, in order to identify the response signal from each surface acoustic wave element, identification information may be included in the response signal itself by changing the formation position or pattern of the reflector.

(6)前述の実施形態では、弾性表面波素子と補強ゴムが平坦な界面で接着されている例を示したが、図8の拡大図に示すように、弾性表面波素子11と補強ゴム16が凹凸を有する界面で接着されていることが好ましい。この場合、界面に設けた凹凸による表面積の増加効果によって、接着界面の剥がれや素子の脱落をより効果的に防止できることができる。なお、弾性表面波素子11に設けた凸部11fの高さは、0.1〜2mmが好ましい。   (6) In the above-described embodiment, the example in which the surface acoustic wave element and the reinforcing rubber are bonded at the flat interface is shown. However, as shown in the enlarged view of FIG. Are preferably bonded at an interface having irregularities. In this case, peeling of the adhesive interface and falling off of the element can be more effectively prevented by the effect of increasing the surface area due to the unevenness provided at the interface. In addition, as for the height of the convex part 11f provided in the surface acoustic wave element 11, 0.1-2 mm is preferable.

(7)前述の実施形態では、図2に示すように、弾性表面波素子11、アンテナ12、及び送受信手段20のアンテナ21を配置する例を示したが、応答器10のアンテナ12をホイールの中央付近に設置し、このアンテナ12に対し、車軸外側に送受信手段20のアンテナ21を配置することも可能である。この場合、アンテナ21は車体に装着された支持体に設置することができる。この配置構造によると、タイヤの回転による信号の強弱が少なくなるという効果が得られる。   (7) In the above-described embodiment, as shown in FIG. 2, the example in which the surface acoustic wave element 11, the antenna 12, and the antenna 21 of the transmission / reception means 20 are arranged has been described. It is also possible to install the antenna 21 of the transmitting / receiving means 20 outside the axle with respect to the antenna 12 installed near the center. In this case, the antenna 21 can be installed on a support mounted on the vehicle body. According to this arrangement structure, there is an effect that the strength of the signal due to the rotation of the tire is reduced.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。   Examples and the like specifically showing the configuration and effects of the present invention will be described below.

(1)弾性表面波素子(ベアー素子)
弾性表面波素子として、ニオブ酸リチウムのベアー素子(幅3.5mm、長さ5.5mm、厚み0.3mm)を使用した。ベアー素子の表面には、信号の入出力を行う櫛型電極と反射電極とがパターニングされている。
(1) Surface acoustic wave device (Bear device)
As a surface acoustic wave element, a lithium niobate bare element (width 3.5 mm, length 5.5 mm, thickness 0.3 mm) was used. On the surface of the bear element, a comb electrode and a reflective electrode for inputting and outputting signals are patterned.

(2)弾性表面波素子(エポキシ封止)
図3に示すように、上記(1)のベアー素子の電極形成面が間隙を開けて対向するように、基板の上にボンデングして配置し、当該間隙が維持されるようにエポキシ樹脂(圧縮弾性率2800MPa)で封止して、幅4mm、長さ6mm、厚み0.7mmのエポキシ封止素子を作製した。
(2) Surface acoustic wave device (epoxy sealing)
As shown in FIG. 3, the electrode forming surface of the bear element of (1) above is placed by bonding on the substrate so as to face each other with a gap, and epoxy resin (compressed) is maintained so that the gap is maintained. An epoxy sealing element having a width of 4 mm, a length of 6 mm, and a thickness of 0.7 mm was produced by sealing at an elastic modulus of 2800 MPa.

(3)クラック発生歪の測定
JIS K 6251に準じて、ゴムシートを1号ダンベルの試験片に打ち抜き、引張速度10mm/分で引張試験を行い、クラックが発生した際の歪を測定した。
(3) Measurement of crack generation strain According to JIS K 6251, a rubber sheet was punched into a test piece of No. 1 dumbbell, a tensile test was performed at a tensile speed of 10 mm / min, and the strain when a crack was generated was measured.

対照品(コントロール)
上記のエポキシ封止素子を用いて、図9に示すセンサ取付構造を形成すべく、タイヤのサイドウォールゴムとして一般的なゴム配合(硬度54°)の未加硫ゴムシートに、上記のエポキシ封止素子を貼り付けて、160℃で20分間プレス加硫して、厚み2.5mmのフラットなゴムシートを得た。これを用いて、クラック発生歪の測定を行った。その結果を表1〜3に示す。
Control product
In order to form the sensor mounting structure shown in FIG. 9 using the above epoxy sealing element, the above epoxy sealing is applied to an unvulcanized rubber sheet having a general rubber composition (hardness 54 °) as a sidewall rubber of a tire. A stop element was attached and press vulcanized at 160 ° C. for 20 minutes to obtain a flat rubber sheet having a thickness of 2.5 mm. Using this, the crack generation strain was measured. The results are shown in Tables 1-3.

実施例1
上記のエポキシ封止素子を用いて、図3に示すセンサ取付構造を形成すべく、上記のエポキシ封止素子の底面部の厚みが1.0mm、周囲部の厚みが1.7mm、周囲部の幅が約1mmになるように、エポキシ封止素子に未加硫の補強ゴム(加硫後の硬度60°)を貼り付けた。これを更に、対照品と同じ未加硫ゴムシートに貼り付けて、160℃で20分間プレス加硫して、厚み2.5mmのフラットなゴムシートを得た。これを用いて、クラック発生歪の測定を行った。その結果を表1に示す。
Example 1
In order to form the sensor mounting structure shown in FIG. 3 using the above epoxy sealing element, the thickness of the bottom part of the above epoxy sealing element is 1.0 mm, the thickness of the peripheral part is 1.7 mm, Unvulcanized reinforcing rubber (hardness after vulcanization 60 °) was attached to the epoxy sealing element so that the width was about 1 mm. This was further affixed to the same unvulcanized rubber sheet as the control product, and press vulcanized at 160 ° C. for 20 minutes to obtain a flat rubber sheet having a thickness of 2.5 mm. Using this, the crack generation strain was measured. The results are shown in Table 1.

実施例2〜3
実施例1において、補強ゴムの硬度を変えたこと以外は、実施例1と同様にして、ゴムシートを作製し、これを用いてクラック発生歪の測定を行った。その結果を表1に示す。
Examples 2-3
In Example 1, a rubber sheet was prepared in the same manner as in Example 1 except that the hardness of the reinforcing rubber was changed, and crack generation strain was measured using this rubber sheet. The results are shown in Table 1.

Figure 2006258733
表1の結果が示すように、周囲のゴムより硬度が5°以上高い補強ゴムを設けることにより、クラック発生歪が大きくなっており、接着界面の剥がれや素子の脱落を効果的に防止できることが判る。
Figure 2006258733
As shown in the results of Table 1, by providing a reinforced rubber whose hardness is 5 ° or more higher than that of the surrounding rubber, cracking distortion is increased, and it is possible to effectively prevent peeling of the adhesive interface and falling off of the element. I understand.

比較例1
図8と同様に、エポキシ封止素子の底面および側面に0.3mm間隔で幅0.3mm高さ0.2mmの凸部を、エポキシ樹脂(圧縮弾性率2800MPa)を用いて形成した。この凹凸を有するエポキシ封止素子を用いること以外は、対照品と全く同じ条件で、ゴムシートを作製し、これを用いてクラック発生歪の測定を行った。その結果を表2に示す。
Comparative Example 1
Similarly to FIG. 8, convex portions having a width of 0.3 mm and a height of 0.2 mm were formed at intervals of 0.3 mm on the bottom surface and side surfaces of the epoxy sealing element using an epoxy resin (compression elastic modulus 2800 MPa). A rubber sheet was prepared under the same conditions as the control product except that the epoxy sealing element having the unevenness was used, and crack generation strain was measured using this rubber sheet. The results are shown in Table 2.

実施例4〜5
図8と同様に、エポキシ封止素子の底面および側面に0.3mm間隔で幅0.3mm高さ0.2mmの凸部を、エポキシ樹脂(圧縮弾性率2800MPa)を用いて形成した。この凹凸を有するエポキシ封止素子を用いること以外は、実施例2〜3と全く同じ条件で、ゴムシートを作製し、これを用いてクラック発生歪の測定を行った。その結果を表2に示す。
Examples 4-5
Similarly to FIG. 8, convex portions having a width of 0.3 mm and a height of 0.2 mm were formed at intervals of 0.3 mm on the bottom surface and side surfaces of the epoxy sealing element using an epoxy resin (compression elastic modulus 2800 MPa). A rubber sheet was produced under exactly the same conditions as in Examples 2 to 3 except that the epoxy sealing element having the unevenness was used, and crack generation strain was measured using this rubber sheet. The results are shown in Table 2.

Figure 2006258733
表2の結果が示すように、補強ゴムを設ける際にセンサとの界面に凹凸を設けることにより、クラック発生歪がより大きくなっており、接着界面の剥がれや素子の脱落をより効果的に防止できることが判る。
Figure 2006258733
As shown in the results in Table 2, by providing unevenness at the interface with the sensor when providing the reinforced rubber, cracking distortion is greater, preventing peeling of the adhesive interface and dropping off of the element more effectively. I understand that I can do it.

比較例2
エポキシ封止素子を用いる代わりに上記のベアー素子を用いること以外は、対照品と全く同じ条件で、ゴムシートを作製し、これを用いてクラック発生歪の測定を行った。その結果を表3に示す。
Comparative Example 2
A rubber sheet was prepared under exactly the same conditions as the control product, except that the above-described bear element was used instead of the epoxy sealing element, and crack generation strain was measured using this rubber sheet. The results are shown in Table 3.

実施例6〜8
実施例1において、エポキシ封止素子を用いる代わりに上記のベアー素子を用い、表3に示す硬度の補強ゴムを用いること以外は、実施例1と全く同じ条件で、ゴムシートを作製し、これを用いてクラック発生歪の測定を行った。その結果を表3に示す。
Examples 6-8
In Example 1, instead of using an epoxy sealing element, a rubber sheet was prepared under the same conditions as in Example 1 except that the above bare element was used and a reinforcing rubber having the hardness shown in Table 3 was used. Was used to measure crack generation strain. The results are shown in Table 3.

Figure 2006258733
表3の結果が示すように、周囲のゴムより硬度が5°以上高い補強ゴムを設ける本発明は、ベアー素子を用いる場合でも、接着界面の剥がれや素子の脱落を効果的に防止できることが判る。
Figure 2006258733
As shown by the results in Table 3, it can be seen that the present invention in which the reinforcing rubber having a hardness of 5 ° or more higher than that of the surrounding rubber can effectively prevent peeling of the adhesive interface and dropping of the element even when a bare element is used. .

本発明のタイヤ状態の検出装置の一例を示す概略構成図The schematic block diagram which shows an example of the detection apparatus of the tire condition of this invention 本発明のタイヤ状態の検出装置の装着状態の一例を示す説明図Explanatory drawing which shows an example of the mounting state of the detection apparatus of the tire condition of this invention 本発明のセンサ取付構造の一例を示す図であり、(a)は正面視断面図、(b)は平面図It is a figure which shows an example of the sensor attachment structure of this invention, (a) is front view sectional drawing, (b) is a top view 本発明のセンサ取付構造の他の例を示す図であり、(a)は正面視断面図、(b)は平面図It is a figure which shows the other example of the sensor attachment structure of this invention, (a) is front view sectional drawing, (b) is a top view 本発明のセンサ取付構造の他の例を示す正面視断面図Front sectional view showing another example of the sensor mounting structure of the present invention 本発明のセンサ取付構造の他の例を示す正面視断面図Front sectional view showing another example of the sensor mounting structure of the present invention 本発明のセンサ取付構造の他の例を示す正面視断面図Front sectional view showing another example of the sensor mounting structure of the present invention 本発明のセンサ取付構造の他の例を示す正面視断面図Front sectional view showing another example of the sensor mounting structure of the present invention 対照品におけるセンサ取付構造を示す正面視断面図Front sectional view showing the sensor mounting structure in the contrast product

符号の説明Explanation of symbols

10 応答器
11 弾性表面波素子
11a 両端部
12 アンテナ
15 切断部
16 補強ゴム
20 送受信手段
21 アンテナ
A1 検出方向
B ベアー素子
T タイヤ
DESCRIPTION OF SYMBOLS 10 Response device 11 Surface acoustic wave element 11a Both ends 12 Antenna 15 Cutting part 16 Reinforcement rubber 20 Transmission / reception means 21 Antenna A1 Detection direction B Bearer element T Tire

Claims (5)

検出方向に生じる歪によって入力信号に対する応答信号を変化させる弾性表面波素子が、少なくともその両端部では周囲のゴムより硬度が5°以上高い補強ゴムを介在しつつ、タイヤに接着されているセンサ取付構造。   A surface acoustic wave element that changes the response signal to the input signal due to the strain in the detection direction is attached to the tire while interposing reinforcing rubber that is at least 5 ° harder than the surrounding rubber at both ends. Construction. 前記補強ゴムは、前記弾性表面波素子の底面に対し0.5〜1.5mmの厚みで設けられている請求項1記載のセンサ取付構造。   The sensor mounting structure according to claim 1, wherein the reinforcing rubber is provided with a thickness of 0.5 to 1.5 mm with respect to a bottom surface of the surface acoustic wave element. 前記弾性表面波素子と前記補強ゴムとは、凹凸を有する界面で接着されている請求項1又は2に記載のセンサ取付構造。   The sensor mounting structure according to claim 1, wherein the surface acoustic wave element and the reinforcing rubber are bonded to each other at an interface having irregularities. 予め加硫接着した前記弾性表面波素子と前記補強ゴムとを、未加硫タイヤに配置して、タイヤの加硫時に加硫接着してあるか、または、予め加硫接着した前記弾性表面波素子と前記補強ゴムとを、加硫タイヤに対して接着してある請求項1〜3いずれかに記載のセンサ取付構造。   The surface acoustic wave element that has been pre-cured and bonded to the surface acoustic wave element and the reinforcing rubber is disposed on an unvulcanized tire and is vulcanized and bonded at the time of vulcanization of the tire, or the surface acoustic wave that has been pre-cured and bonded to the surface. The sensor mounting structure according to claim 1, wherein the element and the reinforcing rubber are bonded to a vulcanized tire. 弾性表面波素子及びこれに接続されるアンテナを有しタイヤ側に設置された応答器と、その応答器に対して駆動信号を発信するとともに応答器からの応答信号を受信して信号の処理を行うべく車体側に設置された送受信手段とを備えるタイヤ状態の検出装置において、
前記弾性表面波素子は、検出方向に生じる歪によって入力信号に対する応答信号を変化させるものであり、この弾性表面波素子が、少なくともその両端部では周囲のゴムより硬度が5°以上高い補強ゴムを介在しつつ、タイヤに接着されていることを特徴とするタイヤ状態の検出装置。
A surface acoustic wave element and a responder installed on the tire side having an antenna connected thereto, a drive signal is transmitted to the responder, and a response signal from the responder is received to process the signal. In a tire state detection device comprising transmission / reception means installed on the vehicle body side to perform,
The surface acoustic wave element changes a response signal to an input signal due to strain generated in the detection direction, and the surface acoustic wave element is made of a reinforced rubber whose hardness is 5 ° or more higher than that of the surrounding rubber at least at both ends thereof. A tire state detection device, wherein the tire state detection device is bonded to a tire while being interposed.
JP2005079715A 2005-03-18 2005-03-18 Sensor mounting structure and tire condition detection apparatus Withdrawn JP2006258733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005079715A JP2006258733A (en) 2005-03-18 2005-03-18 Sensor mounting structure and tire condition detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005079715A JP2006258733A (en) 2005-03-18 2005-03-18 Sensor mounting structure and tire condition detection apparatus

Publications (1)

Publication Number Publication Date
JP2006258733A true JP2006258733A (en) 2006-09-28

Family

ID=37098148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079715A Withdrawn JP2006258733A (en) 2005-03-18 2005-03-18 Sensor mounting structure and tire condition detection apparatus

Country Status (1)

Country Link
JP (1) JP2006258733A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078803A (en) * 2007-09-25 2009-04-16 Rosemount Aerospace Inc Force sensing clevis insert
JP2009216440A (en) * 2008-03-07 2009-09-24 Ngk Spark Plug Co Ltd Displacement sensor, displacement measuring method, and displacement measuring device using surface acaustic wave element
JP2013029367A (en) * 2011-07-27 2013-02-07 Denso Corp Surface acoustic wave sensor
CN108698452A (en) * 2016-03-02 2018-10-23 株式会社普利司通 Function part installation component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078803A (en) * 2007-09-25 2009-04-16 Rosemount Aerospace Inc Force sensing clevis insert
JP2009216440A (en) * 2008-03-07 2009-09-24 Ngk Spark Plug Co Ltd Displacement sensor, displacement measuring method, and displacement measuring device using surface acaustic wave element
JP2013029367A (en) * 2011-07-27 2013-02-07 Denso Corp Surface acoustic wave sensor
US8841817B2 (en) 2011-07-27 2014-09-23 Denso Corporation Surface acoustic wave sensor
CN108698452A (en) * 2016-03-02 2018-10-23 株式会社普利司通 Function part installation component
US10668779B2 (en) 2016-03-02 2020-06-02 Bridgestone Corporation Functional component attaching member

Similar Documents

Publication Publication Date Title
US7576470B2 (en) Mechanical packaging of surface acoustic wave device for sensing applications
US9566835B2 (en) Structure for attaching electronic component to inner surface of pneumatic tire
US8051705B2 (en) Tire equipped with a sensor and a method of measuring strain amount of the tire
CN101061379A (en) Surface acoustic wave system with a base comprising a pattern of cross hatches
US7082835B2 (en) Pressure sensor apparatus and method
US7472587B1 (en) Tire deformation detection
US6907787B2 (en) Surface acoustic wave pressure sensor with microstructure sensing elements
US7523656B1 (en) Tire sensor system and monitoring method
EP1598220A2 (en) A process and device for incorporating electronics into a tire
JP2007256080A (en) Sensor mounting structure and tire state detecting apparatus
JP2000203217A (en) Vehicular pneumatic tire with built-in sensor, and slip controller
US7916012B2 (en) Hybrid resonant structure to verify parameters of a tire
US20070028692A1 (en) Acoustic wave sensor packaging for reduced hysteresis and creep
JP2006258733A (en) Sensor mounting structure and tire condition detection apparatus
EP1222080B1 (en) Method for monitoring a condition of a tyre
JP2006258628A (en) Sensor mounting structure and tire condition detection apparatus
US11675995B2 (en) Post-cure read range enhancement of RFID tire tags
US20120176762A1 (en) Electronics patch with ultra thin adhesive layer
CN110017927A (en) A kind of surface acoustic wave sensor measuring motor turning torque
JP2006290283A (en) Method for mounting tire internal pressure alarm device
CN105501004B (en) A kind of patching type passive sonic surface wave sensing device and intelligent tire
Matsuzaki A STUDY ON INTELLIGENT TIRES BASED ON MEASUREMENT OF TIRE DEFORMATION
US8354922B2 (en) Vehicle comprising at least one assembled entity and use of a measurement system
Matsuzaki et al. OS17-2-4 Wireless flexible capacitive sensor based on ultra-flexible epoxy resin for strain measurement of automobile tires
JP2007261450A (en) Pneumatic tire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603