JP2006258563A - Device cleaning of light projecting surface and light receiving surface of probe for detecting state of particles in treatment water - Google Patents
Device cleaning of light projecting surface and light receiving surface of probe for detecting state of particles in treatment water Download PDFInfo
- Publication number
- JP2006258563A JP2006258563A JP2005075561A JP2005075561A JP2006258563A JP 2006258563 A JP2006258563 A JP 2006258563A JP 2005075561 A JP2005075561 A JP 2005075561A JP 2005075561 A JP2005075561 A JP 2005075561A JP 2006258563 A JP2006258563 A JP 2006258563A
- Authority
- JP
- Japan
- Prior art keywords
- cleaning liquid
- light
- light receiving
- cleaning
- light projecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 152
- 239000000523 sample Substances 0.000 title claims abstract description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 239000002245 particle Substances 0.000 title claims abstract description 20
- 239000007788 liquid Substances 0.000 claims abstract description 105
- 239000007921 spray Substances 0.000 claims abstract description 16
- 238000002347 injection Methods 0.000 claims description 21
- 239000007924 injection Substances 0.000 claims description 21
- 230000003287 optical effect Effects 0.000 claims description 18
- 238000005507 spraying Methods 0.000 claims description 4
- 230000000903 blocking effect Effects 0.000 claims description 3
- 238000005406 washing Methods 0.000 abstract description 10
- 239000007787 solid Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000013505 freshwater Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- -1 etc. Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
Landscapes
- Optical Measuring Cells (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、上水や工業用水などを浄化する際にその凝集処理工程でそれらの処理用水に含まれる懸濁物質(不純物)の凝集状態などをレーザ光により検出するために用いられる粒子状態検出用プローブの投光部投光面及び受光部受光面を洗浄液で洗浄する装置に関する。 In the present invention, when purifying clean water, industrial water, etc., particle state detection used to detect the aggregation state of suspended substances (impurities) contained in the water for treatment in the aggregation treatment step by laser light. The present invention relates to an apparatus for cleaning a light projecting surface and a light receiving surface of a light probe with a cleaning liquid.
上水や工業用水などを浄化する際には、これらの処理用水(汚水)中に含まれる懸濁物質を固液分離するために凝集処理が行われる。凝集処理は処理用水中に凝集剤を投入することにより行われるが、この処理により懸濁物質はフロック状に凝集し、処理水中には懸濁物質と共にこれらのフロック状粒子が浮遊状態で共存する。この粒子の凝集状態は、その後の固液分離処理などの処理工程がスムースに行われ、予定した浄化水質の処理水を得るためにほぼ一定であることが好ましく、そのためには、対象とする処理用水の水質(pH、懸濁物質の濃度)に合わせて凝集処理が適切に行われることが必要になる。 When purifying clean water, industrial water, or the like, a coagulation process is performed in order to solid-liquid separate suspended substances contained in the water for treatment (sewage). The agglomeration treatment is performed by adding a flocculant into the treatment water. This treatment causes the suspended substances to aggregate in a floc form, and these floc particles coexist in the treated water together with the suspended substances. . The aggregated state of the particles is preferably substantially constant in order to obtain a treated water having a predetermined purified water quality by smoothly performing subsequent processing steps such as a solid-liquid separation process. It is necessary that the coagulation treatment is appropriately performed in accordance with the quality of water (pH, concentration of suspended solids).
最適な凝集処理条件(凝集剤の添加量、攪拌時間等)を設定するために、例えば、処理用水中の粒子状態を検出するためのプローブが利用されている(特許文献1)。この装置は、その処理用水(検出用水)中でレーザ光を射出させて凝集状態にあるフロック状粒子にレーザ光を衝突させ、その散乱光を受光し、受光した散乱光の強度から処理用水の凝集状態を測定、検出するもので、この測定値に基づいて最適な処理条件を設定することが可能になる。 In order to set the optimum coagulation treatment conditions (addition amount of coagulant, stirring time, etc.), for example, a probe for detecting the particle state in the water for treatment is used (Patent Document 1). This apparatus emits laser light in the processing water (detection water), collides the laser light with floc-like particles in an aggregated state, receives the scattered light, and treats the processing water from the intensity of the received scattered light. It measures and detects the aggregation state, and it is possible to set optimum processing conditions based on this measured value.
上記プローブ10は、図5に示すように、レーザ光射出用投光部11、及び該投光部先端から射出したレーザ光LBが粒子に衝突し、発生した散乱光をその先端から受光する受光部12から基本的に構成される。プローブを処理用水中で使用していると、レーザ光射出用投光部先端の投光面11a(ガラス板の表面)や受光部先端の受光面12a(ファイバ端面)には、処理用水中の懸濁物質が付着してその面が汚れ、それにより投光部でのレーザ光射出強度の低下や受光部での散乱光の受光阻害を起し、その結果、測定精度の低下を招くとの問題があった。このため、それらの汚れを除去するために、その投光部11と受光部12との間にこれらの投光面11a及び受光面12a及びその付近に清水又は空気を噴出させる清浄用手段13(洗浄用手段)が設けられたプローブが提案されている。
上記清浄用手段13は、その噴出口を投光部投光面11aと受光部受光面12aに接近させ、噴出した清水又は空気がその投光面及び受光面に沿って噴出するように設けられているために、この噴出流により投光面及び受光面に付着した汚れを除去することができるとされている。しかし、図5に示すような配置で設けられた清浄用手段では、洗浄用流体を効率よくそれらの面に吹き付けることができないために、汚れが十分除去できないとの問題があることがわかった。特に洗浄用流体として空気を用いた場合には、噴出開始時の噴出空気によって汚れの一部は除去されるものの、その後は投光面及び受光面付近の検出用水が噴出空気により殆ど排除されるため、それらの領域が空気により満たされた状態になって汚れは期待されたより落ちにくくなることもわかった。 The cleaning means 13 is provided so that the jet outlet is brought close to the light projecting portion light projecting surface 11a and the light receiving portion light receiving surface 12a, and the ejected fresh water or air is ejected along the light projecting surface and the light receiving surface. Therefore, it is said that dirt adhering to the light projecting surface and the light receiving surface can be removed by this jet flow. However, it has been found that the cleaning means provided in the arrangement as shown in FIG. 5 has a problem that the cleaning fluid cannot be efficiently sprayed on those surfaces, and therefore, the dirt cannot be sufficiently removed. In particular, when air is used as the cleaning fluid, a part of the dirt is removed by the jet air at the start of jetting, but thereafter the detection water near the light projecting surface and the light receiving surface is almost eliminated by the jet air. Therefore, it was also found that these areas were filled with air and the dirt was less likely to be removed than expected.
本願出願人は、上記問題を解決するために、洗浄液の噴射により投光面及び受光面の汚れを除去できる処理用水中の粒子状態検出用プローブの洗浄装置を発明し、既に特許出願している(特願2004−174527号)。この洗浄装置では、投光面及び受光面噴射ノズルが、洗浄液が投光面及び受光面から40〜50°の角度(投光部と受光部のそれぞれの中心線を結ぶレーザ光軸面内における角度)でこれらの面に吹き付けられるようにそれぞれ設けられている。このため、投光面及び受光面上で衝突した洗浄液は、それぞれそれらの面上から両側に広がり流出し、この洗浄液流によるブラッシング効果によって投光面及び受光面上の汚れを効率よく除去することができる。 In order to solve the above problems, the applicant of the present application invented a cleaning apparatus for a particle state detection probe in processing water that can remove dirt on the light projecting surface and the light receiving surface by spraying a cleaning liquid, and has already filed a patent application. (Japanese Patent Application No. 2004-174527). In this cleaning apparatus, the light projecting surface and the light receiving surface injection nozzle are arranged so that the cleaning liquid is at an angle of 40 to 50 ° from the light projecting surface and the light receiving surface (in the laser optical axis plane connecting the center lines of the light projecting unit and the light receiving unit) Are provided to be sprayed on these surfaces at an angle). For this reason, the cleaning liquid colliding on the light projecting surface and the light receiving surface spreads out from both surfaces to both sides, and the dirt on the light projecting surface and the light receiving surface is efficiently removed by the brushing effect by the cleaning liquid flow. Can do.
上記洗浄装置の噴射ノズルから噴射される洗浄液は、該ノズル出口の流出速度で初速約10m/sの比較的低流出速度から最大約200m/sの高流出速度を有している。噴射洗浄液は、上記のように、プローブの投光面及び受光面に衝突後その殆どはそれらの左右両側に分かれて流出するが、このような2方向流と高速のために投光面及び受光面の周囲で乱流が発生しやすく、その結果、懸濁物質が投光面及び受光面に再付着しやすいことがわかった。また洗浄液は、レーザ光軸面内においてレーザ光を横切るような位置から噴射されるため、各噴射ノズル出口から投光面及び受光面までの距離が比較的長くなって乱流発生の原因になりやすいこともわかった。
従って、本発明の目的は、洗浄液流による乱流が生じにくく、懸濁物質が再付着しにくい処理用水中の粒子状態検出用プローブの投光面及び受光面の洗浄装置を提供することである。
The cleaning liquid sprayed from the spray nozzle of the cleaning device has a high outflow speed of up to about 200 m / s from a relatively low outflow speed of about 10 m / s at the initial speed at the outflow speed of the nozzle outlet. As described above, the jet cleaning liquid mostly flows into the right and left sides of the probe after colliding with the light projecting surface and the light receiving surface of the probe. It was found that turbulent flow was likely to occur around the surface, and as a result, suspended substances were likely to reattach to the light projecting surface and the light receiving surface. In addition, since the cleaning liquid is ejected from a position that crosses the laser beam in the laser beam axis plane, the distance from each ejection nozzle outlet to the light projecting surface and the light receiving surface is relatively long, which may cause turbulence. I also found it easy.
Accordingly, an object of the present invention is to provide a device for cleaning the light projecting surface and the light receiving surface of the particle state detection probe in the treatment water in which the turbulent flow due to the cleaning liquid flow is unlikely to occur and the suspended substance is difficult to reattach. .
本発明は、処理用水中にその先端の投光面からレーザ光を射出する投光部と前記射出されたレーザ光が処理用水中の粒子に衝突して発生する散乱光をその先端の受光面から受光する受光部とを有するレーザ光による処理用水中の粒子状態検出用プローブに付設される長尺状洗浄液供給部からなるプローブの洗浄装置であって、該洗浄装置からプローブの投光面に洗浄液を吹き付けるために、該洗浄液を該プローブの投光部と受光部の中心線により形成されるレーザ光軸面に対して直交する面上に投影したときの該洗浄液投影線の角度(α1)が上記投光面に対して30〜60°であり、かつ上記レーザ光軸面に対して平行な面上に投影したときの該洗浄液投影線の角度(α2)が該投光面に対して40〜50°であるように投光面噴射ノズルを上記洗浄液供給部先端近傍に有する洗浄装置にある。 The present invention provides a light projecting unit that emits laser light from a light projecting surface at the tip of the processing water and a light receiving surface at the tip of the scattered light generated by the emitted laser light colliding with particles in the water for processing. A probe cleaning device comprising a long cleaning liquid supply unit attached to a probe for detecting particle state in processing water using a laser beam having a light receiving unit that receives light from the cleaning device, the probe cleaning surface from the cleaning device In order to spray the cleaning liquid, the angle (α 1) of the cleaning liquid projection line when the cleaning liquid is projected onto a plane orthogonal to the laser optical axis plane formed by the center line of the light projecting portion and the light receiving portion of the probe. ) Is 30 to 60 ° with respect to the light projecting surface, and the angle (α 2 ) of the cleaning liquid projection line when projected onto a surface parallel to the laser light axis surface is on the light projecting surface. Projection surface injection nozzle so that it is 40 to 50 ° In the cleaning apparatus having the above cleaning liquid dispenser near the tip.
本発明は、更に洗浄装置からプローブの受光面に洗浄液を吹き付けるために、該洗浄液をレーザ光軸面に対して直交する面上に投影したときの該洗浄液投影線の角度(β1)が上記受光面上におけるレーザ光軸面に対して30〜60°であり、かつ上記レーザ光軸面に対して平行な面上に投影したときの該洗浄液投影線の角度(β2)が該受光面に対して40〜50°であるように受光面噴射ノズルを上記洗浄液供給部先端近傍に有する態様であることが好ましい。 In the present invention, in order to spray the cleaning liquid from the cleaning device onto the light receiving surface of the probe, the angle (β 1 ) of the cleaning liquid projection line when the cleaning liquid is projected onto a plane orthogonal to the laser optical axis plane is The angle (β 2 ) of the cleaning liquid projection line when projected onto a plane that is 30 to 60 ° with respect to the laser optical axis surface on the light receiving surface and parallel to the laser optical axis surface is the light receiving surface. It is preferable that the light receiving surface spray nozzle is provided in the vicinity of the tip of the cleaning liquid supply unit so that the angle is 40 to 50 °.
本発明の洗浄装置は、その装置長手方向の中心がプローブのレーザ光軸(投光部中心を通る線)から平行にずれた位置となるように配置されており、かつ投光面及び受光面に特定の角度で洗浄液が吹き付けられるように投光面及び受光面噴射ノズルがそれぞれ設けられているために、投光面及び受光面までそれぞれの噴射ノズル出口から洗浄液を最短距離で吹き付けることが可能となる。また特定の角度からの洗浄液の吹き付けにより、投光面及び受光面上での衝突後の洗浄液は、その殆どがそれぞれ一方向流となって流出するため、投光面及び受光面の周辺では乱流が生じにくく、これによる懸濁物質の流動が抑制されるため、これらの投光面及び受光面への再付着を防止することできる。従って、投光面及び受光面をより完全に洗浄することができる。
また洗浄液は、空気に比べて洗浄エリアを広く保つことができるため、空気に比べて効率よく洗浄することができると共に、洗浄開始時における洗浄液の高速噴射による投光面及び受光面への処理用水の衝撃が空気に比べ少なく、投光面のガラスや受光面のファイバの消耗を低減することができる。特に洗浄液の高速噴射に対しては、洗浄液が洗浄液供給部に流入する前に液圧制御手段、例えば、サージタンクや電磁弁を組み込んだ液圧制御回路を設けることで、よりその衝撃を抑制することができる。
The cleaning device of the present invention is arranged such that the center in the longitudinal direction of the device is shifted in parallel from the laser optical axis (line passing through the center of the light projecting portion) of the probe, and the light projecting surface and the light receiving surface. Since the light projecting surface and the light receiving surface spray nozzle are provided so that the cleaning liquid can be sprayed at a specific angle, the cleaning liquid can be sprayed from the spray nozzle outlet to the light projecting surface and the light receiving surface at the shortest distance. It becomes. In addition, since most of the cleaning liquid after the collision on the light projecting surface and the light receiving surface flows out in a one-way flow by spraying the cleaning liquid from a specific angle, it is disturbed around the light projecting surface and the light receiving surface. Since the flow is difficult to occur and the flow of the suspended substance due to this is suppressed, reattachment to the light projecting surface and the light receiving surface can be prevented. Therefore, the light projecting surface and the light receiving surface can be more completely cleaned.
In addition, since the cleaning liquid can maintain a wider cleaning area than air, it can be cleaned more efficiently than air, and processing water on the light emitting and receiving surfaces by high-speed jetting of the cleaning liquid at the start of cleaning. The impact of this is less than that of air, and it is possible to reduce the wear of the glass on the light projecting surface and the fibers on the light receiving surface. Particularly for high-speed injection of cleaning liquid, the impact is further suppressed by providing a liquid pressure control means such as a surge tank or a solenoid valve before the cleaning liquid flows into the cleaning liquid supply unit. be able to.
本発明のレーザ光による処理用水中の粒子状態検出用プローブの洗浄装置1(以下単に、本発明の洗浄装置と称する)を、添付図面を用いて説明する。
図1及び図2は、それぞれ本発明の洗浄装置1の好ましい一態様を示す模式図である。図1において、(a)は洗浄装置の平面図であり、(b)は洗浄装置の正面図である。図2において、(a)は洗浄装置の正面図であり、(b)は洗浄装置の左側面図である。また図2(c)は別の態様の洗浄装置の左側面図である。
図1乃至図2に示すように、本発明の洗浄装置1は、長尺状の洗浄液供給部2からなり、その先端部近傍に投光面噴射ノズル3、好ましくは投光面噴射ノズル3と受光面噴射ノズル4とを有する。洗浄液供給部2は洗浄液がその中を流通できるように適当な断面形状(円形、楕円形又は四角形などの形状)の空洞に形成されており、その先端部は上記噴射ノズル3、4に通じ、またその末端部は洗浄液供給源(図示せず)に接続可能にされている。洗浄液供給部の形状は特に限定されず、例えば、図1及び2に示すような角柱型、あるいは他の円柱型など、いずれの形状であってもよい。これらは比較的高い機械的強度を有すると共に化学的作用にも安定であり、取り扱い易さ、そして安価であるなどの理由から通常プラスチックなどの合成樹脂を用いて製造することができる。
A cleaning apparatus 1 for detecting a particle state in processing water using laser light according to the present invention (hereinafter simply referred to as a cleaning apparatus according to the present invention) will be described with reference to the accompanying drawings.
1 and 2 are schematic views showing a preferred embodiment of the cleaning device 1 of the present invention. In FIG. 1, (a) is a plan view of the cleaning device, and (b) is a front view of the cleaning device. 2A is a front view of the cleaning device, and FIG. 2B is a left side view of the cleaning device. Moreover, FIG.2 (c) is a left view of the washing | cleaning apparatus of another aspect.
As shown in FIGS. 1 and 2, the cleaning apparatus 1 of the present invention comprises a long cleaning liquid supply unit 2, and a light projecting surface injection nozzle 3, preferably a light projecting surface injection nozzle 3, near its tip. And a light receiving surface injection nozzle 4. The cleaning liquid supply unit 2 is formed in a cavity having an appropriate cross-sectional shape (circular, elliptical, or quadrangular shape) so that the cleaning liquid can flow therethrough, and the tip thereof communicates with the injection nozzles 3 and 4. Further, the end portion thereof can be connected to a cleaning liquid supply source (not shown). The shape of the cleaning liquid supply unit is not particularly limited, and may be any shape such as a prismatic type as shown in FIGS. 1 and 2 or another cylindrical type. These have a relatively high mechanical strength and are stable to chemical action, are easy to handle, and are inexpensive and can be usually produced using a synthetic resin such as plastic.
洗浄液供給部2の後端部には、洗浄液の液圧を制御できる液圧制御手段5が設けられていることが好ましい。液圧制御手段5としては、例えば、図1に示すようなサージタンクや図2に示すような液圧制御回路を挙げることができる。液圧制御手段に組み込まれた電磁弁、減圧器、バルブ等の調節によって噴射ノズルから噴射される洗浄液Wの液圧を調節することができるため、洗浄液噴射開始時のウオータハンマーによって処理用水が投光面や受光面に与える衝撃を緩和することができる。図2に示す液圧制御回路5は、二又(2方向)に分かれた回路の例であるが、2方向以上に分かれた回路に構成することもできる。その場合、組み込まれる電磁弁はそれぞれの分かれた回路に設けられる。 A liquid pressure control means 5 that can control the liquid pressure of the cleaning liquid is preferably provided at the rear end of the cleaning liquid supply unit 2. Examples of the hydraulic pressure control means 5 include a surge tank as shown in FIG. 1 and a hydraulic pressure control circuit as shown in FIG. Since the liquid pressure of the cleaning liquid W sprayed from the spray nozzle can be adjusted by adjusting the solenoid valve, pressure reducer, valve, etc. incorporated in the liquid pressure control means, the processing water is thrown by the water hammer at the start of cleaning liquid spraying. The impact on the light surface and the light receiving surface can be reduced. The hydraulic pressure control circuit 5 shown in FIG. 2 is an example of a circuit divided into two (two directions), but may be configured as a circuit divided into two or more directions. In that case, a built-in solenoid valve is provided in each separate circuit.
図2に示すような二又に分かれた回路の場合には、それぞれの回路に電磁弁(5a、5b)と、少なくともその一方の回路(通常減圧度を高くする方の回路)に減圧器(5c)が設けられる。図2に示す二又の回路を用いた噴射洗浄液圧の制御は、例えば、以下の手順で行われる。まず、電磁弁5aを開放し、開始初期の適当な時間比較的低い液圧で洗浄液を噴射させる。これにより、洗浄液の噴射立ち上がり流速がゆっくりと行われ、処理用水の投光面や受光面への噴射衝撃が抑制される。次に所定時間の電磁弁5aの解放後、その状態で電磁弁5bを開放する。この過程で洗浄液による投光面や受光面の実質的な洗浄が行われる。 In the case of a bifurcated circuit as shown in FIG. 2, each circuit has an electromagnetic valve (5a, 5b), and at least one of these circuits (usually the circuit that increases the degree of pressure reduction) 5c) is provided. Control of the spray cleaning fluid pressure using the bifurcated circuit shown in FIG. 2 is performed, for example, according to the following procedure. First, the electromagnetic valve 5a is opened, and the cleaning liquid is injected at a relatively low hydraulic pressure for an appropriate time at the beginning of the start. As a result, the jetting rising flow velocity of the cleaning liquid is slowly performed, and the jetting impact on the light projecting surface and the light receiving surface of the processing water is suppressed. Next, after the electromagnetic valve 5a is released for a predetermined time, the electromagnetic valve 5b is opened in that state. In this process, the light projecting surface and the light receiving surface are substantially cleaned by the cleaning liquid.
洗浄液供給部2の先端部には、投光部先端から射出されたレーザ光LBの進行を遮断するための凹部6が形成されていることが好ましい。射出されたレーザ光は、凹部6内で遮られるためレーザ光を直接受けることがなく、安全な操作が可能である。 It is preferable that a recess 6 for blocking the progress of the laser beam LB emitted from the tip of the light projecting unit is formed at the tip of the cleaning liquid supply unit 2. Since the emitted laser light is shielded in the recess 6, the laser light is not directly received and a safe operation is possible.
図1の洗浄装置1は、プローブ10の中心線A―A(投光部と受光部のそれぞれの中心線を通る線:通常レーザ光軸に一致する)に対して上側(図1(a)参照)に配置されているが、中心線A―Aに対して下側に配置させることもできる(図2の態様では、図2(b)に見られるように、中心線に対して左側であるが、右側に配置させることもできる)。プローブに対して洗浄装置を上記のようにプローブの中心線からずらして配置することで、投光面噴射ノズル及び受光面噴射ノズルから洗浄液をプローブのレーザ光射出方向に対して斜め横方向から投光面及び受光面に吹き付けることが可能になる。 The cleaning apparatus 1 of FIG. 1 is above the center line AA of the probe 10 (line passing through the center line of each of the light projecting part and the light receiving part: normally coincides with the laser optical axis) (FIG. 1 (a)). 2), but can also be arranged below the center line AA (in the embodiment of FIG. 2, on the left side of the center line as seen in FIG. 2 (b)). But it can also be placed on the right). By disposing the cleaning device with respect to the probe from the center line of the probe as described above, the cleaning liquid is thrown from the light emitting surface injection nozzle and the light receiving surface injection nozzle obliquely with respect to the laser light emission direction of the probe. It becomes possible to spray on the light surface and the light receiving surface.
本発明の洗浄装置の洗浄液供給部2には、投光面噴射ノズル3及び受光面噴射ノズル4が、それぞれ洗浄液が所定の角度で投光部投光面及び受光部受光面に吹き付けられるように設けられている。図3及び図4は、それぞれ投光面噴射ノズル3及び受光面噴射ノズル4から噴射された洗浄液Wが、洗浄液投影線の角度として所定の角度でプローブの投光面及び受光面に吹き付けられる状態を模式的に示した図である。 In the cleaning liquid supply unit 2 of the cleaning device of the present invention, the light projecting surface spray nozzle 3 and the light receiving surface spray nozzle 4 are respectively sprayed onto the light projecting unit light projecting surface and the light receiving unit light receiving surface at a predetermined angle. Is provided. 3 and 4 show a state in which the cleaning liquid W ejected from the light projecting surface ejection nozzle 3 and the light receiving surface ejection nozzle 4 is sprayed onto the light projecting surface and the light receiving surface of the probe at a predetermined angle as the angle of the cleaning liquid projection line, respectively. FIG.
投光面噴射ノズル3は、図3に示すように、洗浄液Wをプローブの投光部と受光部の中心線により形成されるレーザ光軸面A(A―A線を通る面)に対して直交する面B上に投影したときの該洗浄液投影線WBの角度(α1)が投光面に対して30〜60°であり、かつ上記レーザ光軸面Aに対して平行な面C上に投影したときの該洗浄液投影線WCの角度(α2)が該投光面に対して40〜50°であるように投光面に洗浄液Wを吹き付けることができるように設けられている。上記角度(α1)は、40〜50°であることが好ましく、更に好ましくは、45°±3°であり、特に好ましくは、45°±1°である。また角度(α2)は、45°±3°であることが好ましく、特に好ましくは45°±1°である。角度(α1)及び角度(α2)は共に40〜50°であることが好ましく、更に好ましくは、共に45°±3°であり、特に好ましくは共に45°±1°である。 As shown in FIG. 3, the light projecting surface injection nozzle 3 is configured to allow the cleaning liquid W to flow with respect to a laser optical axis plane A (surface passing through the line AA) formed by the center line of the light projecting portion and the light receiving portion of the probe. angle of the cleaning liquid projection line W B when projected onto the orthogonal on the plane B (alpha 1) a is 30 to 60 ° with respect to the light projecting surface and the laser optical axis plane a plane parallel C against provided so as to be able to blow the cleaning liquid W to the light projecting surface such that the angle of the cleaning liquid projection line W C (alpha 2) is at 40 to 50 ° relative-projecting optical surface when projected above Yes. The angle (α 1 ) is preferably 40 to 50 °, more preferably 45 ° ± 3 °, and particularly preferably 45 ° ± 1 °. The angle (α 2 ) is preferably 45 ° ± 3 °, and particularly preferably 45 ° ± 1 °. Both the angle (α 1 ) and the angle (α 2 ) are preferably 40 to 50 °, more preferably 45 ° ± 3 °, and particularly preferably 45 ° ± 1 °.
受光面噴射ノズル4は、図4に示すように、洗浄液Wをレーザ光軸面A(A―A線を通る面)に対して直交する面B上に投影したときの該洗浄液投影線WBの角度(β1)が上記受光面上におけるレーザ光軸面に対して30〜60°であり、かつ上記レーザ光軸面Aに対して平行な面C上に投影したときの該洗浄液投影線WCの角度(β2)が該受光面に対して40〜50°であるように投光面に洗浄液Wを吹き付けることができるように設けられている。上記角度(β1)は、40〜50°であることが好ましく、更に好ましくは、45°±3°であり、特に好ましくは、45°±1°である。また角度(β2)は、45°±3°であることが好ましく、特に好ましくは45°±1°である。角度(β1)及び角度(β2)は共に40〜50°であることが好ましく、更に好ましくは、共に45°±3°であり、特に好ましくは共に45°±1°である。
なお、噴射ノズルの径は、装置の大きさにも拠るが、通常直径1〜5mmの範囲であり、好ましくは、直径3〜3.5mmの範囲である。
Receiving surface injection nozzle 4, as shown in FIG. 4, the cleaning liquid projection line W B in projecting the washing liquid W perpendicular to the plane B with respect to the laser optical axis plane A (plane passing through the line A-A) Angle (β 1 ) is 30 to 60 ° with respect to the laser beam axis surface on the light receiving surface and the cleaning liquid projection line when projected onto a plane C parallel to the laser beam axis surface A W C of the angle (beta 2) is a light emitting surface provided to be able to blow the cleaning liquid W to be a 40 to 50 ° with respect to the light receiving surface. The angle (β 1 ) is preferably 40 to 50 °, more preferably 45 ° ± 3 °, and particularly preferably 45 ° ± 1 °. The angle (β 2 ) is preferably 45 ° ± 3 °, and particularly preferably 45 ° ± 1 °. Both the angle (β 1 ) and the angle (β 2 ) are preferably 40 to 50 °, more preferably 45 ° ± 3 °, and particularly preferably 45 ° ± 1 °.
The diameter of the injection nozzle depends on the size of the apparatus, but is usually in the range of 1 to 5 mm in diameter, and preferably in the range of 3 to 3.5 mm in diameter.
投光面噴射ノズル3及び受光面噴射ノズル4は、吹き付けられた洗浄液Wの投光面及び受光面に衝突後の殆どが一方向流となって流出するように配置されていることが好ましい。例えば、投光面(B面に対して垂直壁)で衝突した洗浄液は、図3に示すように、その殆どがB面を伝わり、洗浄液(W1)流方向に流出するように噴射ノズル3が配置されていることが好ましい。また受光面(B面上)に衝突した洗浄液は、図4に示すように、その殆どが受光面背後の隔壁(投光部11と受光部12との間に位置し、受光部での射出レーザ光の受光防止用隔壁)に衝突して洗浄液W1となった後、B面を伝わり、洗浄液(W2)流方向に流出するように噴射ノズル4が配置されていることが好ましい。このような一方向流に流出した洗浄液による投光面及び受光面周辺の乱流発生を抑制することができる。なお、投光面及び受光面周辺に一方向流の形成を促進させるために、例えば、図2(c)に見られるように、プローブ10及び洗浄装置1を角柱型で構成した場合には、その流路F(図の矢印の流れ)となるプローブ及び洗浄装置の角部にアール(R)を設けることが好ましい。 It is preferable that the light projecting surface spray nozzle 3 and the light receiving surface spray nozzle 4 are arranged so that most of the sprayed cleaning liquid W after the collision with the light projecting surface and the light receiving surface flows out in one direction. For example, as shown in FIG. 3, most of the cleaning liquid colliding with the light projecting surface (the vertical wall with respect to the B surface) travels along the B surface and flows out in the cleaning liquid (W 1 ) flow direction. Is preferably arranged. As shown in FIG. 4, most of the cleaning liquid colliding with the light receiving surface (on the B surface) is located behind the light receiving surface (between the light projecting unit 11 and the light receiving unit 12 and is emitted from the light receiving unit). It is preferable that the injection nozzle 4 is disposed so as to travel along the B surface and flow out in the flow direction of the cleaning liquid (W 2 ) after colliding with the laser light receiving prevention partition wall to become the cleaning liquid W 1 . It is possible to suppress the occurrence of turbulent flow around the light projecting surface and the light receiving surface due to the cleaning liquid flowing out in such a unidirectional flow. In order to promote the formation of a unidirectional flow around the light projecting surface and the light receiving surface, for example, as shown in FIG. 2C, when the probe 10 and the cleaning device 1 are configured in a prismatic shape, It is preferable to provide round (R) at the corners of the probe and the cleaning device that become the flow path F (flow of the arrow in the figure).
洗浄液の噴射時の液圧は、処理用水の水質や投光面、受光面の汚れの程度によって適宜選ぶことができるが、噴射開始時では、0.001〜0.1MPaであることが好ましく、更に好ましくは、0.005〜0.05MPaである。開始後の液圧は、0.2〜0.5MPaであることが好ましく、更に好ましくは、0.3〜0.4MPaである。 The liquid pressure at the time of jetting the cleaning liquid can be appropriately selected depending on the quality of the processing water and the degree of contamination on the light projecting surface and the light receiving surface, but is preferably 0.001 to 0.1 MPa at the start of jetting, More preferably, it is 0.005-0.05 MPa. The hydraulic pressure after the start is preferably 0.2 to 0.5 MPa, and more preferably 0.3 to 0.4 MPa.
洗浄液としては、特に限定されないが、清水(通常の水道水)であることが好ましい。また処理用水にアルカリなどが含まれている場合には必要に応じて、酸(例えば、クエン酸、蟻酸など)などを適量加えてもよい。 Although it does not specifically limit as a washing | cleaning liquid, It is preferable that it is a fresh water (normal tap water). Further, when alkali or the like is contained in the water for treatment, an appropriate amount of acid (for example, citric acid, formic acid, etc.) may be added as necessary.
本発明の洗浄装置を用いる場合、処理用水の水質や汚れの度合いによっても異なるが、通常の使用状態において一日に2〜5回の割で、一回に付き約10〜30秒間洗浄することで、汚れを完全に除去することができる。 When using the cleaning apparatus of the present invention, it depends on the quality of the processing water and the degree of contamination, but it is cleaned for about 10 to 30 seconds per time at a rate of 2 to 5 times a day under normal use conditions. Thus, the dirt can be completely removed.
本発明の洗浄装置1は、上記のように、投光面噴射ノズル3、好ましくは投光面噴射ノズル3及び受光面噴射ノズル4のいずれもが、レーザ光による処理用水中の粒子状態検出用プローブ10の投光面11a、好ましくは投光面11aと受光面12aとの両方に対して洗浄液を所定の角度で吹き付けることができるようにプローブに取り付けられている。従って、プローブについては特に限定されることなく、公知のプローブのいずれにも取り付けることができる。 In the cleaning apparatus 1 of the present invention, as described above, the light projecting surface injection nozzle 3, preferably any one of the light projecting surface injection nozzle 3 and the light receiving surface injection nozzle 4 is for detecting the particle state in the processing water using laser light. It is attached to the probe so that the cleaning liquid can be sprayed at a predetermined angle to the light projecting surface 11a of the probe 10, preferably both the light projecting surface 11a and the light receiving surface 12a. Therefore, the probe is not particularly limited and can be attached to any known probe.
プローブ10としては、図1に示すように、その先端の投光面11aからレーザ光LBを射出するための投光部11及び射出されたレーザ光が粒子に衝突して発生した散乱光をその先端の受光面12aから受光するための受光部12とが一体的に形成された態様のものであることが好ましい。投光部11は、その先端の投光面から所定の長さの光ファイバで構成してもよいし、あるいは直接その先端投光面に直結してレーザ発振用発光ダイオードを設置してもよい。光ファイバで構成した場合には、その後端部には、例えば、レーザダイオードなどのレーザ発振器が接続される。レーザ発振用発光ダイオードを利用すると、光ファイバ内を進行する間のレーザ光の減衰がないため、より強いレーザ光の射出が可能となる。また、受光部12においても、上記投光部のように、その先端受光面に直接受光ダイオードを用いて構成することもできるが、所定の長さの光ファイバからなることが好ましい。 As shown in FIG. 1, the probe 10 includes a light projecting unit 11 for emitting laser light LB from a light projecting surface 11a at the tip thereof, and scattered light generated when the emitted laser light collides with particles. It is preferable that the light receiving unit 12 for receiving light from the light receiving surface 12a at the tip is integrally formed. The light projecting unit 11 may be constituted by an optical fiber having a predetermined length from the light projecting surface at the tip thereof, or may be directly connected to the light projecting surface at the front end and a laser oscillation light emitting diode may be installed. . In the case of an optical fiber, a laser oscillator such as a laser diode is connected to the rear end of the optical fiber. If a laser oscillation light emitting diode is used, there is no attenuation of the laser beam while traveling through the optical fiber, so that a stronger laser beam can be emitted. The light receiving unit 12 can also be configured by using a light receiving diode directly on the tip light receiving surface like the light projecting unit, but is preferably made of an optical fiber having a predetermined length.
1 洗浄装置
2 洗浄液供給部
3 投光面噴射ノズル
4 受光面噴射ノズル
5 液圧制御回路
6 レーザ光遮断凹部
10 プローブ
11 投光部
11a 投光面(ガラス面)
12 受光部
12a 受光面(ファイバ端面)
13 清浄用手段
LB レーザ光
WB B面(レーザ光軸面に対して垂直面)上の洗浄液投影線
WC C面(レーザ光軸面に対して平行面)上の洗浄液投影線
DESCRIPTION OF SYMBOLS 1 Cleaning apparatus 2 Cleaning liquid supply part 3 Light projection surface injection nozzle 4 Light reception surface injection nozzle 5 Fluid pressure control circuit 6 Laser beam interruption | blocking recessed part 10 Probe 11 Light projection part 11a Light projection surface (glass surface)
12 Light-receiving part 12a Light-receiving surface (fiber end surface)
13 Cleaning means LB Laser light W B B Cleaning liquid projection line on B surface (plane perpendicular to laser light axis plane) W C Projection line on cleaning plane (plane parallel to laser light axis plane)
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005075561A JP2006258563A (en) | 2005-03-16 | 2005-03-16 | Device cleaning of light projecting surface and light receiving surface of probe for detecting state of particles in treatment water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005075561A JP2006258563A (en) | 2005-03-16 | 2005-03-16 | Device cleaning of light projecting surface and light receiving surface of probe for detecting state of particles in treatment water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006258563A true JP2006258563A (en) | 2006-09-28 |
Family
ID=37097998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005075561A Pending JP2006258563A (en) | 2005-03-16 | 2005-03-16 | Device cleaning of light projecting surface and light receiving surface of probe for detecting state of particles in treatment water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006258563A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019181348A1 (en) * | 2018-03-23 | 2019-09-26 | 栗田工業株式会社 | Aggregation state monitoring sensor |
-
2005
- 2005-03-16 JP JP2005075561A patent/JP2006258563A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019181348A1 (en) * | 2018-03-23 | 2019-09-26 | 栗田工業株式会社 | Aggregation state monitoring sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5449967B2 (en) | Nozzle cleaning unit | |
WO2011122325A1 (en) | Fluid mixture spray device | |
JP2017003541A (en) | Optical radar cleaning device | |
TW201247329A (en) | Carbon dioxide snow ejecting device | |
JP2009018250A (en) | Cleaning method, cleaning device, and cleaning nozzle | |
CN110721543A (en) | Negative pressure jet pipe with self-cleaning function | |
JP4158515B2 (en) | 2-fluid nozzle for cleaning and cleaning method | |
JP2008002956A (en) | Washing apparatus and water quality meter | |
JP2008149984A (en) | Vehicle body washing method, spray nozzle used for it and vehicle body washing device | |
JP2006258563A (en) | Device cleaning of light projecting surface and light receiving surface of probe for detecting state of particles in treatment water | |
JP7374318B2 (en) | Optical sensor window cleaning equipment | |
JP2005351819A (en) | Cleaning apparatus for light projection face and light receiving face of probe for detecting particle condition in treating water | |
JP2018089597A (en) | One fluid nozzle | |
JP2007319748A (en) | Ultrasonic cleaning device | |
JP2006281060A (en) | Washing and transportation method for rubber stopper and washing and transportation apparatus for rubber stopper | |
KR101976798B1 (en) | Nozzle for recycling steam | |
JP5970360B2 (en) | Laser processing apparatus, laser processing system, and laser processing method | |
JP3226633U (en) | Long-acting self-cleaning negative pressure jet tube | |
JP2005265608A (en) | Stain removing method | |
JP2005083746A (en) | Probe for detecting particle state in treatment water | |
JP5735354B2 (en) | Microbubble generator | |
KR20210064103A (en) | agglomeration condition monitoring sensor | |
JP2004167377A (en) | Ultrasonic washing machine | |
JP2010240580A (en) | Liquid injection nozzle and shower head | |
JP2006272210A (en) | Atomization washing device |