JP2006257533A - Method for coating metallic strip surface with thin film and grain oriented silicon steel sheet with ceramic film - Google Patents

Method for coating metallic strip surface with thin film and grain oriented silicon steel sheet with ceramic film Download PDF

Info

Publication number
JP2006257533A
JP2006257533A JP2005080427A JP2005080427A JP2006257533A JP 2006257533 A JP2006257533 A JP 2006257533A JP 2005080427 A JP2005080427 A JP 2005080427A JP 2005080427 A JP2005080427 A JP 2005080427A JP 2006257533 A JP2006257533 A JP 2006257533A
Authority
JP
Japan
Prior art keywords
furnace
gas
thin film
steel sheet
metal strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005080427A
Other languages
Japanese (ja)
Other versions
JP4821148B2 (en
Inventor
Tatsuhiko Hiratani
多津彦 平谷
Hiroshi Yamaguchi
山口  広
Minoru Takashima
高島  稔
Mineo Muraki
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005080427A priority Critical patent/JP4821148B2/en
Publication of JP2006257533A publication Critical patent/JP2006257533A/en
Application granted granted Critical
Publication of JP4821148B2 publication Critical patent/JP4821148B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for coating metallic strip surface with a thin film, with which the stagnation of gaseous raw materials within a furnace is suppressed and the surface of the metallic strip is efficiently coated with a uniform thin film, in a continuous annealing line of the metallic strip. <P>SOLUTION: By using a continuous CVD treatment furnace with a gaseous raw material blowing nozzle installed within a reaction furnace, the metallic strip is continuously passed in the reaction furnace and the surface thereof is coated with the thin film, and at this time, when the average density of the gas supplied to the gaseous raw material blowing nozzle is defined as ρ(N)[g/m<SP>3</SP>], the average density of the atmospheric gas supplied into the furnace is defined as (A)[g/m<SP>3</SP>], and the velocity of flow of the atmospheric gas and the velocity of flow of the atmosphere gas is defined as v(A)[m/s], the relational expression of expression (1): ¾Log[ρ(N)/ρ(A)]¾≤(0.25×v(A)-0.01)<SP>1/2</SP>is satisfied. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属ストリップ表面への薄膜被覆方法およびセラミックス被膜付き方向性電磁鋼板の製造方法に関し、特に反応炉内に原料ガス吹付ノズルを設置した連続CVD処理炉を用いて金属ストリップの表面に連続して薄膜を被覆するのに際し、反応炉内壁などに付着する反応生成物を効果的に低減して、金属ストリップ表面に長時間安定して均一な薄膜を被覆しようとするものである。   The present invention relates to a method of coating a thin film on a metal strip surface and a method of manufacturing a grain-oriented electrical steel sheet with a ceramic coating, and in particular, continuously on the surface of a metal strip using a continuous CVD processing furnace in which a raw material gas spray nozzle is installed in a reaction furnace. Thus, when coating the thin film, the reaction product adhering to the inner wall of the reactor is effectively reduced, and the metal strip surface is coated with a uniform thin film for a long time.

化学気相析出法(CVD法)は、材料の耐熱性、耐食性、耐摩耗性および電気・磁気的特性等の機能を高めるために、様々な分野で利用されている乾式の表面被覆技術である。同じく乾式の表面被覆法である物理蒸着法(PVD法)も、多方面で利用されている。   The chemical vapor deposition method (CVD method) is a dry surface coating technique used in various fields in order to improve the functions of materials such as heat resistance, corrosion resistance, wear resistance, and electrical / magnetic properties. . A physical vapor deposition method (PVD method), which is also a dry surface coating method, is used in various fields.

CVD法、PVD法のどちらを利用するかは、薄膜の種類、基板となる材料からの制約、要求される製品特性および工業化した場合のコストメリット等、様々な要因によって決定される。例えば、工具鋼では、その寿命改善や耐食性改善を目的としてTiN被覆が行われているが、上記したような状況に応じてCVD法またはPVD法のいずれかが選択利用されている。PVD法は、低温で比較的広範囲の組成の薄膜を合成することが可能な反面、真空を必要とするため大面積試料への被覆は困難である。一方、CVD法は、一般に高温を必要とする反面、目的とする薄膜の種類によっては大気圧での合成が可能であるため、大面積試料への被覆に適している。また、一般的にCVD法によって被覆した膜は、PVD法によって被覆したそれに比較して密着性に優れるという特徴もある。   Which of the CVD method and the PVD method is used is determined by various factors such as the type of thin film, restrictions from the material used as a substrate, required product characteristics, and cost merit when industrialized. For example, in tool steel, TiN coating is performed for the purpose of improving the life and corrosion resistance, and either the CVD method or the PVD method is selectively used depending on the situation as described above. The PVD method can synthesize a thin film having a relatively wide range of composition at a low temperature, but requires a vacuum and is difficult to coat a large area sample. On the other hand, the CVD method generally requires a high temperature, but can be synthesized at atmospheric pressure depending on the type of the target thin film, and thus is suitable for coating a large area sample. In addition, generally, a film coated by the CVD method has a feature that it has excellent adhesion as compared with that coated by the PVD method.

近年、変圧器の電力損失を大幅に低減するための手段として、方向性電磁鋼板の表面にTiN膜を被覆する試みがなされている。かようなTiN膜を被覆した極めて低い鉄損特性を有する方向性電磁鋼板を工業的に生産するためには、数千mに及ぶ長さの金属ストリップを成膜装置に通板させながら連続的に安定して高速成膜を実施する必要がある。このような長尺物への薄膜被覆に対しては、真空を必要とするPVD法を利用することは極めて難しい。また、上述した方向性電磁鋼板は、TiN膜被覆後、打ち抜き等により部品に加工され、最終的に800℃程度の高温で歪取り焼鈍が施される場合も多く、被膜密着性の観点からもPVD法よりCVD法の方が適していると考えられる。   In recent years, attempts have been made to coat a TiN film on the surface of a grain-oriented electrical steel sheet as a means for significantly reducing power loss of a transformer. In order to industrially produce a grain-oriented electrical steel sheet with extremely low iron loss characteristics coated with such a TiN film, a metal strip with a length of several thousand meters is continuously passed through a film forming apparatus. It is necessary to perform high-speed film formation stably. It is extremely difficult to use a PVD method requiring a vacuum for thin film coating on such a long object. In addition, the grain-oriented electrical steel sheet described above is often processed into parts by punching after coating with a TiN film, and finally subjected to strain relief annealing at a high temperature of about 800 ° C. From the viewpoint of film adhesion. The CVD method is considered more suitable than the PVD method.

これまで、金属ストリップを連続CVD処理炉に通板させながら、その表面に連続的に薄膜を被覆した例はほとんど報告されていない。
類似技術としては、1000℃を超える高温炉に通板させた電磁鋼板に、四塩化珪素ガスを吹き付けて鋼板内に珪素を浸透させる連続浸珪プロセスが、例えば特許文献1,2および3に開示されている。
特開昭63−26327号公報 特開平5−44042号公報 特開平7−310165号公報
Until now, there have been few reports on cases where a metal strip is continuously passed through a continuous CVD processing furnace and a thin film is continuously coated on the surface of the metal strip.
As a similar technique, for example, Patent Documents 1, 2 and 3 disclose a continuous siliconization process in which silicon tetrachloride gas is blown into a magnetic steel sheet passed through a high-temperature furnace exceeding 1000 ° C. to infiltrate silicon into the steel sheet. Has been.
JP-A-63-26327 JP-A-5-44042 JP 7-310165 A

しかしながら、本発明で対象とするような、気相反応でTiN等を成膜するプロセスは、上記の文献に記載されたような浸珪プロセスとは大きく異なるものである。具体的には、浸珪反応においては、鋼板の鉄原子が四塩化珪素の還元剤として機能するため、反応は鋼板表面に限定されるのに対し、一般の成膜プロセス例えばTiN成膜プロセスにおいては、原料の四塩化チタンは水素によって気相中で還元され、800℃以上で窒素と反応してTiNを生成するものである。従って、このTiNは、鋼板表面以外の場所、例えば反応炉内壁や加熱ヒータ保護管などにも容易に付着し、鋼板表面に傷を付けたり、膜厚分布の均一性を低下させる要因となる。   However, the process of forming a film of TiN or the like by a gas phase reaction, which is the subject of the present invention, is greatly different from the siliconization process as described in the above-mentioned literature. Specifically, in the silicidation reaction, since the iron atoms of the steel sheet function as a reducing agent for silicon tetrachloride, the reaction is limited to the surface of the steel sheet, whereas in a general film forming process such as a TiN film forming process. The raw material titanium tetrachloride is reduced in the gas phase by hydrogen and reacts with nitrogen at 800 ° C. or higher to produce TiN. Therefore, this TiN easily adheres to places other than the steel plate surface, for example, the inner wall of the reaction furnace and the heater heater protective tube, causing damage to the steel plate surface and reducing the uniformity of the film thickness distribution.

上記したような反応生成物の炉内付着を抑制し、金属ストリップ表面にのみ選択的に反応生成物を被覆するには、ノズルを用いて原料ガスを炉内に導入し、被覆対象物の表面近傍で吹き付ける方法が効果的である。しかしながら、長時間連続して成膜を続けていると、炉内の一部に滞留していた原料ガスに起因して、そこで多量の反応生成物が炉内付着する。このようにして炉内に付着物が堆積していくと、連続運転中に付着物が剥落して鋼板表面に傷をつけるおそれがある。また、生成物の堆積によりガスの通路が閉塞し、炉内圧力異常を引き起こすおそれもある。さらに、炉内のガス流れが不安定になると、鋼板表面に被覆されたTiN膜厚分布も不均一になる。   In order to prevent the reaction product from adhering to the furnace and coat the reaction product selectively only on the surface of the metal strip, the raw material gas is introduced into the furnace using a nozzle, and the surface of the object to be coated is applied. A method of spraying in the vicinity is effective. However, if the film formation is continued for a long time, a large amount of reaction product adheres in the furnace due to the raw material gas staying in a part of the furnace. If deposits accumulate in the furnace in this way, the deposits may fall off during continuous operation and damage the steel sheet surface. Further, the gas passage may be blocked by the accumulation of the product, which may cause an abnormal pressure in the furnace. Furthermore, when the gas flow in the furnace becomes unstable, the TiN film thickness distribution coated on the steel plate surface also becomes non-uniform.

小型バッチCVD装置の場合は、試料交換サイクルが短く、また炉内清掃が容易に行えるため、このような現象は問題とならなかったが、大型の連続CVD装置を用いて長時間の成膜を実施する場合は、重大な問題となる。例えば、炉内圧力異常が生じた場合、金属ストリップの導入口または排出口から反応ガスが流出したり、あるいは炉内へ大気が混入して爆発するおそれが生じるため、成膜運転を中断せざるを得ず、長時間の運転は困難となる。   In the case of a small batch CVD apparatus, the sample exchange cycle is short and the cleaning inside the furnace can be easily performed, so this phenomenon has not been a problem, but a long continuous film formation using a large continuous CVD apparatus is possible. When implemented, it becomes a serious problem. For example, when an abnormal pressure in the furnace occurs, the reaction gas may flow out from the inlet or outlet of the metal strip, or air may enter the furnace and cause an explosion, so the film forming operation must not be interrupted. Therefore, long-time driving becomes difficult.

また、とくに板厚の薄い金属ストリップの表面に成膜する場合、面内での膜厚差が大きくなると、ストリップの形状が変化してしまう。このような場合、製品品質を劣化させるだけでなく、連続ラインでは通板中に金属ストリップが蛇行して炉内で破断を起こすおそれが生じ、やはり長時間の連続運転はできなくなる。   In particular, when a film is formed on the surface of a thin metal strip, the strip shape changes if the in-plane film thickness difference increases. In such a case, not only the product quality is deteriorated, but also in the continuous line, there is a possibility that the metal strip meanders through the plate and breaks in the furnace, and it is impossible to continuously operate for a long time.

このように、連続CVD処理炉で金属ストリップ表面に長時間安定して成膜を継続するためには、炉内における雰囲気ガスの流れを制御することが、極めて重要なポイントとなる。   Thus, in order to continue film formation on the metal strip surface stably for a long time in a continuous CVD processing furnace, it is an extremely important point to control the flow of atmospheric gas in the furnace.

本発明は、ノズルから供給する原料ガスの平均密度と炉内雰囲気ガスの平均密度の比、さらには雰囲気ガスの流速を規定することにより、金属ストリップの連続焼鈍ラインにおいて、炉内での原料ガスの滞留を抑制し、金属ストリップの表面に効率的に均一な薄膜を被覆することができる金属ストリップ表面への薄膜被覆方法を、かかる被覆方法を利用したセラミックス被膜付き方向性電磁鋼板の製造方法と共に提案することを目的とする。   The present invention defines the ratio of the average density of the raw material gas supplied from the nozzle to the average density of the atmospheric gas in the furnace, and further defines the flow rate of the atmospheric gas, thereby providing the raw material gas in the furnace in the continuous annealing line of the metal strip. A thin film coating method on the surface of a metal strip that can efficiently coat a uniform thin film on the surface of the metal strip, together with a method for producing a grain-oriented electrical steel sheet with a ceramic coating using such a coating method. The purpose is to propose.

すなわち、本発明の要旨は次のとおりである。
(1)反応炉内に原料ガス吹付ノズルを設置した連続CVD処理炉を用い、該反応炉内に金属ストリップを連続的に通板して、その表面に薄膜を被覆するに際し、該原料ガス吹付ノズルに供給するガスの平均密度をρ(N)[g/m3]、炉内に供給する雰囲気ガスの平均密度をρ(A)[g/m3]および雰囲気ガスの流速をv(A)[m/s]とした時、これらについて次式(1)
|Log[ρ(N)/ρ(A)]|≦(0.25×v(A)−0.01)1/2 ・・・ (1)
の関係式を満足させることを特徴とする、金属ストリップ表面への薄膜被覆方法。
That is, the gist of the present invention is as follows.
(1) Using a continuous CVD processing furnace in which a raw material gas spray nozzle is installed in the reaction furnace, a metal strip is continuously passed through the reaction furnace, and when the surface is coated with a thin film, the raw material gas spray is performed. The average density of the gas supplied to the nozzle is ρ (N) [g / m 3 ], the average density of the atmospheric gas supplied into the furnace is ρ (A) [g / m 3 ], and the flow rate of the atmospheric gas is v (A ) [M / s], the following equation (1)
| Log [ρ (N) / ρ (A)] | ≦ (0.25 × v (A) −0.01) 1/2・ ・ ・ (1)
A method for coating a thin film on the surface of a metal strip, which satisfies the following relational expression:

(2)上記(1)において、金属ストリップ表面に被覆する薄膜がTiN膜である場合に、原料ガス吹付ノズルに供給する原料ガスのキャリアガスとしてH2またはN2を用いることを特徴とする、金属ストリップ表面への薄膜被覆方法。 (2) In the above (1), when the thin film to be coated on the surface of the metal strip is a TiN film, H 2 or N 2 is used as a carrier gas of the source gas supplied to the source gas spray nozzle, Thin film coating method on metal strip surface.

(3)フォルステライト被膜を有しない方向性電磁鋼板を、反応炉内に原料ガス吹付ノズルを設置した連続CVD処理炉に通板して、その表面に連続的にセラミックス被膜を被覆するに際し、該CVD処理を次式(1)
|Log[ρ(N)/ρ(A)]|≦(0.25×v(A)−0.01)1/2 ・・・ (1)
ここで、ρ(N):原料ガス吹付ノズルに供給するガスの平均密度[g/m3
ρ(A):炉内に供給する雰囲気ガスの平均密度[g/m3
v(A):雰囲気ガスの流速[m/s](但しv(A)≧0.04m/s)
の関係式を満足する条件下で行うことを特徴とするセラミックス被膜付き方向性電磁鋼板の製造方法。
(3) When the grain-oriented electrical steel sheet having no forsterite coating is passed through a continuous CVD processing furnace in which a raw material gas spray nozzle is installed in the reaction furnace, and the ceramic coating is continuously coated on the surface thereof, The CVD process is expressed by the following formula (1)
| Log [ρ (N) / ρ (A)] | ≦ (0.25 × v (A) −0.01) 1/2・ ・ ・ (1)
Where ρ (N): average density of gas supplied to the source gas spray nozzle [g / m 3 ]
ρ (A): Average density of atmospheric gas supplied to the furnace [g / m 3 ]
v (A): Velocity of atmospheric gas [m / s] (v (A) ≧ 0.04m / s)
A method for producing a grain-oriented electrical steel sheet with a ceramic coating, which is performed under a condition that satisfies the relational expression:

本発明によれば、連続CVD処理炉を用いて、金属ストリップの表面に、長時間安定して均一な薄膜を被覆することが可能となる。
また、本発明によれば、方向性電磁鋼板の表面に、長時間安定して均一なセラミックス被膜を被覆することができ、その結果、磁気特性に優れた方向性電磁鋼板を安定して得ることができる。
According to the present invention, it is possible to coat a surface of a metal strip with a uniform thin film stably for a long time using a continuous CVD processing furnace.
Moreover, according to the present invention, the surface of the grain-oriented electrical steel sheet can be coated with a uniform ceramic film stably for a long time, and as a result, the grain-oriented electrical steel sheet having excellent magnetic properties can be stably obtained. Can do.

以下、本発明を具体的に説明する。
本発明の実施に用いて好適な連続CVD処理炉の反応炉(焼鈍炉)の基本構造を図1に示す。反応炉は、図示するように、原料ガス吹付ノズル1、加熱用ヒータ2、炉内壁3、雰囲気ガス導入口4および排出口5で構成され、その中を金属ストリップsが通板する。かような反応炉は縦型炉であっても横型炉であっても良い。また、同図には、番号6で金属ストリップsの進行方向を、7で雰囲気ガスの流れ方向を、8で原料ガスの流れ方向を示す。
The present invention will be specifically described below.
FIG. 1 shows a basic structure of a reaction furnace (annealing furnace) of a continuous CVD processing furnace suitable for use in the practice of the present invention. As shown in the figure, the reaction furnace is composed of a raw material gas spray nozzle 1, a heater 2, a furnace inner wall 3, an atmospheric gas inlet 4 and an outlet 5 through which a metal strip s passes. Such a reaction furnace may be a vertical furnace or a horizontal furnace. Also, in the figure, numeral 6 indicates the traveling direction of the metal strip s, 7 indicates the flow direction of the atmospheric gas, and 8 indicates the flow direction of the source gas.

縦型反応炉においては、金属ストリップsを下から上に通す場合、炉の下側に雰囲気ガス導入口を、炉の上側に排出口を設ける。逆に、金属ストリップsを上から下に通す場合には、炉の上側に雰囲気ガス導入口を、炉の下側に排出口を設ける。一方、横型反応炉においては、金属ストリップsが入ってくる側に雰囲気ガスの導入ロを、出側に排出ロを設ける。
また、炉内ガス流れを金属ストリップの通板方向と一致させる理由は、これが逆の場合には、反応が進行した下流側のガスが炉内に入ってきた金属ストリップ表面に直接接触し、被膜形成前に下地がエッチングされたり、副生成物が被覆されるおそれが生じるので、これを回避するためである。
In the vertical reactor, when the metal strip s is passed from the bottom to the top, an atmosphere gas inlet is provided on the lower side of the furnace and a discharge port is provided on the upper side of the furnace. Conversely, when the metal strip s is passed from the top to the bottom, the atmospheric gas inlet is provided on the upper side of the furnace, and the outlet is provided on the lower side of the furnace. On the other hand, in the horizontal reactor, the atmosphere gas is introduced on the side where the metal strip s enters, and the discharge side is provided on the exit side.
Also, the reason why the gas flow in the furnace coincides with the direction in which the metal strip passes is that if the reverse is true, the downstream gas where the reaction has proceeded directly contacts the surface of the metal strip that has entered the furnace, and the coating This is for avoiding the possibility that the base is etched before the formation or the by-product is covered.

このような連続CVD処理炉を用いて、種々のガス供給条件で金属ストリップ表面に薄膜を被覆する実験を重ねたところ、長期間安定して均一な薄膜を被覆する上で、極めて重要な事実が判明した。   Using such a continuous CVD processing furnace, we conducted experiments to coat a thin film on the surface of a metal strip under various gas supply conditions. found.

すなわち、反応炉内で原料ガス吹付ノズルから供給される原料ガスの平均密度ρ(N)と、炉内を流れる雰囲気ガスの平均密度ρ(A)の比を、ある範囲内に制限することにより、原料ガスの炉内滞留が抑えられ、反応生成物の炉内付着が効果的に抑制されることである。
そして、このような条件で成膜した場合、金属ストリップ表面の膜厚分布は極めて均一になることも判明した。
ここで、ガスの平均密度とは、例えば密度aであるガス種1をA(mol)と、密度bであるガス種2をB(mol)混合した時の算術平均:(aA+bB)/(A+B)で表される密度のことである。
That is, by limiting the ratio of the average density ρ (N) of the source gas supplied from the source gas spray nozzle in the reaction furnace to the average density ρ (A) of the atmospheric gas flowing in the furnace within a certain range. That is, the retention of the raw material gas in the furnace is suppressed, and the adhesion of the reaction product in the furnace is effectively suppressed.
And when it formed into a film on such conditions, it turned out that the film thickness distribution on the surface of a metal strip becomes very uniform.
Here, the average density of gas is, for example, the arithmetic average when gas species 1 having density a is mixed with A (mol) and gas species 2 having density b is mixed with B (mol): (aA + bB) / (A + B) ).

上記したように、原料ガスの平均密度ρ(N)と雰囲気ガスの平均密度ρ(A)の比を、ある範囲内に制限することにより、反応生成物の炉内付着が効果的に抑制される理由については、次のように考えられる。
原料ガスの平均密度と雰囲気ガスの平均密度の差が大きく異なると、ノズルからの原料ガス(以下、単にノズルガスという)が雰囲気ガスの流れに沿って円滑に流れなくなり、炉内での滞留またはガス流れの偏りが生じて、炉の内壁等に反応生成物が付着し易くなる。例えば、図1で雰囲気ガスが縦型炉内の下から上に向かって流れ、ノズルガスも流れに沿って下から上に移動する場合を考える。ノズルガスの平均密度が雰囲気ガスの平均密度に対して大きすぎると、ノズルガスは重力の影響で下方に垂れ、雰囲気ガス流れと逆方向の流れを作ってしまう。その際、ノズルより下側の部分に原料ガスが滞留し、ここで炉壁や加熱用ヒータの周囲に多量の反応生成物が付着する。また、下方に垂れたガスは、金属ストリップ表面に被覆される薄膜の膜厚分布にも悪影響を及ぼす。
As described above, by limiting the ratio of the average density ρ (N) of the raw material gas to the average density ρ (A) of the atmospheric gas within a certain range, adhesion of reaction products in the furnace is effectively suppressed. The reason is as follows.
If the difference between the average density of the raw material gas and the average density of the atmospheric gas is greatly different, the raw material gas from the nozzle (hereinafter simply referred to as the nozzle gas) will not flow smoothly along the flow of the atmospheric gas. Flow unevenness occurs, and reaction products easily adhere to the inner wall of the furnace. For example, consider the case in FIG. 1 where the atmospheric gas flows from the bottom to the top in the vertical furnace and the nozzle gas also moves from bottom to top along the flow. If the average density of the nozzle gas is too large with respect to the average density of the atmospheric gas, the nozzle gas will sag downward due to the influence of gravity and create a flow in the opposite direction to the atmospheric gas flow. At that time, the raw material gas stays in a portion below the nozzle, and a large amount of reaction product adheres around the furnace wall and the heater for heating. Further, the gas dripping downward has an adverse effect on the film thickness distribution of the thin film coated on the surface of the metal strip.

一方、ノズルガスの平均密度が雰囲気ガスの平均密度に対して小さすぎると、ノズルガスが炉の上方へ移動する際、流れが乱れて左右前後方向に偏る傾向があり、その結果、偏った側の炉壁に多量の反応生成物が付着する。また金属ストリップ表面に形成される薄膜の膜厚分布も不均一となる。   On the other hand, if the average density of the nozzle gas is too small with respect to the average density of the atmospheric gas, when the nozzle gas moves upward of the furnace, the flow is disturbed and tends to be biased in the left-right and front-back directions. A large amount of reaction product adheres to the wall. In addition, the film thickness distribution of the thin film formed on the surface of the metal strip is not uniform.

以上の機構は、縦型炉で金属ストリップとガスが上から下に流れる場合、および横型炉の場合も同様である。   The above mechanism is the same when the metal strip and gas flow from top to bottom in the vertical furnace and in the case of the horizontal furnace.

従って、炉内で均一なガス流れを形成し、長時間安定して成膜を続けるためには、ノズルガスと雰囲気ガスの密度比を、ある範囲内に収まるように組み合わせることが重要である。   Therefore, in order to form a uniform gas flow in the furnace and continue film formation stably for a long time, it is important to combine the density ratio of the nozzle gas and the atmospheric gas so as to be within a certain range.

ところで、ノズルガスの流れは、雰囲気ガスの流速によっても大きな影響を受けると考えられる。
図1に示した連続CVD炉において、雰囲気ガスの流速が極めて低い場合、殆どの条件で原料ガスの炉内滞留または膜厚不均一が認められたのに対し、雰囲気ガス流速が高い場合には、ノズルガスと雰囲気ガスの密度に比較的大きな差があっても、炉内付着が抑制される傾向が認められた。
By the way, it is considered that the flow of the nozzle gas is greatly influenced by the flow rate of the atmospheric gas.
In the continuous CVD furnace shown in FIG. 1, when the atmospheric gas flow rate is extremely low, the retention of the raw material gas in the furnace or the film thickness non-uniformity was observed under almost all conditions, whereas when the atmospheric gas flow rate was high. Even if there was a relatively large difference in density between the nozzle gas and the atmosphere gas, it was observed that the adhesion in the furnace was suppressed.

そこで、炉内ガス流れに影響を及ぼすガス密度比と雰囲気ガスの流速との関係について調査を行った。得られた結果を、ガス密度比と雰囲気ガスの流速との関係で図2に示す。同図中、○印は、反応生成物の炉内付着がほとんど無く、鋼板表面の膜厚分布も±15%以内であった場合を、また×印は、炉内付着が顕著で、しかも膜厚分布が±15%以内に収まらなかった場合を示す。   Therefore, the relationship between the gas density ratio that affects the gas flow in the furnace and the flow rate of the atmospheric gas was investigated. The obtained results are shown in FIG. 2 in relation to the gas density ratio and the flow rate of the atmospheric gas. In the figure, the circles indicate that there is almost no adhesion of reaction products in the furnace and the film thickness distribution on the steel sheet surface is within ± 15%. The case where the thickness distribution did not fall within ± 15% is shown.

同図に示したとおり、雰囲気ガスの流速が0.04m/s未満と低速の場合には、ノズルガスと雰囲気ガスの密度比が如何ようであっても、炉内においてガスの滞留が生じ、炉内付着、膜厚不均一が避けられなかった。
これに対し、ガス密度比と雰囲気ガスの流速が所定の関係を満足する場合には、反応生成物の炉内付着がほとんど無く、鋼板表面の膜厚分布も±15%以内におさまった。
この関係を関係式で表すと次式(1)のようになる。
|Log[ρ(N)/ρ(A)]|≦(0.25×v(A)−0.01)1/2 ・・・ (1)
ここでρ(N)はノズルガスの平均密度
ρ(A)は雰囲気ガスの平均密度
v(A)は炉内の雰囲気ガスの流速(但し0.04m/s以上)
As shown in the figure, when the atmospheric gas flow rate is low, less than 0.04 m / s, gas stays in the furnace regardless of the density ratio between the nozzle gas and the atmospheric gas. Adhesion and uneven film thickness were inevitable.
On the other hand, when the gas density ratio and the flow rate of the atmospheric gas satisfy the predetermined relationship, there was almost no adhesion of reaction products in the furnace, and the film thickness distribution on the steel sheet surface was within ± 15%.
This relationship is expressed by the following equation (1).
| Log [ρ (N) / ρ (A)] | ≦ (0.25 × v (A) −0.01) 1/2・ ・ ・ (1)
Where ρ (N) is the average density of the nozzle gas
ρ (A) is the average density of the atmospheric gas
v (A) is the flow velocity of atmospheric gas in the furnace (however, 0.04m / s or more)

上掲式は、縦型炉で雰囲気ガスを下から上に流す場合に対しても、逆に上から下に流す場合に対しても同様に適用できる。
また、水平炉の場合に対しても有効であるが、水平炉の場合は、特にガス密度の違いが金属ストリップの表裏面の膜厚差に大きく影響することから、上掲式に加えて、ρ(N)とρ(A)の比を極力1に近づけることが好ましい。
The above formula can be similarly applied to the case of flowing the atmospheric gas from the bottom to the top in the vertical furnace, and conversely to the case of flowing from the top to the bottom.
In addition, in the case of a horizontal furnace, in the case of a horizontal furnace, in particular, since the difference in gas density greatly affects the difference in film thickness between the front and back surfaces of the metal strip, in addition to the above formula, It is preferable to make the ratio of ρ (N) and ρ (A) as close to 1 as possible.

次に、上記した金属ストリップ表面への薄膜被覆方法を方向性電磁鋼板に適用して、セラミックス被膜付き方向性電磁鋼板を製造する場合について説明する。
本発明で対象とする方向性電磁鋼板としては従来公知のものいずれもが適合するが、特に好適な成分組成を掲げると次のとおりである。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
本発明では、Siを1.5〜7.0%の範囲で含有することが望ましい。すなわち、Siは、製品の電気抵抗を高め鉄損を低減するのに有効な成分であるが、含有量が7.0%を超えると硬度が高くなって製造や加工が困難となる。一方、1.5%に満たないと、最終仕上焼鈍中に変態を生じて安定した2次再結晶組織が得られない。
Next, the case where a directional electromagnetic steel sheet with a ceramic coating is manufactured by applying the thin film coating method to the surface of the metal strip to the directional electromagnetic steel sheet will be described.
As the grain-oriented electrical steel sheet to be used in the present invention, any conventionally known grain-oriented electrical steel sheet can be used, and particularly preferred component compositions are as follows. Unless otherwise specified, “%” in relation to ingredients means mass%.
In this invention, it is desirable to contain Si in 1.5 to 7.0% of range. That is, Si is an effective component for increasing the electrical resistance of the product and reducing the iron loss. However, if the content exceeds 7.0%, the hardness becomes high and it becomes difficult to manufacture and process. On the other hand, if it is less than 1.5%, transformation occurs during final finish annealing, and a stable secondary recrystallized structure cannot be obtained.

また、鋼中には、上記の元素の他に、公知の方向性電磁鋼板の製造に適するインヒビター成分として、B,Bi,Sb,Mo,Te,Sn,P,Ge,As,Nb,Cr,Ti,Cu,Pb,ZnおよびIn等を単独または複合して含有させることができる。さらに、かようなインヒビターを使用しない方法によって製造される方向性電磁鋼板に対しても、本発明の適用は可能である。   In addition to the above-mentioned elements, B, Bi, Sb, Mo, Te, Sn, P, Ge, As, Nb, Cr, as inhibitor components suitable for the manufacture of known grain-oriented electrical steel sheets are contained in steel. Ti, Cu, Pb, Zn and In can be contained alone or in combination. Furthermore, the present invention can also be applied to grain-oriented electrical steel sheets manufactured by such a method that does not use an inhibitor.

一方、C,S,Se,N等は不純物として磁気特性上有害な元素であり、特に鉄損を劣化させるため、最終製品とする際には、それぞれC:0.003%以下、SおよびSe:0.002%以下、N:0.002%以下とすることか好ましい。   On the other hand, C, S, Se, N and the like are harmful elements in terms of magnetic properties as impurities. Particularly, in order to deteriorate the iron loss, C: 0.003% or less, S and Se: 0.002 respectively in the final product. % Or less and N: 0.002% or less are preferable.

また、上記の成分組成に調整した方向性電磁鋼板は、仕上焼鈍後、表面にフォルステライト被膜がない状態としておく必要がある。
そのための方法としては、従来法により形成されたフォルステライト被膜を酸洗や研磨等により除去する方法、または焼鈍分離剤の組成を調整して、鋼板表面上のフォルステライト被膜の生成を抑制し、実質的に金属外観を有する状態とする方法を適用することができる。
さらに、表面に平滑化処理を施すことが、鉄損値の低減により有効である。例えば、酸洗、サーマルエッチングや化学研磨等により表面粗さを極力小さくし、鏡面状態に仕上げた表面や、ハロゲン化物水溶液中での電解による結晶方位強調処理で得られるグレイニング様面等が挙げられる。
なお、フォルステライト被膜がない状態とは、フォルステライトが離散的な島状になる等、部分的に微量存在していても、実質的に被膜を形成していない場合も含まれる。
Moreover, the grain-oriented electrical steel sheet adjusted to the above component composition needs to be in a state in which there is no forsterite film on the surface after finish annealing.
As a method for that, the method of removing the forsterite film formed by the conventional method by pickling or polishing, or adjusting the composition of the annealing separator, to suppress the production of forsterite film on the steel sheet surface, A method of substantially having a metallic appearance can be applied.
Furthermore, it is effective to reduce the iron loss value by subjecting the surface to a smoothing treatment. For example, the surface roughness is made as small as possible by pickling, thermal etching, chemical polishing, etc., and the surface is mirror finished, and the graining surface obtained by crystal orientation enhancement treatment by electrolysis in an aqueous halide solution It is done.
In addition, the state without a forsterite film includes a case where a film is not substantially formed even if a small amount of forsterite is present, such as a discrete island shape.

続いて、CVD法によって、TiやSi等の金属の窒化物、炭化物または炭窒化物からなる被膜を形成する。
CVD法としては、TiC14等の金属塩化物ガスと、もう一方の原料ガスとして、窒化物ならば N2,NH3,(CH3)3N,(CH3)2NHガスなど、また炭化物ならばCH4, CO, C2H4, C3H6, C3H8, C2H6, i-C5H12などを混合した雰囲気中にて、鋼板を加熱することにより、セラミックス被膜を得る。勿論、両者を混合して炭窒化物としても何ら問題はない。
Subsequently, a film made of a metal nitride, carbide or carbonitride such as Ti or Si is formed by CVD.
The CVD method includes a metal chloride gas such as TiC1 4 and the other source gas, N 2 , NH 3 , (CH 3 ) 3 N, (CH 3 ) 2 NH gas, etc. Then, heating the steel sheet in an atmosphere containing CH 4 , CO, C 2 H 4 , C 3 H 6 , C 3 H 8 , C 2 H 6 , iC 5 H 12, etc. obtain. Of course, there is no problem even if both are mixed to form carbonitride.

例えば、方向性電磁鋼板の表面に、TiN膜を被覆する場合において、原料ガス吹出ノズルのキャリアガスとしてH2を用いる場合には(TiCl4+H2)が、一方N2を用いる場合には(TiCl4+N2)が想定される。キャリアガスとしてN2を用いる場合は、H2を用いる場合よりも、雰囲気ガス(H2+N2)との密度差が大きくなるため、反応生成物TiNが炉内付着し易い傾向にある。しかしながら、上掲した関係式(1)を満足する条件下では、炉内付着は十分に抑制され、均一な膜厚分布が得られることが確認された。また、成膜速度、密着性についても、両者で大きな違いは認められなかった。 For example, when a TiN film is coated on the surface of a grain-oriented electrical steel sheet, (TiCl 4 + H 2 ) is used when H 2 is used as the carrier gas of the source gas blowing nozzle, while N 2 is used ( TiCl 4 + N 2 ) is assumed. When N 2 is used as the carrier gas, the density difference from the atmospheric gas (H 2 + N 2 ) becomes larger than when H 2 is used, and therefore the reaction product TiN tends to adhere to the furnace. However, it was confirmed that adhesion in the furnace was sufficiently suppressed and a uniform film thickness distribution was obtained under the conditions satisfying the relational expression (1) listed above. In addition, there was no significant difference between the two in terms of film forming speed and adhesion.

本発明の方法により得られる被膜物質は、Ti,Zr,V,Nb,Ta,Cr,Mo,W,Mn,Co,Ni,Al,BおよびSiなどの窒化物、炭化物、炭窒化物であり、これら2種以上を積層しても構わない。また、酸化物が混入しても構わない。   The coating materials obtained by the method of the present invention are nitrides, carbides, carbonitrides such as Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Co, Ni, Al, B, and Si. These two or more may be laminated. Further, an oxide may be mixed.

かようなセラミックス被膜の厚みについては、0.01μm以上 5μm以下程度とするのが好適である。被膜厚が0.01μmに満たないと十分な張力付与効果および被膜密着性が得られず、一方5μmを超えるとかえって被膜密着性が劣化し、また電磁鋼板の占有率の面でも不利となる。   The thickness of such a ceramic coating is preferably about 0.01 μm or more and 5 μm or less. When the film thickness is less than 0.01 μm, sufficient tension imparting effect and film adhesion cannot be obtained. On the other hand, when the film thickness exceeds 5 μm, the film adhesion deteriorates, and the occupancy rate of the electromagnetic steel sheet is disadvantageous.

さらに、上記したセラミックス被膜の上に絶縁被膜を被成する場合、かような絶縁被膜としては、方向性電磁鋼板に使用される無機質コートが利用可能である。特に、張力付与効果を有するコーティングは、超低鉄損化を達成するために表面を平滑化した方向性電磁鋼板と組合せると、極めて有効である。
張力付与型コーティングとしては、熱膨張係数を低下させるシリカを含むコーティングが推奨される。例えば、従来からフォルステライト被膜を有する方向性電磁鋼板に用いられている、リン酸塩−コロイド状シリカークロム酸系のコーティング等が、その効果およびコスト、均一処理性などの点で好適である。
かような絶縁被膜の厚みは、張力付与効果、占積率、被膜密着性等を考慮すると、0.3μm以上 10μm以下程度とするのが好適である。
なお、張力コーティングとしては、上記のもの以外にも、特開平6−65754号公報や特開平6−65755号公報、特開平6−299366号公報などに提案されている、ホウ酸−アルミナ等の酸化物系被膜を適用することも可能である。
Further, when an insulating coating is formed on the above-described ceramic coating, an inorganic coating used for a grain-oriented electrical steel sheet can be used as such an insulating coating. In particular, a coating having a tension imparting effect is extremely effective when combined with a grain-oriented electrical steel sheet having a smooth surface in order to achieve ultra-low iron loss.
As the tension-applying coating, a coating containing silica that reduces the thermal expansion coefficient is recommended. For example, a phosphate-colloidal silica-chromic acid-based coating that has been conventionally used for grain-oriented electrical steel sheets having a forsterite film is suitable in terms of its effect, cost, and uniform processability.
The thickness of such an insulating film is preferably about 0.3 μm or more and 10 μm or less in consideration of the tension application effect, space factor, film adhesion, and the like.
In addition to the above-described tension coating, boric acid-alumina and the like proposed in JP-A-6-65754, JP-A-6-65755, JP-A-6-299366, etc. It is also possible to apply an oxide coating.

上記のようにして得られた鋼板に、更なる鉄損低減を目的として、レーザーあるいはプラズマ炎等を照射して磁区の細分化を行っても、絶縁コーティングの密着性にはなんら問題はない。また、本発明の方向性電磁鋼板の製造工程の任意の段階において、磁区細分化のために、鋼板表面にエッチングやプレス等で一定間隔の溝を形成することも、一層の鉄損低減を図る手段として有効である。   Even if the steel plate obtained as described above is irradiated with a laser or a plasma flame to further subdivide the magnetic domain for the purpose of further reducing iron loss, there is no problem with the adhesion of the insulating coating. In addition, at any stage of the manufacturing process of the grain-oriented electrical steel sheet according to the present invention, it is possible to further reduce iron loss by forming grooves at regular intervals on the steel sheet surface by etching, pressing, etc. for magnetic domain subdivision. It is effective as a means.

図1に示した連続CVD処理炉の反応炉内を1100℃まで加熱し、そこに板厚:0.23mmの仕上焼鈍済みで表面にフォルステライト被膜を有しない方向性電磁鋼板を通板し、炉内のガスノズルから原料ガスであるTiCl4を、H2やN2をキャリアガスとして供給しつつ、雰囲気ガス導入口から雰囲気ガスとして(H2+N2)を供給することにより、方向性電磁鋼板の表面にTiNを成膜する運転を50時間続けた。その時のガス供給条件を表1に示す。
また、表1には、連続運転の可否、膜厚分布および炉内におけるTiNの付着状況について調べた結果を併せて示す。
The reactor inside the continuous CVD process furnace shown in Fig. 1 is heated to 1100 ° C, and a grain-oriented electrical steel sheet without a forsterite coating on the surface is passed through the plate with a final thickness of 0.23 mm. By supplying TiCl 4 as the source gas from the gas nozzle inside and H 2 or N 2 as the carrier gas and supplying (H 2 + N 2 ) as the atmosphere gas from the atmosphere gas inlet, The operation of depositing TiN on the surface was continued for 50 hours. Table 1 shows the gas supply conditions at that time.
Table 1 also shows the results of examining the availability of continuous operation, the film thickness distribution, and the state of TiN adhesion in the furnace.

ここで、連続運転の可否については、炉内圧力異常等により途中で実験の中断を余儀なくされた場合を×、最後まで実験できた場合を○で表した。
また、膜厚分布については、鋼板の面内膜厚が±15%未満に収まったものを良、そうでないものを不良とした。
さらに、TiNの付着状況については、連続運転後の炉内点検で、加熱ヒータ保護管表面に付着したTiNの一部が剥落していた場合を×、目視確認でTiN付着が全く認められないか、付着していてもごくわずかで剥落するおそれのない場合を○とした。
Here, regarding the possibility of continuous operation, the case where the experiment was forced to be interrupted due to abnormal pressure in the furnace or the like was indicated by x, and the case where the experiment could be completed was indicated by ◯.
Regarding the film thickness distribution, those in which the in-plane film thickness of the steel sheet was less than ± 15% were judged good, and those that were not so were judged as bad.
Furthermore, as for the state of TiN adhesion, X in the case where a part of TiN adhering to the surface of the heater protection tube was peeled off during the in-furnace inspection after continuous operation, and is TiN adhesion not observed at all by visual confirmation? The case where there was no possibility of peeling off even if it was attached was marked as ◯.

Figure 2006257533
Figure 2006257533

同表から明らかなように、本発明を満足する条件下で連続CVD処理を行った場合は、炉内壁へのTiNの付着はほとんどなく、CVD処理を中断させるほどの事態には至らず、さらに長時間の処理が可能であった。   As apparent from the table, when the continuous CVD process was performed under the conditions satisfying the present invention, there was almost no adhesion of TiN to the inner wall of the furnace, and there was no situation that interrupted the CVD process. Long processing was possible.

本発明により、連続CVD処理炉を用いて、長時間安定した金属ストリップ表面への均一被膜の被覆が可能となる。従って、本発明により、例えば、方向性電磁鋼板の表面への安定したセラミックス被膜の被覆が可能となる。   According to the present invention, a uniform film can be coated on a metal strip surface stably for a long time using a continuous CVD processing furnace. Therefore, according to the present invention, for example, the surface of the grain-oriented electrical steel sheet can be stably coated with a ceramic film.

本発明の実施に用いて好適な連続CVD処理炉の反応炉の基本構造を示した図である。It is the figure which showed the basic structure of the reactor of the continuous CVD process furnace suitable for implementation of this invention. ガス密度比と雰囲気ガスの流速が反応生成物の炉内付着に及ぼす影響を示した図である。It is the figure which showed the influence which the gas density ratio and the flow rate of atmospheric gas have on the adhesion in a furnace of a reaction product.

符号の説明Explanation of symbols

1 原料ガス吹付ノズル
2 加熱用ヒータ
3 炉内壁
4 雰囲気ガス導入口
5 雰囲気ガス排出口
6 金属ストリップsの進行方向
7 雰囲気ガスの流れ方向
8 原料ガスの流れ方向
DESCRIPTION OF SYMBOLS 1 Raw material gas spray nozzle 2 Heating heater 3 Furnace inner wall 4 Atmospheric gas introduction port 5 Atmospheric gas discharge port 6 Travel direction of metal strip s 7 Atmospheric gas flow direction 8 Raw material gas flow direction

Claims (3)

反応炉内に原料ガス吹付ノズルを設置した連続CVD処理炉を用い、該反応炉内に金属ストリップを連続的に通板して、その表面に薄膜を被覆するに際し、該原料ガス吹付ノズルに供給するガスの平均密度をρ(N)[g/m3]、炉内に供給する雰囲気ガスの平均密度をρ(A)[g/m3]および雰囲気ガスの流速をv(A)[m/s]とした時、これらについて次式(1)
|Log[ρ(N)/ρ(A)]|≦(0.25×v(A)−0.01)1/2 ・・・ (1)
の関係式を満足させることを特徴とする、金属ストリップ表面への薄膜被覆方法。
Using a continuous CVD processing furnace with a raw material gas spray nozzle installed in the reaction furnace, a metal strip is continuously passed through the reaction furnace and supplied to the raw material gas spray nozzle when the surface is coated with a thin film. Ρ (N) [g / m 3 ], the average density of the atmospheric gas supplied to the furnace is ρ (A) [g / m 3 ], and the flow rate of the atmospheric gas is v (A) [m / s], the following equation (1)
| Log [ρ (N) / ρ (A)] | ≦ (0.25 × v (A) −0.01) 1/2・ ・ ・ (1)
A method for coating a thin film on the surface of a metal strip, which satisfies the following relational expression:
請求項1において、金属ストリップ表面に被覆する薄膜がTiN膜である場合に、原料ガス吹付ノズルに供給する原料ガスのキャリアガスとしてH2またはN2を用いることを特徴とする、金属ストリップ表面への薄膜被覆方法。 2. The metal strip surface according to claim 1, wherein when the thin film coated on the surface of the metal strip is a TiN film, H 2 or N 2 is used as a carrier gas of the source gas supplied to the source gas spray nozzle. Thin film coating method. フォルステライト被膜を有しない方向性電磁鋼板を、反応炉内に原料ガス吹付ノズルを設置した連続CVD処理炉に通板して、その表面に連続的にセラミックス被膜を被覆するに際し、該CVD処理を次式(1)
|Log[ρ(N)/ρ(A)]|≦(0.25×v(A)−0.01)1/2 ・・・ (1)
ここで、ρ(N):原料ガス吹付ノズルに供給するガスの平均密度[g/m3
ρ(A):炉内に供給する雰囲気ガスの平均密度[g/m3
v(A):雰囲気ガスの流速[m/s](但しv(A)≧0.04m/s)
の関係式を満足する条件下で行うことを特徴とするセラミックス被膜付き方向性電磁鋼板の製造方法。

When the grain-oriented electrical steel sheet having no forsterite coating is passed through a continuous CVD processing furnace in which a raw material gas spray nozzle is installed in the reaction furnace, and the ceramic coating is continuously coated on the surface, the CVD processing is performed. (1)
| Log [ρ (N) / ρ (A)] | ≦ (0.25 × v (A) −0.01) 1/2・ ・ ・ (1)
Where ρ (N): average density of gas supplied to the source gas spray nozzle [g / m 3 ]
ρ (A): Average density of atmospheric gas supplied to the furnace [g / m 3 ]
v (A): Velocity of atmospheric gas [m / s] (v (A) ≧ 0.04m / s)
A method for producing a grain-oriented electrical steel sheet with a ceramic coating, which is performed under a condition that satisfies the relational expression:

JP2005080427A 2005-03-18 2005-03-18 Thin film coating method on metal strip surface and manufacturing method of grain-oriented electrical steel sheet with ceramic coating Expired - Fee Related JP4821148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005080427A JP4821148B2 (en) 2005-03-18 2005-03-18 Thin film coating method on metal strip surface and manufacturing method of grain-oriented electrical steel sheet with ceramic coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005080427A JP4821148B2 (en) 2005-03-18 2005-03-18 Thin film coating method on metal strip surface and manufacturing method of grain-oriented electrical steel sheet with ceramic coating

Publications (2)

Publication Number Publication Date
JP2006257533A true JP2006257533A (en) 2006-09-28
JP4821148B2 JP4821148B2 (en) 2011-11-24

Family

ID=37097109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005080427A Expired - Fee Related JP4821148B2 (en) 2005-03-18 2005-03-18 Thin film coating method on metal strip surface and manufacturing method of grain-oriented electrical steel sheet with ceramic coating

Country Status (1)

Country Link
JP (1) JP4821148B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019517095A (en) * 2016-03-07 2019-06-20 タタ、スティール、ユーケー、リミテッドTata Steel Uk Limited Method of manufacturing steel plate for battery case, and battery case manufactured by the method
US11773490B2 (en) 2017-12-26 2023-10-03 Posco Co., Ltd Method for producing oriented electrical steel sheet with ultra-low iron loss

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326327A (en) * 1986-07-18 1988-02-03 Nippon Kokan Kk <Nkk> Continuous type chemical vapor deposition treatment device
JPH05263247A (en) * 1992-03-16 1993-10-12 Nkk Corp Siliconizing treatment of steel sheet for continuous treatment line
JP2001335399A (en) * 2000-05-24 2001-12-04 Nikko Materials Co Ltd Vapor growth method
JP2004060039A (en) * 2002-07-31 2004-02-26 Jfe Steel Kk Method for producing superlow core loss grain oriented silicon steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326327A (en) * 1986-07-18 1988-02-03 Nippon Kokan Kk <Nkk> Continuous type chemical vapor deposition treatment device
JPH05263247A (en) * 1992-03-16 1993-10-12 Nkk Corp Siliconizing treatment of steel sheet for continuous treatment line
JP2001335399A (en) * 2000-05-24 2001-12-04 Nikko Materials Co Ltd Vapor growth method
JP2004060039A (en) * 2002-07-31 2004-02-26 Jfe Steel Kk Method for producing superlow core loss grain oriented silicon steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019517095A (en) * 2016-03-07 2019-06-20 タタ、スティール、ユーケー、リミテッドTata Steel Uk Limited Method of manufacturing steel plate for battery case, and battery case manufactured by the method
JP7053483B2 (en) 2016-03-07 2022-04-12 タタ、スティール、ユーケー、リミテッド A method for manufacturing a steel plate for a battery case, and a battery case manufactured by that method.
US11773490B2 (en) 2017-12-26 2023-10-03 Posco Co., Ltd Method for producing oriented electrical steel sheet with ultra-low iron loss

Also Published As

Publication number Publication date
JP4821148B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
CN100473740C (en) Soft tin-plate of hardness HR30T 51+/-3 and making process thereof
CN100473741C (en) Soft tin-plate and making process thereof
CN105234171B (en) A kind of 4B cold rolled precisions steel band and its manufacture method
CN106350714B (en) A kind of 3C industries high-end anodic oxidation aluminium strip and its production method
CN106521391A (en) Production method of hot dip aluminum-zinc plate with uniform spangles
JP2007262540A (en) Nozzle for supplying source gas in chemical vapor deposition treatment, film-forming method and grain-oriented electromagnetic steel sheet
JP4821148B2 (en) Thin film coating method on metal strip surface and manufacturing method of grain-oriented electrical steel sheet with ceramic coating
KR100704692B1 (en) Method and apparatus for producing hot-dip coated metal belt
JP6660025B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4929603B2 (en) Method for producing grain-oriented electrical steel strip with ceramics film excellent in steel plate shape
JP5047466B2 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JPH05331609A (en) Production of galvannealed steel sheet excellent in image clarity after coating
JP2006257534A (en) Super core loss grain-oriented magnetic steel sheet having excellent magnetic characteristic
JP6791389B2 (en) Manufacturing method of grain-oriented electrical steel sheet and continuous film forming equipment
JP2006253555A6 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JP4016756B2 (en) Method for producing grain-oriented electrical steel sheet
JP4232407B2 (en) Method for producing grain-oriented electrical steel sheet
JP2605511B2 (en) Method for producing high silicon steel strip by continuous line
CN110100035B (en) Alloy-plated steel material having excellent crack resistance and method for producing same
JP5063862B2 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JP2004124118A (en) Galvanized steel sheet having excellent press formability and appearance and method for manufacturing the same
JP2011006753A (en) Method and facility for manufacturing steel sheet
JP4470556B2 (en) Manufacturing method of high silicon steel sheet by continuous line
JP4725711B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
JPS5931858A (en) Production of alloyed galvanized steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R150 Certificate of patent or registration of utility model

Ref document number: 4821148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees