JP2006256916A - Method of manufacturing rare earth-containing metal oxide thin film - Google Patents

Method of manufacturing rare earth-containing metal oxide thin film Download PDF

Info

Publication number
JP2006256916A
JP2006256916A JP2005077724A JP2005077724A JP2006256916A JP 2006256916 A JP2006256916 A JP 2006256916A JP 2005077724 A JP2005077724 A JP 2005077724A JP 2005077724 A JP2005077724 A JP 2005077724A JP 2006256916 A JP2006256916 A JP 2006256916A
Authority
JP
Japan
Prior art keywords
rare earth
thin film
metal oxide
containing metal
oxide thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005077724A
Other languages
Japanese (ja)
Other versions
JP4682321B2 (en
Inventor
Shigeto Deki
成人 出来
Minoru Mizuhata
穣 水畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Industry Research Organization NIRO
Original Assignee
New Industry Research Organization NIRO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Industry Research Organization NIRO filed Critical New Industry Research Organization NIRO
Priority to JP2005077724A priority Critical patent/JP4682321B2/en
Publication of JP2006256916A publication Critical patent/JP2006256916A/en
Application granted granted Critical
Publication of JP4682321B2 publication Critical patent/JP4682321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a rare earth-containing metal oxide thin film useful, for example, for an ultraviolet-excited high efficiency fluorescent film or the like. <P>SOLUTION: The rare earth-containing metal oxide thin film is directly deposited on a substrate by a liquid phase deposition method (LPD method). A reaction solution in the LPD method is prepared by a method including a step for mixing a rare earth ion chelate complex with a metal fluoride complex. The rare earth-containing metal oxide thin film is deposited on the substrate using the LPD method by adding fluorine ion consumption agent into the reaction solution (selection figure (a)). The resultant thin film is heat-treated at a high temperature (selection figures (b)-(d)). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、希土類を含有する金属酸化物の薄膜ないし微細構造体の製造方法に関する。   The present invention relates to a method for producing a thin film or microstructure of a metal oxide containing a rare earth.

機能性材料の薄膜を得る方法としては、例えば特許文献1は、二酸化ケイ素薄膜に関して、ケイフッ化水素酸水溶液を二酸化ケイ素で過飽和状態にする工程、有機物の添加、有機物含有二酸化ケイ素薄膜の形成、の3つの工程からなる、有機物を含んだ二酸化ケイ素薄膜の製造方法を開示している。
特開平3−50111号公報
As a method for obtaining a thin film of functional material, for example, Patent Document 1 relates to a process of supersaturating a hydrofluoric acid aqueous solution with silicon dioxide, adding an organic substance, and forming an organic substance-containing silicon dioxide thin film. A method for producing a silicon dioxide thin film containing an organic substance, comprising three steps, is disclosed.
Japanese Patent Laid-Open No. 3-50111

ところで、金属酸化物は、その電子、光学、磁性材料としての可能性から数多くの研究開発がなされてきており、この金属酸化物についても、上記と同様に薄膜等として用いることが多くなってきている。   By the way, many researches and developments have been made on metal oxides because of their potential as electronic, optical, and magnetic materials, and these metal oxides are also often used as thin films as described above. Yes.

また、強い磁石や強強度の光を得られる蛍光体は、電気・電子機器の小型化や高性能化に貢献するとともに、省電力即ちエネルギーの有効利用にも貢献するものである。また、酸素のみが固体中を選択的に遊離・移動できる材料は、エンジン内で燃料を効率よく燃焼させるための酸素センサとして機能するだけでなく、排気ガスとして放出される有害物質を無害化する浄化用触媒の主要成分として、広く使用されている。このような優れた機能を有する材料となるのが希土類系物質である。ここで希土類とは、周期律表の欄外に位置するLaからLuまでの15個の元素に、ScとYとを加えた17個の元素の総称である。   In addition, strong magnets and phosphors capable of obtaining high-intensity light contribute to miniaturization and high performance of electric / electronic devices, and also contribute to power saving, that is, effective use of energy. In addition, a material that can selectively release and move only oxygen in the solid not only functions as an oxygen sensor for efficiently burning fuel in the engine, but also detoxifies harmful substances released as exhaust gas. Widely used as the main component of purification catalysts. A material having such an excellent function is a rare earth material. Here, the rare earth is a general term for 17 elements obtained by adding Sc and Y to 15 elements from La to Lu located outside the column of the periodic table.

そして、このような希土類を含有する金属酸化物の薄膜等の機能性材料の設計については、その有力な手法の一つとして、溶液内での金属フッ化物錯体の加水分解平衡反応を利用する液相析出法(Liquid Phase Deposition, LPD法)が考えられる。この反応を下記に示す。   And, for designing functional materials such as metal oxide thin films containing rare earths, as one of the promising methods, liquids utilizing hydrolysis equilibrium reaction of metal fluoride complexes in solution are used. A phase precipitation method (Liquid Phase Deposition, LPD method) can be considered. This reaction is shown below.

この[化1]の式(1)で示される加水分解平衡反応は、式(2a),(2b)で示されるようなより安定なホウ素もしくはアルミニウムからなるフッ化物錯体を形成することにより、酸化物と遊離フッ素が形成される方向に進行する。LPD法は、金属フッ化物錯体を母液とし、その系内にホウ酸又は金属アルミニウム(フッ素イオン消費剤)を添加することにより、酸化物を基板上に直接析出させることを特徴とする。   The hydrolysis equilibrium reaction represented by the formula (1) in [Chemical Formula 1] is performed by forming a more stable fluoride complex composed of boron or aluminum as represented by the formulas (2a) and (2b). It proceeds in the direction in which free fluorine is formed. The LPD method is characterized in that an oxide is directly deposited on a substrate by using a metal fluoride complex as a mother liquor and adding boric acid or metal aluminum (fluorine ion consumer) into the system.

しかし、このLPD法の反応においては、上記[化1]の式(1)に示す液相中の平衡反応が成立することが前提である。一方、フッ素錯体が系内に存在するということは、フッ化物の溶解度が非常に小さい希土類含有物質の薄膜を合成する上で、直ちにフッ化物の沈殿を生じさせるという問題が生じている。   However, in the reaction of the LPD method, it is premised that an equilibrium reaction in the liquid phase represented by the formula (1) of the above [Chemical Formula 1] is established. On the other hand, the presence of the fluorine complex in the system causes a problem that a precipitate of fluoride is immediately generated in synthesizing a thin film of a rare earth-containing material having a very low solubility of fluoride.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems and the effects thereof will be described.

◆本発明の第1の観点によれば、以下のような、LPD法により基板上に希土類含有金属酸化物薄膜を直接析出させる希土類含有金属酸化物薄膜の製造方法が提供される。前記LPD法における反応溶液が、希土類イオンキレート錯体と金属フッ化物錯体とを混合する工程を含む方法で製造されている。上記反応溶液にフッ素イオン消費剤を添加することにより、前記基板上に希土類含有金属酸化物薄膜をLPD法により析出させる。生成した薄膜を高温加熱処理する。   The first aspect of the present invention provides a method for producing a rare earth-containing metal oxide thin film by which a rare earth-containing metal oxide thin film is directly deposited on a substrate by the LPD method as follows. The reaction solution in the LPD method is manufactured by a method including a step of mixing a rare earth ion chelate complex and a metal fluoride complex. By adding a fluorine ion consumer to the reaction solution, a rare earth-containing metal oxide thin film is deposited on the substrate by the LPD method. The produced thin film is heat-treated at a high temperature.

これにより、フッ化物の沈殿を生じさせることなく、希土類含有金属酸化物薄膜を容易かつ安定的に製造することができる。   Thereby, the rare earth-containing metal oxide thin film can be easily and stably produced without causing precipitation of fluoride.

◆本発明の第2の観点によれば、以下のような、希土類含有金属酸化物構造体の製造方法が提供される。前述の製造方法により希土類含有金属酸化物薄膜を製造し、その薄膜の表面にポリスチレン粒子を自己集積化させることで三次元周期構造のテンプレートを形成する。前記反応溶液に前記テンプレートを浸漬することにより、前記ポリスチレン粒子の隙間に希土類含有金属酸化物を析出させる。加熱処理によってポリスチレン粒子を除去することで三次元反転オパール構造体を得る。   -According to the second aspect of the present invention, the following method for producing a rare earth-containing metal oxide structure is provided. A rare earth-containing metal oxide thin film is produced by the above-described production method, and polystyrene particles are self-assembled on the surface of the thin film to form a template having a three-dimensional periodic structure. By immersing the template in the reaction solution, a rare earth-containing metal oxide is deposited in the gaps between the polystyrene particles. By removing the polystyrene particles by heat treatment, a three-dimensional inverted opal structure is obtained.

これにより、表面積の大きい希土類含有金属酸化膜構造体を容易かつ安定的に製造することができる。   Thereby, a rare earth-containing metal oxide film structure having a large surface area can be produced easily and stably.

◆前記の希土類含有金属酸化物薄膜又は構造体の製造方法においては、前記希土類含有金属酸化物薄膜又は構造体が、酸化ジルコニウム:ユーロプウム付活(ZrO2;Eu)結晶、酸化ジルコニウム:イットリウム付活(ZrO2;Y)結晶、酸化ジルコニウム:ランタン付活(ZrO2;La)結晶、酸化ジルコニウム:プラセオジウム付活(ZrO2;Pr)結晶、酸化ジルコニウム:ネオジウム付活(ZrO2;Nd)結晶、酸化ジルコニウム:テリビウム付活(ZrO2;Tb)結晶、のいずれか1種類又は2種類以上の組み合わせからなることが好ましい。 In the method for producing the rare earth-containing metal oxide thin film or structure, the rare earth-containing metal oxide thin film or structure is composed of zirconium oxide: europium activated (ZrO 2 ; Eu) crystal, zirconium oxide: yttrium activated. (ZrO 2 ; Y) crystal, zirconium oxide: lanthanum activated (ZrO 2 ; La) crystal, zirconium oxide: praseodymium activated (ZrO 2 ; Pr) crystal, zirconium oxide: neodymium activated (ZrO 2 ; Nd) crystal, It is preferably composed of any one kind or a combination of two or more kinds of zirconium oxide: terbium activated (ZrO 2 ; Tb) crystal.

これにより、希土類含有金属酸化物薄膜又は構造体の製造方法が広範囲において実用可能になる。   Thereby, the manufacturing method of the rare earth-containing metal oxide thin film or structure becomes practical in a wide range.

◆前記の希土類含有金属酸化物薄膜又は構造体の製造方法においては、以下のようにすることが好ましい。前記LPD法における反応溶液には、金属フッ化物錯体溶液と、希土類イオンをジエチレントリアミン五酢酸キレート錯体によりマスクした溶液と、を混合したものが含まれている。前記フッ素イオン消費剤はアルミニウム又はホウ酸である。   In the method for producing the rare earth-containing metal oxide thin film or structure, it is preferable to do the following. The reaction solution in the LPD method includes a mixture of a metal fluoride complex solution and a solution obtained by masking rare earth ions with a diethylenetriaminepentaacetic acid chelate complex. The fluorine ion consumer is aluminum or boric acid.

これにより、希土類含有金属酸化物薄膜の製造方法の広範囲の応用が期待できる。   Thereby, the wide range application of the manufacturing method of a rare earth metal oxide thin film can be expected.

◆前記の希土類含有金属酸化物薄膜又は構造体の製造方法においては、前記高温加熱処理が400℃以上700℃以下の温度範囲で行われることが好ましい。   In the method for producing the rare earth-containing metal oxide thin film or structure, the high-temperature heat treatment is preferably performed in a temperature range of 400 ° C. or higher and 700 ° C. or lower.

これにより、ZrO2の正方晶からなる希土類含有金属酸化物薄膜又は構造体を得ることができる。 As a result, a rare earth-containing metal oxide thin film or structure made of tetragonal ZrO 2 can be obtained.

◆前記の希土類含有金属酸化物薄膜又は構造体の製造方法においては、前記高温加熱処理が700℃以上更に好ましくは800℃以上1000℃以下の温度範囲で行われることが好ましい。   In the method for producing the rare earth-containing metal oxide thin film or structure, the high-temperature heat treatment is preferably performed at a temperature range of 700 ° C. or higher, more preferably 800 ° C. or higher and 1000 ° C. or lower.

これにより、ZrO2の正方晶に相変化を起こさせて、かつ結晶格子の内部に希土類イオンが挿入固溶体化され、ZrO2の立方晶からなる希土類含有金属酸化物薄膜又は構造体を得ることができる。 As a result, a phase change is caused in the tetragonal crystal of ZrO 2 , and the rare earth ions are inserted into a solid solution inside the crystal lattice to obtain a rare earth-containing metal oxide thin film or structure made of cubic ZrO 2. it can.

◆前記の希土類含有金属酸化物構造体の製造方法においては、前記ポリスチレン粒子の粒径が80nm以上320nm以下であることが好ましい。   In the method for producing the rare earth-containing metal oxide structure, the polystyrene particles preferably have a particle size of 80 nm or more and 320 nm or less.

これにより、三次元反転オパール構造の最適化によって表面積が大きくかつ均質な構造体が得られ、構造体の各種特性の向上が期待できる。   As a result, by optimizing the three-dimensional inverted opal structure, a uniform structure having a large surface area can be obtained, and improvement of various characteristics of the structure can be expected.

◆前記の希土類含有金属酸化物薄膜又は構造体の製造方法においては、前記基板が、ソーダライムガラス、溶融石英板、シリコンウェハ、シリコンカーバイドのうち何れか1つとされていることが好ましい。   In the method for producing a rare earth-containing metal oxide thin film or structure, the substrate is preferably one of soda lime glass, fused quartz plate, silicon wafer, and silicon carbide.

これにより、希土類含有金属酸化物薄膜又は構造体とそれぞれの用途に合わせた基板とを組み合わせることで、応用範囲の拡大が期待される。   Thereby, the expansion of the application range is expected by combining the rare earth-containing metal oxide thin film or structure with the substrate suitable for each application.

次に、発明の実施の形態を説明する。図1は液相析出法(LPD法)の装置を示した模式図である。図2は本実施形態で製造された薄膜の様子を示すAFM写真である。図3は種々の温度で焼成した薄膜のX線回折パターンを示すグラフ図である。   Next, embodiments of the invention will be described. FIG. 1 is a schematic view showing an apparatus for a liquid phase precipitation method (LPD method). FIG. 2 is an AFM photograph showing the state of the thin film manufactured in this embodiment. FIG. 3 is a graph showing X-ray diffraction patterns of thin films fired at various temperatures.

〔薄膜の製造〕
本実施形態では、希土類含有金属酸化物として、透明な酸化ジルコニウム:ユーロプウム付活(ZrO2;Eu)薄膜をLPD法(液相析出法)により製造した。この酸化ジルコニウム(ZrO2)は、Al23やSiO2等と比較して低いフォノン振動を有すること、高誘電性であり、融点も多く、安定性に優れていることから、マトリックスとしての有用性が高いと期待されている。しかしながら従来は、LPD法における溶液内反応に用いるフッ化ジルコン酸溶液中では、溶液中に存在するF-イオンのため、希土類イオンを共存させると直ちに沈殿が生じてしまっていた。
[Manufacture of thin film]
In this embodiment, a transparent zirconium oxide: europium activated (ZrO 2 ; Eu) thin film was produced as a rare earth-containing metal oxide by the LPD method (liquid phase deposition method). This zirconium oxide (ZrO 2 ) has low phonon vibration compared to Al 2 O 3 , SiO 2, etc., has high dielectric properties, has a high melting point, and is excellent in stability. Expected to be highly useful. However the prior art, the solution in the fluoride zirconate solution used for the reaction in the LPD method, F present in solution - for ion was incorrectly caused immediately precipitated coexists with rare earth ions.

本実施形態では、この沈殿生成を回避するために、Eu3+イオンをジエチレントリアミン五酢酸(DTPA)キレート錯体によりマスクして安定化することで、フッ化物共存下においても沈殿を生じさせずに可溶化させることができ、結果として基板上にEu3+/ZrO2薄膜を形成することができたのである。 In this embodiment, in order to avoid this precipitation, the Eu 3+ ion is masked with a diethylenetriaminepentaacetic acid (DTPA) chelate complex and stabilized, so that precipitation can be avoided even in the presence of fluoride. As a result, an Eu 3+ / ZrO 2 thin film could be formed on the substrate.

具体的な薄膜の製造方法を以下に示す。ZrO2の薄膜生成における出発物質としては、森田化学株式会社製のフッ化ジルコン酸(H2ZrF6)を使用した。また、酸化ユーロプウム(Eu23)を10%塩酸中にて溶解させ、Eu3+イオンを0.2mol dm-3 とした。そして、この溶液にDTPAキレート水溶液を、Eu3+:DTPA=1:1となるように混合した。また、溶液を所定の組成比にてジルコニウムフッ化物錯体と混合し、反応溶液とした。 A specific method for producing a thin film is shown below. As a starting material in forming a thin film of ZrO 2 , fluorinated zirconic acid (H 2 ZrF 6 ) manufactured by Morita Chemical Co., Ltd. was used. Europium oxide (Eu 2 O 3 ) was dissolved in 10% hydrochloric acid to make Eu 3+ ions 0.2 mol dm −3 . And the DTPA chelate aqueous solution was mixed with this solution so that it might become Eu3 + : DTPA = 1: 1. The solution was mixed with a zirconium fluoride complex at a predetermined composition ratio to obtain a reaction solution.

この反応溶液に、フッ素イオン消費剤として板状の金属アルミニウム(ホウ酸を用いても良い)を添加し、反応を進行させた。最終的な反応溶液中のZr4+イオン濃度は0.06mol dm-3とした。Eu2+のDTPA錯体濃度は2mmol dm-3とした。 To this reaction solution, plate-like metal aluminum (boric acid may be used) was added as a fluorine ion consumer, and the reaction was allowed to proceed. The final Zr 4+ ion concentration in the reaction solution was 0.06 mol dm −3 . The DTPA complex concentration of Eu 2+ was 2 mmol dm −3 .

基板としては、本実施形態ではソーダライムガラスを用いたが、それに限定されず、溶融石英板、シリコンウェハ、シリコンカーバイドを用いることもできる。基板はケイ酸ナトリウム中でのアルカリ脱脂を行い、30℃、24時間の超音波洗浄を行った後、前記反応溶液中に浸漬して薄膜形成を行った。   As the substrate, soda lime glass is used in the present embodiment, but is not limited thereto, and a fused quartz plate, a silicon wafer, or silicon carbide can also be used. The substrate was subjected to alkali degreasing in sodium silicate, subjected to ultrasonic cleaning at 30 ° C. for 24 hours, and then immersed in the reaction solution to form a thin film.

この薄膜の形成は、図1に示すLPD法の装置21を用いて行った。具体的には、H2ZrF6水溶液及びEu3+イオンを含む塩酸水溶液及びDTPAキレート水溶液及び蒸留水の混合物としての反応溶液26をポンプ24で吸い上げ、配管25を通して、アルミニウム板が内壁に沿って設置された容器23に流し込んで処理液22とし、上下搬送機構27の基板保持金具29に取り付けた基板1を垂直に下降させて速やかに容器23内の処理液22に浸漬し、所定の時間だけ反応させた。その後、基板1を取り出し、蒸留水にて洗浄後、室温にて乾燥させた。その後、焼成を所定の温度(500℃から900℃まで、100℃刻み)にて1時間行った。 This thin film was formed using the LPD method apparatus 21 shown in FIG. Specifically, a reaction solution 26 as a mixture of an aqueous solution of H 2 ZrF 6, an aqueous solution of hydrochloric acid containing Eu 3+ ions, an aqueous solution of DTPA chelate and distilled water is sucked up by a pump 24, and an aluminum plate passes along the inner wall through a pipe 25. Pour into the installed container 23 to make the processing liquid 22, and the substrate 1 attached to the substrate holding metal fitting 29 of the vertical transport mechanism 27 is vertically lowered and immediately immersed in the processing liquid 22 in the container 23 for a predetermined time. Reacted. Thereafter, the substrate 1 was taken out, washed with distilled water, and dried at room temperature. Thereafter, firing was performed at a predetermined temperature (from 500 ° C. to 900 ° C. in increments of 100 ° C.) for 1 hour.

得られた薄膜表面を原子間力顕微鏡(AFM)で撮影した様子を図2に示す。なお図2には、(a)焼成前、(b)500℃で焼成した場合、(c)700℃で焼成した場合、(d)900℃で焼成した場合の4つの場合の様子が示されている。   FIG. 2 shows a state where the obtained thin film surface was photographed with an atomic force microscope (AFM). FIG. 2 shows four cases: (a) before firing, (b) when fired at 500 ° C., (c) when fired at 700 ° C., and (d) when fired at 900 ° C. ing.

図2(a)によると、形成した薄膜におけるEu/ZrO2は数十nm程度の微細な粒子からなり、基板1の表面に緻密に析出していることが判る。析出直後(焼成前)の薄膜は、約80nmの平均粒径を有する球状粒子が緻密かつ一様に基板1の表面を被覆しており、亀裂は認められなかった。 According to FIG. 2A, it can be seen that Eu / ZrO 2 in the formed thin film consists of fine particles of about several tens of nm and is densely deposited on the surface of the substrate 1. In the thin film immediately after deposition (before firing), spherical particles having an average particle diameter of about 80 nm covered the surface of the substrate 1 densely and uniformly, and no cracks were observed.

また図2の(b)〜(d)を比較すれば、焼成温度が上昇するに伴い、基板1の表面に存在する微小な粒子が互いに凝集し、900℃での焼成時には粒径が200nm程度まで増大することが判る。ただし、凝集するといっても粒径が数百nm程度であり、基板1の表面に亀裂も生じていないことから、これらの薄膜は(焼成の前後を問わず)可視光透過性に優れていることが判る。   2 (b) to 2 (d), the fine particles present on the surface of the substrate 1 aggregate with each other as the firing temperature rises, and when firing at 900 ° C., the particle size is about 200 nm. It turns out that it increases to. However, since the particle size is about several hundreds of nanometers and no cracks are formed on the surface of the substrate 1, these thin films are excellent in visible light transparency (regardless of before and after firing). I understand that.

次に、焼成後の薄膜についてX線回折測定を行い、得られたX線回折パターンを図3に示した。この図3をみると、薄膜が、正方晶もしくは立法晶からなるZrO2結晶に同定されることが考えられる。また、各温度で焼成した後の薄膜は相変化することなく、室温において正方晶(または立法晶)で安定化されていることが判る。 Next, X-ray diffraction measurement was performed on the fired thin film, and the obtained X-ray diffraction pattern was shown in FIG. Referring to FIG. 3, it is considered that the thin film is identified as a ZrO 2 crystal composed of tetragonal crystals or cubic crystals. It can also be seen that the thin film after firing at each temperature is stabilized with tetragonal crystals (or cubic crystals) at room temperature without phase change.

また、このX線回折測定において認められる回折ピークのうち、2θ=30.5°付近において認められるピークは、焼成時に800℃以上の温度まで加熱した場合、低角度側にシフトしている(図3のグラフの中の小グラフは、横軸を拡大して示したものである)。これは、Zr4+(イオン半径:87pm)より大きなイオン半径を有するEu3+(イオン半径:98pm)が結晶格子内に挿入され、固溶体化したものと考えられる。
更にまた、500℃、600℃、700℃、800℃、900℃と焼成温度を高めていく事でスペクトル強度が大幅に向上されており、ZrO2の結晶格子の中にEuイオンの挿入が進み活性剤としての働きをしてフォトルミネッセンスが向上しているものと考えられる。
Of the diffraction peaks observed in this X-ray diffraction measurement, the peak observed near 2θ = 30.5 ° is shifted to the lower angle side when heated to a temperature of 800 ° C. or higher during firing (FIG. The small graph in graph 3 is shown with the horizontal axis enlarged). This is considered that Eu 3+ (ion radius: 98 pm) having an ionic radius larger than Zr 4+ (ion radius: 87 pm) was inserted into the crystal lattice to form a solid solution.
Furthermore, the spectral intensity is greatly improved by increasing the firing temperature to 500 ° C, 600 ° C, 700 ° C, 800 ° C, 900 ° C, and Eu ions are inserted into the crystal lattice of ZrO2 and activated. It is considered that the photoluminescence is improved by acting as an agent.

一方、ラマン散乱スペクトルにおいては、700℃以下の焼成を行った場合、261,330,461,612,および636cm-1にZrO2の正方晶に基づくピークが認められたが、900℃まで焼成した場合、630cm-1において立法晶に帰属されるピークが生じた。従って、800℃付近において相変化が認められ、それ以上の温度で焼成すると正方晶から立法晶へ変化すると考えられる。 On the other hand, in the Raman scattering spectrum, when firing at 700 ° C. or lower, peaks based on ZrO 2 tetragonal crystals were observed at 261, 330, 461, 612, and 636 cm −1 , but the firing was performed to 900 ° C. In this case, a peak attributed to the cubic crystal occurred at 630 cm −1 . Therefore, a phase change is recognized at around 800 ° C., and it is considered that the tetragonal crystal changes to the cubic crystal when fired at a temperature higher than that.

〔周期構造体の製造〕
次に、上述の方法で製造された希土類含有金属酸化物薄膜3の表面に、図4に示すように単分散ポリスチレン粒子2を自己集積化させることで、テンプレートを作成した。ポリスチレン粒子2の粒径は、307nm,191nm,178nm,88nmの4種類を用いた。このテンプレートを図1の装置の前述の処理液22に再び浸漬して所定の時間だけ反応させ、図5に示すように、ポリスチレン粒子2の間隙に酸化ジルコニウム:ユーロプウム付活(ZrO2;Eu)4を析出させた(液相充填法)。その後、400℃の高温で熱処理することで、ポリスチレン粒子2を分解除去し、基板1の表面に構造体を形成した。
[Manufacture of periodic structures]
Next, as shown in FIG. 4, monodisperse polystyrene particles 2 were self-assembled on the surface of the rare earth-containing metal oxide thin film 3 manufactured by the above-described method, thereby creating a template. As the particle size of the polystyrene particle 2, four types of 307 nm, 191 nm, 178 nm, and 88 nm were used. This template is immersed again in the above-described treatment liquid 22 of the apparatus of FIG. 1 and reacted for a predetermined time. As shown in FIG. 5, zirconium oxide: europium activated (ZrO 2 ; Eu) is inserted into the gaps of the polystyrene particles 2. 4 was deposited (liquid phase filling method). Thereafter, the polystyrene particles 2 were decomposed and removed by heat treatment at a high temperature of 400 ° C., and a structure was formed on the surface of the substrate 1.

図6に、粒径307nmのポリスチレン粒子2を使用した場合の上記構造体のSEMによる観察結果を示す。この図6からは、ポリスチレン粒子2の間といった非常に微細な空間や間隙にも隙間なくZrO2が析出し、上記のポリスチレン粒子2を配列させたテンプレートの三次元形状が、基板1上に正確に転写されていることが判る。また、ポリスチレン粒子2は自己集積化により六方細密充填に配列し、これが転写された結果、構造体の表面が三次元反転オパール構造となっていることが判る。このように、三次元周期を有する希土類含有金属酸化物構造体が容易に作成可能であることが明らかになった。なお上記の結果は、他の粒径のポリスチレン粒子2(191nm,178nm,88nm)を用いた場合でも同様であった。 In FIG. 6, the observation result by SEM of the said structure at the time of using the polystyrene particle 2 with a particle size of 307 nm is shown. From FIG. 6, ZrO 2 is deposited without gaps even in very fine spaces and gaps between the polystyrene particles 2, and the three-dimensional shape of the template in which the polystyrene particles 2 are arranged is accurately displayed on the substrate 1. It can be seen that it has been transferred to. Further, the polystyrene particles 2 are arranged in a hexagonal close packing by self-assembly, and as a result of the transfer, it can be seen that the surface of the structure has a three-dimensional inverted opal structure. Thus, it became clear that a rare earth-containing metal oxide structure having a three-dimensional period can be easily produced. The above results were the same even when polystyrene particles 2 (191 nm, 178 nm, 88 nm) having other particle sizes were used.

また、得られた酸化物の結晶性について検討するため、上記構造体の断面のTEM観察を行った。すると、析出したEu/ZrO2はアナターゼ型を呈しており、微細領域及びポリスチレン粒子2との境界面においては、通常得られる薄膜と比較して特異的に高い結晶性を有することが確認された。 In addition, in order to examine the crystallinity of the obtained oxide, TEM observation of a cross section of the structure was performed. Then, the deposited Eu / ZrO 2 has an anatase type, and it has been confirmed that the interface between the fine region and the polystyrene particles 2 has a particularly high crystallinity as compared with the usually obtained thin film. .

更に、上記の三次元反転オパール構造体を蛍光体膜として用いた場合の、240nmUV励起フォトルミネッセンス発光特性を計測した。計測値を、通常の市販の蛍光灯用希土類蛍光体膜のそれと比較したグラフを図7に示す。この図7に示すように、本発明の構造体は、240nmの光で励起した場合、非常に強度の強い発光スペクトルが得られていることが判る。この良好な結果は、上記の三次元反転オパール構造体4が形成されることによって、単位容積あたりの表面積が極めて大きくなっていることが一因であると考えられる。   Furthermore, 240 nm UV excitation photoluminescence emission characteristics were measured when the above three-dimensional inverted opal structure was used as a phosphor film. FIG. 7 shows a graph comparing the measured values with those of a normal commercially available rare earth phosphor film for a fluorescent lamp. As shown in FIG. 7, it can be seen that the structure of the present invention has a very strong emission spectrum when excited by light of 240 nm. This good result is considered to be due in part to the fact that the surface area per unit volume is extremely large due to the formation of the three-dimensional inverted opal structure 4 described above.

本発明で利用するLPD法は、大面積・複雑形状を有する基板に対して追随性が良く、また、低コスト且つ低温での合成が可能であり、組成の制御が容易でプロセスが簡便であるなど、他の方法と比較して様々な優位性を有している。本発明の方法により、このように有用なLPD法を、希土類含有金属酸化物の薄膜ないし構造体の作製に適用する際の障害を克服することができた。   The LPD method used in the present invention has good followability with respect to a substrate having a large area and a complicated shape, can be synthesized at a low cost and at a low temperature, can easily control the composition, and has a simple process. It has various advantages compared to other methods. According to the method of the present invention, it was possible to overcome the obstacles in applying the useful LPD method to the production of a rare earth-containing metal oxide thin film or structure.

また、本発明では、上記のように希土類含有金属酸化物の薄膜、ないし大きな表面積を有する構造体を容易に得られることから、蛍光体のほかにもフォトニクス結晶、磁性体、触媒担持体、色素増感型太陽電池、センサー等、種々のデバイスへの応用が期待される。   Further, in the present invention, since a thin film of a rare earth-containing metal oxide or a structure having a large surface area can be easily obtained as described above, in addition to a phosphor, a photonic crystal, a magnetic material, a catalyst carrier, a dye Applications to various devices such as sensitized solar cells and sensors are expected.

液相析出法(LPD法)の装置を示した模式図。The schematic diagram which showed the apparatus of the liquid phase precipitation method (LPD method). 薄膜のAFM撮影写真であって、(a)は焼成前の様子、(b)は500℃で焼成した様子、(c)は700℃で焼成した様子、(d)は900℃で焼成した様子を、それぞれ示す。It is the AFM photography photograph of a thin film, (a) A state before baking, (b) A state of baking at 500 ° C., (c) A state of baking at 700 ° C., (d) A state of baking at 900 ° C. Are shown respectively. 種々の温度で焼成した薄膜のX線回折パターンを示すグラフ図。The graph which shows the X-ray-diffraction pattern of the thin film baked at various temperature. 基板上に形成した薄膜表面にポリスチレン粒子を自己集積化させる様子を示した模式図。The schematic diagram which showed a mode that the polystyrene particle was self-integrated on the thin film surface formed on the board | substrate. ポリスチレン粒子の間隙にZrO2を析出させた様子を示す模式図。Schematic view showing a state in which precipitating ZrO 2 in the gap between the polystyrene particles. 基板上に形成された構造体の三次元反転オパール構造をSEMで撮影した写真Photograph taken by SEM of the three-dimensional inverted opal structure of the structure formed on the substrate 本発明の製造方法で得られた構造体の240nmUV励起フォトルミネッセンス発光特性を示すグラフ図。The graph which shows the 240 nm UV excitation photoluminescence light emission characteristic of the structure obtained with the manufacturing method of this invention.

符号の説明Explanation of symbols

1 基板
2 ポリスチレン粒子
3 希土類含有金属酸化物薄膜
4 希土類含有金属酸化物構造体(三次元反転オパール構造)
21 LPD法による希土類含有金属酸化物製造装置
22 処理液
23 容器
24 ポンプ
25 配管
26 反応溶液
27 上下搬送機構
29 基板保持金具
1 Substrate 2 Polystyrene particles 3 Rare earth-containing metal oxide thin film 4 Rare earth-containing metal oxide structure (three-dimensional inverted opal structure)
21 Rare earth-containing metal oxide production apparatus by LPD method 22 Treatment liquid 23 Container 24 Pump 25 Piping 26 Reaction solution 27 Vertical transport mechanism 29 Substrate holding bracket

Claims (8)

LPD法により基板上に希土類含有金属酸化物薄膜を直接析出させる、希土類含有金属酸化物薄膜の製造方法であって、
前記LPD法における反応溶液が、希土類イオンキレート錯体と金属フッ化物錯体とを混合する工程を含む方法で製造されており、
上記反応溶液にフッ素イオン消費剤を添加することにより、前記基板上に希土類含有金属酸化物薄膜をLPD法により析出させ、
生成した薄膜を高温加熱処理することを特徴とする、希土類含有金属酸化物薄膜の製造方法。
A method for producing a rare earth-containing metal oxide thin film by directly depositing a rare earth-containing metal oxide thin film on a substrate by an LPD method,
The reaction solution in the LPD method is manufactured by a method including a step of mixing a rare earth ion chelate complex and a metal fluoride complex,
By adding a fluorine ion consumer to the reaction solution, a rare earth-containing metal oxide thin film is deposited on the substrate by the LPD method,
A method for producing a rare earth-containing metal oxide thin film, wherein the produced thin film is subjected to high-temperature heat treatment.
請求項1に記載の製造方法により希土類含有金属酸化物薄膜を製造し、その薄膜の表面にポリスチレン粒子を自己集積化させることで三次元周期構造のテンプレートを形成し、
前記反応溶液に前記テンプレートを浸漬することにより、前記ポリスチレン粒子の隙間に希土類含有金属酸化物を析出させ、
加熱処理によってポリスチレン粒子を除去することで三次元反転オパール構造体を得ることを特徴とする、希土類含有金属酸化物構造体の製造方法。
A rare earth-containing metal oxide thin film is produced by the production method according to claim 1, and a template having a three-dimensional periodic structure is formed by self-integrating polystyrene particles on the surface of the thin film.
By immersing the template in the reaction solution, the rare earth-containing metal oxide is precipitated in the gaps between the polystyrene particles,
A method for producing a rare earth-containing metal oxide structure, comprising obtaining a three-dimensional inverted opal structure by removing polystyrene particles by heat treatment.
請求項1又は請求項2に記載の希土類含有金属酸化物薄膜又は構造体の製造方法であって、
前記希土類含有金属酸化物薄膜又は構造体が、
酸化ジルコニウム:ユーロプウム付活(ZrO2;Eu)結晶、
酸化ジルコニウム:イットリウム付活(ZrO2;Y)結晶、
酸化ジルコニウム:ランタン付活(ZrO2;La)結晶、
酸化ジルコニウム:プラセオジウム付活(ZrO2;Pr)結晶、
酸化ジルコニウム:ネオジウム付活(ZrO2;Nd)結晶、
酸化ジルコニウム:テリビウム付活(ZrO2;Tb)結晶、
のいずれか1種類又は2種類以上の組み合わせからなることを特徴とする、希土類含有金属酸化物薄膜又は構造体の製造方法。
A method for producing a rare earth-containing metal oxide thin film or structure according to claim 1 or 2,
The rare earth-containing metal oxide thin film or structure is
Zirconium oxide: Europium activated (ZrO 2 ; Eu) crystal,
Zirconium oxide: Yttrium activated (ZrO 2 ; Y) crystal,
Zirconium oxide: Lanthanum activated (ZrO 2 ; La) crystal,
Zirconium oxide: praseodymium activated (ZrO 2 ; Pr) crystal,
Zirconium oxide: neodymium activated (ZrO 2 ; Nd) crystal,
Zirconium oxide: Terbium activated (ZrO 2 ; Tb) crystal,
A method for producing a rare earth-containing metal oxide thin film or structure comprising any one of the above or a combination of two or more thereof.
請求項1又は請求項2に記載の希土類含有金属酸化物薄膜又は構造体の製造方法であって、
前記LPD法における反応溶液には、金属フッ化物錯体溶液と、希土類イオンをジエチレントリアミン五酢酸キレート錯体によりマスクした溶液と、を混合したものが含まれており、
前記フッ素イオン消費剤はアルミニウム又はホウ酸であることを特徴とする、希土類含有金属酸化物薄膜又は構造体の製造方法。
A method for producing a rare earth-containing metal oxide thin film or structure according to claim 1 or 2,
The reaction solution in the LPD method includes a mixture of a metal fluoride complex solution and a solution obtained by masking a rare earth ion with a diethylenetriaminepentaacetic acid chelate complex,
The method for producing a rare earth-containing metal oxide thin film or structure, wherein the fluorine ion consumable is aluminum or boric acid.
請求項1から請求項4までの何れか一項に記載の希土類含有金属酸化物薄膜又は構造体の製造方法であって、前記高温加熱処理が400℃以上700℃以下の温度範囲で行われることを特徴とする、希土類含有金属酸化物薄膜又は構造体の製造方法。   The method for producing a rare earth-containing metal oxide thin film or structure according to any one of claims 1 to 4, wherein the high-temperature heat treatment is performed in a temperature range of 400 ° C to 700 ° C. A method for producing a rare earth-containing metal oxide thin film or structure. 請求項1から請求項4までの何れか一項に記載の希土類含有金属酸化物薄膜又は構造体の製造方法であって、前記高温加熱処理が700℃以上1000℃以下の温度範囲で行われることを特徴とする、希土類含有金属酸化物薄膜又は構造体の製造方法。   The method for producing a rare earth-containing metal oxide thin film or structure according to any one of claims 1 to 4, wherein the high-temperature heat treatment is performed in a temperature range of 700 ° C to 1000 ° C. A method for producing a rare earth-containing metal oxide thin film or structure. 請求項2に記載の希土類含有金属酸化物構造体の製造方法であって、前記ポリスチレン粒子の粒径が80nm以上320nm以下であることを特徴とする、希土類含有金属酸化物構造体の製造方法。   The method for producing a rare earth-containing metal oxide structure according to claim 2, wherein the polystyrene particles have a particle size of 80 nm or more and 320 nm or less. 請求項1から請求項7までの何れか一項に記載の希土類含有金属酸化物薄膜又は構造体の製造方法であって、
前記基板が、ソーダライムガラス、溶融石英板、シリコンウェハ、シリコンカーバイドのうち何れか1つとされていることを特徴とする、希土類含有金属酸化物薄膜又は構造体の製造方法。
A method for producing a rare earth-containing metal oxide thin film or structure according to any one of claims 1 to 7,
A method for producing a rare earth-containing metal oxide thin film or structure, wherein the substrate is any one of soda lime glass, fused quartz plate, silicon wafer, and silicon carbide.
JP2005077724A 2005-03-17 2005-03-17 Method for producing rare earth-containing metal oxide structure Active JP4682321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005077724A JP4682321B2 (en) 2005-03-17 2005-03-17 Method for producing rare earth-containing metal oxide structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005077724A JP4682321B2 (en) 2005-03-17 2005-03-17 Method for producing rare earth-containing metal oxide structure

Publications (2)

Publication Number Publication Date
JP2006256916A true JP2006256916A (en) 2006-09-28
JP4682321B2 JP4682321B2 (en) 2011-05-11

Family

ID=37096562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005077724A Active JP4682321B2 (en) 2005-03-17 2005-03-17 Method for producing rare earth-containing metal oxide structure

Country Status (1)

Country Link
JP (1) JP4682321B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230925A (en) * 2007-03-22 2008-10-02 Kobe Univ Composite fine structure, and method for producing the same
CN108609651A (en) * 2018-06-13 2018-10-02 宣城晶瑞新材料有限公司 A kind of preparation of novel nano zirconia material
JP7161723B2 (en) 2018-02-27 2022-10-27 キレスト株式会社 Method for producing composite with metal oxide phosphor formed on substrate
CN115926180A (en) * 2022-11-08 2023-04-07 复旦大学 Adjustable hierarchical pore metal organic framework material and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310802A (en) * 1995-03-15 1996-11-26 Takeshi Yao Production of perovskite-structure multiple oxide deposit
JP2000233999A (en) * 1999-02-11 2000-08-29 Lucent Technol Inc Substance of mutually connected lattices exhibiting periodicity and its production
JP2001031423A (en) * 1999-07-19 2001-02-06 Hoya Corp Production of titanium oxide-zirconium oxide composite film
JP2003086033A (en) * 2001-09-11 2003-03-20 Nagase Chemtex Corp Manufacturing method of solid electrolyte membrane
JP2004504242A (en) * 2000-06-15 2004-02-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Method for producing spherical crystals
JP2004131338A (en) * 2002-10-11 2004-04-30 New Industry Research Organization Three-dimensionally structured body of ceramic or ceramic precursor of nanometer order size and its preparation method by lpd method
JP2005308528A (en) * 2004-04-21 2005-11-04 New Cosmos Electric Corp Reducible gas sensor using oxide ion conductor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310802A (en) * 1995-03-15 1996-11-26 Takeshi Yao Production of perovskite-structure multiple oxide deposit
JP2000233999A (en) * 1999-02-11 2000-08-29 Lucent Technol Inc Substance of mutually connected lattices exhibiting periodicity and its production
JP2001031423A (en) * 1999-07-19 2001-02-06 Hoya Corp Production of titanium oxide-zirconium oxide composite film
JP2004504242A (en) * 2000-06-15 2004-02-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Method for producing spherical crystals
JP2003086033A (en) * 2001-09-11 2003-03-20 Nagase Chemtex Corp Manufacturing method of solid electrolyte membrane
JP2004131338A (en) * 2002-10-11 2004-04-30 New Industry Research Organization Three-dimensionally structured body of ceramic or ceramic precursor of nanometer order size and its preparation method by lpd method
JP2005308528A (en) * 2004-04-21 2005-11-04 New Cosmos Electric Corp Reducible gas sensor using oxide ion conductor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230925A (en) * 2007-03-22 2008-10-02 Kobe Univ Composite fine structure, and method for producing the same
JP7161723B2 (en) 2018-02-27 2022-10-27 キレスト株式会社 Method for producing composite with metal oxide phosphor formed on substrate
CN108609651A (en) * 2018-06-13 2018-10-02 宣城晶瑞新材料有限公司 A kind of preparation of novel nano zirconia material
CN115926180A (en) * 2022-11-08 2023-04-07 复旦大学 Adjustable hierarchical pore metal organic framework material and preparation method and application thereof
CN115926180B (en) * 2022-11-08 2023-11-07 复旦大学 Metal organic framework material with adjustable hierarchical holes and preparation method and application thereof

Also Published As

Publication number Publication date
JP4682321B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
Wang et al. Synthesis and luminescence properties of monodisperse spherical Y2O3: Eu3+@ SiO2 particles with core− shell structure
Li et al. Uniform colloidal spheres for (Y1− x Gd x) 2O3 (x= 0–1): Formation mechanism, compositional impacts, and physicochemical properties of the oxides
Lin et al. Multiform oxide optical materials via the versatile Pechini-type sol− gel process: Synthesis and characteristics
Si et al. Controlled-synthesis, self-assembly behavior, and surface-dependent optical properties of high-quality rare-earth oxide nanocrystals
Zhang et al. Synthesis, characterization, and luminescence properties of uniform Ln3+-doped YF3 nanospindles
Yu et al. Fabrication, patterning, and optical properties of nanocrystalline YVO4: A (A= Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol− gel soft lithography
Jia et al. General and facile method to prepare uniform Y2O3: Eu hollow microspheres
Ren et al. Structure and phase transition of GdBO3
Wang et al. Synthesis, growth mechanism, and tunable upconversion luminescence of Yb3+/Tm3+-codoped YF3 nanobundles
Li et al. Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists
Li et al. Shape controllable synthesis and upconversion properties of NaYbF 4/NaYbF 4: Er3+ and YbF 3/YbF 3: Er3+ microstructures
Wang et al. Patterning of red, green, and blue luminescent films based on CaWO4: Eu3+, CaWO4: Tb3+, and CaWO4 phosphors via microcontact printing route
Zheng et al. Facile hydrothermal synthesis and luminescent properties of large-scale GdVO4: Eu3+ nanowires
Pan et al. Novel energy-transfer route and enhanced luminescent properties in YVO4: Eu3+/YBO3: Eu3+ composite
Wang et al. Controllable synthesis of NaLu (WO4) 2: Eu3+ microcrystal and luminescence properties for LEDs
TW200811078A (en) YAG-based ceramic garnet material comprising at least one multi-site element
JP4682321B2 (en) Method for producing rare earth-containing metal oxide structure
El-Inany et al. Synthesis and characterization of Sm3+: Bi4Si3O12 and dispersed into silica nanophosphor for sensing application
Lei et al. Morphology-controlled synthesis, physical characterization, and photoluminescence of novel self-assembled pomponlike white light phosphor: Eu3+-doped sodium gadolinium tungstate
Wang et al. Luminescent metastable Y 2 WO 6: Ln3+ (Ln= Eu, Er, Sm, and Dy) microspheres with controllable morphology via self-assembly
Qian et al. Synthesis and Downconversion Emission Property of: Nanosheets and Nanotubes
Jadhav et al. Effect of different additives on the size control and emission properties of Y2O3: Eu3+ nanoparticles prepared through the coprecipitation method
JP2009132925A (en) Method for producing nanophosphor particles
Li et al. A strategy towards MF2: Yb3+, Er3+/SiO2 (M= Ba, Sr, Ca) yolk-shell nanofibers and yolk-shell nanobelts with up-conversion fluorescence
Song et al. One-step melt closed mesoporous SiO2 for large-scale synthesis of confined CsPbX3 (X= Cl, Br, and I) quantum dots and LED applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080306

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

A131 Notification of reasons for refusal

Effective date: 20100803

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20101214

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20101216

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350