JP2006255771A - Method and apparatus for cooling steel tube - Google Patents
Method and apparatus for cooling steel tube Download PDFInfo
- Publication number
- JP2006255771A JP2006255771A JP2005080229A JP2005080229A JP2006255771A JP 2006255771 A JP2006255771 A JP 2006255771A JP 2005080229 A JP2005080229 A JP 2005080229A JP 2005080229 A JP2005080229 A JP 2005080229A JP 2006255771 A JP2006255771 A JP 2006255771A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- steel pipe
- steel tube
- cooling bed
- heat insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 79
- 239000010959 steel Substances 0.000 title claims abstract description 79
- 238000001816 cooling Methods 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000011810 insulating material Substances 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 239000000919 ceramic Substances 0.000 claims abstract description 8
- 239000000835 fiber Substances 0.000 claims abstract description 8
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 3
- 239000004753 textile Substances 0.000 claims description 6
- 230000003014 reinforcing effect Effects 0.000 abstract description 3
- 239000010935 stainless steel Substances 0.000 abstract description 3
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 3
- 230000008569 process Effects 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 229910000734 martensite Inorganic materials 0.000 description 8
- 229910000859 α-Fe Inorganic materials 0.000 description 7
- 238000005336 cracking Methods 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000002436 steel type Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Abstract
Description
本発明は、シームレス鋼管製造工程における圧延後の鋼管の冷却方法及びその装置に関する。さらに詳しくは比較的小径のシームレス鋼管、例えば9Cr鋼管等に生ずるレーキ割れ防止技術に関する。 The present invention relates to a method for cooling a steel pipe after rolling in a seamless steel pipe manufacturing process and an apparatus therefor. More specifically, the present invention relates to a technique for preventing rake cracks that occur in a relatively small diameter seamless steel pipe, such as a 9Cr steel pipe.
外径120mm以下の小口径シームレス鋼管は管材(丸ビレット)を加熱し、ピアサにて穿孔し、マンドレルミル、レデューサを経て製管した後、焼入れ、焼戻し、焼きならし等の熱処理を行い、サイジングミルでサイジングを行い、その後、各種試験、ねじ切り等を行い製品となる。 Small-diameter seamless steel pipes with an outer diameter of 120 mm or less are heated after pipe material (round billet), pierced with a piercer, piped through a mandrel mill and a reducer, and then subjected to heat treatment such as quenching, tempering, and normalizing. After sizing with a mill, various tests, threading, etc. are performed to make a product.
この鋼管製造工程において、シームレス鋼管はレデューサ等による成形の後、冷却床上を搬送されながら徐冷される。この冷却時に、例えばCr含有量が8.0〜9.5質量%の9Cr鋼管のような割れ感受性の大きい鋼種では、冷却床の移動床と接した部分の近傍に、次工程の熱処理工程で、いわゆるレーキ割れと称する亀裂を発生する問題がある。このようなレーキ割れに対して、その原因究明が種々行われている。 In this steel pipe manufacturing process, the seamless steel pipe is gradually cooled while being conveyed on the cooling bed after being formed by a reducer or the like. In this cooling, for example, in a steel type having a high cracking sensitivity such as a 9Cr steel pipe having a Cr content of 8.0 to 9.5% by mass, in the vicinity of the portion of the cooling bed in contact with the moving bed, a heat treatment step of the next step is performed. There is a problem of generating cracks called so-called rake cracks. Various causes have been investigated for such rake cracks.
例えば、鋼材の材質改善による焼入指数の低減や鋼中のN含有量を低減する低N化等が行われている。このような対策によっても、従来、レーキ割れを完全に防止することはできなかった。 For example, reduction of the quenching index by improving the quality of the steel material, reduction of N to reduce the N content in the steel, and the like are performed. Even with such measures, conventionally, rake cracks could not be completely prevented.
本発明者は、レーキ割れが1年のうち寒冷期に生ずることが多いなどの事情があることに着目し、研究を重ねてその原因究明に当った結果、レーキ割れ発生機構の原因の1つとして、鋼管と冷却床との接触部における鋼管の局部冷却によって生ずる鋼組織の変態に伴う熱膨張係数の差異発生に起因するという新たな知見を得た。このため、1年の中の寒冷期と温暖期とでは環境温度の差による微妙な局部冷却差の影響が現れ、その結果差異が生ずるものと推定された。 The inventor of the present invention pays attention to the fact that rake cracks often occur in the cold season of the year, and as a result of investigating the cause after repeated research, as one of the causes of the rake crack generation mechanism, The new knowledge that it originated in the difference generation of the thermal expansion coefficient accompanying the transformation of the steel structure caused by the local cooling of the steel pipe in the contact part of the steel pipe and the cooling bed was obtained. For this reason, it was estimated that a subtle difference in local cooling due to a difference in environmental temperature appeared between the cold season and the warm season in the year, resulting in a difference.
本発明は、このような知見に基づいて、局部冷却に起因する熱膨張係数の差異発生を防止する効果的な対策案を開発し、これを提供することを目的とする。 An object of the present invention is to develop and provide an effective countermeasure plan for preventing the occurrence of a difference in thermal expansion coefficient due to local cooling based on such knowledge.
本発明は、上記問題点を解決するためになされたもので、次の技術手段を講じたことを特徴とする鋼管の冷却方法である。すなわち、本発明は、シームレス鋼管製造工程の冷却段階において、搬送台上面が鋼管外面を局部冷却するのを防止することを特徴とする鋼管の冷却方法である。 The present invention has been made to solve the above problems, and is a steel pipe cooling method characterized by taking the following technical means. That is, this invention is a cooling method of the steel pipe characterized by preventing that the upper surface of a conveyance stand locally cools the outer surface of a steel pipe in the cooling stage of a seamless steel pipe manufacturing process.
本発明において搬送台上面が鋼管を局部冷却するのを防止する領域としては、鋼管温度が750℃以上の領域とすればよい。レデューサ等による加工後の鋼管温度は900〜950℃程度であり、加工後鋼管は冷却装置で搬送されながら徐冷される。冷却床と接触しない部分の鋼管は外表面はフェライト組織であり、肉厚内部はマルテンサイト組織となっている。 In the present invention, the region for preventing the upper surface of the conveyance table from locally cooling the steel pipe may be a region where the steel pipe temperature is 750 ° C. or higher. The steel pipe temperature after processing by a reducer or the like is about 900 to 950 ° C., and the processed steel pipe is gradually cooled while being conveyed by a cooling device. The portion of the steel pipe not in contact with the cooling bed has a ferrite structure on the outer surface and a martensite structure on the inside of the wall thickness.
本発明者は、冷却床と接する部分が冷却床によって急冷され、この部分の鋼板の組織が変態によりマルテンサイト組織となり、次の熱処理段階における加熱時にレーキ割れを生ずることを知見した。本発明は、鋼管の冷却工程において、鋼管表面を冷却床の冷却床と接触しない部分と同様にフェライト組織のまま維持することを主眼としている。 The inventor has found that the portion in contact with the cooling bed is rapidly cooled by the cooling bed, and the structure of the steel plate in this portion becomes a martensite structure due to transformation, and rake cracks occur during heating in the next heat treatment stage. The main object of the present invention is to keep the surface of the steel pipe as a ferrite structure in the cooling process of the steel pipe in the same manner as the portion of the cooling bed that does not contact the cooling bed.
上記本発明方法を好適に実施することができる本発明の装置は、シームレス鋼管製造装置の冷却装置において、鋼管搬送上流側の一定区間の冷却床上面に断熱材を装着したことを特徴とする鋼管の冷却装置である。ここで一定区間とは上記の鋼管の温度が750℃以上の区域とすればよい。これは鋼管の寸法、材質、加工工程などに応じて定めることができ、最も条件の悪い鋼種や工程に対してこの区間を定めておけば、それより好条件の場合は問題がない。 The apparatus of the present invention capable of suitably carrying out the above-described method of the present invention is a steel pipe characterized in that, in a cooling apparatus for a seamless steel pipe manufacturing apparatus, a heat insulating material is attached to the upper surface of the cooling floor in a certain section on the upstream side of the steel pipe conveyance. The cooling device. Here, the constant section may be a section where the temperature of the steel pipe is 750 ° C. or higher. This can be determined according to the size, material, processing process, etc. of the steel pipe. If this section is determined for the steel type and process having the worst conditions, there is no problem in the better condition.
上記鋼管の冷却装置において、前記断熱材を装着する手段は限定されるものではないが、前記断熱材の装着は冷却床上面に凹孔を設け、セラミックファイバー紡織材を上面に添着した取付体の脚部を該凹孔内に挿入する構造とすれば保守管理が容易で好ましく、また前記断熱材の装着は、セラミックファイバー紡織材を上面に添着した鋼板を冷却床上面に着脱自在に固定することとしてもよい。セラミックファイバー紡織材は、例えばステンレス補強線で補強したものを用いると好適である。 In the steel pipe cooling device, the means for attaching the heat insulating material is not limited. However, the heat insulating material is attached to a mounting body in which a concave hole is provided in the upper surface of the cooling floor and the ceramic fiber textile material is attached to the upper surface. If the leg portion is inserted into the concave hole, maintenance management is easy, and the thermal insulation is preferably attached by detachably fixing the steel plate attached with the ceramic fiber textile material to the upper surface of the cooling floor. It is good. As the ceramic fiber textile material, for example, a material reinforced with a stainless steel reinforcing wire is preferably used.
本発明によれば、シームレス鋼管製造工程の冷却工程における部分的な組織変化の起るおそれのある領域において、冷却床による鋼管の局部急冷を防止することが可能となったので、レーキ割れを効果的に防止することができるようになった。なお、割れ感受性を低下させるような鋼管材質等の改善とも併せ、実効ある効果が得られるようになった。 According to the present invention, it is possible to prevent local rapid cooling of the steel pipe by the cooling bed in an area where a partial structural change may occur in the cooling process of the seamless steel pipe manufacturing process. Can now be prevented. In addition, an effective effect has come to be obtained together with the improvement of the steel pipe material etc. which lowers the cracking sensitivity.
シームレス鋼管圧延後の冷却工程中で鋼管の内外温度差と内外組織の差による熱膨張係数差とにより、鋼管外表面に圧縮応力が作用する状態となっていると、外表面に亀裂が生じない。 When the compressive stress acts on the outer surface of the steel pipe due to the difference in thermal expansion coefficient between the inner and outer temperature of the steel pipe and the difference between the inner and outer structures during the cooling process after seamless steel pipe rolling, the outer surface will not crack. .
冷却工程中の高温の領域で、鋼管が冷却床と接する部分では、鋼管の外表面近傍の組織が冷却によりマルテンサイト組織となるので、肉厚内外ともマルテンサイト組織となる。このため、鋼管の外表面と内部熱膨張係数は等しくなる。熱処理等の加熱時に鋼管内外面に温度差が生じ、この温度差により鋼管の外表面に生ずる応力は引張応力となる。その結果、鋼管外表面に亀裂を生ずるおそれが増大する。 In the high temperature region during the cooling process, in the portion where the steel pipe is in contact with the cooling bed, the structure in the vicinity of the outer surface of the steel pipe becomes a martensite structure by cooling. For this reason, the outer surface of a steel pipe and an internal thermal expansion coefficient become equal. A temperature difference occurs on the inner and outer surfaces of the steel pipe during heating such as heat treatment, and the stress generated on the outer surface of the steel pipe by this temperature difference becomes a tensile stress. As a result, the risk of cracking on the outer surface of the steel pipe increases.
組織が変化する温度は鋼種により差異があるが、概ね820〜880℃の範囲にある。従って、圧延加工後の鋼管がこの領域において冷却床による急冷が生じないようにするとよい。安全とばらつきを考慮して鋼管の温度範囲が750℃以上となる区域において、冷却床による鋼管の急冷が生じないように設定すればよい。 The temperature at which the structure changes varies depending on the steel type, but is generally in the range of 820 to 880 ° C. Therefore, it is preferable that the steel pipe after the rolling process is not rapidly cooled by the cooling bed in this region. In consideration of safety and variation, the steel pipe temperature range may be set to 750 ° C. or higher so that the steel pipe is not rapidly cooled by the cooling bed.
以下図面を参照して本発明の実施の形態を説明する。 Embodiments of the present invention will be described below with reference to the drawings.
図1、図2は本発明の実施例の鋼管の冷却工程における冷却床を模式的に示す説明図である。 1 and 2 are explanatory views schematically showing a cooling bed in a steel pipe cooling process according to an embodiment of the present invention.
冷却床は三角山と三角谷とが上面に長手方向に鋸状に連設されている固定床と移動床とが隣り合って並列している。移動床が上昇、前進、下降、後退のサイクルを繰返すことにより、冷却床上の鋼管が固定床上を歩進前進する。鋼管は、冷却床の上面の三角谷の部分に接触載置され、冷却床に接する部分が冷却床への熱伝導により余分に冷却される。この部分的な余分な冷却が、レーキ割れ発生の原因となる。 In the cooling floor, a fixed bed and a moving bed in which triangular peaks and triangular valleys are connected in a saw-like shape in the longitudinal direction on the upper surface are adjacent to each other in parallel. As the moving bed repeats the cycle of ascending, advancing, descending, and retreating, the steel pipe on the cooling bed advances and advances on the fixed bed. The steel pipe is placed in contact with the triangular valley portion on the upper surface of the cooling bed, and the portion in contact with the cooling bed is further cooled by heat conduction to the cooling bed. This partial excess cooling causes rake cracking.
そこでこれを防止するために、鋼管温度が750℃以上である領域の冷却床の鋼管と接する三角谷の部分に断熱材を添着して熱伝導による余分な冷却を防止する。 Therefore, in order to prevent this, a heat insulating material is attached to the triangular valley portion in contact with the steel pipe of the cooling floor in the region where the steel pipe temperature is 750 ° C. or higher to prevent excessive cooling due to heat conduction.
図1は実施例の冷却床金物10の斜視図で、連続する三角山が2連のものを例示した。この冷却床金物10は冷却床の固定又は移動機構に連結する取付部11を有している。図1は冷却床金物10の上面12に凹孔13を設け、断熱材20を上面に添着した取付体21の脚部22を矢印23で示すようにこの凹孔13内に挿入し、冷却床金物10の上面に断熱材20を装着した実施例を示したものである。
FIG. 1 is a perspective view of a
断熱材20としては、ステンレス補強線によって補強したセラミックファイバー紡織材を用いた。このセラミックファイバー紡織材はAl2O3とSiO2を主成分とした断熱材を紡織したもので、連続使用で1000℃以上の耐熱性を有し、短時間使用で1250℃までの耐熱性を有し、耐久性に富み、高い断熱性を備えている。
As the
図1に示す実施例では、凹孔13として角孔を設け、断熱材20を装着した取付体21の脚部22をこの角孔に挿入した例を示したが、これに限るものではなく、例えば凹孔13を複数個の丸孔等とし、取付体21の脚部22の形状をそれに応じた形状としてもよい。
In the embodiment shown in FIG. 1, an example is shown in which a square hole is provided as the
図2は断熱材20を上面に添着した溝形の鋼板24を冷却床金物10の上に載せ、鋼板24の溝の側壁部25を冷却床金物10の側面に固定ボルト26を用いて固定した例である。
In FIG. 2, a groove-
次に本発明方法の効果を示す実験例について説明する。組成がC:0.08〜0.12質量%、Mn:0.30〜0.60質量%、P:0020質量%以下、S:0.010質量%以下、Si:0.20〜0.50質量%、Cr:8.00〜9.50質量%、Mo:0.85〜1.05質量%、V:0.18〜0.25質量%から成る9Cr鋼のサンプルを、図4の温度履歴曲線31に示すように、毎秒10℃の昇温速度で加熱し、950℃に600秒保持した後、急冷したところ組織はマルテンサイトとなっていた。一方、図5の温度履歴曲線32に示すように、同様の昇温速度で加熱し、950℃に600秒保持した後、750℃で1800秒保持し、その後冷却したとき、組織はフェライトであった。
Next, experimental examples showing the effects of the method of the present invention will be described. The composition is C: 0.08 to 0.12 mass%, Mn: 0.30 to 0.60 mass%, P: 0020 mass% or less, S: 0.010 mass% or less, Si: 0.20 to 0. A sample of 9Cr steel consisting of 50% by mass, Cr: 8.00 to 9.50% by mass, Mo: 0.85 to 1.05% by mass, and V: 0.18 to 0.25% by mass is shown in FIG. As shown in the
この2個のサンプルを図6に示す昇温パターン33によって加熱し、熱膨張量を測定した。図6の昇温パターン33は連続焼鈍炉における加熱パターンを模したものである。熱膨張量の測定結果は図3に示すようになった。
These two samples were heated by the
図3は、再加熱工程におけるフェライトとマルテンサイトの熱膨張量を示すグラフである。曲線51はフェライト、曲線61はマルテンサイトの熱膨張曲線である。再加熱工程において鋼管外表面温度と鋼管内表面温度に15℃の温度差があるとする。内外組織がフェライトである場合、外表面位置52と内表面位置53との熱膨張量の差は、熱膨張量差54で示すように小さい。これに比し、外表面がマルテンサイトであると、外表面位置62と内表面位置53との熱膨張量差63は過大となり、外表面位置に亀裂が生ずる。
FIG. 3 is a graph showing thermal expansion amounts of ferrite and martensite in the reheating process.
図はこのことを示すもので、鋼管の内外面温度差が15℃であるとき、横軸に内表面温度を取り、縦軸に外表面の周方向応力MPaを取って両者との関係を示したものである。曲線71は図3の曲線61に対応し、曲線72は図3の曲線51に対応するものである。温度推移に伴って、外表面引張、外表面圧縮が内面温度820〜840℃附近で起っている。
The figure shows this. When the temperature difference between the inner and outer surfaces of the steel pipe is 15 ° C, the inner surface temperature is taken on the horizontal axis and the circumferential stress MPa on the outer surface is taken on the vertical axis, and the relationship between the two is shown. It is a thing. A
そして、曲線71では約130MPaのピーク周引張応力を発生しており、この値は850℃におけるγ相の引張強度に相当する値であり、レーキ割れが発生する原因となることが確かめられた。
In
10 冷却床金物
11 取付部
12 上面
13 凹孔
20 断熱材
21 取付体
22 脚部
23 矢印
24 鋼板
25 側壁部
26 固定ボルト
31、32 温度履歴曲線
33 昇温パターン
51 曲線
52 外表面位置
53 内表面位置
54 熱膨張量差
61 曲線
62 外表面位置
63 熱膨張量差
71、72 曲線
DESCRIPTION OF
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005080229A JP4586593B2 (en) | 2005-03-18 | 2005-03-18 | Steel pipe cooling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005080229A JP4586593B2 (en) | 2005-03-18 | 2005-03-18 | Steel pipe cooling method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006255771A true JP2006255771A (en) | 2006-09-28 |
JP4586593B2 JP4586593B2 (en) | 2010-11-24 |
Family
ID=37095535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005080229A Active JP4586593B2 (en) | 2005-03-18 | 2005-03-18 | Steel pipe cooling method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4586593B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114622080A (en) * | 2022-03-10 | 2022-06-14 | 云南曲靖钢铁集团凤凰钢铁有限公司 | Refined control smelting system for steelmaking seamless steel pipe |
CN114752751A (en) * | 2022-04-29 | 2022-07-15 | 福建鑫盛德电子材料制造有限公司 | Rapid cooling method for precision heat-treated steel strip |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS536924B2 (en) * | 1973-01-29 | 1978-03-13 | ||
JPS6236063U (en) * | 1985-08-08 | 1987-03-03 |
-
2005
- 2005-03-18 JP JP2005080229A patent/JP4586593B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS536924B2 (en) * | 1973-01-29 | 1978-03-13 | ||
JPS6236063U (en) * | 1985-08-08 | 1987-03-03 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114622080A (en) * | 2022-03-10 | 2022-06-14 | 云南曲靖钢铁集团凤凰钢铁有限公司 | Refined control smelting system for steelmaking seamless steel pipe |
CN114622080B (en) * | 2022-03-10 | 2023-11-24 | 云南曲靖钢铁集团凤凰钢铁有限公司 | Fine control smelting system for steelmaking seamless steel pipe |
CN114752751A (en) * | 2022-04-29 | 2022-07-15 | 福建鑫盛德电子材料制造有限公司 | Rapid cooling method for precision heat-treated steel strip |
CN114752751B (en) * | 2022-04-29 | 2024-03-19 | 福建鑫盛德电子材料制造有限公司 | Rapid cooling device and method for precise heat-treated steel belt |
Also Published As
Publication number | Publication date |
---|---|
JP4586593B2 (en) | 2010-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2687612B1 (en) | Steel pipe quenching method | |
CN100489123C (en) | Method and apparatus for continuous heat treatment for long bar by inducted heating | |
WO2010122847A1 (en) | Method of producing seamless pipe and apparatus for performing the same | |
JP5082683B2 (en) | Method for predicting surface cracks in continuous cast slabs | |
JP6587993B2 (en) | Steel wire for spring and manufacturing method thereof | |
Tayyebi et al. | Residual stresses of heat-treated and hot-dip galvanized RHS cold-formed by different methods | |
TWI647313B (en) | Continuous annealing equipment for hearth roll, steel plate, and continuous annealing method for steel plate | |
JP4586593B2 (en) | Steel pipe cooling method | |
MX2007003830A (en) | Method and device for shaping wire-shaped and rod-shaped starting materials close to the gauge block, and correspondingly produced flat profiled element. | |
JP2008248334A (en) | Method for manufacturing martensitic stainless steel tube | |
JP4462440B2 (en) | Method for producing hot-rolled bearing steel | |
JP2018009228A (en) | Method for producing steel pipe and quenching device | |
JP5504646B2 (en) | Method of soaking and diffusion treatment of steel | |
JP2002299020A (en) | Heat insulating board of induction heating device | |
JP6962084B2 (en) | A method for determining the cooling rate of a steel pipe and a method for manufacturing a steel pipe using the method. | |
EP1795274B1 (en) | METHOD FOR HOT WORKING OF Cr-CONTAINING STEEL | |
JP2654975B2 (en) | Heat resistant stainless steel roll | |
JP2007031823A (en) | Steel pipe, and pipeline using the steel pipe | |
JP6859886B2 (en) | Pipe end lid and method of manufacturing steel pipe using it | |
JP5071025B2 (en) | Method for evaluating high temperature embrittlement of continuous cast slab and continuous casting method of steel | |
JPS6343446B2 (en) | ||
JP4455274B2 (en) | Heat treatment method for thin steel pipe | |
JPH09316539A (en) | Production of oil well steel pipe having high collapse strength | |
JP2023045068A (en) | Manufacturing method of round billet | |
JP2017221968A (en) | Steel bar cooling method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100506 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100506 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100810 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100823 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4586593 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130917 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |