JP2006255688A - Method for separating water soluble organic substance - Google Patents

Method for separating water soluble organic substance Download PDF

Info

Publication number
JP2006255688A
JP2006255688A JP2006034899A JP2006034899A JP2006255688A JP 2006255688 A JP2006255688 A JP 2006255688A JP 2006034899 A JP2006034899 A JP 2006034899A JP 2006034899 A JP2006034899 A JP 2006034899A JP 2006255688 A JP2006255688 A JP 2006255688A
Authority
JP
Japan
Prior art keywords
water
treated
ozone
soluble organic
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006034899A
Other languages
Japanese (ja)
Inventor
Tsutomu Hiromi
勉 廣見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORIENTAL KIDEN KK
Original Assignee
ORIENTAL KIDEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORIENTAL KIDEN KK filed Critical ORIENTAL KIDEN KK
Priority to JP2006034899A priority Critical patent/JP2006255688A/en
Publication of JP2006255688A publication Critical patent/JP2006255688A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Landscapes

  • Fodder In General (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for separating a water soluble organic substance capable of highly efficiently separating an organic separation substance from water to be treated containing the water soluble organic substance to recover a resource. <P>SOLUTION: The separation method comprises an ozone intimate mixing process for dissolving ozone in the water to be treated containing the water soluble organic substance, a mixing process for mixing the water to be treated through the intimate mixing process with sodium alginate, and a separation process for settling to separate the organic substance dissolved in water by loading the water to be treated through the mixing process with a calcium ion. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、水溶性有機物を含有した処理対象水から高効率で有機物を分離して資源回収するための水溶性有機物の分離方法に関する。   The present invention relates to a method for separating a water-soluble organic substance for recovering resources by separating the organic substance with high efficiency from water to be treated containing the water-soluble organic substance.

なお、この明細書及び特許請求の範囲において、「水溶性」及び「水に溶解」という語には、「有機物のコロイド粒子が水に分散したコロイド溶液状態」等のような有機物が水中に分散された状態も包含される。   In this specification and claims, the terms “water-soluble” and “dissolved in water” include organic substances such as “a colloidal solution state in which organic colloidal particles are dispersed in water”. Included are also included.

従来、水溶性有機物を含有した廃水は、微生物を利用した活性汚泥処理などの生物学的処理が施され、該処理で生成した汚泥は埋立処理又は焼却処理されているのが一般的である。このような生物学的処理方法では、微生物の管理が難しいし、汚泥の埋立処理又は焼却処理のコストが高く付くという問題があった。   Conventionally, wastewater containing water-soluble organic substances has been subjected to biological treatment such as activated sludge treatment using microorganisms, and sludge produced by the treatment is generally landfilled or incinerated. In such a biological treatment method, there are problems that it is difficult to manage microorganisms and that the cost of landfill treatment or incineration treatment of sludge is high.

一方、水溶性有機物を含有した廃水の処理としては、これにメタン発酵処理を施す方法(特許文献1参照)や、これを燃料ガスに変化させて発電に有効利用する方法(特許文献2参照)が提案されてはいるが、その殆どは未だにリサイクル利用(有効利用)されることなく廃棄物として処理されているのが実状である。
特開2004−313929号公報 特開2001−254087号公報
On the other hand, as a treatment of wastewater containing water-soluble organic substances, a method of performing a methane fermentation treatment on the wastewater (see Patent Document 1), or a method of effectively using it for power generation by changing it to a fuel gas (see Patent Document 2). However, most of them are still treated as waste without being recycled (effectively used).
JP 2004-313929 A JP 2001-254087 A

近年、水溶性有機物を含有した廃水の発生量は益々増大する傾向にある状況下において、このような廃水に生物学的処理を施して該処理で発生した汚泥を埋立処理又は焼却処理するという従来技術では、地球環境保護、地球資源の有効利用といった社会的要請に応えることは到底できない。   In recent years, in a situation where the amount of wastewater containing water-soluble organic substances tends to increase more and more, conventional wastewater is subjected to biological treatment, and sludge generated by the treatment is landfilled or incinerated. Technology cannot meet social demands such as global environmental protection and effective use of global resources.

この発明は、かかる技術的背景に鑑みてなされたものであって、従来技術を根底から見直し、水溶性有機物を含有した水を廃棄物として処理するのではなく、有効にリサイクル利用できる資源として分離回収する方法を提供することを目的とするものである。即ち、この発明は、水溶性有機物を含有した処理対象水から高効率で有機分離物を分離して資源回収することのできる水溶性有機物の分離方法を提供することを目的とする。   The present invention has been made in view of such a technical background. The conventional technology has been fundamentally reviewed and water containing water-soluble organic substances is not treated as waste, but separated as a resource that can be effectively recycled. The object is to provide a method of recovery. That is, an object of the present invention is to provide a method for separating a water-soluble organic substance, which can efficiently separate an organic isolate from a water to be treated containing the water-soluble organic substance and recover resources.

前記目的を達成するために、本発明は以下の手段を提供する。   In order to achieve the above object, the present invention provides the following means.

[1]水溶性有機物を含有した処理対象水にオゾンを溶解せしめるオゾン混和工程と、前記混和工程を経た処理対象水にアルギン酸ナトリウム(アルギン酸ソーダ)を混合する混合工程と、前記混合工程を経た処理対象水にカルシウムイオンを添加することによって、水に溶解していた有機物を沈殿分離せしめる分離工程と、を包含することを特徴とする水溶性有機物の分離方法。   [1] An ozone mixing step in which ozone is dissolved in water to be treated containing water-soluble organic matter, a mixing step in which sodium alginate (sodium alginate) is mixed in the water to be treated after the mixing step, and a treatment through the mixing step A separation step of precipitating and separating organic matter dissolved in water by adding calcium ions to the target water.

[2]前記処理対象水に塩化カルシウムまたは炭酸カルシウムを添加することで前記カルシウムイオンの添加を行う前項1に記載の水溶性有機物の分離方法。   [2] The method for separating a water-soluble organic substance according to item 1, wherein the calcium ions are added by adding calcium chloride or calcium carbonate to the water to be treated.

[3]水溶性有機物を含有した処理対象水にオゾンを溶解せしめるオゾン混和工程と、前記混和工程を経た処理対象水にアルギン酸ナトリウム(アルギン酸ソーダ)を混合する混合工程と、前記混合工程を経た処理対象水にナトリウムイオンを添加することによって、水に溶解していた有機物を浮上分離せしめる分離工程と、を包含することを特徴とする水溶性有機物の分離方法。   [3] An ozone mixing step in which ozone is dissolved in the water to be treated containing a water-soluble organic substance, a mixing step in which sodium alginate (sodium alginate) is mixed in the water to be treated after the mixing step, and a treatment through the mixing step A separation step of levitating and separating an organic substance dissolved in water by adding sodium ions to the target water, and a method for separating a water-soluble organic substance.

[4]前記処理対象水に過炭酸ナトリウムを添加することで前記ナトリウムイオンの添加を行う前項3に記載の水溶性有機物の分離方法。   [4] The method for separating a water-soluble organic material according to item 3, wherein the sodium ion is added by adding sodium percarbonate to the water to be treated.

[5]オゾン混和工程を経た後の処理対象水のBODが、オゾン混和前の処理対象水のBODの50%以下になるように処理対象水へのオゾン注入量を設定する前項1〜4のいずれか1項に記載の水溶性有機物の分離方法。   [5] The items 1 to 4 above, wherein the amount of ozone injected into the water to be treated is set so that the BOD of the water to be treated after the ozone mixing step is 50% or less of the BOD of the water to be treated before mixing with ozone. The method for separating a water-soluble organic substance according to any one of the above.

[6]前記オゾン混和工程において、二相流混合方式、対向流混合方式または旋回式微細気泡発生装置によるマイクロ・ナノバブル方式を用いて処理対象水にオゾンを溶解せしめる前項1〜5のいずれか1項に記載の水溶性有機物の分離方法。   [6] In the ozone mixing step, any one of items 1 to 5 above, wherein ozone is dissolved in the water to be treated using a two-phase flow mixing method, a counter-flow mixing method, or a micro / nano bubble method using a swirling fine bubble generator. The method for separating a water-soluble organic substance according to Item.

[7]前記アルギン酸ナトリウムのアルギン酸として、β−D−マンヌロン酸及びα−L−グルロン酸からなる直鎖状多糖体を用いることを特徴とする前項1〜6のいずれか1項に記載の水溶性有機物の分離方法。   [7] The aqueous solution according to any one of items 1 to 6, wherein a linear polysaccharide composed of β-D-mannuronic acid and α-L-guluronic acid is used as the alginic acid of the sodium alginate. To separate organic substances.

[8]前記分離工程で得た沈殿物または浮上物に含まれる水分を除去する脱水工程を含むことを特徴とする前項1〜7のいずれか1項に記載の水溶性有機物の分離方法。   [8] The method for separating a water-soluble organic material according to any one of items 1 to 7, further comprising a dehydration step of removing water contained in the precipitate or floating matter obtained in the separation step.

[9]前記水分除去操作を遠心分離機またはデカンタ脱水機を用いて行う前項8に記載の水溶性有機物の分離方法。   [9] The method for separating a water-soluble organic substance according to item 8, wherein the water removal operation is performed using a centrifuge or a decanter dehydrator.

[10]前項8または9に記載の分離方法により得られた脱水ケーキを含有してなることを特徴とする食料。   [10] A food comprising the dehydrated cake obtained by the separation method according to item 8 or 9.

[11]前項8または9に記載の分離方法により得られた脱水ケーキを含有してなることを特徴とする飼料。   [11] A feed comprising the dehydrated cake obtained by the separation method according to 8 or 9 above.

[12]前項8または9に記載の分離方法により得られた脱水ケーキを含有してなることを特徴とする肥料(土壌改良剤を含む)。   [12] A fertilizer (including a soil conditioner) comprising the dehydrated cake obtained by the separation method according to 8 or 9 above.

この発明に係る水溶性有機物の分離方法によれば、水溶性有機物を含有した処理対象水に対して、オゾンによる凝集作用・アルギン酸ナトリウムによる捕集効果・カルシウムイオンの添加による中和作用による沈殿分離作用(又はナトリウムイオンの添加による中和作用による浮上分離作用)等が順次働くことによって、処理対象水からの有機物の分離効率(分離量)を顕著に高めることができる。即ち、水溶性有機物を含有した処理対象水から高効率で有機分離物を分離して資源回収することができる。前記オゾン混和工程では、オゾン酸化による粒状物や有機物の低分子化による粒径分布の変化や粒子表面性状の電位変化が結果として凝集効果を高めるものと考えられる。   According to the method for separating a water-soluble organic substance according to the present invention, a precipitate separation by agglomeration action by ozone, a collection effect by sodium alginate, and a neutralization action by addition of calcium ions to water to be treated containing the water-soluble organic substance. The action (or the floating separation action by the neutralization action by adding sodium ions) and the like work sequentially, so that the separation efficiency (separation amount) of the organic matter from the water to be treated can be significantly increased. That is, it is possible to recover the resources by separating the organic isolate from the water to be treated containing the water-soluble organic matter with high efficiency. In the ozone mixing step, it is considered that the change in the particle size distribution due to the low molecular weight of the particulate matter or organic matter due to the ozone oxidation and the potential change in the particle surface property enhance the aggregation effect as a result.

また、処理対象水に塩化カルシウムまたは炭酸カルシウムを添加することでカルシウムイオンの添加を行う場合には、有機分離物の沈殿分離性(沈降性)を向上させることができる、即ち処理対象水からの有機物の分離効率をより一層向上させることができる。   In addition, when calcium ions are added by adding calcium chloride or calcium carbonate to the water to be treated, the precipitation separation property (sedimentation) of the organic separated substance can be improved, that is, from the water to be treated. The organic substance separation efficiency can be further improved.

また、処理対象水に過炭酸ナトリウムを添加することでナトリウムイオンの添加を行う場合には、有機分離物の浮上分離性を高めることができる、即ち処理対象水からの有機物の分離効率をより一層向上させることができる。   In addition, when sodium ion is added by adding sodium percarbonate to the water to be treated, the floating separation property of the organic separated matter can be improved, that is, the separation efficiency of the organic matter from the water to be treated is further increased. Can be improved.

この発明の分離方法を経て資源回収された有機分離物は、例えば食料、飼料、肥料(土壌改良剤を含む)等として有効利用できる。   The organic isolate recovered through the separation method of the present invention can be effectively used as, for example, food, feed, fertilizer (including soil conditioner) and the like.

本発明は、いかなる濃度の有機物を含有した水に対しても適用可能であるが、好ましくは、水溶性有機物の有機炭素量(TOC)が5000mg/L又は生物化学的酸素要求量(BOD)が10000mg/L以上である水(有機物を高濃度に含有した処理対象水)を対象とする。このような処理対象水としては、特に限定されるものではないが、例えば醤油、ジュース、牛乳、チーズホエー、澱粉廃液、アミノ酸廃液、ウイスキー廃液、焼酎廃液等の他、スラリー状物質(マヨネーズ、ドレッシング、魚油)等が挙げられる。   The present invention can be applied to water containing any concentration of organic matter, but preferably the water-soluble organic matter has an organic carbon content (TOC) of 5000 mg / L or a biochemical oxygen demand (BOD). The target is water that is 10,000 mg / L or more (treatment target water containing an organic substance at a high concentration). Such water to be treated is not particularly limited, but for example, soy sauce, juice, milk, cheese whey, starch waste liquid, amino acid waste liquid, whiskey waste liquid, shochu waste liquid, etc., as well as slurry substances (mayonnaise, dressing) , Fish oil) and the like.

一般に、懸濁物質は不溶解性でしかも粒子径や密度が大きいものほど沈降分離しやすい性質がある。この粒子径や密度による沈降分離のしやすさは、沈降速度で比較される。沈降速度とは、粒子が水中を沈降するときの速度であり、次のようなStokesの式で表される。
V=gn・Dp 2(ρp−ρ)/18η
V:沈降速度、gn:重力加速度、Dp:粒子の直径、(ρp−ρ):粒子と水の密度差、η:水の粘度
例えば、密度が同じで粒子径が異なる物質と、粒子径が同じで密度が異なる物質について、Stokesの式にあてはめると、粒子径及び密度の小さい物質は極めて沈降し難いことがわかる。従って、懸濁している微粒子を凝集させて大きな粒子とすることは、固液分離を容易にする上で重要である。
In general, suspended substances are more insoluble and have a property of being more easily settled and separated as the particle diameter and density increase. The ease of sedimentation separation by the particle size and density is compared by sedimentation speed. The sedimentation speed is the speed at which particles settle in water, and is represented by the following Stokes equation.
V = gn · D p 2p −ρ) / 18η
V: sedimentation speed, gn: gravitational acceleration, D p : particle diameter, (ρ p −ρ): particle and water density difference, η: water viscosity For example, a substance having the same density but different particle diameter and particle When substances having the same diameter but different densities are applied to the Stokes' formula, it can be seen that substances having a small particle diameter and density are extremely difficult to settle. Therefore, aggregating suspended fine particles into large particles is important for facilitating solid-liquid separation.

表面がマイナスに帯電した懸濁物質は、粒子同士が互いに反発し合って安定な状態(沈殿しない状態)にあり、オゾン反応により表面荷電の中和が可能となる。オゾン反応のエレクトロリックカチオン作用は微小フロック形成をもたらし、次に凝結作用で形成された微小フロックを架橋によって粗大なフロックにする必要がある。その働きをするのがアルギン酸ナトリウムである。   The suspended substance whose surface is negatively charged is in a stable state (a state in which precipitation does not occur) because the particles repel each other, and the surface charge can be neutralized by the ozone reaction. The electrocationic action of the ozone reaction results in the formation of micro flocs, and then the micro flocs formed by the condensing action need to be made into coarse flocs by crosslinking. It is sodium alginate that works.

以下、この発明の水溶性有機物の分離方法について工程順に説明する。   Hereinafter, the water-soluble organic substance separation method of the present invention will be described in the order of steps.

[オゾン混和工程]
まず、オゾン混和工程について説明する。このオゾン混和工程では、前記水溶性有機物を含有した処理対象水にオゾンを溶解せしめる。オゾンの添加により十分な凝集作用が働く。このオゾン添加による凝集改善は、全有機炭素(TOC)・生物化学的酸素要求量(BOD)等の総括的物質移動係数、撹拌速度、気流速度の関数であり、BOD・TOCの数値低減(除去率)となって反映される。
[Ozone mixing process]
First, the ozone mixing step will be described. In this ozone mixing step, ozone is dissolved in the water to be treated containing the water-soluble organic matter. Sufficient agglomeration works by adding ozone. This aggregation improvement by adding ozone is a function of overall mass transfer coefficient such as total organic carbon (TOC) and biochemical oxygen demand (BOD), agitation speed, and airflow speed, and numerical reduction (removal of BOD / TOC). Rate) and reflected.

オゾンによる凝集操作は、水中のコロイド次元(1nm〜100nm)から巨大次元のもの、さらには自重沈殿では時間のかかりすぎる微細な浮遊有機物質(1〜50μm)を凝結させ、また自重沈殿可能な粒子まで成長させるものである。   The agglomeration operation with ozone condenses fine floating organic substances (1 to 50 μm) that take too much time from colloidal dimensions (1 nm to 100 nm) in water to huge dimensions, and too much time for self-weight precipitation. To grow up to.

凝結を起こさせるのに必要な凝結剤の最小濃度(凝結価Cとする)と原子価(価数u)との間には、Schulze−Hardyの法則により、C/u6の関係がある。従って、1価、2価、3価のイオンの凝結価は1:(1/26):(1/36)の比率になる。 There is a C / u 6 relationship between the minimum concentration of the coagulant necessary for causing the coagulation (condensation value C) and the valence (valence u) according to the Schulze-Hardy law. Accordingly, the condensation value of monovalent, divalent and trivalent ions is 1: (1/2 6 ) :( 1/3 6 ).

従って、この反応を水溶性基質に導入すると、少なくともこれらの粒子・コロイド群に作用し、オゾン酸化による粒状物や有機物の低分子化による粒径分布の変化や粒子表面性状の電位変化が結果として凝集効果を高めるものと考えられる。   Therefore, when this reaction is introduced into a water-soluble substrate, it acts on at least these particles and colloid groups, resulting in changes in the particle size distribution due to the low molecular weight of particulate matter and organic matter due to ozone oxidation and potential changes in the particle surface properties. It is considered that the aggregation effect is enhanced.

凝集反応には、タンパク質等を含む有機系高分子を低分子化させる効果や、官能基や不飽和結合部が部分的に酸化を受けて生分解性を高める効果もある。   The agglutination reaction has the effect of reducing the molecular weight of organic polymers including proteins and the like, and also has the effect of enhancing the biodegradability by partially oxidizing functional groups and unsaturated bonds.

オゾンを添加する(オゾンを溶解させる)手法としては、特に限定されないが、例えば特開2004−344833号公報に記載の二相流ポンプ、特開2001−340881号公報や特開2000−301175号公報に記載の技術(対向流混合方式等)等が挙げられる。また、オゾンの添加を旋回式微細気泡発生装置を用いて行うようにしても良い。この時、気泡の粒径はマイクロ・ナノバブル(粒径10-3〜10-9m)であるのが好ましい。旋回式微細気泡発生装置としては、例えば特開2002−143885号公報、特開2003−181259号公報、特開2000−447号公報、特開2002−200489号公報に記載の装置を用いることができる。大量のマイクロ・ナノバブルを水中で発生させ、気泡サイズが小さくなることによって、固有の物理化学的症状があらわれる。その特長は、マイクロ・ナノバブルの発生時に強烈な気体と液体の摩擦が生じ、静電分極によるマイナス電位を有するということである。 The method of adding ozone (dissolving ozone) is not particularly limited, but for example, a two-phase flow pump described in JP-A-2004-344833, JP-A-2001-340881, or JP-A-2000-301175. (Counterflow mixing method etc.) described in the above. Further, ozone may be added using a swirling fine bubble generator. At this time, it is preferable that the bubble has a micro-nano bubble (particle size: 10 −3 to 10 −9 m). As the swirling fine bubble generating device, for example, the devices described in JP-A Nos. 2002-143895, 2003-181259, 2000-447, and 2002-200209 can be used. . A large amount of micro / nano bubbles are generated in water and the bubble size is reduced, so that specific physicochemical symptoms appear. Its feature is that when micro / nano bubbles are generated, intense friction between gas and liquid occurs, and it has a negative potential due to electrostatic polarization.

なお、前記処理対象水へのオゾン注入量(混和量)については、オゾン混和工程を経た後の処理対象水のBODが、オゾン混和前の処理対象水のBODの50%以下になるように設定するのが好ましい。   The ozone injection amount (mixing amount) into the treatment target water is set so that the BOD of the treatment target water after the ozone mixing step is 50% or less of the BOD of the treatment target water before mixing with ozone. It is preferable to do this.

[混合工程]
次に、前記オゾン混和工程を経た処理対象水にアルギン酸ナトリウムを混合する。このアルギン酸ナトリウムを混合することによって、凝集有機物を十分に捕集することができる。
[Mixing process]
Next, sodium alginate is mixed with the water to be treated after the ozone mixing step. By mixing this sodium alginate, the aggregated organic matter can be sufficiently collected.

この混合工程で用いるアルギン酸ナトリウムのアルギン酸原料としては、特に限定されるものではないが、例えば褐藻植物門のコンブ目等が挙げられる。前記褐藻植物門のコンブ目としては、例えば、北米を原産とするジャイアントケルプ(マクロシスティス属/ Macrocystis)、南米チリを原産とするレッソニア(レッソニア属/Lessonia)、北海道に多く産するコンブ・ワカメ・もずく(コンブ属/ Laminaria)等が挙げられる。   The alginate raw material of sodium alginate used in this mixing step is not particularly limited, and examples thereof include the order of the brown alga planta. For example, Giant Kelp (Macrocystis spp.) That originates in North America, Lessonia (Lessonia spp.) Native to Chile, South America -Mozuku (Kumbu genus / Laminaria) and the like.

中でも、前記アルギン酸ナトリウムのアルギン酸としては、β−D−マンヌロン酸及びα−L−グルロン酸からなる直鎖状多糖体を用いるのが好ましく、この場合にはアルギン酸ナトリウムによる捕集効果をさらに向上させることができる。β−D−マンヌロン酸及びα−L−グルロン酸は、アルギン酸の性質であるゲル化能力とゲル強度が顕著に現れるウロン酸であり、これら2種類のウロン酸がもつカルボキシル基(−COO- )は、イオン交換しやすく、さまざまな陽イオンと容易にイオン交換することにより物性が安定して凝集捕集性を大幅に向上させることができる。 Among them, as the alginic acid of the sodium alginate, it is preferable to use a linear polysaccharide composed of β-D-mannuronic acid and α-L-guluronic acid. In this case, the collection effect by sodium alginate is further improved. be able to. β-D-mannuronic acid and α-L-guluronic acid are uronic acids in which the gelation ability and gel strength, which are the properties of alginic acid, remarkably appear, and the carboxyl groups (—COO ) of these two types of uronic acids. Can be easily ion-exchanged, and by easily ion-exchanging with various cations, the physical properties can be stabilized and the aggregation and collection properties can be greatly improved.

[分離工程]
次に、前記混合工程を経た処理対象水にカルシウムイオンを添加することによって、水に溶解していた有機物を沈殿分離せしめる。カルシウムイオンの中和作用によって有機物の沈殿分離が生じる。前記カルシウムイオンの添加手法は、特に限定されるものではないが、前記処理対象水に塩化カルシウムまたは炭酸カルシウムを添加する方法が好ましい。塩化カルシウムまたは炭酸カルシウムを添加する方法を用いた場合には、有機分離物の沈殿分離性(沈降性)をより向上させることができる利点がある。
[Separation process]
Next, by adding calcium ions to the water to be treated after the mixing step, the organic matter dissolved in the water is precipitated and separated. Precipitation separation of organic matter occurs due to the neutralizing action of calcium ions. Although the addition method of the said calcium ion is not specifically limited, The method of adding calcium chloride or calcium carbonate to the said process target water is preferable. When the method of adding calcium chloride or calcium carbonate is used, there is an advantage that the precipitation separation property (sedimentation property) of the organic isolate can be further improved.

或いは、前記カルシウムイオンの添加に代えて、ナトリウムイオンの添加を行うようにしても良い。即ち、前記混合工程を経た処理対象水にナトリウムイオンを添加することによって、水に溶解していた有機物を浮上分離せしめる。ナトリウムイオンの中和作用によって有機物の浮上分離が生じる。前記ナトリウムイオンの添加手法は、特に限定されるものではないが、前記処理対象水に過炭酸ナトリウムを添加する方法が好ましい。過炭酸ナトリウムを添加する方法を用いた場合には、有機分離物の浮上分離性をより向上させることができる利点がある。   Alternatively, sodium ions may be added instead of the calcium ions. That is, by adding sodium ions to the water to be treated after the mixing step, the organic matter dissolved in the water is floated and separated. The neutralization of sodium ions causes floating separation of organic matter. The method for adding the sodium ion is not particularly limited, but a method of adding sodium percarbonate to the water to be treated is preferable. When the method of adding sodium percarbonate is used, there is an advantage that the floating separation property of the organic isolate can be further improved.

[脱水工程]
次に、前記分離工程で得られた有機沈殿物または有機浮上物に含まれる水分を除去することによって、脱水ケーキを得る。水分を除去する方法は、特に限定されるものではないが、遠心分離機またはデカンタ脱水機を用いて水分除去を行うのが好ましい。
[Dehydration process]
Next, a dehydrated cake is obtained by removing the water contained in the organic precipitate or the organic floating matter obtained in the separation step. The method for removing moisture is not particularly limited, but it is preferable to remove moisture using a centrifuge or a decanter dehydrator.

オゾンによる混和工程のみを経た後に脱水を試みても、脱水が十分に行われず、脱水ケーキが得られ難いのであるが、本発明では、オゾンによる凝集作用の後、アルギン酸ナトリウムによる捕集作用、さらにカルシウムイオンの添加による中和作用による沈殿分離作用(又はナトリウムイオンの添加による中和作用による浮上分離作用)等が順次働くので、例えば遠心分離の際の遠心力は、従来の一般的な横型デカンタで充分であり、粘性係数を改善する必要も特にない。   Even if the dehydration is attempted after only the mixing step with ozone, the dehydration is not sufficiently performed and it is difficult to obtain a dehydrated cake.In the present invention, after the aggregating action by ozone, the collecting action by sodium alginate, For example, the centrifugal force during centrifugation is the same as that of a conventional horizontal decanter because precipitation separation by neutralization by adding calcium ions (or floating separation by neutralization by adding sodium ions) and the like work sequentially. Is sufficient, and there is no particular need to improve the viscosity coefficient.

この脱水工程によって得られた脱水ケーキは、例えば食料(調味料等)、飼料、肥料(土壌改良剤を含む)等として利用することができる。   The dehydrated cake obtained by this dehydration step can be used, for example, as food (condiment etc.), feed, fertilizer (including soil conditioner) and the like.

この発明に係る水溶性有機物の分離方法は、上記例示した形態のものに特に限定されるものではなく、請求の範囲内であれば、その精神を逸脱するものでない限りいかなる設計的変更をも許容するものである。   The method for separating a water-soluble organic substance according to the present invention is not particularly limited to the above-exemplified form, and any design change is allowed as long as it does not depart from the spirit of the claims. To do.

次に、この発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。   Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.

<実施例1>
処理対象水として馬鈴薯澱粉の製造過程で得られたデカンタ脱汁を用いた。このデカンタ脱汁の有機物含有特性(BOD、COD、TOC等)は表1に示したとおりである。このデカンタ脱汁は、グルコース、フルクトース、スクロール等を含有していて、発泡性があり消泡が困難な性状であった。
<Example 1>
The decanter soup obtained in the process of producing potato starch was used as the water to be treated. The organic substance-containing characteristics (BOD, COD, TOC, etc.) of this decanter juice are as shown in Table 1. This decanter broth contained glucose, fructose, scrolls, etc., and had a foaming property and was difficult to defoam.

前記デカンタ脱汁(処理対象水)にオゾンを二相流混合方式により80mg/L注入して溶解せしめた(オゾン混和工程)。   Ozone was injected into the decanter soup (water to be treated) at 80 mg / L by a two-phase flow mixing method and dissolved (ozone mixing step).

次いで、予め細断してミキサーで破砕した北海道産のコンブ(アルギン酸としてβ−D−マンヌロン酸及びα−L−グルロン酸からなる直鎖状多糖体を含有する)をpH12の炭酸ナトリウム水溶液に溶解させることによってアルギン酸ナトリウム水溶液を得た。このアルギン酸ナトリウム水溶液におけるアルギン酸の濃度は0.5質量%であった。前記オゾン混和工程を経た処理対象水100mLに、前記アルギン酸ナトリウム水溶液100mLを混合して十分に攪拌した(混合工程)。   Next, Hokkaido-produced kombu (containing a linear polysaccharide composed of β-D-mannuronic acid and α-L-guluronic acid as alginic acid) previously chopped and crushed with a mixer is dissolved in an aqueous sodium carbonate solution having a pH of 12 To obtain an aqueous solution of sodium alginate. The concentration of alginic acid in this aqueous sodium alginate solution was 0.5% by mass. 100 mL of the sodium alginate aqueous solution was mixed with 100 mL of the water to be treated that had undergone the ozone mixing step and sufficiently stirred (mixing step).

しかる後、前記混合工程を経た処理対象水に塩化カルシウムを3g添加して十分に攪拌した後、室温で静置した。静置することにより、凝集捕集された有機物が沈殿分離された(分離工程)。   Thereafter, 3 g of calcium chloride was added to the water to be treated after the mixing step and stirred sufficiently, and then allowed to stand at room temperature. By allowing to stand, the organic matter collected and collected was separated by precipitation (separation step).

こうして分離された有機沈殿分離物から遠心分離機を用いて含有水分を除去することによって脱水ケーキを得た(脱水工程)。   A dehydrated cake was obtained by removing the water content from the organic precipitate separated in this way using a centrifuge (dehydration step).

前記分離工程での上澄み液及び脱水残液(1次処理水)の有機物含有特性(BOD、COD、TOC等)は表1に示したとおりである。この1次処理水にさらにオゾンを二相流混合方式により80mg/L注入して溶解せしめた(オゾン混和工程;2次オゾン反応)。このオゾン混和工程を経た処理対象水に、同体積量のアルギン酸ナトリウム水溶液(アルギン酸の濃度0.5質量%)を混合して十分に攪拌した(混合工程)。しかる後、過炭酸ナトリウムを3g添加して十分に攪拌した後、室温で静置した。静置することにより、凝集捕集された有機物が浮上分離された(分離工程)。こうして浮上分離された有機浮上分離物から遠心分離機を用いて含有水分を除去することによって脱水ケーキを得た(脱水工程)。   The organic substance-containing properties (BOD, COD, TOC, etc.) of the supernatant and dehydrated residue (primary treated water) in the separation step are as shown in Table 1. Further, 80 mg / L of ozone was injected into this primary treated water by a two-phase flow mixing method and dissolved (ozone mixing step; secondary ozone reaction). An aqueous sodium alginate solution (concentration of alginic acid of 0.5% by mass) having the same volume was mixed with the water to be treated that had undergone the ozone mixing step and sufficiently stirred (mixing step). Thereafter, 3 g of sodium percarbonate was added and stirred sufficiently, and then allowed to stand at room temperature. By allowing to stand, the organic matter collected and collected was floated and separated (separation step). The dehydrated cake was obtained by removing the water content from the organic levitation separated thus separated using a centrifuge (dehydration step).

前記分離工程での下澄み液及び脱水残液(2次処理水)の有機物含有特性(BOD、COD、TOC等)は表1に示したとおりである。この2次処理水にさらにオゾンを二相流混合方式により80mg/L注入して溶解せしめた(オゾン混和工程;3次オゾン反応)。このオゾン混和工程を経た処理対象水に、同体積量のアルギン酸ナトリウム水溶液(アルギン酸の濃度0.5質量%)を混合して十分に攪拌した(混合工程)。しかる後、過炭酸ナトリウムを3g添加して十分に攪拌した後、室温で静置した。静置することにより、凝集捕集された有機物が浮上分離された(分離工程)。こうして浮上分離された有機浮上分離物から遠心分離機を用いて含有水分を除去することによって脱水ケーキを得た(脱水工程)。   The organic substance-containing characteristics (BOD, COD, TOC, etc.) of the supernatant and dehydrated residue (secondary treated water) in the separation step are as shown in Table 1. Further, 80 mg / L of ozone was injected into the secondary treated water by a two-phase flow mixing method and dissolved (ozone mixing step; tertiary ozone reaction). An aqueous sodium alginate solution (concentration of alginic acid of 0.5% by mass) having the same volume was mixed with the water to be treated that had undergone the ozone mixing step and sufficiently stirred (mixing step). Thereafter, 3 g of sodium percarbonate was added and stirred sufficiently, and then allowed to stand at room temperature. By allowing to stand, the organic matter collected and collected was floated and separated (separation step). The dehydrated cake was obtained by removing the water content from the organic levitation separated thus separated using a centrifuge (dehydration step).

前記分離工程での下澄み液及び脱水残液(3次処理水)の有機物含有特性(BOD、COD、TOC等)は表1に示したとおりであり、有機物含有量が極めて少ないことがわかる。この3次処理水は活性汚泥処理したのち再利用水として循環使用した(以上、図1の工程図参照)。   The organic substance-containing properties (BOD, COD, TOC, etc.) of the supernatant and dehydrated residue (tertiary treated water) in the separation step are as shown in Table 1, and it can be seen that the organic substance content is extremely low. This tertiary treated water was treated as activated sludge and then recycled as reused water (see the process diagram of FIG. 1 above).

Figure 2006255688
Figure 2006255688

実施例1の工程概略説明図である。2 is a process schematic explanatory diagram of Example 1. FIG.

Claims (12)

水溶性有機物を含有した処理対象水にオゾンを溶解せしめるオゾン混和工程と、
前記混和工程を経た処理対象水にアルギン酸ナトリウムを混合する混合工程と、
前記混合工程を経た処理対象水にカルシウムイオンを添加することによって、水に溶解していた有機物を沈殿分離せしめる分離工程と、を包含することを特徴とする水溶性有機物の分離方法。
An ozone mixing step for dissolving ozone in water to be treated containing water-soluble organic matter;
A mixing step of mixing sodium alginate with the water to be treated after the mixing step;
A separation step of precipitating and separating organic matter dissolved in water by adding calcium ions to the water to be treated after the mixing step.
前記処理対象水に塩化カルシウムまたは炭酸カルシウムを添加することで前記カルシウムイオンの添加を行う請求項1に記載の水溶性有機物の分離方法。   The method for separating a water-soluble organic substance according to claim 1, wherein the calcium ions are added by adding calcium chloride or calcium carbonate to the water to be treated. 水溶性有機物を含有した処理対象水にオゾンを溶解せしめるオゾン混和工程と、
前記混和工程を経た処理対象水にアルギン酸ナトリウムを混合する混合工程と、
前記混合工程を経た処理対象水にナトリウムイオンを添加することによって、水に溶解していた有機物を浮上分離せしめる分離工程と、を包含することを特徴とする水溶性有機物の分離方法。
An ozone mixing step for dissolving ozone in water to be treated containing water-soluble organic matter;
A mixing step of mixing sodium alginate with the water to be treated after the mixing step;
A separation step of levitating and separating organic matter dissolved in water by adding sodium ions to the water to be treated after the mixing step, and a method for separating a water-soluble organic matter.
前記処理対象水に過炭酸ナトリウムを添加することで前記ナトリウムイオンの添加を行う請求項3に記載の水溶性有機物の分離方法。   The method for separating a water-soluble organic substance according to claim 3, wherein the sodium ion is added by adding sodium percarbonate to the water to be treated. オゾン混和工程を経た後の処理対象水のBODが、オゾン混和前の処理対象水のBODの50%以下になるように処理対象水へのオゾン注入量を設定する請求項1〜4のいずれか1項に記載の水溶性有機物の分離方法。   The amount of ozone injection into the water to be treated is set so that the BOD of the water to be treated after the ozone mixing step is 50% or less of the BOD of the water to be treated before mixing with ozone. 2. A method for separating a water-soluble organic material according to item 1. 前記オゾン混和工程において、二相流混合方式、対向流混合方式または旋回式微細気泡発生装置によるマイクロ・ナノバブル方式を用いて処理対象水にオゾンを溶解せしめる請求項1〜5のいずれか1項に記載の水溶性有機物の分離方法。   In the ozone mixing step, ozone is dissolved in the water to be treated using a two-phase flow mixing method, a counter-flow mixing method, or a micro / nano bubble method using a swirling fine bubble generator. The method for separating a water-soluble organic substance as described. 前記アルギン酸ナトリウムのアルギン酸として、β−D−マンヌロン酸及びα−L−グルロン酸からなる直鎖状多糖体を用いることを特徴とする請求項1〜6のいずれか1項に記載の水溶性有機物の分離方法。   The water-soluble organic substance according to any one of claims 1 to 6, wherein a linear polysaccharide comprising β-D-mannuronic acid and α-L-guluronic acid is used as the alginic acid of the sodium alginate. Separation method. 前記分離工程で得た沈殿物または浮上物に含まれる水分を除去する脱水工程を含むことを特徴とする請求項1〜7のいずれか1項に記載の水溶性有機物の分離方法。   The method for separating a water-soluble organic substance according to any one of claims 1 to 7, further comprising a dehydration process for removing water contained in the precipitate or floating substance obtained in the separation process. 前記水分除去操作を遠心分離機またはデカンタ脱水機を用いて行う請求項8に記載の水溶性有機物の分離方法。   The method for separating a water-soluble organic substance according to claim 8, wherein the water removal operation is performed using a centrifuge or a decanter dehydrator. 請求項8または9に記載の分離方法により得られた脱水ケーキを含有してなることを特徴とする食料。   A food comprising the dehydrated cake obtained by the separation method according to claim 8 or 9. 請求項8または9に記載の分離方法により得られた脱水ケーキを含有してなることを特徴とする飼料。   A feed comprising the dehydrated cake obtained by the separation method according to claim 8 or 9. 請求項8または9に記載の分離方法により得られた脱水ケーキを含有してなることを特徴とする肥料。   A fertilizer comprising the dehydrated cake obtained by the separation method according to claim 8 or 9.
JP2006034899A 2005-02-17 2006-02-13 Method for separating water soluble organic substance Withdrawn JP2006255688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034899A JP2006255688A (en) 2005-02-17 2006-02-13 Method for separating water soluble organic substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005041070 2005-02-17
JP2006034899A JP2006255688A (en) 2005-02-17 2006-02-13 Method for separating water soluble organic substance

Publications (1)

Publication Number Publication Date
JP2006255688A true JP2006255688A (en) 2006-09-28

Family

ID=37095469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034899A Withdrawn JP2006255688A (en) 2005-02-17 2006-02-13 Method for separating water soluble organic substance

Country Status (1)

Country Link
JP (1) JP2006255688A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116514A1 (en) * 2008-03-21 2009-09-24 メタウォーター株式会社 Process for producing recycled water
JP2009279537A (en) * 2008-05-23 2009-12-03 Ihi Corp Pressurized floating apparatus and pressurized floating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116514A1 (en) * 2008-03-21 2009-09-24 メタウォーター株式会社 Process for producing recycled water
AU2009227190B2 (en) * 2008-03-21 2013-08-22 Metawater Co., Ltd. Process for producing reclaimed water
JP2009279537A (en) * 2008-05-23 2009-12-03 Ihi Corp Pressurized floating apparatus and pressurized floating method

Similar Documents

Publication Publication Date Title
Yusoff et al. Floc behavior and removal mechanisms of cross-linked Durio zibethinus seed starch as a natural flocculant for landfill leachate coagulation-flocculation treatment
CA2667933C (en) Method for dispersing and aggregating components of mineral slurries
Chen et al. Influence of extracellular polymeric substances (EPS) treated by combined ultrasound pretreatment and chemical re-flocculation on water treatment sludge settling performance
US6042732A (en) Starch/cationic polymer combinations as coagulants for the mining industry
CN101668709B (en) Method for floatation-clarification of difficult water and facility for implementing same
US11027993B2 (en) Oil sands tailings treatment
CN101037354A (en) Method for producing liquid organic fertilizer by using organic fertilizer
CN205740628U (en) A kind of Novel water-purifying system
CN1458076A (en) Coagulating and dewatering treatment method for waste drilling fluid
CN1642862A (en) Method and device for clarification of liquids, particularly water, loaded with material in suspension
CN104326625B (en) A kind for the treatment of process of black water
KR100939070B1 (en) Manufacturing method for acid fermentation of organic wastewater by combined micro bubble flotation and upflow biological filter fermentation process
Chen et al. The dewatering performance and cracking-flocculation-skeleton mechanism of bioleaching-coal fly ash combined process for sewage sludge
AU2013298635B2 (en) Concentration of suspensions
CN105821082B (en) Application of the Pseudoalteromonas in preparation nano material
Cao et al. Recovery of polymeric substances from excess sludge: Surfactant-enhanced ultrasonic extraction and properties analysis
CN110420482A (en) A kind of composite flocculation agent for handling oil-sand mine tailing and the processing method for curing thin tailing
JP2006255688A (en) Method for separating water soluble organic substance
JP4625894B2 (en) Wastewater treatment method and treatment apparatus
US20120018383A1 (en) Method for dispersing and aggregating components of mineral slurries
CN108455695A (en) A kind of impact-resistant efficient air-floating system and its sewage water treatment method
CN204125214U (en) The highly dense settler of a kind of magnetic
JPH0796284A (en) Treatment of oil-containing waste water
CN110510798B (en) Method for deeply treating ASP flooding produced water by using microbubbles
CN208413913U (en) A kind of impact-resistant efficient air-floating system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512