JP2006255638A - Catalyst for exhaust-gas cleaning and exhaust-gas cleaning apparatus equipped with the catalyst for exhaust-gas cleaning - Google Patents

Catalyst for exhaust-gas cleaning and exhaust-gas cleaning apparatus equipped with the catalyst for exhaust-gas cleaning Download PDF

Info

Publication number
JP2006255638A
JP2006255638A JP2005078993A JP2005078993A JP2006255638A JP 2006255638 A JP2006255638 A JP 2006255638A JP 2005078993 A JP2005078993 A JP 2005078993A JP 2005078993 A JP2005078993 A JP 2005078993A JP 2006255638 A JP2006255638 A JP 2006255638A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
cell
exhaust
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005078993A
Other languages
Japanese (ja)
Other versions
JP4904705B2 (en
Inventor
Mitsuru Minami
充 南
Yoshihisa Suzuki
良尚 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005078993A priority Critical patent/JP4904705B2/en
Publication of JP2006255638A publication Critical patent/JP2006255638A/en
Application granted granted Critical
Publication of JP4904705B2 publication Critical patent/JP4904705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for exhaust-gas cleaning which can prevent solid solution of Pt and Rh and maintain a high catalyst activity even in high temperature atmosphere. <P>SOLUTION: The catalyst for exhaust-gas cleaning has a base material 11, where a plurality of cells 12, in which the exhaust gas can pass, is formed, and at least (1) Rh and (2) Pt and/or Pd as catalytic metals. Cells 14 containing Rh in the inner part of cells of two or more do not have Pt and Pd, and also cells 16 containing Pt or Pd in the inner part do not have Rh. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車エンジンその他の内燃機関等から排出される排ガスを浄化する排ガス浄化用触媒と、その排ガス浄化用触媒が配設された排ガス浄化装置に関する。   The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas discharged from an automobile engine or other internal combustion engine, and an exhaust gas purifying apparatus provided with the exhaust gas purifying catalyst.

自動車の内燃機関(エンジン)等から排出される排ガス中の有害な成分である一酸化炭素(CO)、炭化水素(HC)及び窒素酸化物(NOX)を、それぞれ二酸化炭素(CO)、水蒸気(HO)及び窒素(N)に変えて無害化する排ガス浄化用触媒として、所謂三元触媒が用いられている。三元触媒は、白金族金属を触媒成分として用いたものであり、一般的には耐熱性モノリス基材のセル壁に適当な多孔質担体をコートし、該担体に複数種の白金族金属を担持する形態で用いられている。
白金族金属中、白金(Pt)及びパラジウム(Pd)は特にCO、HCを酸化する触媒能に優れる。他方、ロジウム(Rh)は特にNOXを還元する触媒能に優れている。かかる性能の違いから、一般に三元触媒では触媒成分としてPt及び/又はPdと、Rhとが併用されている。また、触媒活性点をより多く確保するために微粒子状(例えば粒径が50nm以下、典型的には10nm以下)の触媒金属(Pt、Pd、Rh等)が使用される。
Carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO x ), which are harmful components in exhaust gas discharged from internal combustion engines (engines) of automobiles, are respectively carbon dioxide (CO 2 ), A so-called three-way catalyst is used as an exhaust gas purifying catalyst that is rendered harmless by changing to steam (H 2 O) and nitrogen (N 2 ). The three-way catalyst uses a platinum group metal as a catalyst component. Generally, a suitable porous carrier is coated on the cell wall of a heat-resistant monolith substrate, and a plurality of types of platinum group metals are coated on the carrier. It is used in a supported form.
Of the platinum group metals, platinum (Pt) and palladium (Pd) are particularly excellent in catalytic ability to oxidize CO and HC. On the other hand, rhodium (Rh) is excellent in catalytic ability, especially for reducing the NO X. Due to such a difference in performance, generally, in a three-way catalyst, Pt and / or Pd and Rh are used in combination as catalyst components. Further, in order to secure more catalytic active sites, a catalyst metal (Pt, Pd, Rh, etc.) in the form of fine particles (for example, the particle size is 50 nm or less, typically 10 nm or less) is used.

かかる三元触媒に関する従来の課題として、触媒金属微粒子相互又は該微粒子と担体との固溶を抑制することが挙げられる。かかる固溶の発生及び進行は、触媒金属における触媒活性点の減少を招き、触媒活性低下の原因となるため好ましくない。特に近年はエンジンの高性能化により排ガス温度が以前よりも高温化しており、それに伴って排ガス浄化用触媒の作業温度も高温化している。かかる高温雰囲気中(例えば800〜1000℃)では触媒金属微粒子の固溶がさらに生じ易くなる。
このことに関し、例えば特許文献1には、高温雰囲気中におけるRhと担体とのシンタリング及び固溶を抑制するために、Rhを担持させる担体として高温安定性に優れるθ−アルミナを採用した排ガス浄化用触媒(三元触媒)が記載されている。また、特許文献2には、高温雰囲気中におけるRhとPt又はPdとの固溶(即ち合金化)を抑制するために、Rhを含む表層とPt及び/又はPdを含む内層との二層構造から成る触媒層を備えた排ガス浄化用触媒が記載されている。
As a conventional problem related to such a three-way catalyst, it is possible to suppress solid solution of catalyst metal fine particles or the fine particles and a carrier. The generation and progress of such a solid solution is not preferable because it causes a decrease in the catalytic activity point of the catalytic metal and causes a decrease in the catalytic activity. Particularly in recent years, the exhaust gas temperature has become higher than before due to the high performance of the engine, and accordingly the working temperature of the exhaust gas purifying catalyst has also increased. In such a high-temperature atmosphere (for example, 800 to 1000 ° C.), the catalyst metal fine particles are more easily dissolved.
In this regard, for example, Patent Document 1 discloses exhaust gas purification that employs θ-alumina excellent in high-temperature stability as a carrier for supporting Rh in order to suppress sintering and solid solution of Rh and the carrier in a high-temperature atmosphere. A catalyst for use (three-way catalyst) is described. Patent Document 2 discloses a two-layer structure of a surface layer containing Rh and an inner layer containing Pt and / or Pd in order to suppress solid solution (that is, alloying) between Rh and Pt or Pd in a high-temperature atmosphere. An exhaust gas purifying catalyst having a catalyst layer made of is described.

特開平10−277398号公報JP-A-10-277398 特開平5−293376号公報JP-A-5-293376

本発明は、上記特許文献1〜2に記載されるような従来技術とは異なるアプローチによって触媒金属同士の固溶を防止し、特に高温雰囲気中においても高い触媒活性を維持し得る排ガス浄化用触媒を提供することを目的とする。また、そのような排ガス浄化用触媒を使用する排ガス浄化装置の提供を他の目的とする。   The present invention is an exhaust gas purifying catalyst capable of preventing solid solution of catalyst metals by an approach different from the prior art as described in Patent Documents 1 and 2 and maintaining high catalytic activity even in a high temperature atmosphere. The purpose is to provide. Another object of the present invention is to provide an exhaust gas purification apparatus using such an exhaust gas purification catalyst.

本発明によって提供される排ガス浄化用触媒は、排ガスが流通可能な複数のセルが形成された基材と、触媒金属(即ち触媒作用を奏する金属成分をいう。以下同じ。)として少なくとも(1)ロジウムと(2)白金及び/又はパラジウムとを備える。そして、上記複数のセルのうち内部にロジウムを含むセルには白金及びパラジウムが含まれず、且つ、内部に白金又はパラジウムを含むセルにはロジウムが含まれていないことを特徴とする。   The exhaust gas-purifying catalyst provided by the present invention is at least (1) as a base material on which a plurality of cells through which exhaust gas can flow is formed and a catalytic metal (that is, a metal component that exhibits catalytic action; the same shall apply hereinafter). Rhodium and (2) platinum and / or palladium. Among the plurality of cells, a cell containing rhodium inside does not contain platinum and palladium, and a cell containing platinum or palladium inside does not contain rhodium.

かかる構成の排ガス浄化用触媒では、ロジウム(Rh)と白金(Pt)及び/又はパラジウム(Pd)とが相互に隔離されたセルに分別された状態で担持されており、基材中の同一セル内に共存しない。その結果、高温雰囲気中で使用される場合にも(1)Rhと(2)Pt及び/又はPdとの固溶を物理的に完全に防止することができる。これにより、本排ガス浄化用触媒の奏する触媒活性の安定化と長寿命化とが実現される。   In the exhaust gas purifying catalyst having such a configuration, rhodium (Rh) and platinum (Pt) and / or palladium (Pd) are supported in a state of being separated from each other, and the same cell in the base material. Do not coexist in. As a result, even when used in a high temperature atmosphere, solid solution of (1) Rh and (2) Pt and / or Pd can be physically and completely prevented. As a result, stabilization of the catalyst activity and longer life achieved by the exhaust gas purifying catalyst are realized.

ここで開示される排ガス浄化用触媒の好ましい一形態として、上記基材が両端に開口部を有するセル(典型的には長穴状セル)が相互に開口方向を揃えて複数配列する構造のモノリス基材である排ガス浄化用触媒が挙げられる。
モノリス基材は、多数の同一形状のセルによって構成された基材である。かかるモノリス基材が採用された排ガス浄化用触媒によれば、セル内壁の延べ面積(即ち触媒面積)を広く(例えば20cm/cm〜50cm/cm)確保することができる。また、セルの形状が同一であるので、セル毎の触媒金属担持量をほぼ一定にすることが容易である。
As a preferred embodiment of the exhaust gas-purifying catalyst disclosed herein, a monolith having a structure in which a plurality of cells (typically long hole-shaped cells) having openings at both ends of the base material are aligned in the opening direction. An exhaust gas purifying catalyst which is a base material can be mentioned.
The monolith substrate is a substrate constituted by a large number of cells having the same shape. According to the exhaust gas purifying catalyst employing such a monolith substrate, it is possible to ensure a large total area (that is, a catalyst area) of the cell inner wall (for example, 20 cm 2 / cm 3 to 50 cm 2 / cm 3 ). In addition, since the shape of the cell is the same, it is easy to make the amount of catalyst metal supported per cell almost constant.

また、本発明は、ここで開示される排ガス浄化用触媒を備えた排ガス浄化装置を提供する。即ち、ここで開示される排ガス浄化装置は、排ガスが流通する排気管と、該排気管内に配置される一又は二以上の排ガス浄化用触媒とを備える排ガス浄化装置である。ここで排ガス浄化用触媒として、排ガスが流通可能な複数のセルが形成された基材と、触媒金属として少なくとも(1)ロジウムと(2)白金及び/又はパラジウムとを備え、上記複数のセルのうち内部にロジウムを含むセルには白金及びパラジウムが含まれず、且つ、内部に白金又はパラジウムを含むセルにはロジウムが含まれていないことを特徴とする排ガス浄化用触媒を備える。
かかる構成の排ガス浄化装置では、ここで開示される排ガス浄化用触媒即ち相互に固溶化し易い二種の触媒金属がセル毎に分離担持された排ガス浄化用触媒が装備されている。このため、過酷な条件下(例えば、PtとRhとの固溶が生じ易い雰囲気である、高温且つ過濃空燃比(リッチ)状態と希薄空燃比(リーン)状態とが変動する雰囲気中)であっても排ガス浄化用触媒に含まれる触媒金属成分同士の固溶を物理的に完全に防止することができる。これにより、本装置では、排ガス浄化能力が長期に渡って維持される。
従って、ここで開示される排ガス浄化装置は種々の排ガス発生源(例えば自動車エンジンの排気系、ボイラー)に搭載することができる。また、該浄化装置はそのような使用環境下において、排ガス浄化能力を低下させることなく長期に渡って有害成分(炭化水素(HC)、一酸化炭素(CO)及び窒素酸化物(NOX))の浄化処理を行うことができる。
In addition, the present invention provides an exhaust gas purification apparatus provided with the exhaust gas purification catalyst disclosed herein. In other words, the exhaust gas purification device disclosed herein is an exhaust gas purification device including an exhaust pipe through which exhaust gas flows and one or more exhaust gas purification catalysts disposed in the exhaust pipe. Here, the exhaust gas purifying catalyst includes a base material on which a plurality of cells through which exhaust gas can flow is formed, and at least (1) rhodium and (2) platinum and / or palladium as catalyst metals, Among them, a cell containing rhodium does not contain platinum and palladium, and a cell containing platinum or palladium inside does not contain rhodium, and has an exhaust gas purifying catalyst.
The exhaust gas purifying apparatus having such a configuration is equipped with an exhaust gas purifying catalyst disclosed here, that is, an exhaust gas purifying catalyst in which two types of catalyst metals that are easily solidified with each other are separated and supported for each cell. For this reason, under severe conditions (for example, in an atmosphere in which a solid solution of Pt and Rh is likely to be generated, in an atmosphere in which a high-temperature and rich air-fuel ratio (rich) state and a lean air-fuel ratio (lean) state fluctuate). Even if it exists, the solid solution of the catalyst metal components contained in the exhaust gas purifying catalyst can be physically and completely prevented. Thereby, in this apparatus, exhaust gas purification capability is maintained over a long period of time.
Therefore, the exhaust gas purifying apparatus disclosed herein can be mounted on various exhaust gas generation sources (for example, exhaust systems of automobile engines, boilers). In addition, the purifying apparatus has a harmful component (hydrocarbon (HC), carbon monoxide (CO) and nitrogen oxide (NO x )) over a long period of time in such a use environment without reducing the exhaust gas purification capacity. The purification process can be performed.

ここで開示される排ガス浄化装置の好ましい一形態では、上記排気管内における上記排ガス浄化用触媒よりも下流側に、三元触媒であって同一セル内に(1)ロジウムと(2)白金及び/又はパラジウムとを含み且つ排ガスが流通可能な複数のセルが形成された基材を備えた三元触媒がさらに配置される。
かかる構成の排ガス浄化装置によれば、上流側で浄化された排ガスが下流側で更に補足的に浄化されるため、排ガス浄化効果が更に向上される。
また、下流側に備えられる排ガス浄化用触媒には、上流側に備えられる排ガス浄化用触媒を通過してきた比較的低温の排ガスが導入される。このため、該下流側に備えられる排ガス浄化用触媒においては、RhとPt及び/又はPdとが同一セル内で共存している状態でも、上述するような触媒金属同士(RhとPt及び/又はPd)の固溶が起き難い。従って、本形態の排ガス浄化装置では、排気管の下流側に配置する排ガス浄化用触媒として同一セル内にRhとPt及び/又はPdとが共存した形態の触媒(三元触媒)を採用し、より高い排ガス浄化効果を得ることができる。
In a preferred embodiment of the exhaust gas purifying apparatus disclosed herein, a three-way catalyst is provided downstream of the exhaust gas purifying catalyst in the exhaust pipe, and (1) rhodium and (2) platinum and / or in the same cell. Or the three way catalyst provided with the base material in which the several cell which contains palladium and in which exhaust gas can distribute | circulate was formed is arrange | positioned.
According to the exhaust gas purification apparatus having such a configuration, the exhaust gas purified on the upstream side is further supplementarily purified on the downstream side, so that the exhaust gas purification effect is further improved.
Further, the exhaust gas purification catalyst provided on the downstream side is introduced with a relatively low temperature exhaust gas that has passed through the exhaust gas purification catalyst provided on the upstream side. For this reason, in the exhaust gas purification catalyst provided on the downstream side, even when Rh and Pt and / or Pd coexist in the same cell, the catalyst metals as described above (Rh and Pt and / or Pd) hardly dissolves. Therefore, in the exhaust gas purification apparatus of the present embodiment, a catalyst (three-way catalyst) in a form in which Rh and Pt and / or Pd coexist in the same cell is employed as the exhaust gas purification catalyst disposed on the downstream side of the exhaust pipe. A higher exhaust gas purification effect can be obtained.

ここで開示される排ガス浄化装置は、排ガス温度が高温(例えば800℃〜1000℃)であっても、また、種々の空燃比状態(理論空燃比(ストイキ)状態のみならず、通常の運転時のような過濃空燃比(リッチ)状態と希薄空燃比(リーン)状態とを変動する雰囲気)であっても、触媒金属成分同士の固溶が防止され、優れた触媒効果が維持される。
従って、ここで開示される排ガス浄化装置の好ましい一形態は、上記排気管が自動車エンジンの排気系に搭載される形状であることを特徴とする自動車用排ガス浄化装置(例えば触媒コンバータ)である。
The exhaust gas purifying apparatus disclosed herein is not limited to various air-fuel ratio states (theoretical air-fuel ratio (stoichiometric) state) even when the exhaust gas temperature is high (for example, 800 ° C. to 1000 ° C.). Even in such an atmosphere where the rich air-fuel ratio (rich) state and the lean air-fuel ratio (lean) state fluctuate), solid solution of the catalytic metal components is prevented and an excellent catalytic effect is maintained.
Therefore, a preferred embodiment of the exhaust gas purification apparatus disclosed herein is an automobile exhaust gas purification apparatus (for example, a catalytic converter) characterized in that the exhaust pipe is mounted on an exhaust system of an automobile engine.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば、触媒金属成分の種類、触媒基材のセル触媒金属成分を分離担持する方法)以外の事柄であって本発明の実施に必要な事項(例えば、粉末状多孔質担体を触媒基材のセル壁に被覆する方法)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. In addition, matters other than the matters specifically mentioned in the present specification (for example, the type of the catalyst metal component, the method of separating and supporting the cell catalyst metal component of the catalyst base material) and matters necessary for the implementation of the present invention ( For example, a method of coating a cell wall of a catalyst substrate with a powdery porous support) can be understood as a design matter for those skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

先ず、本発明の排ガス浄化用触媒を構成する基材について説明する。
本発明の排ガス浄化用触媒に用いられる基材としては、排ガスが流通可能な複数のセル(区画)を有する。典型的には、隣接するセル同士は隔壁によって相互に隔てられている。種々の多孔質材が基材となり得るが、ここで開示される排ガス浄化用触媒に好ましく適用される基材形状として両端に開口部を有するセル(典型的には長穴状セル)が相互に開口方向を揃えて複数配列する構造の所謂モノリス構造の基材が挙げられる。
かかるモノリス基材を適用する場合、その材質は耐熱性がある限り特に限定されない。典型的にはコーディエライト、ムライト、α―アルミナ、シリコンカーバイト等から構成されるセラミック製のモノリス基材と、フェライト系ステンレス(Fe−Cr−Al)等から構成されるメタル製のモノリス基材に大別される。特にコーディエライトを主体とするような耐熱セラミック製モノリス基材は温度変化による強度に優れ、高温(例えば800℃〜1200℃)雰囲気中で安定して使用することができるため、自動車エンジンの排気系に配置する排ガス浄化用触媒の基材として適している。
First, the base material constituting the exhaust gas purifying catalyst of the present invention will be described.
The substrate used for the exhaust gas purifying catalyst of the present invention has a plurality of cells (sections) through which exhaust gas can flow. Typically, adjacent cells are separated from each other by a partition wall. Various porous materials can be used as a base material. As a base material shape preferably applied to the exhaust gas purifying catalyst disclosed herein, cells having openings at both ends (typically long hole-shaped cells) are mutually connected. Examples include a so-called monolithic base material having a structure in which a plurality of openings are aligned in the opening direction.
When such a monolith substrate is applied, the material is not particularly limited as long as it has heat resistance. Typically, a ceramic monolith substrate composed of cordierite, mullite, α-alumina, silicon carbide, etc., and a metal monolith substrate composed of ferrite stainless steel (Fe—Cr—Al), etc. Broadly divided into materials. In particular, a monolith substrate made of a heat-resistant ceramic mainly composed of cordierite is excellent in strength due to temperature change and can be used stably in a high temperature (for example, 800 ° C. to 1200 ° C.) atmosphere. It is suitable as a base material for an exhaust gas purification catalyst disposed in the system.

基材に形成されたセルは、排ガスが流通可能で、セル同士が隔壁によって遮断される形状であれば特に限定されない。セル構造の好ましい例としては、ハニカム構造が挙げられる。ここでハニカム(蜂の巣)構造とは、隔壁により区画された複数の貫通孔と当該隔壁とから成る一体構造をいい、上記孔の断面形状(即ちセルの断面形状)は特に限定されず、例えば円形、正方形、長方形、六角形が挙げられる。かかるハニカム構造の基材は、例えば200〜600セル/平方インチ(約30〜92セル/cm)といった高密度でセルが形成されたものであり得る。例えば、基材の直径が概ね100mm(例えば103mm)である円筒型モノリス基材の場合、そのセル密度は約400セル/平方インチ(62セル/cm)であり得る。
かかるハニカム構造の基材(典型的にはモノリス基材)は、セル壁の表面積を広く(例えば20cm/cm〜50cm/cm)確保することが可能になり、より広い触媒面積が得られるため好ましい。
The cells formed on the substrate are not particularly limited as long as the exhaust gas can flow and the cells are blocked by the partition walls. A preferable example of the cell structure is a honeycomb structure. Here, the honeycomb (honeycomb) structure means an integrated structure composed of a plurality of through-holes partitioned by partition walls and the partition walls, and the cross-sectional shape of the holes (that is, the cross-sectional shape of the cells) is not particularly limited. , Square, rectangle and hexagon. The substrate having such a honeycomb structure may have cells formed at a high density of, for example, 200 to 600 cells / in 2 (about 30 to 92 cells / cm 2 ). For example, for a cylindrical monolith substrate having a substrate diameter of approximately 100 mm (eg, 103 mm), the cell density can be about 400 cells / in 2 (62 cells / cm 2 ).
Such a honeycomb-structured substrate (typically a monolith substrate) can ensure a large cell wall surface area (for example, 20 cm 2 / cm 3 to 50 cm 2 / cm 3 ), and has a wider catalyst area. Since it is obtained, it is preferable.

ここで開示される排ガス浄化用触媒では、従来の排ガス浄化用触媒と同様、多量の触媒金属を基材に効率よく担持させるために種々の担体が用いられる。好ましくは、高表面積の多孔質担体が使用される。従来の三元触媒で用いられている種々の材質の多孔質担体を用いることができる。例えば、アルミナ、シリカ、シリカ−アルミナ複合酸化物、チタニア、ジルコニア、ゼオライト、セリア、セリア−ジルコニア複合酸化物が挙げられる。これらの一種又は二種以上が、担持させる触媒金属種に応じて用いられる。
例えば、セリア−ジルコニア複合酸化物(CZ)は、酸素吸蔵能に優れ、また高温安定性に優れることからPt又はPd、或いはRhを担持するための多孔質担体として好ましく使用される。また、触媒面積を広く得るために、多孔質担体は高比表面積(例えば10〜1000m/g、典型的には100〜500m/g)である粉末形状のものが好ましい。
In the exhaust gas purifying catalyst disclosed herein, various carriers are used in order to efficiently carry a large amount of catalytic metal on the base material, as in the conventional exhaust gas purifying catalyst. Preferably, a high surface area porous carrier is used. Porous supports made of various materials used in conventional three-way catalysts can be used. Examples thereof include alumina, silica, silica-alumina composite oxide, titania, zirconia, zeolite, ceria, and ceria-zirconia composite oxide. One or two or more of these are used depending on the catalyst metal species to be supported.
For example, ceria-zirconia composite oxide (CZ) is preferably used as a porous carrier for supporting Pt, Pd, or Rh because of its excellent oxygen storage capacity and excellent high-temperature stability. In order to obtain a large catalyst area, the porous carrier preferably has a powder shape having a high specific surface area (for example, 10 to 1000 m 2 / g, typically 100 to 500 m 2 / g).

多孔質担体(好ましくは粉末状)は基材のセル内(内壁)にコーティングされ触媒担体層を形成する。触媒担体層の典型的な形成方法として、例えば、粉末状多孔質担体、水、その他必要に応じて適当な副成分(例えば無機又は有機のバインダー)を含むスラリーを基材内のセル壁に塗布し(好ましくはスラリー中に基材の一部を浸積する。)、乾燥させる工程を複数回繰り返した後に加熱・焼成するウォッシュコート法が挙げられる。また、一般的なゾル−ゲル法によって、上記種々の酸化物から成る触媒担体層を形成してもよい。   The porous support (preferably in powder form) is coated in the cell (inner wall) of the base material to form a catalyst support layer. As a typical method for forming the catalyst support layer, for example, a powdered porous support, water, and a slurry containing appropriate secondary components (for example, an inorganic or organic binder) as required are applied to the cell walls in the substrate. (Preferably, a part of the substrate is immersed in the slurry), and the drying step is repeated a plurality of times, followed by heating and baking. Moreover, you may form the catalyst support layer which consists of said various oxide by the general sol-gel method.

次に本発明の排ガス浄化用触媒に用いられる触媒金属成分について説明する。ここで開示される排ガス浄化用触媒は、窒素酸化物(NOX)の還元活性が高いRhと、一酸化炭素(CO)及び炭化水素(HC)の酸化活性が高いPt及び/又はPdとを少なくとも触媒金属として含む。触媒金属の担持方法は従来からの技法を適宜選択して実施すればよい。例えば、触媒を構成する金属元素を含む化合物溶液を触媒担体層に含浸させた後、焼成することによって該化合物を分解し、該金属(触媒金属)を触媒担体層に担持する方法が挙げられる。かかる担持方法によると、触媒金属を非常に細かな粒子形状(例えば50nm以下の粒径。典型的には10nm以下の粒径)として担持させることができる。このため、少量の担持量であっても比表面積が大きくなり、広い触媒面積が実現される。また、ここで開示される排ガス浄化用触媒では、内部(内壁)にRhが含まれるセルにはPt及び/又はPdが含まれず、内部(内壁)にPt及び/又はPdが含まれるセルにはRhが含まれないように、個々のセルに触媒金属を担持させる。例えば、モノリス基材のセル開口面の一部を塞ぐと共に開口しているセル内部にRhを担持させる。次いで、Rh担持セルの開口面を塞ぐ一方でRh担持処理中は塞いでおいたセル開口面を開放し、当該セル内部にPt又はPdを担持させるとよい。 Next, the catalytic metal component used in the exhaust gas purifying catalyst of the present invention will be described. The exhaust gas purifying catalyst disclosed herein comprises Rh having a high reduction activity of nitrogen oxide (NO x ) and Pt and / or Pd having a high oxidation activity of carbon monoxide (CO) and hydrocarbon (HC). At least as catalyst metal. The catalyst metal loading method may be carried out by appropriately selecting conventional techniques. For example, after impregnating the catalyst support layer with a compound solution containing a metal element constituting the catalyst, the compound is decomposed by firing, and the metal (catalyst metal) is supported on the catalyst support layer. According to such a supporting method, the catalyst metal can be supported in a very fine particle shape (for example, a particle size of 50 nm or less, typically a particle size of 10 nm or less). For this reason, even if it is a small amount of loading, the specific surface area becomes large and a wide catalyst area is realized. Further, in the exhaust gas purifying catalyst disclosed herein, the cell containing Rh in the inner (inner wall) does not contain Pt and / or Pd, and the cell containing Pt and / or Pd in the inner (inner wall) The catalyst metal is supported on each cell so that Rh is not contained. For example, a part of the cell opening surface of the monolith substrate is closed and Rh is supported inside the open cell. Next, while closing the opening surface of the Rh carrying cell, the covered cell opening surface may be opened during the Rh carrying treatment, and Pt or Pd may be carried inside the cell.

触媒金属の担持量は、排ガス発生源から排出される排ガスの条件(例えば温度、有害成分の構成比率)に応じて適宜決定すればよく、特に限定されない。例えば、自動車エンジンに使用される排ガス浄化用触媒では、一酸化炭素(CO)及び炭化水素(HC)の酸化触媒能に優れるPt及びPdの割合(例えば触媒金属総担持量に占めるPt及びPdの割合(質量比)が3/5〜9/10)が、窒素酸化物(NOX)の還元触媒能に優れるRhの割合(例えば触媒金属総担持量に占めるRhの割合(質量比)が1/10〜2/5)を上回るように触媒金属の含有比を決定することができる。
なお、自動車エンジンの排気系に搭載する場合においては、加速性能のよいエンジンを載せたスポーツカータイプに搭載する場合には、一酸化炭素(CO)及び炭化水素(HC)の酸化触媒能に効果的なPt及び/又はPdの担持量を増加させ、それに伴って触媒基材におけるPt及び/又はPdの担持セルの割合を増やすことができる。また、加速性能の穏やかなエンジンを載せたエコカー等に搭載する場合には、その担持セルの割合を変化させ、窒素酸化物(NOX)の還元触媒能に効果的なRhの担持量を増やすことができる。
基材における各触媒金属(Rh、Pt及び/又はPd)担持セルの分布(位置関係)については、特に制限はない。例えば、基材の横断面において、Rh担持セルとPt及び/又はPd担持セルとが格子状の配置をとるようにしてもよいし、Rh担持セルとPt及び/又はPd担持セルとが交互に同心円状に分布するようにしてもよい。また、横断面の中心を基準としてRh担持セルとPt及び/又はPd担持セルとがそれぞれ放射状に広がるような配置にしてもよい。
The amount of the catalyst metal supported is not particularly limited as long as it is appropriately determined according to the conditions of exhaust gas discharged from the exhaust gas generation source (for example, temperature and the composition ratio of harmful components). For example, in an exhaust gas purifying catalyst used in an automobile engine, the ratio of Pt and Pd excellent in oxidation catalytic ability of carbon monoxide (CO) and hydrocarbon (HC) (for example, Pt and Pd in the total supported amount of catalyst metal) The ratio (mass ratio) of 3/5 to 9/10) is excellent in the reduction catalytic ability of nitrogen oxides (NO x ) (for example, the ratio (mass ratio) of Rh occupying the total supported amount of catalyst metal is 1). The content ratio of the catalytic metal can be determined to exceed / 10 to 2/5).
When mounted on the exhaust system of an automobile engine, when mounted on a sports car type equipped with an engine with good acceleration performance, it is effective for the oxidation catalytic ability of carbon monoxide (CO) and hydrocarbon (HC). The amount of Pt and / or Pd supported can be increased, and the proportion of Pt and / or Pd supported cells in the catalyst base can be increased accordingly. In addition, when mounted on an eco-car or the like equipped with an engine having a moderate acceleration performance, the ratio of the supporting cells is changed to increase the effective amount of Rh supported for the reduction catalytic ability of nitrogen oxides (NO x ). be able to.
There is no particular limitation on the distribution (positional relationship) of the catalyst metal (Rh, Pt and / or Pd) supporting cells on the substrate. For example, in the cross section of the substrate, the Rh-supporting cells and the Pt and / or Pd-supporting cells may be arranged in a lattice pattern, or the Rh-supporting cells and the Pt and / or Pd-supporting cells are alternately arranged. You may make it distribute in concentric form. Further, the Rh carrying cell and the Pt and / or Pd carrying cell may be arranged so as to spread radially with respect to the center of the cross section.

触媒金属のセル毎の分離担持は、例えば、次の各工程を実施することにより行うことができる。即ち:
(第一工程)予め内部に触媒担体層が付与されたセルが相互に開口方向を揃えて複数配列する構造のモノリス基材のセル開口部に相当する両端面を適当なマスク材で覆い、個々のセル内空間を密封する。マスク材としてはエポキシ樹脂等の熱硬化性樹脂を主体とする液剤が挙げられるが、熱可塑性樹脂(例えばポリエチレン、ポリプロピレン)から成るシート状のものでもよい。かかるシート状マスク材は熱溶着によって基材の端面を容易に閉塞することができる。
(第二工程)上記基材の両端面にレーザーを照射することによって、Pt及び/又はPdを担持させる予定のセル開口部を覆うマスク材を選択的に取り除き、当該セルを露出させる。
(第三工程)第二工程にて露出したセルにPt化合物溶液及び/又はPd化合物溶液を含浸させ、その後焼成してPt及び/又はPdを当該セルに選択的に担持させる。なお、マスク材は焼成時に分解される。
(第四工程)第一工程と同様に再び基材の両端面をマスク材で覆う。
(第五工程)上記基材の両端面にレーザーを照射することによって、Rhを担持させる予定のセル開口部を覆うマスク材を選択的に取り除き、当該セルを露出させる。
(第六工程)第五工程にて露出したセルにRh化合物溶液を含浸させ、その後焼成してRhを当該セルに選択的に担持させる。
The separation and loading of the catalyst metal for each cell can be performed, for example, by performing the following steps. That is:
(First step) Cover both end faces corresponding to the cell openings of a monolith substrate having a structure in which a plurality of cells, to which a catalyst carrier layer has been applied in advance, are aligned in the opening direction, with an appropriate mask material. The inner space of the cell is sealed. Examples of the mask material include a liquid agent mainly composed of a thermosetting resin such as an epoxy resin, but may be a sheet made of a thermoplastic resin (for example, polyethylene or polypropylene). Such a sheet-like mask material can easily block the end face of the substrate by heat welding.
(2nd process) By irradiating a laser to the both end surfaces of the said base material, the mask material which covers the cell opening part which is going to carry | support Pt and / or Pd is selectively removed, and the said cell is exposed.
(Third step) The cell exposed in the second step is impregnated with a Pt compound solution and / or a Pd compound solution, and then fired to selectively carry Pt and / or Pd on the cell. The mask material is decomposed during firing.
(Fourth step) As in the first step, both end faces of the base material are again covered with a mask material.
(Fifth step) By irradiating the both end faces of the base material with laser, the mask material covering the cell opening to be loaded with Rh is selectively removed to expose the cell.
(Sixth Step) The cell exposed in the fifth step is impregnated with the Rh compound solution, and then fired to selectively carry Rh on the cell.

なお、ここで使用される金属化合物(Rh化合物、Pt化合物、Pd化合物等)は、基材表面又は予めウォッシュコート法等で基材のセル内壁に形成された多孔質担体から成る触媒担体層に触媒金属を担持させる目的で、従来使用されていた金属化合物を使用すればよく、特に限定されない。例えば、Rh(ロジウム)化合物としては、硝酸ロジウム、塩化ロジウム等が好適に用いられる。また、Pt(白金)化合物としては、ジニトロジアンミン白金、ヘキサクロロ白金酸六水和物、テトラアンミンジクロロ白金、有機白金水溶液等が好適に用いられる。また、Pd(パラジウム)化合物としては、硝酸パラジウム、塩化パラジウム、ジニトロジアンミンパラジウム、テトラアンミンパラジウムジクロライド等が好適に用いられる。
また、金属溶液浸漬後の焼成条件は、各金属溶液(触媒金属化合物)の分解温度によって設定すればよい。なお、一般に500〜1000℃の温度範囲の焼成条件下で実施されると、ほとんどの触媒金属成分化合物が分解され、また、触媒担体層を構成する多孔質担体への触媒金属の定着性がよい。なお、かかる加熱条件下では上記ポリマー製マスク材もよく分解・消失し得るので好ましい。
In addition, the metal compound (Rh compound, Pt compound, Pd compound, etc.) used here is a catalyst carrier layer composed of a porous carrier formed on the substrate surface or the cell inner wall of the substrate in advance by a wash coat method or the like. For the purpose of supporting the catalyst metal, a metal compound that has been conventionally used may be used and is not particularly limited. For example, as the Rh (rhodium) compound, rhodium nitrate, rhodium chloride or the like is preferably used. Further, as the Pt (platinum) compound, dinitrodiammine platinum, hexachloroplatinic acid hexahydrate, tetraamminedichloroplatinum, an organic platinum aqueous solution, or the like is preferably used. As the Pd (palladium) compound, palladium nitrate, palladium chloride, dinitrodiammine palladium, tetraammine palladium dichloride, or the like is preferably used.
Moreover, what is necessary is just to set the baking conditions after metal solution immersion according to the decomposition temperature of each metal solution (catalyst metal compound). In general, when carried out under firing conditions in the temperature range of 500 to 1000 ° C., most of the catalyst metal component compounds are decomposed, and the fixability of the catalyst metal to the porous carrier constituting the catalyst carrier layer is good. . Note that, under such heating conditions, the polymer mask material is also preferable because it can be decomposed and disappeared well.

なお、前述した方法では、触媒金属成分ごとの分離担持において、マスク材とレーザー照射を用いた分別法を挙げたが、かかる方法に限定されるものではない。
例えば、感光性ポリマー(例えば、フェノール樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂を主体とした材料)から成るマスク材を使用し、紫外線やエキシマレーザー等の光線照射によって選択的に当該感光性ポリマーを固化する方法(フォトレジスト法)を利用することができる。
In the above-described method, the separation method using the mask material and the laser irradiation is given in the separation and support for each catalyst metal component, but the method is not limited to this method.
For example, a mask material made of a photosensitive polymer (for example, a material mainly composed of phenol resin, polyvinyl alcohol resin, or polyvinyl pyrrolidone resin) is used, and the photosensitive polymer is selectively solidified by irradiation with light such as ultraviolet rays or excimer laser. (Photoresist method) can be used.

次に、ここで開示される排ガス浄化用触媒を用いた排ガス浄化装置について説明する。
ここで開示される排ガス浄化装置は、種々の排ガス発生源(自動車エンジン等の内燃機関やボイラー)から排出される排ガスを浄化するために備えられる装置である。この排ガス浄化装置には、排ガスが流れる排気管と、該排気管内を流れるガスを浄化する排ガス浄化用触媒とを備える。ここで排気管内の排ガス浄化用触媒として、本発明の排ガス浄化用触媒を備える。また、ここで開示される排ガス浄化用触媒では、Rh担持セルとPt及び/又はPd担持セルとが物理的に完全に隔離されている。このため、高温で使用した際にもRhとPtとの固溶、又はRhとPdとの固溶が生じない。従って、ここで開示される排ガス浄化装置では、高温の排ガスが導入される排気管の上流側に本発明の排ガス浄化用触媒を配置することが好ましい。
Next, an exhaust gas purification apparatus using the exhaust gas purification catalyst disclosed herein will be described.
The exhaust gas purifying apparatus disclosed herein is an apparatus provided for purifying exhaust gas discharged from various exhaust gas generation sources (internal combustion engines such as automobile engines and boilers). The exhaust gas purification apparatus includes an exhaust pipe through which exhaust gas flows and an exhaust gas purification catalyst that purifies gas flowing through the exhaust pipe. Here, the exhaust gas purifying catalyst of the present invention is provided as an exhaust gas purifying catalyst in the exhaust pipe. Further, in the exhaust gas purifying catalyst disclosed here, the Rh carrying cell and the Pt and / or Pd carrying cell are physically completely separated. For this reason, even when used at a high temperature, solid solution of Rh and Pt or solid solution of Rh and Pd does not occur. Therefore, in the exhaust gas purification apparatus disclosed here, it is preferable to dispose the exhaust gas purification catalyst of the present invention upstream of the exhaust pipe into which high-temperature exhaust gas is introduced.

好ましくは、排気管の下流側(即ち本発明の排ガス浄化用触媒よりも下流側)に、従来から使用されている一般的な三元触媒を配置する。ここで一般的な三元触媒とは、触媒基材の同一セル内にRhとPt及び/又はPdとが一緒に含まれている触媒をいう。かかる態様の浄化装置において、当該下流側に備えられる三元触媒では、排ガス発生源からその触媒に到達するまでに排ガス温度が低下するため、結果として比較的低温(例えば400〜500℃)の排ガスを処理することとなる。このような低温条件下においては、同一セル内にRhとPt及び/又はPdとが共存していても固溶が生じ難く、触媒効果が低下し難い。従って、上流に本発明の排ガス浄化用触媒を配置し、下流側に一般的な三元触媒を配置することによって、効果的に排ガスを浄化することができる。
なお、上流側に配置される排ガス浄化用触媒(即ち本発明に係る排ガス浄化用触媒)では、比較的高い温度条件(例えば800℃以上)下において触媒担体層を構成する多孔質担体と触媒金属とのシンタリングを防止するという観点から、セリア−ジルコニア複合酸化物等の高温で安定な(即ちシンタリングを起こし難い)セラミックを多孔質担体とすることが好ましく、下流側に配置される排ガス浄化用触媒(例えば前述した三元触媒)では、比較的低い温度条件(例えば800℃未満)下において触媒担体層を構成する多孔質担体と触媒金属とのシンタリングを防止するという観点から、アルミナ等の低温域で安定なセラミックを多孔質担体とすることが好ましい。
Preferably, a general three-way catalyst that has been conventionally used is disposed downstream of the exhaust pipe (that is, downstream of the exhaust gas purifying catalyst of the present invention). Here, the general three-way catalyst refers to a catalyst in which Rh and Pt and / or Pd are contained together in the same cell of the catalyst base. In the purification apparatus of this aspect, in the three-way catalyst provided on the downstream side, the exhaust gas temperature decreases until it reaches the catalyst from the exhaust gas generation source. As a result, the exhaust gas at a relatively low temperature (for example, 400 to 500 ° C.) Will be processed. Under such a low temperature condition, even if Rh and Pt and / or Pd coexist in the same cell, solid solution hardly occurs and the catalytic effect is hardly reduced. Therefore, the exhaust gas can be effectively purified by disposing the exhaust gas purifying catalyst of the present invention upstream and disposing a general three-way catalyst downstream.
In addition, in the exhaust gas purifying catalyst (that is, the exhaust gas purifying catalyst according to the present invention) arranged on the upstream side, the porous carrier and the catalyst metal that constitute the catalyst carrier layer under a relatively high temperature condition (for example, 800 ° C. or higher). From the viewpoint of preventing sintering, it is preferable to use a ceramic that is stable at high temperatures (that is, difficult to cause sintering), such as ceria-zirconia composite oxide, as a porous carrier, and exhaust gas purification disposed downstream From the viewpoint of preventing sintering of the porous support and the catalyst metal constituting the catalyst support layer under relatively low temperature conditions (for example, less than 800 ° C.), the catalyst for use (for example, the above-described three-way catalyst) is alumina or the like. It is preferable to use a ceramic that is stable in a low temperature range as a porous carrier.

以下、本発明の排ガス浄化用触媒及び排ガス浄化装置に関する一実施例を図面を参照しつつ説明する。なお、本発明を以下の説明及び関連する図面に示す形態のものに限定することを意図したものではない。   Hereinafter, an embodiment of the exhaust gas purifying catalyst and the exhaust gas purifying apparatus of the present invention will be described with reference to the drawings. It should be noted that the present invention is not intended to be limited to the forms shown in the following description and related drawings.

<実施例1:排ガス浄化用触媒の作製>
図1に本実施例に係る排ガス浄化用触媒10を模式的に示す。本排ガス浄化用触媒10は、両端に開口部を有する長穴状セル12が相互に開口方向を揃えて複数配列する構造の円筒状のモノリス基材11を備える。図示されるように、この基材11は、断面形状がほぼ正方形のセル12が密に配列して成るハニカム構造である。かかる構造の排ガス浄化用触媒10では、排ガス浄化用触媒の一方の開口端面から各セル12に排ガスが導入され、セル12内を通過する際に排ガス中の被処理成分が浄化され、そして他方の開口端面から浄化ガスが流出するように構成されている。
具体的には、本実施例に係る排ガス浄化用触媒10は、セル12の内壁にセリア−ジルコニア(CeO−ZrO)複合酸化物から成る多孔質担体(以下「CZ担体」と略称する。)が被覆された400セル/平方インチ(約62セル/cm)のコーディエライト製モノリス基材にPt及びRhを担持した排ガス浄化用触媒10である。図2に示すように、本実施例に係る排ガス浄化用触媒10は、内部にRhを含むがPtを含まないセル14と、内部にPtを含むがRhを含まないセル16とを有する。なお、図2はPt及びロジウムの担持パターンを模式的に示しており、図2中、Rhを含むセル14は網掛けで示し、Ptを含むセル16は無地(白抜き)で示している。
<Example 1: Preparation of exhaust gas purification catalyst>
FIG. 1 schematically shows an exhaust gas purifying catalyst 10 according to this embodiment. The exhaust gas-purifying catalyst 10 includes a cylindrical monolith substrate 11 having a structure in which a plurality of long hole-shaped cells 12 having openings at both ends are aligned in the opening direction. As shown in the figure, the substrate 11 has a honeycomb structure in which cells 12 having a substantially square cross-sectional shape are densely arranged. In the exhaust gas purifying catalyst 10 having such a structure, the exhaust gas is introduced into each cell 12 from one opening end face of the exhaust gas purifying catalyst, the component to be treated in the exhaust gas is purified when passing through the cell 12, and the other The purified gas flows out from the opening end face.
Specifically, the exhaust gas-purifying catalyst 10 according to the present embodiment is a porous carrier (hereinafter abbreviated as “CZ carrier”) made of ceria-zirconia (CeO—ZrO 2 ) composite oxide on the inner wall of the cell 12. Is an exhaust gas-purifying catalyst 10 in which Pt and Rh are supported on a cordierite monolith substrate of 400 cells / in 2 (about 62 cells / cm 2 ) coated with. As shown in FIG. 2, the exhaust gas purifying catalyst 10 according to this embodiment includes a cell 14 containing Rh but not containing Pt, and a cell 16 containing Pt inside but not containing Rh. 2 schematically shows a Pt and rhodium support pattern. In FIG. 2, the cell 14 containing Rh is shown by shading, and the cell 16 containing Pt is shown by a solid color (outlined).

排ガス浄化用触媒10は以下に示す手順によって作製した。即ち、一般的なウォッシュコート法に基づき、粉末状のCeO−ZrO複合酸化物を含むスラリー中にコーディエライト製モノリス基材(400セル/平方インチ、1リットル容量)を浸漬し、次いで乾燥及び焼成(約400℃)を行うことによって、該基材のセル内部(内壁)にCZ担体から成る触媒担体層を形成した。
次に、モノリス基材11の両端面に、マスク材としてエポキシ系樹脂を塗布し、乾燥させることによってセル開口部を被覆した。次いで、Ptを担持させる予定のセル16(図2)の開口面(即ちマスク材で被覆されている面)に所定のレーザーを照射し、マスク材をセル選択的に除去した。これにより、Pt担持用セル16のみを露出させた。そして、露出したPt担持用セル16に基材11全体で2g相当のPtが担持されるように濃度調整されたジニトロアンミン白金溶液に基材11を浸漬し、触媒担体層に該溶液を含浸させた。その後、550℃で2時間の焼成処理を行い、Pt担持用セル16に選択的にPtを担持させた。なお、かかる焼成によって、マスク材も完全に分解・消失した。
The exhaust gas-purifying catalyst 10 was produced by the following procedure. That is, a cordierite monolith substrate (400 cells / square inch, 1 liter capacity) is immersed in a slurry containing a powdered CeO—ZrO 2 composite oxide based on a general washcoat method, and then dried. And by carrying out calcination (about 400 ° C.), a catalyst carrier layer composed of a CZ carrier was formed inside the cell (inner wall) of the substrate.
Next, an epoxy resin as a mask material was applied to both end faces of the monolith substrate 11 and dried to coat the cell openings. Next, a predetermined laser was applied to the opening surface (that is, the surface covered with the mask material) of the cell 16 (FIG. 2) that is to carry Pt, and the mask material was selectively removed. As a result, only the Pt carrying cell 16 was exposed. Then, the base material 11 is immersed in a dinitroammine platinum solution whose concentration is adjusted so that 2 g of Pt is supported on the exposed Pt supporting cell 16 as a whole, and the catalyst carrier layer is impregnated with the solution. It was. Thereafter, a baking process was performed at 550 ° C. for 2 hours, and Pt was selectively supported on the Pt supporting cell 16. Note that the mask material was completely decomposed and disappeared by the firing.

Ptの担持が完了後、再び基材11の両端面をマスク材で覆った。そして、上述のPt担持工程と同様に、Rhを担持させる予定のセル14(図2)の開口面(即ちマスク材で被覆されている面)に所定のレーザーを照射し、マスク材をセル選択的に除去した。これにより、Rh担持用セル14のみを露出させた。そして、露出したRh担持用セル14に基材11全体で0.5g相当のRhが担持されるように濃度調整された硝酸ロジウム溶液に基材11を浸漬し、触媒担体層に該溶液を含浸させた。その後、550℃で2時間の焼成処理を行い、Rh担持用セル14に選択的にRhを担持した。なお、かかる焼成によって、マスク材も完全に分解・消失した。以上の手順により、本実施例に係る排ガス浄化用触媒10を得た。   After the loading of Pt was completed, both end surfaces of the base material 11 were again covered with a mask material. Then, in the same manner as the above Pt carrying process, a predetermined laser is irradiated to the opening surface (that is, the surface covered with the mask material) of the cell 14 (FIG. 2) where Rh is to be carried to select the mask material. Removed. As a result, only the Rh carrying cell 14 was exposed. Then, the base material 11 is immersed in a rhodium nitrate solution whose concentration is adjusted so that 0.5 g of Rh is supported on the entire base material 11 in the exposed Rh-supporting cell 14, and the catalyst carrier layer is impregnated with the solution. I let you. Thereafter, firing was performed at 550 ° C. for 2 hours, and Rh was selectively supported on the Rh-supporting cell 14. Note that the mask material was completely decomposed and disappeared by the firing. The exhaust gas purifying catalyst 10 according to this example was obtained by the above procedure.

<比較例:排ガス浄化用触媒(一般的な三元触媒)の作製>
次に、上記実施例と同様のモノリス基材を用いて、同一セル内にRhとPtとを共存させた形態(比較用)の三元触媒を作製した。なお、作製手順については以下のとおりである。
実施例と同様にCZ担体から成る触媒担体層をセル内に形成した基材を作製した。次いで、Pt(2g相当)とRh(0.5g相当)とがモノリス基材のセル内に担持されるように濃度調整されたジニトロアンミン白金及び硝酸ロジウムを含む混合溶液に基材を浸漬し、触媒担体層に該溶液を含浸させた。その後、550℃で2時間の焼成処理を行い、PtとRhとを全てのセルに担持した。
<Comparative example: Production of exhaust gas purification catalyst (general three-way catalyst)>
Next, using the same monolith substrate as in the above example, a three-way catalyst in a form (for comparison) in which Rh and Pt coexist in the same cell was produced. The production procedure is as follows.
A base material in which a catalyst carrier layer composed of a CZ carrier was formed in the cell in the same manner as in Example was prepared. Next, the substrate is immersed in a mixed solution containing dinitroammineplatinum and rhodium nitrate, the concentration of which is adjusted so that Pt (equivalent to 2 g) and Rh (equivalent to 0.5 g) are supported in the cell of the monolith substrate. The catalyst support layer was impregnated with the solution. Thereafter, baking treatment was performed at 550 ° C. for 2 hours, and Pt and Rh were supported on all the cells.

次に、上記実施例に係る排ガス浄化用触媒及び比較例に係る三元触媒をそれぞれ搭載した自動車エンジン用排ガス浄化装置を構築し、その排ガス浄化性能(触媒性能)を評価した。   Next, an exhaust gas purification apparatus for an automobile engine equipped with the exhaust gas purification catalyst according to the above example and the three-way catalyst according to the comparative example was constructed, and the exhaust gas purification performance (catalyst performance) was evaluated.

<実施例2:排ガス浄化装置の構築>
図3に本実施例に係る排ガス浄化装置20の構成を模式的に示す。図示されるように、本実施例に係る排ガス浄化装置20は、自動車エンジン22の排気系の一部である排気管24と該排気管24の一部に形成された二つの触媒収容部24A,24Bにそれぞれ収容された二つの排ガス浄化用触媒10,30とから構成されている。そして、排気管24の上流側の触媒収容部24Aに本実施例に係る排ガス浄化用触媒10を装備しており、下流側の触媒収容部24Bには上記比較例に係る三元触媒30を装備している。
<Example 2: Construction of exhaust gas purification device>
FIG. 3 schematically shows the configuration of the exhaust gas purification apparatus 20 according to the present embodiment. As shown in the figure, an exhaust gas purification apparatus 20 according to the present embodiment includes an exhaust pipe 24 that is a part of an exhaust system of an automobile engine 22 and two catalyst housing portions 24A formed in a part of the exhaust pipe 24. The exhaust gas purifying catalysts 10 and 30 are respectively housed in 24B. The exhaust gas purifying catalyst 10 according to the present embodiment is provided in the catalyst accommodating portion 24A on the upstream side of the exhaust pipe 24, and the three-way catalyst 30 according to the comparative example is provided in the downstream catalyst accommodating portion 24B. is doing.

<比較例2:排ガス浄化装置の構築>
上記実施例に係る排ガス浄化装置の上流側の触媒収容部24Aにも上記比較例に係る三元触媒30を装備した以外は、実施例2と同様の構成の排ガス浄化装置を構築した。
<Comparative example 2: Construction of exhaust gas purification device>
An exhaust gas purification apparatus having the same configuration as that of Example 2 was constructed, except that the catalyst accommodating portion 24A on the upstream side of the exhaust gas purification apparatus according to the above example was also equipped with the three-way catalyst 30 according to the above comparative example.

<触媒耐久性試験>
上記二つの排ガス浄化装置を実際の自動車エンジンの排気系に搭載し、本実施例に係る排ガス浄化用触媒の耐久性試験を行った。即ち、エンジン排気系に排ガス浄化装置が搭載された自動車を図4に示すサイクルモードで停止と加速及び減速運転を繰り返した。これにより、リッチ状態及びリーン状態の変動が実現される。これを100時間継続して行った。かかる継続運転後、各排ガス浄化装置から上流側の触媒収容部に搭載されていた排ガス浄化用触媒(即ち実施例1に係る排ガス浄化用触媒及び比較例1に係る三元触媒)を取り出し、さらに基材のセル内壁から触媒金属を採取した。なお、実施例1に係る排ガス浄化用触媒については、Pt担持セル及びRh担持セルの両方から別々に触媒金属を採取した。
XRD(エックス線回折法)により得られた回折ピークの位置(角度)から耐久性試験後に採取した各触媒金属成分の格子定数を求め、Pt及びRhの標準サンプル(JCPDS(Joint Committee of Powder Diffraction Standards)カード基準)の格子定数と比較して、その格子定数の変化から固溶(合金化)の有無及び進行状況を評価した。
<Catalyst durability test>
The above two exhaust gas purification apparatuses were mounted on an actual exhaust system of an automobile engine, and the durability test of the exhaust gas purification catalyst according to this example was performed. That is, the automobile in which the exhaust gas purification device is mounted in the engine exhaust system was repeatedly stopped, accelerated and decelerated in the cycle mode shown in FIG. Thereby, the fluctuation | variation of a rich state and a lean state is implement | achieved. This was continued for 100 hours. After such continuous operation, the exhaust gas purification catalyst (that is, the exhaust gas purification catalyst according to Example 1 and the three-way catalyst according to Comparative Example 1) mounted in the upstream side catalyst housing unit is taken out from each exhaust gas purification device, Catalyst metal was collected from the inner cell wall of the substrate. In addition, about the exhaust gas purifying catalyst which concerns on Example 1, the catalyst metal was extract | collected separately from both Pt carrying | support cell and Rh carrying | support cell.
The lattice constant of each catalytic metal component collected after the durability test was determined from the position (angle) of the diffraction peak obtained by XRD (X-ray diffraction method), and a standard sample of Pt and Rh (JCPDS (Joint Committee of Powder Diffraction Standards) The presence or absence and progress of solid solution (alloying) were evaluated from the change in the lattice constant compared to the lattice constant on the card basis.

図5に、実施例1に係る排ガス浄化用触媒のPt担持セルから採取した触媒金属(図中の実施例Pt)とRh担持セルから採取した触媒金属(図中の実施例Rh)及び比較例1に係る排ガス浄化用触媒のセルから採取した触媒金属(図中の比較例)それぞれの格子定数を示す。なお、JCPDSカード基準におけるPt及びRhの格子定数は、それぞれ、Pt:3.9231Å、Rh:3.8031Åである。
排ガス浄化装置の上流側に搭載された実施例1に係る排ガス浄化用触媒においては、各触媒金属成分(PtとRh)が別個のセルに担持されているため、PtとRhとの固溶は生じず、Pt及びRhの格子定数は何れも変化していなかった。他方、排ガス浄化装置の上流側に搭載された比較例1に係る三元触媒においては、格子定数が標準のものから変化しており、Pt及びRhの中間の値を示しているのがわかる。上流側の高温条件下(高い排ガス温度)で各触媒金属成分(PtとRh)が同一セル内で共存していたために固溶(合金化)が生じたと考えられる。
FIG. 5 shows a catalyst metal sampled from the Pt-supporting cell of the exhaust gas purifying catalyst according to Example 1 (Example Pt in the drawing), a catalyst metal sampled from the Rh-supporting cell (Example Rh in the drawing), and a comparative example. 1 shows lattice constants of catalytic metals (comparative examples in the figure) collected from the cell of the exhaust gas purifying catalyst according to No. 1; The lattice constants of Pt and Rh in the JCPDS card standard are Pt: 3.9231Å and Rh: 3.8031Å, respectively.
In the exhaust gas purifying catalyst according to Example 1 mounted on the upstream side of the exhaust gas purifying device, each catalytic metal component (Pt and Rh) is supported in a separate cell, so the solid solution of Pt and Rh is None of the lattice constants of Pt and Rh changed. On the other hand, in the three-way catalyst according to Comparative Example 1 mounted on the upstream side of the exhaust gas purification apparatus, it can be seen that the lattice constant is changed from the standard one, indicating an intermediate value between Pt and Rh. It is thought that solid solution (alloying) occurred because each catalytic metal component (Pt and Rh) coexisted in the same cell under high temperature conditions (high exhaust gas temperature) on the upstream side.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
例えば、上記実施例ではPt及びRhが担持された排ガス浄化用触媒について説明したが、他の触媒金属成分を含む排ガス浄化用触媒でもよい。例えば、Ptに代えてPdを含む排ガス浄化用触媒であってもよい。
また、基材の性状については、コーディエライト製モノリス基材に限られず、他のセラミック製或いはステンレス合金等のメタル製のモノリス基材やパイプ型基材等にも適用可能である。
また、排ガス浄化用触媒には、Rh、Pt、Pd等の主要な触媒金属の他に、触媒能を向上させる副次的な要素を加えることが可能である。例えば、排ガス浄化用触媒においてNOX、HC、CO等の吸蔵効果を向上させるアルカリ金属、アルカリ土類金属及び希土類元素から選ばれる副次的な成分の添加が可能である。
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
For example, in the above embodiment, the exhaust gas purifying catalyst carrying Pt and Rh has been described. However, an exhaust gas purifying catalyst containing another catalytic metal component may be used. For example, an exhaust gas purifying catalyst containing Pd instead of Pt may be used.
Further, the properties of the base material are not limited to cordierite monolith base materials, but can be applied to other ceramic or metal monolith base materials such as stainless steel alloys and pipe-type base materials.
In addition to the main catalytic metals such as Rh, Pt, and Pd, it is possible to add secondary elements that improve catalytic performance to the exhaust gas purification catalyst. For example, in the exhaust gas purification catalyst, it is possible to add a secondary component selected from alkali metals, alkaline earth metals, and rare earth elements that improve the storage effect of NO x , HC, CO, and the like.

また、上記実施例では、予め基材のセル内に多孔質担体から成る触媒担体層を形成し、その後に触媒金属をセル内に導入・担持しているが、この方法に限定されない。例えば、触媒金属が予め担持された粉末状多孔質担体を含むスラリーを基材のセル内に導入し、焼成等をすることによってセル内に触媒金属を担持させてもよい。
なお、本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。
In the above embodiment, a catalyst carrier layer composed of a porous carrier is formed in advance in the cell of the base material, and then the catalyst metal is introduced and supported in the cell. However, the present invention is not limited to this method. For example, the catalyst metal may be supported in the cell by introducing a slurry containing a powdery porous carrier on which the catalyst metal is previously supported into the cell of the base material and performing firing or the like.
It should be noted that the technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing.

排ガス浄化用触媒の一実施例を模式的に示した斜視図である。It is the perspective view which showed typically one Example of the catalyst for exhaust gas purification. 図1のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 排ガス浄化装置の一実施例を模式的に示したブロック図である。It is the block diagram which showed typically one Example of the exhaust gas purification apparatus. 耐久性試験における自動車運転モード(エンジン作動モード)を示すグラフである。It is a graph which shows the motor vehicle operation mode (engine operation mode) in a durability test. 耐久性試験後における触媒金属成分の格子定数の変化を示すグラフである。It is a graph which shows the change of the lattice constant of a catalyst metal component after a durability test.

符号の説明Explanation of symbols

10 排ガス浄化用触媒
12 セル
20 排ガス浄化装置
24 排気管
30 三元触媒
10 Exhaust gas purification catalyst 12 cell 20 Exhaust gas purification device 24 Exhaust pipe 30 Three-way catalyst

Claims (3)

排ガスが流通可能な複数のセルが形成された基材と、
触媒金属として少なくとも(1)ロジウムと(2)白金及び/又はパラジウムと、を備える排ガス浄化用触媒であって、
前記複数のセルのうち内部にロジウムを含むセルには白金及びパラジウムが含まれず、且つ、内部に白金又はパラジウムを含むセルにはロジウムが含まれていないことを特徴とする、排ガス浄化用触媒。
A base material on which a plurality of cells through which exhaust gas can flow is formed;
An exhaust gas purifying catalyst comprising at least (1) rhodium and (2) platinum and / or palladium as catalytic metals,
The exhaust gas-purifying catalyst, wherein a cell containing rhodium inside does not contain platinum and palladium, and a cell containing platinum or palladium inside does not contain rhodium.
排ガスが流通する排気管と、該排気管内に配置される一又は二以上の排ガス浄化用触媒とを備える排ガス浄化装置であって、前記排ガス浄化用触媒として、
排ガスが流通可能な複数のセルが形成された基材と、
触媒金属として少なくとも(1)ロジウムと(2)白金及び/又はパラジウムとを備え、
前記複数のセルのうち内部にロジウムを含むセルには白金及びパラジウムが含まれず、且つ、内部に白金又はパラジウムを含むセルにはロジウムが含まれていないことを特徴とする、排ガス浄化装置。
An exhaust gas purification apparatus comprising an exhaust pipe through which exhaust gas circulates and one or more exhaust gas purification catalysts disposed in the exhaust pipe, wherein the exhaust gas purification catalyst,
A base material on which a plurality of cells through which exhaust gas can flow is formed;
Comprising at least (1) rhodium and (2) platinum and / or palladium as catalytic metals,
The exhaust gas purifying apparatus, wherein a cell containing rhodium inside does not contain platinum and palladium, and a cell containing platinum or palladium inside does not contain rhodium.
前記排気管内における前記排ガス浄化用触媒よりも下流側に、三元触媒であって同一セル内に(1)ロジウムと(2)白金及び/又はパラジウムとを含み且つ排ガスが流通可能な複数のセルが形成された基材を備えた三元触媒がさらに配置された、請求項2に記載の排ガス浄化装置。   A plurality of cells which are three-way catalysts downstream of the exhaust gas purifying catalyst in the exhaust pipe and contain (1) rhodium and (2) platinum and / or palladium in the same cell and which can flow exhaust gas The exhaust gas purifying apparatus according to claim 2, further comprising a three-way catalyst including a base material on which is formed.
JP2005078993A 2005-03-18 2005-03-18 Exhaust gas purification device Expired - Fee Related JP4904705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005078993A JP4904705B2 (en) 2005-03-18 2005-03-18 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005078993A JP4904705B2 (en) 2005-03-18 2005-03-18 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2006255638A true JP2006255638A (en) 2006-09-28
JP4904705B2 JP4904705B2 (en) 2012-03-28

Family

ID=37095424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005078993A Expired - Fee Related JP4904705B2 (en) 2005-03-18 2005-03-18 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP4904705B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296102A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Exhaust gas purifying catalyst and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164715A (en) * 1979-06-09 1980-12-22 Fuji Heavy Ind Ltd Catalytic converter used for purifying exhaust gas
JPH05293376A (en) * 1992-04-15 1993-11-09 Nissan Motor Co Ltd Catalyst for purifying exhaust gas and method therefor
JPH10118457A (en) * 1996-10-25 1998-05-12 Hitachi Ltd Exhaust gas cleaning apparatus for internal combustion engine
JPH10244167A (en) * 1997-03-06 1998-09-14 Hino Motors Ltd Catalyst structure body for purifying exhaust gas
JP2003200062A (en) * 2001-10-26 2003-07-15 Denso Corp Catalyst for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164715A (en) * 1979-06-09 1980-12-22 Fuji Heavy Ind Ltd Catalytic converter used for purifying exhaust gas
JPH05293376A (en) * 1992-04-15 1993-11-09 Nissan Motor Co Ltd Catalyst for purifying exhaust gas and method therefor
JPH10118457A (en) * 1996-10-25 1998-05-12 Hitachi Ltd Exhaust gas cleaning apparatus for internal combustion engine
JPH10244167A (en) * 1997-03-06 1998-09-14 Hino Motors Ltd Catalyst structure body for purifying exhaust gas
JP2003200062A (en) * 2001-10-26 2003-07-15 Denso Corp Catalyst for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296102A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Exhaust gas purifying catalyst and its manufacturing method

Also Published As

Publication number Publication date
JP4904705B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
CN107073463B (en) Catalyst for exhaust gas purification
JP5230199B2 (en) Pressure equilibrated soot filter with catalyst
CN109641196B (en) Palladium diesel oxidation catalyst
CN115155668A (en) Catalyst for exhaust gas purification
KR101895640B1 (en) Surface-coated zeolite materials for diesel oxidation applications
JP6925351B2 (en) Multilayer catalyst composition for internal combustion engine
JP2003245547A (en) Catalyst for exhaust gas treatment and method for exhaust gas treatment
JP2010005590A (en) Catalyst for purifying exhaust gas
BRPI1015322B1 (en) CATALYTIC ARTICLE FOR USE IN A SYSTEM TO TREAT A CHARGE OF GAS DISCHARGE GAS, SYSTEM OF TREATMENT OF DIESEL ENGINE EMISSIONS, AND, METHOD OF TREATING A CHARGE OF GAS CHARGE GAS
CN111980785B (en) Exhaust gas purification device
KR20200037418A (en) Phosphorus-resistant three-way catalyst
JP2019534137A (en) Diesel oxidation catalyst with trapping region for sulfur-containing impurities
CN111201075A (en) Combined NOx absorber and SCR catalyst
CN112912173A (en) Base metal doped zirconia catalyst support material
JP4924500B2 (en) Exhaust gas purification catalyst body
US20230003150A1 (en) LEAN NOx TRAP PLUS LOW TEMPERATURE NOx ADSORBER SYSTEM FOR LOW TEMPERATURE NOx TRAPPING
KR20220102619A (en) Emission Controlled Catalyst Articles Having Enriched PGM Zones
JP4904705B2 (en) Exhaust gas purification device
JPH09155205A (en) Oxidation catalyst for diesel exhaust gas
WO2020188519A1 (en) Tunable nox adsorber
WO2018123286A1 (en) Exhaust gas purification catalyst
JP2022186014A (en) Exhaust gas purification device
JPH10225635A (en) Catalyst for purifying diesel exhaust gas
JP2005007259A (en) Manufacturing method for oxidation catalyst carrying diesel particulate filter
JP2006035029A (en) Catalyst for purification of exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees