JP2006253784A - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
JP2006253784A
JP2006253784A JP2005063778A JP2005063778A JP2006253784A JP 2006253784 A JP2006253784 A JP 2006253784A JP 2005063778 A JP2005063778 A JP 2005063778A JP 2005063778 A JP2005063778 A JP 2005063778A JP 2006253784 A JP2006253784 A JP 2006253784A
Authority
JP
Japan
Prior art keywords
electrode
surface acoustic
acoustic wave
short
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005063778A
Other languages
Japanese (ja)
Inventor
Kunihito Yamanaka
国人 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2005063778A priority Critical patent/JP2006253784A/en
Publication of JP2006253784A publication Critical patent/JP2006253784A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a means for strengthening heat-resistant cycle testing of a surface acoustic wave device using a positive/negative reflecting type reflector. <P>SOLUTION: The positive/negative reflecting type reflector is formed by arranging first electrodes with a width of λ/8 (λ is a wavelength of a surface wave) in periods of λ/2 and second electrodes with the width of λ/8 in the periods of λ/2 on the main surface of a piezoelectric substrate along in the propagation direction of the surface wave, by setting an intercentral distance between the center of the first electrode and that of the second electrode to λ/4, and by short-circuiting the first electrodes each other with a short circuit electrode. The surface acoustic wave device is composed by using an IDT electrode in which the positive/negative reflecting type reflector is arranged to a part of the IDT electrode. The width of the short circuit electrode is set to 2 μm or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、弾性表面波デバイスに関し、特にIDT電極の一部に正負反射型反射器を用いたSAWデバイスの焦電効果による電極破損を改善した弾性表面波デバイスに関する。   The present invention relates to a surface acoustic wave device, and more particularly to a surface acoustic wave device in which electrode breakage due to the pyroelectric effect of a SAW device using a positive / negative reflection type reflector as a part of an IDT electrode is improved.

近年、弾性表面波デバイス(SAWデバイス)は通信分野で広く利用され、高性能、小型、量産性等の優れた特徴を有することから特に携帯電話、LAN等に多く用いられている。また、最近では高速道の自動料金収受システム(ETC)にもSAWフィルタが用いられるようになり、規格としては、中心周波数が40MHz、帯域幅が4MHzから5MHzのものが多い。ETCのように車載される機器は使用環境が厳しく、ヒートサイクル試験として、−55℃(5分)〜125℃(5分)の3000サイクルが課せられている。
これまで、これらのSAWフィルタには、共振器型SAWフィルタが多く採用されていた。しかし、共振器型SAWフィルタは群遅延時間特性が悪いという欠点があるので、最近では、一方向性変換器を用いた群遅延時間特性の良好なトランスバーサル型SAWフィルタの要求が強くなってきている。
In recent years, surface acoustic wave devices (SAW devices) have been widely used in the communication field, and are widely used especially for cellular phones, LANs, and the like because they have excellent characteristics such as high performance, small size, and mass productivity. Recently, SAW filters have also been used in highway automatic toll collection systems (ETCs), and many standards have a center frequency of 40 MHz and a bandwidth of 4 MHz to 5 MHz. Equipment mounted on the vehicle such as ETC has a severe use environment, and 3000 cycles of −55 ° C. (5 minutes) to 125 ° C. (5 minutes) are imposed as a heat cycle test.
Until now, many of these resonator type SAW filters have been adopted as these SAW filters. However, since the resonator type SAW filter has a defect that the group delay time characteristic is poor, recently, there is an increasing demand for a transversal type SAW filter having a good group delay time characteristic using a unidirectional converter. Yes.

図3はトランスバーサル型SAWフィルタの基本的構成を示す平面図であって、圧電基板11の主面上に表面波の伝搬方向に沿ってIDT電極12、13を所定の間隔を隔して配置する。IDT電極12、13はそれぞれ互いに間挿し合う複数本の電極指を有する一対の櫛形電極により形成され、IDT電極12の一方の櫛形電極は入力端子INに接続されると共に、他方の櫛形電極は接地される。さらに、IDT電極13の一方の櫛形電極は出力端子OUTに接続され、他方の櫛形電極は接地されてトランスバーサル型SAWフィルタが構成される。
図3に示すようなIDT電極では、励振された表面波は左右双方に均等に伝搬するので、本質的に6dBの損失が発生することになる。そのため、挿入損失を低減すべく一方向性を有する弾性表面波変換器が開発され、用いられてきた。
FIG. 3 is a plan view showing the basic configuration of the transversal SAW filter. The IDT electrodes 12 and 13 are arranged on the main surface of the piezoelectric substrate 11 along the propagation direction of the surface wave at a predetermined interval. To do. The IDT electrodes 12 and 13 are each formed by a pair of comb electrodes having a plurality of electrode fingers interleaved with each other. One comb electrode of the IDT electrode 12 is connected to the input terminal IN, and the other comb electrode is grounded. Is done. Further, one comb-shaped electrode of the IDT electrode 13 is connected to the output terminal OUT, and the other comb-shaped electrode is grounded to constitute a transversal SAW filter.
In the IDT electrode as shown in FIG. 3, the excited surface wave propagates equally to both the left and right, so that a loss of 6 dB is essentially generated. Therefore, a surface acoustic wave transducer having unidirectionality has been developed and used to reduce insertion loss.

図4(a)、(b)はストリップ型グレーティング反射器(以下、グレーティング反射器と称す)の構成を示す概略平面図であって、基板(図示せず)上に金属などの薄膜ストリップ14を付着させて構成する。基板に圧電基板を用いた場合は金属ストリップの弾性的な摂動効果の他に、金属ストリップの電界短絡効果による電気的摂動が重畳される。
図4(a)に示すようにグレーティング反射器に垂直に表面波が入射し、反射される場合、周知のように、ブラッグ条件より位相整合条件は次式のように表される。
p=mλ/2 (1)
ここで、pは金属ストリップ14の周期(摂動の周期)、λは入射表面波の波長、mは整数である。式1を満たすとき、即ち、金属ストリップ11の周期pが表面波の波長の半分の整数倍となるとき、反射される表面波はすべて同位相で加わるため、強い反射が生じ、ブラッグ反射と言われている。
図4(b)に示すように金属ストリップ15を金属電極16で短絡したタイプのグレーティング反射器もSAWデバイスに多く用いられている。
4A and 4B are schematic plan views showing the configuration of a strip-type grating reflector (hereinafter referred to as a grating reflector), in which a thin film strip 14 of metal or the like is placed on a substrate (not shown). Make it attached. When a piezoelectric substrate is used as the substrate, in addition to the elastic perturbation effect of the metal strip, electrical perturbation due to the electric field short-circuit effect of the metal strip is superimposed.
As shown in FIG. 4A, when a surface wave is perpendicularly incident on the grating reflector and reflected, the phase matching condition is expressed by the following equation from the Bragg condition, as is well known.
p = mλ / 2 (1)
Here, p is the period of the metal strip 14 (perturbation period), λ is the wavelength of the incident surface wave, and m is an integer. When Equation 1 is satisfied, that is, when the period p of the metal strip 11 is an integral multiple of half the wavelength of the surface wave, all the reflected surface waves are added in the same phase. It has been broken.
A grating reflector in which a metal strip 15 is short-circuited with a metal electrode 16 as shown in FIG. 4B is also often used in a SAW device.

図5は特開昭60−263505号公報に開示された正負の反射係数をもつ弾性表面波反射器(以下、正負反射型反射器と称す)の構成を示す概略平面図で、圧電基板(図示せず)の表面に周期がλ/2(λは表面波の波長)で、その幅がλ/8の金属ストリップ(金属電極)21を配置し、これらの金属電極21間を金属電極22で接続する。さらに、周期がλ/2で電極幅がλ/8の金属電極23を、対になった電極21の中心位置に配設する。電極21は金属電極22によって短絡されているので、この短絡型浮き電極の圧電作用による反射波の位相を−90度とすると、いずれにも結合していない開放型の浮き電極23の圧電作用による反射波の位相は+90度となる。
入射した表面波が反射する場合、電極21と電極23との中心間距離をλ/4に設定すると、電極21による反射波と、電極23による反射波とは同相となるので、各電極からの反射波は互いに加算され、大きな反射係数を持つため、強い反射波が得られる。
FIG. 5 is a schematic plan view showing the configuration of a surface acoustic wave reflector having a positive / negative reflection coefficient (hereinafter referred to as a positive / negative reflection type reflector) disclosed in Japanese Patent Application Laid-Open No. 60-263505. A metal strip (metal electrode) 21 having a period of λ / 2 (λ is the wavelength of the surface wave) and a width of λ / 8 is disposed on the surface of the metal electrode 21, and the metal electrode 22 is interposed between these metal electrodes 21. Connecting. Further, a metal electrode 23 having a period of λ / 2 and an electrode width of λ / 8 is disposed at the center position of the paired electrodes 21. Since the electrode 21 is short-circuited by the metal electrode 22, if the phase of the reflected wave due to the piezoelectric action of this short-circuited floating electrode is −90 degrees, it is due to the piezoelectric action of the open floating electrode 23 that is not coupled to any of them. The phase of the reflected wave is +90 degrees.
When the incident surface wave is reflected, if the distance between the centers of the electrode 21 and the electrode 23 is set to λ / 4, the reflected wave from the electrode 21 and the reflected wave from the electrode 23 are in phase. Since the reflected waves are added together and have a large reflection coefficient, a strong reflected wave is obtained.

図5に示した正負反射型反射器を、図6に示すように電極の一部に組み込んだIDT電極は強い一方向性を有するので、トランスバーサル型SAWフィルタのIDT電極に用いことができる。
図7は入力側のIDT電極25にスプリット電極を、出力側のIDT26の一部に正負反射型反射器を用い、IDT電極25、26の間に遮蔽用の電極27を配して構成したトランスバーサル型SAWフィルタである。
しかし、IDT電極の内部に正負反射型反射器を配置すると、図6に示すように、短絡電極22’の幅と、短絡電極22’とバスバー24との間隔とが余分に必要となり、表面波の回折を避けるためには、短絡電極22’の幅は1μm以下に設定するのが一般的であった。なお、特開昭2000−278075号公報、特開昭2001−144573号公報等の先行出願にも一方向性変換器が開示され、図面が示されているが、これはあくまでも概念図であり、短絡電極の幅は1μm以下に設定するのが一般的である。
特開昭60−263505号公報 特開昭2000−278075号公報 特開昭2001−144573号公報 柴山幹夫他著 「弾性波素子技術ハンドブック」 オーム社出版 平成3年11月30日発行
Since the IDT electrode in which the positive / negative reflection type reflector shown in FIG. 5 is incorporated in a part of the electrode as shown in FIG. 6 has strong unidirectionality, it can be used as an IDT electrode of a transversal SAW filter.
FIG. 7 shows a transformer in which a split electrode is used for the IDT electrode 25 on the input side, a positive / negative reflection type reflector is used for a part of the IDT 26 on the output side, and a shielding electrode 27 is arranged between the IDT electrodes 25 and 26. This is a Versal type SAW filter.
However, if a positive / negative reflection type reflector is arranged inside the IDT electrode, as shown in FIG. 6, the width of the short-circuit electrode 22 ′ and the space between the short-circuit electrode 22 ′ and the bus bar 24 are required, and the surface wave In order to avoid this diffraction, the width of the short-circuit electrode 22 'is generally set to 1 μm or less. Incidentally, unidirectional converters are also disclosed in prior applications such as JP-A-2000-278075 and JP-A-2001-144573, and drawings are shown, but this is a conceptual diagram to the last, The width of the short-circuit electrode is generally set to 1 μm or less.
JP-A-60-263505 JP 2000-278075 A JP 2001-144573 A Mikio Shibayama et al. “Acoustic wave element technology handbook” published by Ohmsha, November 30, 1991

圧電基板に128度YカットLiNbOを用い、図7に示したようにIDT電極の一部に正負反射型反射器を用いて、短絡電極の幅を1μmにして構成した、中心周波数が40MHz(表面波の波長λは約100μm、電極指の幅12.5μm)、帯域幅が4MHzのトランスバーサル型SAWフィルタは通過帯域、減衰傾度とも良好な特性が得られた。
しかしながら、このトランスバーサル型SAWフィルタを、1000サイクル、3000サイクル、6000サイクルのヒートサイクル試験(−55℃(5分)〜125℃(5分))を行うと、図8に示すように15個中、それぞれ7個、9個、10個の故障が発生するという問題があった。
A 128-degree Y-cut LiNbO 3 is used for the piezoelectric substrate, a positive / negative reflection type reflector is used for a part of the IDT electrode as shown in FIG. 7, and the short-circuit electrode width is 1 μm. The transversal SAW filter having a surface wave wavelength λ of about 100 μm and an electrode finger width of 12.5 μm and a bandwidth of 4 MHz has good characteristics in both passband and attenuation gradient.
However, when this transversal type SAW filter was subjected to a heat cycle test (-55 ° C. (5 minutes) to 125 ° C. (5 minutes)) of 1000 cycles, 3000 cycles, and 6000 cycles, 15 pieces as shown in FIG. Among them, there was a problem that seven, nine, and ten failures occurred, respectively.

本発明の弾性表面波デバイスは、焦電効果による電極の破損を低減るため、請求項1の発明は、圧電基板上に配置したIDT電極が励起する表面波の波長をλとするとき、幅がλ/8である第1乃至第4のグレイティング電極を中心間間隔がλ/4となるように順番に配列し、第1と第3のグレイティング電極を開放型とし、第2と第4のグレイティング電極を短絡電極にて導通接続して短絡型とした正負反射型反射器を、前記IDT電極を構成する電極指の一部と置換して配置した構造の弾性表面波デバイスであって、前記短絡電極の幅を2μm以上として構成した弾性表面波デバイスであることを特徴とする。
請求項2の発明は、前記第2と第4のグレイティング電極の両端同士をそれぞれ短絡電極にて接続したことを特徴とする請求項1に記載の弾性表面波デバイスである。
請求項3の発明は、前記IDT電極を入力もしくは出力IDT電極として用いて構成したトランスバーサル型弾性表面波フィルタであることを特徴とする請求項1又は2に記載の弾性表面波デバイスである。
請求項4の発明は、前記IDT電極を構成する電極指はスプリット電極であることを特徴とする請求項1乃至3のいずれかに記載の弾性表面波デバイスである。
請求項5の発明は、圧電基板が回転Yカットニオブ酸リチウム或いは回転Yカットタンタル酸リチウムのいずれかであることを特徴とする請求項1乃至4のいずれかに記載の弾性表面波デバイスである。
請求項6の発明は、圧電基板上に幅がλ/8(λは圧電基板上を伝搬する弾性表面波の波長)である第1乃至第4のグレイティング電極を中心間間隔がλ/4となるように弾性表面波の伝搬方向に沿って順番に配列し、第1と第3のグレイティング電極を開放型とし、第2と第4のグレイティング電極を短絡電極にて導通接続して短絡型とした正負反射型反射器を備えた弾性表面波デバイスであって、前記短絡電極の幅を2μm以上として構成した弾性表面波デバイスであることを特徴とする。
Since the surface acoustic wave device of the present invention reduces electrode breakage due to the pyroelectric effect, the invention of claim 1 has a width when the wavelength of the surface wave excited by the IDT electrode arranged on the piezoelectric substrate is λ. Are arranged in order so that the center-to-center spacing is λ / 4, the first and third grating electrodes are open, and the second and second grating electrodes are λ / 8. 4 is a surface acoustic wave device having a structure in which a positive / negative reflection type reflector, which is short-circuited by electrically connecting four grating electrodes with a short-circuit electrode, is replaced with a part of electrode fingers constituting the IDT electrode. The surface acoustic wave device is characterized in that the short-circuit electrode has a width of 2 μm or more.
The invention according to claim 2 is the surface acoustic wave device according to claim 1, wherein both ends of the second and fourth grating electrodes are connected to each other by a short-circuit electrode.
A third aspect of the present invention is the surface acoustic wave device according to the first or second aspect, wherein the surface acoustic wave device is a transversal surface acoustic wave filter configured using the IDT electrode as an input or output IDT electrode.
According to a fourth aspect of the present invention, in the surface acoustic wave device according to any one of the first to third aspects, the electrode finger constituting the IDT electrode is a split electrode.
The invention according to claim 5 is the surface acoustic wave device according to any one of claims 1 to 4, characterized in that the piezoelectric substrate is either a rotated Y-cut lithium niobate or a rotated Y-cut lithium tantalate. .
According to the sixth aspect of the present invention, the first to fourth grating electrodes having a width of λ / 8 (λ is the wavelength of the surface acoustic wave propagating on the piezoelectric substrate) on the piezoelectric substrate have a center-to-center spacing of λ / 4. Are arranged in order along the propagation direction of the surface acoustic wave so that the first and third grating electrodes are open, and the second and fourth grating electrodes are electrically connected by a short-circuit electrode. A surface acoustic wave device including a positive and negative reflection type reflector that is a short-circuit type, wherein the short-circuit electrode has a width of 2 μm or more.

本発明の弾性表面波デバイスは、正負反射型反射器の短絡電極を幅広として設計したため、ニオブ酸リチウム、タンタル酸リチウム等の焦電効果の大きな圧電材料を用いてSAWデバイスを構成しても、ヒートサイクル試験における故障を大幅に低減できるという利点がある。   Since the surface acoustic wave device of the present invention is designed so that the short-circuit electrode of the positive and negative reflection type reflector is wide, even if the SAW device is configured using a piezoelectric material having a large pyroelectric effect such as lithium niobate and lithium tantalate, There is an advantage that failure in the heat cycle test can be greatly reduced.

図1は本発明に係るSAWデバイスの実施の形態を示す図であって、IDT電極の要部を示す概略平面図である。IDT電極の要部は、1λ(λは表面波の波長)の中に正の電極指2本と負の電極指2をそれぞれ配置したスプリット電極αと、βで示す正負反射型反射器とを備えている。正負反射型反射器βの構成は、圧電基板(図示せず)上に配置したIDT電極が励起する表面波の波長をλとするとき、幅がλ/8である第1乃至第4のグレイティング電極1、2、3、4を中心間間隔がλ/4となるように順番に配列し、第1と第3のグレイティング電極1、3を開放型とし、第2と第4のグレイティング電極2、4を短絡電極5にて導通接続して正負反射型反射器を構成する。
第2の電極2を短絡することにより短絡型浮き電極2の圧電作用による反射波の位相を−90度とすると、第1の電極の開放型浮き電極1の圧電作用による反射波の位相は+90度となり、第1の電極1による反射波と、第2の電極2による反射波とは同相となるので、強い反射波が得られる。そして、図1に示すように、IDT電極の一部に正負反射型反射器を設けることにより、IDT電極は一方向性変換器として機能し、このIDT電極を用いてトランスバーサル型SAWフィルタを構成すれば、挿入損失の少ないフィルタが得られる。
FIG. 1 is a view showing an embodiment of a SAW device according to the present invention, and is a schematic plan view showing a main part of an IDT electrode. The main part of the IDT electrode includes a split electrode α in which two positive electrode fingers 2 and a negative electrode finger 2 are arranged in 1λ (λ is the wavelength of a surface wave), and a positive / negative reflection type reflector indicated by β. I have. The configuration of the positive / negative reflection type reflector β is the first to fourth grays having a width of λ / 8, where λ is the wavelength of the surface wave excited by the IDT electrode disposed on the piezoelectric substrate (not shown). The first and third grating electrodes 1 and 3 are opened, and the second and fourth gray electrodes are arranged in order such that the spacing between the centers is λ / 4. The positive and negative reflection type reflectors are configured by conducting the connecting electrodes 2 and 4 through the short-circuit electrode 5.
When the phase of the reflected wave due to the piezoelectric action of the short-circuit type floating electrode 2 is set to −90 degrees by short-circuiting the second electrode 2, the phase of the reflected wave due to the piezoelectric action of the open type floating electrode 1 of the first electrode is +90. Since the reflected wave from the first electrode 1 and the reflected wave from the second electrode 2 are in phase, a strong reflected wave is obtained. As shown in FIG. 1, by providing a positive / negative reflection type reflector on a part of the IDT electrode, the IDT electrode functions as a unidirectional converter, and a transversal SAW filter is configured using the IDT electrode. Then, a filter with a small insertion loss can be obtained.

電気機械結合係数の大きく、強誘電体の圧電材料であるニオブ酸リチウム、タンタル酸リチウムは焦電効果も大きいので、ヒートサイクル試験の際の焦電効果によって短絡電極5とバスバー6や周辺の電極との間でスパークが生じ、電極の一部が破損することが、図8に示したトランスバーサル型SAWフィルタの故障の原因であると推定した。
そこで、図1に示す短絡電極3の幅を2μm、4μmと幅広にし、図7に示したような電極パターンを用いてトランスバーサル型SAWフィルタを試作し、ヒートサイクル試験を行った。図2は短絡電極3の幅を幅広にしたトランスバーサル型SAWフィルタ15個のヒートサイクル試験の結果である。短絡電極3の幅が2μm、4μmとしたとき、1000サイクル、3000サイクル、6000サイクルのヒートサイクル試験を行った後で、いずれの場合も故障したものは1個も無かった。
Lithium niobate and lithium tantalate, which have a large electromechanical coupling coefficient and a ferroelectric piezoelectric material, also have a large pyroelectric effect. It was presumed that the occurrence of a spark in between and a part of the electrode was caused by the failure of the transversal SAW filter shown in FIG.
Therefore, the width of the short-circuit electrode 3 shown in FIG. 1 was widened to 2 μm and 4 μm, a transversal SAW filter was prototyped using the electrode pattern shown in FIG. 7, and a heat cycle test was performed. FIG. 2 shows the results of a heat cycle test of 15 transversal SAW filters in which the width of the short-circuit electrode 3 is increased. When the width of the short-circuit electrode 3 was 2 μm and 4 μm, there was no failure in any case after the heat cycle test of 1000 cycles, 3000 cycles, and 6000 cycles.

以上ではトランスバーサル型SAWフィルタのIDT電極の一部に正負反射型反射器を設けた実施例について述べたが、SAW共振子、共振器型SAWフィルタ、例えば縦結合二重モードSAWフィルタ等のIDT電極の一部に正負反射型反射器を配置してSAWデバイスを構成すると、SAWデバイスのロスを軽減することができと共に、焦電効果に強いSAWデバイスを構成することができる。 In the above description, an embodiment in which a positive / negative reflection type reflector is provided on a part of the IDT electrode of a transversal SAW filter has been described. If a SAW device is configured by arranging positive and negative reflection type reflectors on a part of the electrodes, the loss of the SAW device can be reduced, and a SAW device that is resistant to the pyroelectric effect can be configured.

図1に示した短絡電極3の膜厚をh、幅をwとしたとき、積h・wが0.8μm以上、408μm以下とすることにより、短絡電極3が強化されるので焦電効果の影響である短絡電極3の破損を避けることができた。 When the thickness of the short-circuiting electrode 3 shown to h, and width w 1, the product h · w is 0.8 [mu] m 2 or more, by a 408Myuemu 2 or less, since the short-circuiting electrode 3 is enhanced pyroelectric The damage of the short-circuit electrode 3 which is an influence of the effect could be avoided.

以上では、圧電基板として128度YカットLiNbOを用いた例について説明したが、他の回転Yカットニオブ酸リチウムについても同様である。また、焦電効果の大きい回転Yカットタンタル酸リチウム等の他の圧電材料についても同様に本発明が適用できる。 In the above, an example using 128-degree Y-cut LiNbO 3 as the piezoelectric substrate has been described, but the same applies to other rotated Y-cut lithium niobate. Further, the present invention can be similarly applied to other piezoelectric materials such as rotated Y-cut lithium tantalate having a large pyroelectric effect.

本発明に係るIDT電極の要部の構造を示した概略構成図である。It is the schematic block diagram which showed the structure of the principal part of the IDT electrode which concerns on this invention. 本発明に係るトランスバーサル型SAWフィルタのヒートサイクル試験の結果である。It is a result of the heat cycle test of the transversal type SAW filter concerning the present invention. 従来のトランスバーサル型SAWフィルタの構成を示す平面図である。It is a top view which shows the structure of the conventional transversal type | mold SAW filter. (a)、(b)は従来の反射器を説明する図である。(A), (b) is a figure explaining the conventional reflector. 正負反射型反射器の原理を説明する図である。It is a figure explaining the principle of a positive / negative reflection type reflector. IDT電極の一部に正負反射型反射器を備えた電極パターンの要部の平面図である。It is a top view of the principal part of the electrode pattern provided with the positive / negative reflection type reflector in a part of IDT electrode. IDT電極の一部に正負反射型反射器を配置したトランスバーサル型SAWフィルタの概略平面図である。It is a schematic plan view of a transversal type SAW filter in which a positive / negative reflection type reflector is arranged on a part of an IDT electrode. 従来のトランスバーサル型SAWフィルタのヒートサイクル試験の結果である。It is a result of the heat cycle test of the conventional transversal type SAW filter.

符号の説明Explanation of symbols

1、2、3、4 電極指
5 短絡電極
6 バスバー
α スプリット電極
β 正負反射型反射器

1, 2, 3, 4 Electrode finger 5 Short-circuit electrode 6 Bus bar α Split electrode β Positive / negative reflection type reflector

Claims (6)

圧電基板上に配置したIDT電極が励起する表面波の波長をλとするとき、幅がλ/8である第1乃至第4のグレイティング電極を中心間間隔がλ/4となるように順番に配列し、第1と第3のグレイティング電極を開放型とし、第2と第4のグレイティング電極を短絡電極にて導通接続して短絡型とした正負反射型反射器を、前記IDT電極を構成する電極指の一部と置換して配置した構造の弾性表面波デバイスであって、前記短絡電極の幅を2μm以上としたことを特徴とする弾性表面波デバイス。 When the wavelength of the surface wave excited by the IDT electrode disposed on the piezoelectric substrate is λ, the first to fourth grating electrodes having a width of λ / 8 are arranged in order so that the center-to-center spacing is λ / 4. A positive and negative reflection type reflector in which the first and third grating electrodes are open-type, and the second and fourth grating electrodes are electrically connected by a short-circuit electrode to form a short-circuit type, the IDT electrode A surface acoustic wave device having a structure in which the electrode finger is replaced with a part of the electrode finger, wherein the short-circuit electrode has a width of 2 μm or more. 前記第2と第4のグレイティング電極の両端同士をそれぞれ短絡電極にて接続したことを特徴とする請求項1に記載の弾性表面波デバイス。 2. The surface acoustic wave device according to claim 1, wherein both ends of the second and fourth grating electrodes are connected to each other by a short-circuit electrode. 前記IDT電極を入力もしくは出力IDT電極として用いて構成したトランスバーサル型弾性表面波フィルタであることを特徴とする請求項1又は2に記載の弾性表面波デバイス。 The surface acoustic wave device according to claim 1, wherein the surface acoustic wave device is a transversal surface acoustic wave filter configured using the IDT electrode as an input or output IDT electrode. 前記IDT電極を構成する電極指はスプリット電極であることを特徴とする請求項1乃至3のいずれかに記載の弾性表面波デバイス。 The surface acoustic wave device according to claim 1, wherein the electrode fingers constituting the IDT electrode are split electrodes. 圧電基板が回転Yカットニオブ酸リチウム或いは回転Yカットタンタル酸リチウムのいずれかであることを特徴とする請求項1乃至4のいずれかに記載の弾性表面波デバイス。 5. The surface acoustic wave device according to claim 1, wherein the piezoelectric substrate is either a rotated Y-cut lithium niobate or a rotated Y-cut lithium tantalate. 圧電基板上に幅がλ/8(λは圧電基板上を伝搬する弾性表面波の波長)である第1乃至第4のグレイティング電極を中心間間隔がλ/4となるように弾性表面波の伝搬方向に沿って順番に配列し、第1と第3のグレイティング電極を開放型とし、第2と第4のグレイティング電極を短絡電極にて導通接続して短絡型とした正負反射型反射器を備えた弾性表面波デバイスであって、前記短絡電極の幅を2μm以上としたことを特徴とする弾性表面波デバイス。



Surface acoustic waves are formed on the piezoelectric substrate so that the distance between the centers of the first to fourth grating electrodes having a width of λ / 8 (λ is the wavelength of the surface acoustic wave propagating on the piezoelectric substrate) is λ / 4. Positive and negative reflection type in which the first and third grating electrodes are open-type, and the second and fourth grating electrodes are conductively connected by a short-circuit electrode. A surface acoustic wave device including a reflector, wherein the short-circuit electrode has a width of 2 μm or more.



JP2005063778A 2005-03-08 2005-03-08 Surface acoustic wave device Withdrawn JP2006253784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005063778A JP2006253784A (en) 2005-03-08 2005-03-08 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005063778A JP2006253784A (en) 2005-03-08 2005-03-08 Surface acoustic wave device

Publications (1)

Publication Number Publication Date
JP2006253784A true JP2006253784A (en) 2006-09-21

Family

ID=37093837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005063778A Withdrawn JP2006253784A (en) 2005-03-08 2005-03-08 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP2006253784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087039A (en) * 2012-10-23 2014-05-12 Kazuhiko Yamanouchi Unidirectional surface acoustic wave transducer and electronic device using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207808A (en) * 1990-11-30 1992-07-29 Hitachi Ltd Surface acoustic wave device and communication equipment using said device
JPH0918272A (en) * 1995-06-26 1997-01-17 Fujitsu Ltd Surface acoustic wave device
JPH1093374A (en) * 1997-10-20 1998-04-10 Kazuhiko Yamanouchi Surface acoustic wave device and surface acoustic wave filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207808A (en) * 1990-11-30 1992-07-29 Hitachi Ltd Surface acoustic wave device and communication equipment using said device
JPH0918272A (en) * 1995-06-26 1997-01-17 Fujitsu Ltd Surface acoustic wave device
JPH1093374A (en) * 1997-10-20 1998-04-10 Kazuhiko Yamanouchi Surface acoustic wave device and surface acoustic wave filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087039A (en) * 2012-10-23 2014-05-12 Kazuhiko Yamanouchi Unidirectional surface acoustic wave transducer and electronic device using the same

Similar Documents

Publication Publication Date Title
US9843305B2 (en) Elastic wave resonator, elastic wave filter device, and duplexer
JP6247377B2 (en) Elastic wave element, filter element, and communication apparatus
US9847770B2 (en) Elastic wave resonator, elastic wave filter apparatus, and duplexer
EP0056690B1 (en) Surface acoustic wave resonator device
JP3233087B2 (en) Surface acoustic wave filter
JP6760480B2 (en) Extractor
KR19990013644A (en) Surface acoustic wave device
WO2000070758A1 (en) Surface acoustic wave device
JP2019121873A (en) Elastic wave device, filter, and multiplexer
JP3137064B2 (en) Surface acoustic wave filter
JP2006253784A (en) Surface acoustic wave device
JP4457914B2 (en) Unidirectional surface acoustic wave transducer and surface acoustic wave device using the same
JP7519902B2 (en) Transducer structure for source suppression in SAW filter devices - Patents.com
JP7344662B2 (en) multiplexer
JPH10284988A (en) Surface acoustic wave filter
WO2018117059A1 (en) Acoustic wave resonator, filter device, and multiplexer
JP2005204042A (en) Surface acoustic wave resonator and surface acoustic wave filter
JP2006303834A (en) Surface-acoustic wave device
JP2010245738A (en) Saw filter
JP7132841B2 (en) SAW DEVICE, DISPENSER, AND COMMUNICATION DEVICE
WO2024004862A1 (en) Filter device and communication device
JPH0767060B2 (en) Single-mode two-terminal pair surface acoustic wave resonator and surface acoustic wave filter
JP4548305B2 (en) Dual-mode surface acoustic wave filter
JP4506394B2 (en) Unidirectional surface acoustic wave transducer and surface acoustic wave device using the same
JPH08307191A (en) Surface acoustic wave device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100623