JP2006251351A - 有機非線形光学材料 - Google Patents

有機非線形光学材料 Download PDF

Info

Publication number
JP2006251351A
JP2006251351A JP2005067581A JP2005067581A JP2006251351A JP 2006251351 A JP2006251351 A JP 2006251351A JP 2005067581 A JP2005067581 A JP 2005067581A JP 2005067581 A JP2005067581 A JP 2005067581A JP 2006251351 A JP2006251351 A JP 2006251351A
Authority
JP
Japan
Prior art keywords
group
ring
general formula
substituent
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005067581A
Other languages
English (en)
Inventor
Shuntaro Mataga
駿太郎 又賀
Tsutomu Ishii
努 石井
Muneyuki Shigeiwa
統之 茂岩
Shuichi Maeda
修一 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Mitsubishi Chemical Corp
Original Assignee
Kyushu University NUC
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Mitsubishi Chemical Corp filed Critical Kyushu University NUC
Priority to JP2005067581A priority Critical patent/JP2006251351A/ja
Publication of JP2006251351A publication Critical patent/JP2006251351A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】2光子吸収断面積が大きく、2光子吸収を起こし易い有機非線形光学材料を提供する。
【解決手段】下記一般式(I)で表される化合物を構成成分の少なくとも一部として含有することを特徴とする有機非線形光学材料。
【化12】
Figure 2006251351

[式中、Ar1〜Ar4は各々独立に置換基を有していてもよい2価の芳香環基を表し、Ar5〜Ar8は各々独立に下記一般式(II)で表される2価の複素環基を表し、Ar9〜Ar12は各々独立に置換基を有していてもよい1価の芳香環基を表し、Mは、各々窒素原子に結合する2個の水素原子もしくは2価以上の金属イオンを表す。ただし、Ar1〜Ar4とAr5〜Ar8、Ar5〜Ar8とAr9〜Ar12はそれぞれ共役系が繋がる状態で結合している。)
【化13】
Figure 2006251351

(式(II)中、環Aと環Zは、炭素原子を2個共有して縮合した環を表し、各々置換基を有していてもよい。)]
【選択図】なし

Description

本発明は非線形光学特性を持つ有機材料に関し、詳しくは多光子吸収断面積が大きい有機非線形光学材料に関する。
非線形効果とは強い光と物質との相互作用に基づく様々な現象であり、具体的な現象としては光高調波発生と光混合、誘導散乱、光学定数の光強度変化、多光子吸収等が挙げられる。近年、2次の非線形光学材料として2−メチル−4−ニトロアニリンをはじめとする有機化合物が、それまで使用されていたLiNbO3、LiTaO3などを遥かに凌ぐ非線形光学定数を示すことが報告され、これにより有機非線形光学材料が注目され、盛んに研究が行われるようになった。
有機化合物の非線形光学特性の中で特に2光子吸収現象が注目されている。2光子吸収とは化合物が2つの光子を吸収して基底状態から励起状態へ遷移する現象である。一光子励起波長の2倍程度の波長の光を用い、2個の光子を1つの分子に当てることにより励起させることができる。1個の分子に同時に2個の光子が当たる確率は、光子密度の2乗に比例し、試料上でレーザー光が焦点を結ぶとき焦点面から離れるにつれ、光子密度は距離の2乗に比例して減少する。従って、2光子吸収の起こる確率は焦点面から離れるに伴い距離の4乗に比例して減少していく。この現象を利用して光メモリー、2光子造形、2光子フォトダイナミックセラピー等の分野で応用が期待されている。
この中で、近年、人体に有害な紫外線を用いない2光子吸収現象を利用してポルフィリンから一重項酸素を発生させられる事が報告されている(非特許文献1,2)。これを利用すれば、薬品を投与後、病理部分で選択的に2光子励起させ発生した一重項酸素により、病理細胞を壊死させることができる。
M. Kruk, A. KArotki, M. Drobizhev, V. Kuzmitsky, V. Gael, A. Rebane, J. Lumin. 2003, 105, 45 W. R. Dichtel, J. M. Serin, C. Edder, J. M. J. Frechet, M. Matuszewski, L. S. Tan, T. Y. Ohulchanskyy, P. N. Prasad, J. Am. Chem. Soc. 2004, 126, 5380
2光子吸収現象を利用する場合に重要となるのが2光子吸収の起こりやすさを示す2光子吸収断面積であり、2光子吸収断面積が大きければ大きいほど弱いエネルギーで分子が励起状態へ遷移する。
しかしながら、従来提案されているポルフィリン分子では2光子吸収断面積が小さいために、2光子吸収を起こさせるためには高出力のレーザーが必要である。2光子吸収断面積の大きい材料であれば、低出力のレーザーで励起状態への遷移を起こさせることができることから、光メモリー、2光子造形、2光子フォトダイナミックセラピー等の分野では、機能性を持った2光子吸収断面積の大きい分子の設計が課題となっている。
従って、本発明は、2光子吸収断面積が大きく、高出力のレーザーを用いることなく、低出力のレーザーで2光子吸収を起こす有機非線形光学材料を提供することを目的とする。
本発明者らは、上記実情に鑑みて鋭意検討した結果、特定の化合物、例えばチアジアゾール環が共役系を介してポルフィリン分子に結合した化合物を構成成分の少なくとも一部として含有する材料であれば、上記課題を解決できることを見出し、本発明を完成した。
即ち、本発明は以下を要旨とする。
(1) 下記一般式(I)で表される化合物を構成成分の少なくとも一部として含有することを特徴とする有機非線形光学材料。
Figure 2006251351
[式中、Ar1〜Ar4は各々独立に置換基を有していてもよい2価の芳香環基を表し、
Ar5〜Ar8は各々独立に下記一般式(II)で表される2価の複素環基を表し、
Ar9〜Ar12は各々独立に置換基を有していてもよい1価の芳香環基を表し、
Mは、各々窒素原子に結合する2個の水素原子もしくは2価以上の金属イオンを表す。
ただし、Ar1〜Ar4とAr5〜Ar8、Ar5〜Ar8とAr9〜Ar12はそれぞれ共役系が繋がる状態で結合している。)
Figure 2006251351
(式(II)中、環Aと環Zは、炭素原子を2個共有して縮合した環を表し、各々置換基を有していてもよい。)]
(2) 一般式(II)において、環Zは置換基を有していてもよい6員環を表し、環Aは置換基を有していてもよい5員環を表していることを特徴とする(1)に記載の有機非線形光学材料。
(3) 一般式(II)が下記一般式(IIa)又は(IIb)で表されることを特徴とする(1)又は(2)に記載の有機非線形光学材料。
Figure 2006251351
[式(IIa),(IIb)において、環Zは一般式(II)における環Zと同義の環よりなる2価の基であり、一般式(IIa)中、Yは16族元素を表し、一般式(IIb)中、XはN又はSを表す。]
本発明によれば、多光子吸収断面積、特に2光子吸収断面積が大きく、高出力レーザーを必要とすることなく、低出力レーザーにより容易に2光子吸収現象を起こし得る有機非線形光学材料が提供される。
以下に、本発明の有機非線形光学材料の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形して実施することができる。
本発明の有機非線形光学材料は、下記一般式(I)で示される化合物を構成成分の少なくとも一部として含むものである。
Figure 2006251351
[式中、Ar1〜Ar4は各々独立に置換基を有していてもよい2価の芳香環基を表し、
Ar5〜Ar8は各々独立に下記一般式(II)で表される2価の複素環基を表し、
Ar9〜Ar12は各々独立に置換基を有していてもよい1価の芳香環基を表し、
Mは、各々窒素原子に結合する2個の水素原子もしくは2価以上の金属イオンを表す。
ただし、Ar1〜Ar4とAr5〜Ar8、Ar5〜Ar8とAr9〜Ar12はそれぞれ共役系が繋がる状態で結合している。)
Figure 2006251351
(式(II)中、環Aと環Zは、炭素原子を2個共有して縮合した環を表し、各々置換基を有していてもよい。)]
なお、本発明において、「芳香環」とは、「芳香族性を有する環」を指し、「芳香族炭化水素環」とは「芳香族性を有する炭化水素環」を指し、「芳香族複素環」とは「芳香族性を有する複素環」を指す。また、単に「複素環」又は「炭化水素環」と称した場合には、芳香族性を有する環及び芳香族性を有しない環のいずれをも含むものとする。また、本発明において、「置換基を有していてもよい」とは、置換基を1つ以上有していてもよいことを意味する。
以下に、上記一般式(I)における各構成要素について説明する。
〈Ar1〜Ar4について〉
前記一般式(I)において、Ar1〜Ar4は各々独立に2価の芳香環基であり、芳香族複素環基又は芳香族炭化水素環基、好ましくは5又は6員環の、単環又は2〜6縮合環からなる、芳香族炭化水素環基又は芳香族複素環基が挙げられ、これらは置換基を有していてもよい。
ここで芳香族炭化水素環基としては、好ましくは6員環の単環又は2〜10縮合環由来の基、具体的には、フェニレン基、ナフチレン基、アントラニレン基、フェナンスリレン基、ピレニレン基などが挙げられ、特に好ましくはフェニレン基である。
一方、芳香族複素環基としては、好ましくは5又は6員環、特に好ましくは5員環の、単環又は2〜10縮合環由来の基が挙げられる。複素環を構成するヘテロ原子としては特に制限はないが、通常、O、S、Se、N、P、Siなどの各原子が挙げられる。これらのヘテロ原子を2個以上含む場合、そのヘテロ原子は同じ原子であっても異なる原子であってもよい。芳香族複素環基の安定性の面から特に好ましいヘテロ原子はO,S,Nである。芳香族複素環基の具体例としては、フラン、チオフェン、ピロール、ベンゾフラン、イソベンゾフラン、1−ベンゾチオフェン、2−ベンゾチオフェン、インドール、イソインドール、インドリジン、カルバゾール、キサンテン、ピリジン、キノリン、イソキノリン、フェナンスリジン、アクリジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、フラザン、イミダゾール、ピラゾール、ベンゾイミダゾール、1,8−ナフチリジン、ピラジン、ピリミジン、ピリダジン等の環由来の2価の芳香族複素環基が挙げられ、好ましくは、チオフェン、ピリジン、フラン、カルバゾール、キノリン環由来の2価の複素環基であり、特に好ましくはチオフェン、ピリジン環由来の2価の複素環基である。
このAr1〜Ar4は、互いに同一であってもよく、異なっていてもよい。Ar1〜Ar4がすべて同一の化合物は、容易に合成できるため、好ましい。
Ar1〜Ar3が有していてもよい置換基としては、アルキル基、炭化水素環基、複素環基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、置換基を有していても良いアミノ基、ニトロ基、シアノ基、エステル基、ハロゲン原子、スルホン酸基、水酸基などが挙げられる。より具体的には、以下の置換基群xに具体例を挙げるような炭素数1〜9のアルキル基、炭素数3〜20の炭化水素環基、5又は6員環の単環又は2〜6縮合環由来の複素環基、炭素数1〜9のアルコキシ基、炭素数6〜18のアリールオキシ基、炭素数2〜18のヘテロアリールオキシ基、炭素数2〜20のアルキルアミノ基、炭素数6〜30のアリールアミノ基、炭素数2〜30のヘテロアリールアミノ基、ジュロジニル基、ニトロ基、シアノ基、炭素数2〜6のエステル基、ハロゲン原子、スルホン酸基、水酸基などである。
[置換基群x]
炭素数1〜9のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、ヘキシル基、オクチル基などが挙げられる。
炭素数3〜20の炭化水素環基としては、シクロプロピル基、シクロヘキシル基、テトラデカヒドロアントラニル基、フェニル基、アントラニル基、フェナンスリル基などが挙げられる。
5又は6員環の単環又は2〜6縮合環由来の複素環基としては、1−ピレニル基、1−ナフチル基、2−ナフチル基、1−フェナントレニル基、1−ペリレニル基、2−ピペリジニル基、2−ピペラジニル基、デカヒドロキノリニル基などが挙げられる。
炭素数1〜9のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、iso−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ヘキシルオキシ基、オクチルオキシ基などが挙げられる。
炭素数6〜18のアリールオキシ基、炭素数2〜18のヘテロアリールオキシ基としては、フェノキシ基、ナフチルオキシ基等のアリールオキシ基や、2−チエニルオキシ基、2−フリルオキシ基、2−キノリルオキシ基等のヘテロアリールオキシ基などが挙げられる。
炭素数2〜20のアルキルアミノ基としては、ジメチルアミノ基、メチルエチルアミノ基、ジブチルアミノ基、ジオクチルアミノ基などが挙げられる。
炭素数6〜30のアリールアミノ基、炭素数2〜30のヘテロアリールアミノ基としては、ジフェニルアミノ基、ジナフチルアミノ基、ナフチルフェニルアミノ基、ジトリルアミノ基等のアリールアミノ基や、ジ(2−チエニル)アミノ基、ジ(2−フリル)アミノ基、フェニル(2−チエニル)アミノ基等のヘテロアリールアミノ基などが挙げられる。
炭素数2〜6のエステル基の例としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基などが挙げられる。
ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、沃素原子などが挙げられる。
また、Ar1〜Ar4において、各々の環が有する上述のような置換基のうち、隣接する基同士が結合して環状構造を形成していてもよい。隣接する置換基同士が結合して環状構造を形成するものとしては、例えば、Ar1〜Ar4としてのベンゼン環基に、該ベンゼン環が有する置換基同士が結合して下記構造式に示すようなフェノキサチン、フェノチアジン、フェノキサジン環を形成したものが挙げられる。
Figure 2006251351
Ar1〜Ar4が有していてもよい置換基の中で、前記一般式(I)で表される化合物の溶媒に対する溶解性を考慮に入れた場合、好ましい置換基が変化する。
即ち、前記一般式(I)で表される化合物を水に溶解させて使用する場合、好ましい置換基としては、水酸基、スルホン酸基が好ましく、特に好ましいのはスルホン酸基である。
一方、前記一般式(I)で表される化合物を有機溶媒に溶解させて使用する場合、好ましい置換基としては、炭素数4以上の直鎖又は分岐アルキル基、炭素数4以上の直鎖又は分岐アルキルオキシ基、炭素数4以上の直鎖又は分岐エステル基、炭素数4以上のアルキル基が置換されたジ置換アミノ基が挙げられ、特に好ましくは、炭素数4以上の直鎖又は分岐アルキルオキシ基、炭素数4以上のアルキル基が置換されたジ置換アミノ基が挙げられる。
〈Ar5〜Ar8について〉
前記一般式(I)において、Ar5〜Ar8は前記一般式(II)で表される2価の複素環基である。
前記一般式(II)において、環Zとしては、置換基を有していてもよい5又は6員環の、単環又は2〜6縮合環からなる複素環又は芳香族炭化水素環が挙げられる。環Zが複素環である場合、この複素環を構成するヘテロ原子としては特に制限はないが、通常、O、S、Se、N、P、Siなどの各原子が挙げられ、好ましくはO、S,N原子である。これらのヘテロ原子は環Z中に1個含んでもよく、2個以上含んでもよい。2個以上含む場合は同じ原子であっても異なる原子であってもよい。
前記一般式(II)の環Aは、環Zと共有する2つの炭素原子とともに構成される、置換基を有してもよい複素環が挙げられ、この複素環を構成するヘテロ原子としては特に制限はないが、通常、O、S、Se、N、P、Siなどの各原子が挙げられ、好ましくはO、S,N原子である。これらのヘテロ原子を環Aに2個以上含む場合、そのヘテロ原子は同じ原子であっても異なる原子であってもよい。
特に、一般式(II)で表されるAr5〜Ar8は、下記一般式(IIa),(IIb)のいずれかで表される、互いに2つの炭素原子を共有する2つの環状構造からなる2価の複素環基であることが好ましい。特に、電子吸引性の5員環を有する下記一般式(IIa)で表されることが好ましい。
Figure 2006251351
[式(IIa),(IIb)において、環Zは一般式(II)における環Zと同義の環よりなる2価の基であり、一般式(IIa)中、Yは16族元素を表し、一般式(IIb)中、XはN又はSを表す。]
上記一般式(IIa)において、環Zの具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環、ピリジン環、チオフェン環、ピロール環、フラン環、ベンゾチオフェン環、ベンゾフラン環、ベンゾピロール環、イミダゾール環、キノリン環、イソキノリン環、カルバゾール環、チアゾール環、ジベンゾチオフェン環等が挙げられ、好ましくはベンゼン環、ピリジン環であり、特に好ましくはベンゼン環である。また、Yは、合成の容易さから酸素原子、硫黄原子、セレン原子が好ましく、中でも、電子吸引性の高い酸素原子、硫黄原子が特に好ましい。
また、上記一般式(IIb)において、環Zの具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環、ピリジン環、チオフェン環、ピロール環、フラン環、ベンゾチオフェン環、ベンゾフラン環、ベンゾピロール環、イミダゾール環、キノリン環、イソキノリン環、カルバゾール環、チアゾール環、ジベンゾチオフェン環等が挙げられ、好ましくはベンゼン環、ピリジン環である。
上記一般式(IIa),(IIb)で表されるAr5〜Ar8が有していてもよい置換基、即ち、環Z、或いは一般式(IIa)におけるY原子を含む複素環、一般式(IIb)におけるX原子を含む複素環が有し得る置換基としては、アルキル基、炭化水素環基、複素環基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アラルキルオキシ基、ヘテロアラルキルオキシ基、置換基を有していても良いアミノ基、ニトロ基、シアノ基、エステル基、ハロゲン原子、水酸基などが挙げられ、好ましくは、エステル基、シアノ基、ハロゲン原子である。
より具体的には、以下の置換基群yに具体例を挙げるような炭素数1〜9のアルキル基、炭素数3〜20の炭化水素環基、5又は6員環の単環又は2〜6縮合環由来の複素環基、炭素数1〜9のアルコキシ基、炭素数6〜18のアリールオキシ基、炭素数2〜18のヘテロアリールオキシ基、炭素数7〜18のアラルキルオキシ基、炭素数3〜18のヘテロアラルキルオキシ基、炭素数2〜20のアルキルアミノ基、炭素数6〜30のアリールアミノ基、炭素数2〜30のヘテロアリールアミノ基、ジュロリジニル基、ニトロ基、シアノ基、炭素数2〜6のエステル基、ハロゲン原子、スルホン酸基、水酸基などである。
[置換基群y]
炭素数1〜9のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、ヘキシル基、オクチル基などが挙げられる。
炭素数3〜20の炭化水素環基としては、シクロプロピル基、シクロヘキシル基、テトラデカヒドロアントラニル基、フェニル基、アントラニル基、フェナンスリル基などが挙げられる。
5又は6員環の単環又は2〜6縮合環由来の複素環基としては、1−ピレニル基、1−ナフチル基、2−ナフチル基、1−フェナントレニル基、1−ペリレニル基、2−ピペリジニル基、2−ピペラジニル基、デカヒドロキノリニル基などが挙げられる。
炭素数1〜9のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、iso−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ヘキシルオキシ基、オクチルオキシ基などが挙げられる。
炭素数6〜18のアリールオキシ基、炭素数2〜18のヘテロアリールオキシ基としては、フェノキシ基、ナフチルオキシ基等のアリールオキシ基や、2−チエニルオキシ基、2−フリルオキシ基、2−キノリルオキシ基等のヘテロアリールオキシ基などが挙げられる。
炭素数7〜18のアラルキルオキシ基、炭素数3〜18のヘテロアラルキルオキシ基としては、ベンジルオキシ基、フェネチルオキシ基、ナフチルメトキシ基等のアラルキルオキシ基や、2−チエニルメトキシ基、2−フリルメトキシ基、2−キノリルメトキシ基等のヘテロアラルキルオキシ基などが挙げられる。
炭素数2〜20のアルキルアミノ基としては、ジメチルアミノ基、メチルエチルアミノ基、ジブチルアミノ基、ジオクチルアミノ基などが挙げられる。
炭素数6〜30のアリールアミノ基、炭素数2〜30のヘテロアリールアミノ基としては、ジフェニルアミノ基、ジナフチルアミノ基、ナフチルフェニルアミノ基、ジトリルアミノ基等のアリールアミノ基や、ジ(2−チエニル)アミノ基、ジ(2−フリル)アミノ基、フェニル(2−チエニル)アミノ基等のヘテロアリールアミノ基などが挙げられる。
炭素数2〜6のエステル基の例としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基などが挙げられる。
ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、沃素原子などが挙げられる。
また、一般式(IIa)、(IIb)において、各々の環が有する上述のような置換基のうち、隣接する基同士が結合して環状構造を形成していてもよい。隣接する置換基同士が結合して環状構造を形成するものとしては、例えば、一般式(IIa)、(IIb)における環Zのベンゼン環に、該ベンゼン環が有する置換基同士が結合して前述のフェノキサチン、フェノチアジン、フェノキサジン環を形成したものが挙げられる。
〈Ar9〜Ar12について〉
前記一般式(I)中のAr9〜Ar12は各々独立に1価の芳香環基、即ち複素環基又は芳香族炭化水素環基、好ましくは5又は6員環の、単環又は2〜6縮合環からなる、芳香族炭化水素環基又は芳香族複素環基を表し、これらは置換基を有していてもよい。
ここで芳香族炭化水素基として、好ましくは6員環の単環又は2〜10縮合環由来の基が挙げられ、特に好ましくは6員環の単環である。具体的には、例えばフェニル基,ナフチル基、アントラニル基、フェナンスリル基、ピレニル基などが挙げられ、好ましくはフェニル基、ナフチル基、特に好ましくはフェニル基である。
一方、芳香族複素環基としては、好ましくは5又は6員環、特に好ましくは5員環の、単環又は2〜10縮合環由来の基が挙げられる。複素環を構成するヘテロ原子としては特に制限はないが、通常、O、S、Se、N、P、Siなどの各原子が挙げられる。これらのヘテロ原子を2個以上含む場合、そのヘテロ原子は同じ原子であっても異なる原子であってもよい。芳香族複素環基の具体例としては、フラン、チオフェン、ピロール、ベンゾフラン、イソベンゾフラン、1−ベンゾチオフェン、2−ベンゾチオフェン、インドール、イソインドール、インドリジン、カルバゾール、キサンテン、ピリジン、キノリン、イソキノリン、フェナンスリジン、アクリジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、フラザン、イミダゾール、ピラゾール、ベンゾイミダゾール、1,8−ナフチリジン、ピラジン、ピリミジン、ピリダジン等の環由来の1価の芳香族複素環基が挙げられ、好ましくは、チオフェン、フラン、ピリジン、ベンゾチオフェン、ベンゾフラン環由来の1価の芳香族複素環基で、特に好ましくは、チオフェン環由来の1価の芳香族複素環基である。
このAr9〜Ar12は、互いに同一であってもよく、異なっていてもよいが、合成の容易さから同一であることが好ましい。
これらAr9〜Ar12が有していてもよい置換基としては、アルキル基、炭化水素環基、複素環基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アラルキルオキシ基、ヘテロアラルキルオキシ基、置換基を有していても良いアミノ基、ニトロ基、シアノ基、エステル基、ハロゲン原子、水酸基などが挙げられ、好ましくは電子供与性のアルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アラルキルオキシ基、ヘテロアラルキルオキシ基、置換基を有していても良いアミノ基であり、特に好ましくは、置換基を有していても良いアミノ基である。
より具体的には、置換基群yとして具体例を挙げたような炭素数1〜9のアルキル基、炭素数3〜20の炭化水素環基、5又は6員環の単環又は2〜6縮合環由来の複素環基、炭素数1〜9のアルコキシ基、炭素数6〜18のアリールオキシ基、炭素数2〜18のヘテロアリールオキシ基、炭素数7〜18のアラルキルオキシ基、炭素数3〜18のヘテロアラルキルオキシ基、炭素数2〜20のアルキルアミノ基、炭素数6〜30のアリールアミノ基、炭素数2〜30のヘテロアリールアミノ基、ジエロリジニル基、ニトロ基、シアノ基、炭素数2〜6のエステル基、ハロゲン原子、水酸基などである。
また、Ar9〜Ar12において、各々の環が有する上述のような置換基のうち、隣接する基同士が結合して環状構造を形成していてもよい。隣接する置換基同士が結合して環状構造を形成するものとしては、例えば、Ar9〜Ar12としてのベンゼン環基に、該ベンゼン環が有する置換基同士が結合して前述のフェノキサチン、フェノチアジン、フェノキサジン環を形成したものが挙げられる。
〈M〉
Mは、各々窒素原子に結合する2個の水素原子もしくは2価以上の金属イオンを表す。Mとして挙げられる金属元素はポルフィリン環中央に配位し得るものであれば何でもよく、具体例としてはMg,Al,Si,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Mo,Ru,Rh,Pd,Ag,Pt,Au,Er等が挙げられる。Mは、好ましくは、2つの水素原子、Mg,Al,Si,Ti,Fe,Co,Zn,Pd,Agであり、特に好ましくは、2つの水素原子、Znである。
Mが3価以上の金属イオンである場合、Mはさらに陰イオンと結合していてもよい。この陰イオンの種類としては、アルコキシイオン、アリールオキシイオン、ヘテロアリールオキシイオン、更に置換基を有していても良いシアノイオン、エステルイオン、ハロゲンイオン、ヒドロキシイオン、酸素イオンなどが挙げられる。
なお、前記一般式(I)で表される化合物において、Ar1〜Ar4とAr5〜Ar8、Ar5〜Ar8とAr9〜Ar12はそれぞれ共役系が繋がる状態で結合している。この共役系が繋がる状態とは、例えば、Ar1−Ar5−Ar9の結合鎖間でπ電子が非局在化し得る状態を示し、例えば、Ar1,Ar5,Ar9の芳香環(炭化水素環、複素環)同士が単結合、ビニレン基、エチニレン基等で連結されることにより共役系がつながる状態などが挙げられる。この結合鎖としては、具体的には、単結合、炭素/炭素二重結合、炭素/窒素二重結合、窒素/窒素二重結合、炭素/炭素三重結合が挙げられ、特に二光子吸収断面積が大きいことから、単結合、炭素/炭素二重結合が含まれるものが挙げられる。
なお、前記一般式(I)で表される化合物の分子量は通常10000以下、好ましくは5000以下である。
以下に、前記一般式(I)で表される化合物の具体例を挙げるが、本発明はこれらに何ら限定されるものではない。なお、Meはメチル基、Etはエチル基を表す。
Figure 2006251351
Figure 2006251351
Figure 2006251351
Figure 2006251351
Figure 2006251351
Figure 2006251351
Figure 2006251351
Figure 2006251351
Figure 2006251351
Figure 2006251351
Figure 2006251351
Figure 2006251351
Figure 2006251351
Figure 2006251351
本発明の有機非線形光学材料は、前記一般式(I)で表される化合物の1種のみを含むものであっても良く、また、2種以上を任意の組み合せ及び任意の比率で含むものであっても良い。
本発明の有機非線形光学材料は、前記一般式(I)で表される化合物、例えば、各種合成法で得られた前記一般式(I)で表される化合物の粉末状結晶をそのままの状態で、ブロックや粉末として、或いは、ヘキサン、トルエン、キシレン、塩化メチレン、クロロホルム、エーテル、テトラハイドロフラン、酢酸エチル、アセトン、2−ブタノン、メタノール、エタノール、トリフルオロメチルベンゼン、酢酸、トリエチルアミン等の溶媒、或いはポリマー、又はゲル中に溶解ないし分散させた液状物として、或いは、このような液状物を基板に塗布した後溶媒を除去して得られる薄膜状物として、各種用途に供することができる。
なお、有機非線形光学材料が、前記一般式(I)で表される化合物を含んでいることは、該材料を分解、抽出等の処理を施した後、例えば、液体クロマトグラフィー−質量分析法(LC−MS)や核磁気共鳴スペクトル法(NMR)などで分析することにより確認することができる。
前記一般式(I)で表される化合物を構成成分の少なくとも一部として含有する本発明の有機非線形光学材料、特に前記一般式(II)で表される構造を有する本発明の有機非線形光学材料、によれば、2光子吸収を起こし易く、AF50の2光子吸収断面積を45GMとしたときの2光子吸収断面積の下限が通常50GM、好ましくは100GM、特に好ましくは200GMであり、上限は通常10000GM、好ましくは4000GM、特に好ましくは2000GMであるような有機非線形光学材料が提供される。
前記一般式(I)で表される構造を有する本発明の有機非線形光学材料が、高い2光子吸収断面積を示すのは、分子内に高い極性を持ったパイ共役分子であることにより、また、2光子励起により高い1重項酸素発生能力を示すのは、ペンゾチアジアゾール部位から1重項酸素を発生させると考えられているポルフィリン部位までが共役系で接続されており、効率的にエネルギーの受け渡しがなされる為と推定される。
以下に、合成例、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
[合成例1]
[1]4-(ブロモフェニル)-ジフェニルアミン(1)の合成
氷浴中、アルゴン置換したフラスコにDMF(ジメチルホルムアミド)(200mL)にトリフェニルアミン(10.0g,40.8mmol)を溶かして入れ、DMF(20mL)に溶かしたNBS(N−ブロモスクシンイミド)(7.16g,40.2mmol)を75分で滴下し、氷浴のまま4時間攪拌した。反応終了後、塩化メチレン(100mL)と水(200mL)を用いて2層にし、塩化メチレン(100mL×4回)で抽出した。得られた有機層を水(150mL×6回)で洗浄した後硫酸マグネシウムを用いて乾燥後、溶媒を除去した。この段階でNMRを測定したところDMFのピークが存在したので、同様の洗浄操作を塩化メチレン(100ml×4回)と水(100mL×5回)を用いて行った。再びNMRを測定したところDMFのピークが見られなかったため、熱ヘキサンで再結晶を行い、白色粉末の4-(ブロモフェニル)-ジフェニルアミン(1)を収率43%(5.6g,17.3mmol)で得た。
1H NMR(CDCl3):δ6.94(d,J=8.9Hz,2H,ArH),6.99-7.09(m,6H,ArH),7.20-7.28(m,4H,ArH),7.31(d,J=8.9Hz,2H,ArH)
[2]2,2-ジメチル-1,3-プロパンジオール・4-ジフェニルアミノフェニルボロネート(2)の合成
アルゴン雰囲気下、-78℃で化合物(1)(5.6g,17.3mmol)をTHF(テトラヒドロフラン)(85ml)に溶かし、1.6M n-ブチルリチウムヘキサン溶液(13.0mL,20.8mmol)を30分で滴下し、90分攪拌した。攪拌後、THF(20mL)で薄めたホウ酸トリメチル(2.91mL,26.0mmol)を20分で滴下し、-78℃で2時間攪拌し、ゆっくり昇温しながら1時間攪拌した。反応終了後、塩酸を用いて弱酸性にし、ブライン(70mL)を加えて二層にし、エーテル(70mL×4回)を用いて抽出し、有機層をブライン(70mL×4回)で洗浄した。次いで、硫酸マグネシウムで脱水後、溶媒を除去した。得られた固体(5.97g)とネオペンチルグリコール(2.16g,20.8mmol)をアルゴン雰囲気下でジクロロメタン(80mL)に溶かし、4時間攪拌した。反応終了後、溶媒を除去し、カラムクロマトグラフィー(KANTO 60N,展開溶媒:ヘキサン/クロロホルム=3/1(体積比))で精製し、白色粉末の2,2-ジメチル-1,3-プロパンジオール・4-ジフェニルアミノフェニルボロネート(2)を収率57%(3.53g,9.86mmol)で得た。
1H NMR(CDCl3):δ1.02(s,6H,CH3),3.74(s,4H,CH2),6.99-7.05(m,4H,ArH),7.09(d,J=7.9Hz,4H,ArH),7.21-7.27(m,4H,ArH),7.65(d,J=8.6Hz,2H,ArH)
[3]4-ブロモ-7-[4-(ジフェニルアミノ)フェニル]-2,1,3-ベンゾチアジアゾール(3)の合成
フラスコに、4,7-ジブロモ-2,1,3-ベンゾチアジアゾール(294mg,1.0mmol)と、テトラキストリフェニルホスフィンパラジウム(69mg,0.06mmol)を入れアルゴン置換を行い、ベンゼン(40mL)を加え、攪拌して溶かし、60℃に加熱した。その後、化合物(2)(429mg,1.2mmol)、エタノール(10mL)、炭酸ナトリウム水溶液(2M,20mL)を加えた。85℃に加熱し、アルゴン流下で攪拌を3.5時間行った。その後、塩化メチレン(50mL×3回)によって抽出しブラインによる洗浄(100mL×3回)を行った。硫酸マグネシウムで乾燥、エバポレータで濃縮した後粗生成物を600mg得た。精製はシリカゲルカラムクロマトグラフィ(KANTO 60N,中性シリカ,展開溶媒n-ヘキサン/クロロホルム=2:1(体積比))で行い、赤色粉末の4-ブロモ-7-[4-(ジフェニルアミノ)フェニル]-2,1,3-ベンゾチアジアゾール(3)を収率64%(282mg,0.635mmol)で得た。
融点(融点測定機にて測定):63.3-66.8℃
IR(KBr,cm-1):3030,1607,1590,1502,1479,1328,1317,1280,882,881
1H NMR(CDCl3):δ7.07(t,J=8.1Hz,2H,ArH),7.17-7.20(m,6H,ArH),7.26-7.33(m,4H),7.54(d,J=8.1Hz,1H,ArH),7.80(d,J=8.1Hz,2H,ArH),7.90(d,J=8.1Hz,1H,ArH)
FAB-MS(positive, NBA)m/z:457,459(M+)
[4]2,2-ジメチル-1,3-プロパンジオール・4-ホルミルフェニルボロネート(4)の合成
アルゴン雰囲気下で4-ホルミルフェニルボロン酸(2.02g,13mmol)とネオペンチルグリコール(1.35g,13mmol)をジクロロメタン(50mL)に溶かして3時間攪拌した。反応終了後、硫酸マグネシウムで脱水し、溶媒を除去後、乾燥した。得られた薄黄色の固体をヘキサンで再結晶を行い、白色固体の2,2-ジメチル-1,3-プロパンジオール・4-ホルミルフェニルボロネート(4)を収率68%(1.91g,8.79mmol)で得た。
1H NMR(CDCl3):δ1.04(s,6H,CH3),3.79(s,4H,CH2),7.84(d,J=8.2Hz,2H,ArH),7.96(d,J=8.2Hz,2H,ArH),10.00(s,1H,CHO)
[5]5,10,15,20-テトラキス[4-(4,4-ジメチル-2,6-ジオキサ-1-ボラシクロセキサニル)フェニル]-21H,23H-ポルフィン(5)の合成
アルゴン雰囲気下で4-ホルミルフェニルボロン酸の保護体である化合物(4)(1.30g,6.0mmol)を無水ジクロロメタン(600mL)に溶かし、ピロール(420μL,6.0mmol)とトリフルオロボランエーテル錯塩(75μL,0.6mmol)を加えた。1時間攪拌後、DDQ(ジクロロジシアノベンゾキノン)(610mg,2.6mmol)を加えて10時間加熱還流した。攪拌終了後、トリエチルアミンを加えてから溶媒を除去した。得られた固体をカラムクロマトグラフィー(KANTO 60N 展開溶媒:ジクロロメタン/エタノール:20/1)で分離後、ジクロロメタンとヘキサンを用いて再結晶を行い紫色の固体5,10,15,20-テトラキス[4-(4,4-ジメチル-2,6-ジオキサ-1-ボラシクロセキサニル)フェニル]-21H,23H-ポルフィン(5)を収率9%(151mg,0.14mmol)で得た。
融点(融点測定機にて測定):>350℃
IR(KBr,cm-1):3446(νNH),1606,1476,1420,1376,1340,1316,1247,1132,800,724,650
1H NMR(CDCl3):δ-2.79(s,2H,NH),1.17(s,24H,CH3),3.94(s,16H,CH2),8.16(d,J=7.8Hz,8H,ArH),8.20(d,J=7.8Hz,8H,ArH),8.83(s,8H,ArH)
[6]5,10,15,20-テトラキス{4-{7-[(N,N-ジフェニルアミノ)フェニル]-2,1,3-ベンゾチアジアゾール-4-イル}フェニル}-21H-23H-ポルフィン(A−1)の合成
アルゴン雰囲気下で化合物(3)(243mg,0.53mmol),テトラキス(トリフェニルホスフィン)パラジウム(0)(35mg,0.03mmol)をアルゴンバブリングしたDME(ジメトキシエタン)(15mL)に溶かし、60℃に昇温した。これにポルフィン(5)(120mg,0.11mmol),と2M炭酸ナトリウム水溶液(7.5mL)を加え、80℃に昇温し、そのまま16時間攪拌した。反応終了後、ジクロロメタン(300mL)と水(200mL)を加えて2層にし、ジクロロメタンで抽出した(100mL×3回)。得られた有機層を水(150ml×3回)で洗浄を行い、硫酸ナトリウムで脱水して溶媒を除去した。得られた固体をカラムクロマトグラフィー(KANTO 60N,展開溶媒:ジクロロメタン)で精製し、ジクロロメタンとヘキサンを用いて再結晶を行い、紫色の固体(前掲の化合物A−1)を収率23%(53mg,0.025mmol)で得た。
融点(融点測定機にて測定):>350℃
IR(KBr,cm-1):3458(νNH),1590,1482,1326,1280,966,888,829,800,753,697
1H NMR(CDCl3):δ-2.60(s,2H,NH),7.10(t,J=7.3Hz,8H,ArH),7.23-7.35(m,40H,ArH),7.93(d,J=7.1Hz,4H,ArH),8.00(d,J=8.3Hz,8H,ArH),8.15(d,J=7.1Hz,4H,ArH),8.45(s,16H,ArH),9.07(s,8H,ArH)
MALDI-TOF-MS(positive,dithranol)m/z2124.26[(M+1)+,計算値C140H91N16S4:2123.65]
[合成例2]
[1]4-ジフェニルアミノベンズアルデヒド(6)の合成
アルゴン雰囲気下でトリフェニルアミン(3.0g,12.23mmol)をDMF(40mL)に溶かし、氷浴中でオキシ塩化リン(1.2mL,12.87mmol)を滴下した。滴下終了後、100℃で20時間攪拌した。反応終了後、室温に戻し、氷水(200mL)を加え4M水酸化ナトリウム水溶液で中和した。反応液を濾過し、得られた固体を水で洗浄し、カラムクロマトグラフィー(KANTO 60N,展開溶媒:ヘキサン/酢酸エチル=5/1(体積比))で精製し、黄色の粉末4-ジフェニルアミノベンズアルデヒド(6)を収率66%(2.19g,8.01mmol)で得た。
IR(KBr,cm-1):1687(νC=O),1584,1503,1488,1330,1304,1289,1289,1219,1155,825,769,756,708,697,536
1H NMR(CDCl3):δ7.01(d,J=8.7Hz,2H,ArH),7.14-7.20(m,6H,ArH),7.34(t,J=7.7Hz,4H,ArH),7.67(d,J=8.7Hz,2H,ArH),9.81(s,1H,CHO)
[2]4-ジフェニルアミノスチレン(7)の合成
アルゴン雰囲気下、氷浴中でメチルトリフェニルホスホニウムブロミド(7.86g,22mmol)を無水THF(40mL)に懸濁させ、1.54Mn-ブチルリチウムヘキサン溶液(15.7mL,24.2mmol)を滴下した。滴下終了後、化合物(6)(3.01g,11.0mmol)を固体のまま7回に分け加え、室温で3時間攪拌した。反応終了後、水を加え、ジクロロメタン(100ml×3回)で抽出し、硫酸マグネシウムで脱水後、溶媒を除去した。得られた固体をフラッシュカラムクロマトグラフィー(KANTO 60N 展開溶媒:ヘキサン/ジクロロメタン=2/1(体積比))で分取後、カラムクロマトグラフィー(KANTO 60N,展開溶媒:ヘキサン)で精製を行い、白色の固体4-ジフェニルアミノスチレン(7)を収率87%(2.58g,9.51mmol)で得た。
IR(KBr,cm-1):1590,1506,1486,1328,1283,1267,1175,1075,990,890,839,700,512,490,408
1H NMR(CDCl3):δ5.15(dd,J=0.9,10.9Hz,1H,olefinic H),5.63(dd,J=0.9,17.7Hz,1H,olefinic H),6.66(dd,J=10.9,17.5Hz,1H,olefinic H),6.99-7.11(m,8H,ArH),7.21-7.31(m,6H,ArH)
[3]4-ブロモ-7-{2-[4-(ジフェニルアミノ)フェニル]エテニル}-2,1,3-ベンゾチアジアゾール(8)の合成
アルゴン雰囲気下ジブロモベンゾチアジアゾール(269mg,0.91mmol)、化合物(7)(271mg,1mmol)をアルゴンバブリングしたDMF(27mL)に100℃で溶かした。別系でアルゴンバブリングしたDMF(9mL)に酢酸パラジウム(4mg,0.01mmol)、トリス(2-メチルフェニル)ホスフィン(6mg,0.02mmol)を80℃で溶かした。反応液に調整した触媒を加え、110℃に加熱し15時間攪拌した。反応終了後、水(100mL)を加えクロロホルム(100mL×3回)で抽出し、1N塩酸で中和後、ブライン(100mL×5回)で洗浄した。硫酸マグネシウムで脱水後、溶媒を除去しカラムクロマトグラフィー(KANTO 60N,展開溶媒:ヘキサン/ジクロロメタン=3/1(体積比))で分取後、ゲルパーミエーションクロマトグラフィーで精製し、橙色の固体4-ブロモ-7-{2-[4-(ジフェニルアミノ)フェニル]エテニル}-2,1,3-ベンゾチアジアゾール(8)を収率30%(134mg,0.28mmol)で得た。
融点(融点測定機にて測定):140-141℃
IR(KBr,cm-1):1588,1505,1490,1330,1284,1175,969,888,837,749,695,622,499
1H NMR(CDCl3):δ7.03-7.15(m,8H,ArH),7.28(t,J=8.4Hz,4H,ArH),7.46(d,J=16.3Hz,1H,olefinic H),7.50(d,J=8.7Hz,2H,ArH),7.52(d,J=7.7Hz,1H,ArH),7.82(d,J=7.7Hz,1H,ArH),7.91(d,J=16.3Hz,1H,olefinic H)
EI-MS(positive)m/z 482,484(M+)
[4]5,10,15,20-テトラキス{4-{7-{2-[4-(ジフェニルアミノ)フェニル]エチニル}-2,1,3-ベンゾチアジアゾール-4-イル}フェニル-21H-23H-ポルフィン(A−7)の合成
アルゴン雰囲気下で化合物(8)(80mg,0.165mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(18.5mg,0.016mmol)をアルゴンバブリングしたDME(8mL)に溶かし60oCに昇温した。合成例1と同様にして合成したポルフィン(5)(40mg,0.037mmol)と2M炭酸ナトリウム水溶液(4mL)を加え80℃に昇温し、そのまま16時間攪拌した。反応終了後、ジクロロメタン(300mL)と水(200mL)を加えて2層にし、ジクロロメタンで抽出した(100mL×3回)。得られた有機層を水(150mL×3回)で洗浄を行い、硫酸ナトリウムで脱水して溶媒を除去した。得られた固体をカラムクロマトグラフィー(KANTO 60N,展開溶媒:ジクロロメタン)で精製し、ジクロロメタンとヘキサンを用いて再結晶を行い、紫色の固体5,10,15,20-テトラキス{4-{7-{2-[4-(ジフェニルアミノ)フェニル]エチニル}-2,1,3-ベンゾチアジアゾール-4-イル}フェニル-21H-23H-ポルフィン(前掲の化合物A−7)を収率9%(8mg,3.5μmol)で得た。
融点(融点測定機にて測定):>350℃
IR(KBr,cm-1):3446(νNH),1589,1505,1490,1325,1278,1174,965,889,835,799,751,695,498
1H NMR(CDCl3):δ-2.62(s,2H,NH),7.05-7.18(m,32H,ArH),7.17-7.32(m,24H,ArH),7.59(d,J=8.8Hz,8H,ArH),7.68(d,J=16.2Hz,4H,olefinic H),7.91(d,J=7.7Hz,4H,ArH),8.05(d,J=16.2Hz,4H,olefinic H),8.06(d,J=7.7Hz,4H,ArH),8.43(s,16H,ArH),9.06(s,8H,ArH)
MALDI-TOF-MS(positive,dithranol)m/z2225.45[M+,計算値C148H98N16S4:2226.70].
[実施例1,2、比較例1,2]
合成例1,2で得られた各化合物A−1,A−7(実施例1,2)及び下記の構造の比較化合物1(比較例1,2)について、2光子吸収断面積、2光子励起時の一重項酸素発生量及び1光子励起時の一重項酸素発生効率を下記方法で測定し、結果を表15に示した。
Figure 2006251351
〈2光子吸収断面積の評価方法〉
2光子吸収断面積評価は、Guang S.He,Lixiang Yuan,Ning Cheng,Jayant D.BhawalkAr,PAras N.Prasad,Lawrence L.Brott,Stephen J.ClArson,Bruce A.ReinhArdt,J.Opt.Soc.Am.B Vol.14,No.5(1997)pp.1079-1087記載の方法を参考にして行った。測定光源には、フェムト秒チタンサファイアレーザ(波長:800nm、パルス幅:100fs、繰り返し:1kHz、平均出力:2W、ピークパワー:20MW)を用いた。測定試料には、下記表15に示す濃度(0.1mM〜5mM)で各化合物をクロロホルムに溶かした溶液を用い、この溶液を4面透明の1cm角石英セルに入れて測定に供した。
また、それぞれの化合物の測定時に、標準サンプルとなるAF50を測定した。上記のシステムではAF50の数値は45GMから55GMの値で得られる。2光子吸収断面積を規格化するために、すべての2光子吸収断面積の値は、サンプルを測定した後にAF50を測定し、そのAF50の2光子吸収断面積を45として算出した。
〈2光子励起時の一重項酸素発生量の評価方法〉
2光子励起時の一重項酸素発生量は一重項酸素が発生する近赤外発光強度を測定することにより算出した。発光強度はピーク波長1278nmにおける強度を読み取った。測定のための光源は2光子吸収断面積の評価方法に使ったものと同じ光源を利用した。この光を0.2mWに減衰させた後、試料を溶かした溶液に照射した。溶液からの発光は励起光をフィルターにより除いた後、分光器により分光して光電子増倍管により検出した。2光子励起一重項酸素発生量測定用の試料には11μM〜5mMの濃度で化合物を溶かしたトルエン溶液を用いた。
〈1光子励起時の一重項酸素発生効率の評価方法〉
1光子励起時の一重項酸素発生効率は一重項酸素が発生する近赤外発光強度を測定して、一重項酸素発生効率が既知である参照化合物と比較することにより算出した。発光強度はピーク波長1278nmにおける強度を読み取った。測定のための光源は2光子吸収断面積の評価方法に使ったものと同じ光源からの光を非線形光学結晶BBOにより波長変換して得た400nmの光(強度:0.04mW程度)を使用し、試料を溶かした溶液に照射した。溶液からの発光は励起光をフィルターにより除いた後、分光器により分光して光電子増倍管により検出した。参照化合物には、比較化合物1を用いた。比較化合物1の一重項酸素発生効率は0.7を用いた。1光子励起一重項酸素発生量測定用の試料には11μM〜33μMの濃度で化合物を溶かしたトルエン溶液を用いた。
Figure 2006251351
表15より明らかなように、新規に開発された本発明の化合物は、比較化合物1と比較して2光子励起一重項酸素発生強度が200倍以上の値を示した。
本発明の有機非線形光学材料は、光メモリー、2光子造形、2光子フォトダイナミックセラピー等の分野で2光子吸収化合物としての応用が期待される。

Claims (3)

  1. 下記一般式(I)で表される化合物を構成成分の少なくとも一部として含有することを特徴とする有機非線形光学材料。
    Figure 2006251351
    [式中、Ar1〜Ar4は各々独立に置換基を有していてもよい2価の芳香環基を表し、
    Ar5〜Ar8は各々独立に下記一般式(II)で表される2価の複素環基を表し、
    Ar9〜Ar12は各々独立に置換基を有していてもよい1価の芳香環基を表し、
    Mは、各々窒素原子に結合する2個の水素原子もしくは2価以上の金属イオンを表す。
    ただし、Ar1〜Ar4とAr5〜Ar8、Ar5〜Ar8とAr9〜Ar12はそれぞれ共役系が繋がる状態で結合している。)
    Figure 2006251351
    (式(II)中、環Aと環Zは、炭素原子を2個共有して縮合した環を表し、各々置換基を有していてもよい。)]
  2. 一般式(II)において、環Zは置換基を有していてもよい6員環を表し、環Aは置換基を有していてもよい5員環を表していることを特徴とする請求項1に記載の有機非線形光学材料。
  3. 一般式(II)が下記一般式(IIa)又は(IIb)で表されることを特徴とする請求項1又は2に記載の有機非線形光学材料。
    Figure 2006251351
    [式(IIa),(IIb)において、環Zは一般式(II)における環Zと同義の環よりなる2価の基であり、一般式(IIa)中、Yは16族元素を表し、一般式(IIb)中、XはN又はSを表す。]
JP2005067581A 2005-03-10 2005-03-10 有機非線形光学材料 Withdrawn JP2006251351A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005067581A JP2006251351A (ja) 2005-03-10 2005-03-10 有機非線形光学材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005067581A JP2006251351A (ja) 2005-03-10 2005-03-10 有機非線形光学材料

Publications (1)

Publication Number Publication Date
JP2006251351A true JP2006251351A (ja) 2006-09-21

Family

ID=37091930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005067581A Withdrawn JP2006251351A (ja) 2005-03-10 2005-03-10 有機非線形光学材料

Country Status (1)

Country Link
JP (1) JP2006251351A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2159227A1 (en) 2008-08-26 2010-03-03 Ricoh Company, Ltd. Two-photon absorption material and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2159227A1 (en) 2008-08-26 2010-03-03 Ricoh Company, Ltd. Two-photon absorption material and application thereof
US8207330B2 (en) 2008-08-26 2012-06-26 Ricoh Company, Ltd. Two-photon absorption material and application thereof

Similar Documents

Publication Publication Date Title
Kato et al. Novel 2, 1, 3‐benzothiadiazole‐based red‐fluorescent dyes with enhanced two‐photon absorption cross‐sections
Guo et al. Room-temperature long-lived triplet excited states of naphthalenediimides and their applications as organic triplet photosensitizers for photooxidation and triplet–triplet annihilation upconversions
Shao et al. Synthesis and characterizations of star-shaped octupolar triazatruxenes-based two-photon absorption chromophores
Morales et al. Design, synthesis, and structural and spectroscopic studies of push–pull two-photon absorbing chromophores with acceptor groups of varying strength
Rathnamalala et al. Donor–acceptor–donor NIR II emissive rhodindolizine dye synthesized by C–H bond functionalization
Liu et al. Synthesis, crystal structures and two-photon absorption properties of a series of terpyridine-based chromophores
Iwase et al. Synthesis and photophysical properties of new two-photon absorption chromophores containing a diacetylene moiety as the central π-bridge
Cheng et al. Fluorene as the π–spacer for new two-photon absorption chromophores
Zhong et al. Phenyleneanthracene derivatives as triplet energy acceptor/emitter in red light excitable triplet-triplet-annihilation upconversion
Gauthier et al. Methylenepyran based dipolar and quadrupolar dyes: synthesis, electrochemical and photochemical properties
Massue et al. Effect of 3, 5‐Disubstitution on the Optical Properties of Luminescent 2‐(2′‐Hydroxyphenyl) benzoxazoles and Their Borate Complexes
Liu et al. From Tetraphenylfurans to Ring‐Opened (Z)‐1, 4‐Enediones: ACQ Fluorophores versus AIEgens with Distinct Responses to Mechanical Force and Light
Reddy et al. Dicyanovinylcoumarin as a turn-on fluorescent sensor for cyanide ion
Nie et al. Two novel six-coordinated cadmium (II) and zinc (II) complexes from carbazate β-diketonate: crystal structures, enhanced two-photon absorption and biological imaging application
JP4501588B2 (ja) 有機非線形光学材料
Lu et al. New frog-type Dibenzo [a, c][1, 2, 5] thiadiazolo [3, 4-i] phenazine heterocyclic derivatives with aggregation-enhanced one-and two-photon excitation NIR fluorescence
Lin et al. Synthesis and characterization of naphthalene diimide (NDI)-based near infrared chromophores with two-photon absorbing properties
Jia et al. Mechanofluorochromic properties of tert-butylcarbazole-based AIE-active D-π-A fluorescent dye
Tang et al. Synthesis, crystal structures, two-photon absorption and biological imaging application of two novel bent-shaped pyrimidine derivatives
Nitisha et al. Accessing [g]-face π-expanded fluorescent coumarins by Scholl cyclization
Łukasiewicz et al. Ground‐and excited‐state symmetry breaking and solvatofluorochromism in centrosymmetric pyrrolo [3, 2‐b] pyrroles Possessing two Nitro Groups
Eçik et al. Novel Bodipy-triazine conjugates: Synthesis and the generation of singlet oxygen
Chen et al. Rational design of two-photon absorbing dicyanomethylene-4H-chromene derivatives and their application in bioimaging
Gao et al. Highly efficient singlet oxygen generation of AIE luminogens enable mitochondria-targeted photodynamic therapy
JP2007119443A (ja) ポルフィリン−アズレン縮合体および二光子吸収材料

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513