JP2006250890A - Volatile organic matter sensor - Google Patents

Volatile organic matter sensor Download PDF

Info

Publication number
JP2006250890A
JP2006250890A JP2005071476A JP2005071476A JP2006250890A JP 2006250890 A JP2006250890 A JP 2006250890A JP 2005071476 A JP2005071476 A JP 2005071476A JP 2005071476 A JP2005071476 A JP 2005071476A JP 2006250890 A JP2006250890 A JP 2006250890A
Authority
JP
Japan
Prior art keywords
light
volatile organic
substance
light emitting
indicator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005071476A
Other languages
Japanese (ja)
Other versions
JP2006250890A5 (en
Inventor
Tomotsugu Kamiyama
智嗣 上山
Toyoe Moriizumi
豊榮 森泉
Takamichi Nakamoto
高道 中本
Kazuhiro Kobayashi
一弘 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Tokyo Institute of Technology NUC
Original Assignee
Mitsubishi Electric Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Tokyo Institute of Technology NUC filed Critical Mitsubishi Electric Corp
Priority to JP2005071476A priority Critical patent/JP2006250890A/en
Publication of JP2006250890A publication Critical patent/JP2006250890A/en
Publication of JP2006250890A5 publication Critical patent/JP2006250890A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a volatile organic matter sensor having high sensitivity, low in cost, and enhanced in precision. <P>SOLUTION: The volatile organic matter sensor comprises an index substance changed to a second state from a first state by the contact with a predetermined volatile organic matter, a temperature control part for controlling the temperature of the index substance, a first light emitting device for irradiating the index substance with light of a first wavelength, a second light emitting device for irradiating the index substance with light of a second wavelength different from the first wavelength, a light detecting device for detecting the reflected light or transmitted light from the index substance to output an electric signal and a control part observing the first electric signal, which is output by irradiating the index substance with the light of the first wavelength from the first light emitting device and detecting the reflected light or transmitted light from the index substance by the light detecting device, and the second electric signal, which is outputted by irradiating the index substance with the light of the second wavelength from the second light emitting device and detecting the reflected light or transmitted light from the index substance by the second light emitting device, to discriminate the state of the index substance on the basis of the first and second electric signals to evaluate the presence of the volatile organic matter in a gas to be evaluated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ガス中の揮発性有機物を検出する揮発性有機物センサに関する。   The present invention relates to a volatile organic substance sensor that detects volatile organic substances in a gas.

従来の揮発性有機物(VOC)センサでは、ガス中の濃度測定する化学物質と反応して吸収スペクトルが変化する物質を塗布した試験紙の色変化を評価するために、白色光を試験紙に照射し、その反射光を3色の受光デバイスたとえばCCDやフォトダイオードで受光して、試験紙の色変化を評価するものがあった(例えば、非特許文献1を参照。)。   In a conventional volatile organic substance (VOC) sensor, white paper is irradiated with white light to evaluate the color change of a test paper coated with a substance that changes its absorption spectrum by reacting with a chemical substance whose concentration is measured in gas. In some cases, the reflected light is received by a light receiving device of three colors, for example, a CCD or a photodiode, and the color change of the test paper is evaluated (for example, see Non-Patent Document 1).

学会論文集 電気学会全国大会、2003年、3−111Annual Conference of the Institute of Electrical Engineers of Japan, 2003, 3-111

このような揮発性有機物センサにあっては、受光デバイスとして複数の高価な光倍増管、CCD、フォトダイオードを用いているため、揮発性有機物センサ自体も高価となる。なお、高価という意味は、デバイス出力電圧または電流を計測するための電流評価回路や電圧評価回路も含む。   In such a volatile organic sensor, since a plurality of expensive photomultiplier tubes, CCDs, and photodiodes are used as the light receiving device, the volatile organic sensor itself is also expensive. The meaning of “expensive” includes a current evaluation circuit and a voltage evaluation circuit for measuring the device output voltage or current.

本発明の目的は、低コストの揮発性有機物センサを提供することである。   An object of the present invention is to provide a low-cost volatile organic sensor.

本発明に係る揮発性有機物センサは、第1の状態から、所定の揮発性有機物と接触することによって第2の状態に変化する指標物質と、
前記指標物質の温度を制御する温度制御部と、
第1波長の光を前記指標物質に照射する第1発光デバイスと、
前記第1波長と異なる第2波長の光を前記指標物質に照射する第2発光デバイスと、
前記指標物質からの反射光又は透過光を受光して電気信号を出力する受光デバイスと、
前記第1発光デバイスから前記指標物質に前記第1波長の光を照射し、前記受光デバイスで前記指標物質からの反射光又は透過光を受光して出力される第1電気信号を観測し、前記第2発光デバイスから前記指標物質に前記第2波長の光を照射し、前記受光デバイスで前記指標物質からの反射光又は透過光を受光して出力される第2電気信号を観測し、前記第1電気信号と前記第2電気信号とに基づいて前記指標物質が前記第1状態であるか前記第2状態であるかを判別し、評価対象のガス中における前記揮発性有機物の有無を評価する制御部と
を備えることを特徴とする。
The volatile organic substance sensor according to the present invention includes an indicator substance that changes from a first state to a second state by contact with a predetermined volatile organic substance,
A temperature control unit for controlling the temperature of the indicator substance;
A first light emitting device for irradiating the indicator substance with light of a first wavelength;
A second light emitting device for irradiating the indicator substance with light having a second wavelength different from the first wavelength;
A light receiving device that receives reflected light or transmitted light from the indicator substance and outputs an electrical signal; and
Irradiating the indicator substance with light of the first wavelength from the first light emitting device, observing a first electric signal output by receiving reflected or transmitted light from the indicator substance with the light receiving device, and Irradiating the indicator substance with light of the second wavelength from a second light emitting device, observing a second electrical signal output by receiving reflected or transmitted light from the indicator substance with the light receiving device, Based on one electric signal and the second electric signal, it is determined whether the indicator substance is in the first state or the second state, and the presence or absence of the volatile organic substance in the gas to be evaluated is evaluated. And a control unit.

本発明に係る揮発性有機物センサによれば、指標物質を所定温度に保持しながら、互いに異なる発光中心波長の2つの発光デバイスを順次発光させて指標物質に照射し、指標物質からの反射光又は透過光を1つの受光デバイスで順次受光して得られる第1電気信号と第2電気信号とに基づいて指標物質が第1状態又は第2状態のうちのいずれの状態であるかを判別し、揮発性有機物の有無を安定して精度よく評価できる。これにより、低コストであって高精度の揮発性有機物センサを提供できる。   According to the volatile organic sensor according to the present invention, while maintaining the indicator substance at a predetermined temperature, two light emitting devices having different emission center wavelengths are sequentially emitted to irradiate the indicator substance, and reflected light from the indicator substance or Determining whether the indicator substance is in the first state or the second state based on the first electric signal and the second electric signal obtained by sequentially receiving the transmitted light with one light receiving device; The presence or absence of volatile organic substances can be evaluated stably and accurately. Thereby, a low-cost and highly accurate volatile organic substance sensor can be provided.

本発明の実施の形態に係る揮発性有機物センサについて添付図面を用いて以下に説明する。なお、図面において、実質的に同一の部材には同一の符号を付している。   A volatile organic substance sensor according to an embodiment of the present invention will be described below with reference to the accompanying drawings. In the drawings, substantially the same members are denoted by the same reference numerals.

実施の形態1.
図1は、本発明の実施の形態1に係る揮発性有機物センサ10の構成を示す概略図である。この揮発性有機物センサ10は、7個の発光デバイス1a、1b、1c、1d、1e、1f、1gとしてそれぞれ異なる発光中心波長を有する7個の発光ダイオードと、1個の受光デバイス2である発光ダイオードと、指標物質3としてのナイルレッドと、該指標物質3を収納する測定セル6と、測定セル6に評価対象のガスを導く配管5と、ガスを導入するためのポンプ4と、測定セル6内の指標物質3を一定の設定温度に制御する温度制御部7と、位置決め治具8と、制御部9とからなる。図2は、7つの発光デバイスと1つの受光デバイスとの位置関係を示す概略的な平面図である。7つの発光デバイスは1つの受光デバイス2を中心とした円弧状に配置されている。測定セル6は透明ガラスからなる。なお、発光デバイス及び受光デバイスである発光ダイオードは、すべて測定セル6の外部に配置されているが、各発光デバイス1a、1b、1c、1d、1e、1f、1gからの光は測定セル6を透過し、指標物質3で一部反射され、受光デバイス2に至る。位置決め治具8は、各発光デバイス及び受光デバイス2と指標物質3との相対位置を可変あるいは固定するものである。制御部9は、各発光デバイスの発光タイミングを制御すると共に、受光デバイス2の出力から、指標物質3が揮発性有機物に曝される前の状態か、曝された後の状態のいずれであるかを判別し、評価対象のガスに該揮発性有機物が含まれるか否かを評価する。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram showing a configuration of a volatile organic substance sensor 10 according to Embodiment 1 of the present invention. The volatile organic sensor 10 includes seven light emitting devices 1a, 1b, 1c, 1d, 1e, 1f, and 1g each having seven light emitting diodes having different emission center wavelengths and one light receiving device 2. A diode, Nile red as the indicator substance 3, a measurement cell 6 for storing the indicator substance 3, a pipe 5 for introducing the gas to be evaluated to the measurement cell 6, a pump 4 for introducing the gas, and a measurement cell 6 includes a temperature control unit 7 that controls the index substance 3 in 6 to a predetermined set temperature, a positioning jig 8, and a control unit 9. FIG. 2 is a schematic plan view showing the positional relationship between seven light emitting devices and one light receiving device. The seven light emitting devices are arranged in an arc shape centered on one light receiving device 2. The measurement cell 6 is made of transparent glass. The light emitting diodes, which are the light emitting device and the light receiving device, are all arranged outside the measuring cell 6, but light from each light emitting device 1a, 1b, 1c, 1d, 1e, 1f, 1g passes through the measuring cell 6. The light is transmitted, partially reflected by the indicator substance 3, and reaches the light receiving device 2. The positioning jig 8 changes or fixes the relative position of each light emitting device and light receiving device 2 and the indicator substance 3. The control unit 9 controls the light emission timing of each light emitting device, and from the output of the light receiving device 2, whether the indicator material 3 is in a state before being exposed to a volatile organic substance or in a state after being exposed. And whether or not the volatile organic substance is contained in the gas to be evaluated is evaluated.

図3は、指標物質3のナイルレッドの分子式を示す図である。ナイルレッドは、揮発性有機物(VOC)であるトリエチルアミンなどと相互作用することにより、わずかに色が変化する。図4は、ナイルレッドおよび希薄なトリエチルアミンと接触させたトリエチルアミンのスペクトルを示す。グラフからは分かりにくいが、トリエチルアミンとの反応前には吸収ピークは波長510nm近傍にあったが、反応後はわずかに短波長側へシフト(すなわち図では左方向に移動)した。その結果、波長500nmよりも短波長側の吸光度が少し上がり、長波長側の吸光度が少し上昇した。発光デバイス1a、1b、1c、1d、1e、1f、1gに用いる発光ダイオードとして、発光中心波長が405nm(紫)、470nm(青)、570nm(緑)、595nm(黄)、630nm(橙)、640nm(赤)、880nm(赤外)である7つの発光ダイオードを選択した。受光デバイス2に用いる発光ダイオードとしては、上記各発光デバイスの発光中心波長と同等かより長い波長のものであれば用いることができる。この受光デバイス2には発光中心波長が960nmの発光ダイオードを用いた。   FIG. 3 is a diagram showing the molecular formula of Nile Red of the indicator substance 3. Nile red changes color slightly by interacting with volatile organic matter (VOC) such as triethylamine. FIG. 4 shows the spectrum of triethylamine contacted with Nile Red and dilute triethylamine. Although it is difficult to understand from the graph, the absorption peak was in the vicinity of the wavelength of 510 nm before the reaction with triethylamine, but after the reaction, it slightly shifted to the short wavelength side (that is, moved to the left in the figure). As a result, the absorbance on the shorter wavelength side than the wavelength of 500 nm was slightly increased, and the absorbance on the longer wavelength side was slightly increased. As light emitting diodes used for the light emitting devices 1a, 1b, 1c, 1d, 1e, 1f, 1g, the emission center wavelengths are 405 nm (purple), 470 nm (blue), 570 nm (green), 595 nm (yellow), 630 nm (orange), Seven light emitting diodes of 640 nm (red) and 880 nm (infrared) were selected. As the light emitting diode used for the light receiving device 2, any light emitting diode having a wavelength equal to or longer than the emission center wavelength of each light emitting device can be used. For the light receiving device 2, a light emitting diode having an emission center wavelength of 960 nm was used.

この揮発性有機物センサ10では、発光デバイス1a、1b、1c、1d、1e、1f、1gのみならず受光デバイス2にも発光ダイオードを用いている。これにより、発光デバイス及び受光デバイスの調達コストや基板への装着コスト等を下げることができると共に、消費電力を下げることができる。また、受光デバイスが高感度なため発光デバイスの発光量を小さくすることができ、指標物質の光劣化を小さくできる。   In the volatile organic sensor 10, light emitting diodes are used not only for the light emitting devices 1a, 1b, 1c, 1d, 1e, 1f, and 1g but also for the light receiving device 2. Thereby, the procurement cost of the light emitting device and the light receiving device, the mounting cost to the substrate, and the like can be reduced, and the power consumption can be reduced. Further, since the light receiving device is highly sensitive, the light emission amount of the light emitting device can be reduced, and the light deterioration of the indicator substance can be reduced.

なお、発光デバイスには、発光ダイオードに限られず、エレクトロルミネッセンス素子を用いてもよい。また、受光デバイスには、発光ダイオードに限られず、フォトダイオードを用いてもよい。   Note that the light-emitting device is not limited to the light-emitting diode, and an electroluminescence element may be used. The light receiving device is not limited to the light emitting diode, and a photodiode may be used.

以下に、この揮発性有機物センサ10による揮発性有機物の評価について説明する。
(a)まず、指標物質3のナイルレッドを、溶媒であるクロロホルムに濃度が0.5mg/mlとなるように溶解し、その溶液をシリカプレート上に滴下し、直径約2cmになるように広げ、風乾して、紫色のスポットを得た。このスポット状の指標物質3を含むシリカプレートを測定セル6内の温度制御部7の上に載置した。
(b)次に、評価対象の揮発性有機物に、2−プロパノール、アセトアルデヒド、トリエチルアミン、酢酸を用い、参照用のサンプルガスとして、上記揮発性有機物をそれぞれ別々に空気中に250ppm、500ppmの濃度で含むものを用意した。
(c)発光デバイス1a、1b、1c、1d、1e、1f、1gを、図2の平面図に示すように、受光デバイス2を中心として周囲に配置し、これらと指標物質3との相対位置を位置決め治具8によって固定する。
(d)温度制御部7で指標物質3の温度をほぼ25℃に制御しながら、ポンプ4によって、上記参照用のサンプルガスを配管5を介して測定セル6内に導入した。
(e)各発光デバイス1a、1b、1c、1d、1e、1f、1gの発光ダイオードを時間間隔を空けて順次発光させて指標物質3からの反射光を受光デバイス2で受光し、出力される電気信号を順次測定した。
(f)各発光デバイス1a、1b、1c、1d、1e、1f、1gに対応する受光デバイス2の出力の結果について、上記参照用サンプルガスのうち、空気中の各揮発性有機物の濃度が250ppmの場合の評価結果(曝露前後の応答変化(%))を表1に示す。また、空気中の各揮発性有機物の濃度が500ppmの場合の評価結果(曝露前後の応答変化(%))を表2に示す。この結果から、各揮発性有機物について7つの発光デバイスによる応答の組合せがそれぞれ固有の組み合わせであることがわかる。
(g)そこで、評価対象の揮発性有機物を含有するガスについて、7つの発光デバイスによる応答の組合せを得て、上記4つの揮発性有機物の各組合せと比較することによって、4つの揮発性有機物のいずれであるか、あるいはその混合物であるかについて評価できる。さらに、評価対象のガスに含まれる4つの揮発性有機物のそれぞれの濃度についても評価できる。
Below, evaluation of the volatile organic substance by this volatile organic substance sensor 10 is demonstrated.
(A) First, Nile Red of the indicator substance 3 is dissolved in chloroform as a solvent so that the concentration becomes 0.5 mg / ml, and the solution is dropped on a silica plate and spread to a diameter of about 2 cm. Air dried to obtain a purple spot. The silica plate containing the spot-like indicator substance 3 was placed on the temperature control unit 7 in the measurement cell 6.
(B) Next, 2-propanol, acetaldehyde, triethylamine, and acetic acid are used as volatile organic substances to be evaluated, and the above volatile organic substances are separately provided in the air at concentrations of 250 ppm and 500 ppm as reference sample gases. I prepared something to include.
(C) The light emitting devices 1a, 1b, 1c, 1d, 1e, 1f, and 1g are arranged around the light receiving device 2 as shown in the plan view of FIG. Is fixed by the positioning jig 8.
(D) The reference sample gas was introduced into the measurement cell 6 through the pipe 5 by the pump 4 while the temperature of the indicator substance 3 was controlled to approximately 25 ° C. by the temperature controller 7.
(E) The light emitting diodes of the light emitting devices 1a, 1b, 1c, 1d, 1e, 1f, and 1g are sequentially emitted with a time interval, and the reflected light from the indicator substance 3 is received by the light receiving device 2 and output. The electrical signal was measured sequentially.
(F) Regarding the result of the output of the light receiving device 2 corresponding to each of the light emitting devices 1a, 1b, 1c, 1d, 1e, 1f, and 1g, the concentration of each volatile organic substance in the air in the reference sample gas is 250 ppm. Table 1 shows the evaluation results (response change before and after exposure (%)). Table 2 shows the evaluation results (response change (%) before and after exposure) when the concentration of each volatile organic substance in the air is 500 ppm. From this result, it can be seen that each volatile organic substance has a unique combination of responses by seven light emitting devices.
(G) Therefore, for the gas containing the volatile organic substance to be evaluated, a combination of responses from the seven light emitting devices is obtained and compared with each of the above four volatile organic substance combinations. It can be evaluated whether it is a mixture thereof. Furthermore, each concentration of the four volatile organic substances contained in the gas to be evaluated can be evaluated.

Figure 2006250890
Figure 2006250890

Figure 2006250890
Figure 2006250890

図5は、表1の空気中のガス濃度が250ppmの場合の曝露前後の応答変化(%)を示す棒グラフである。このグラフから分かるように、4種の揮発性有機物に対する曝露前後の応答変化は全く異なっている。また、応答変化の程度は、表1及び表2を参照すると、揮発性有機物の濃度に依存することがわかる。すなわち、この揮発性有機物センサを使うことによって、低コストで揮発性有機物の定性評価及び定量評価ができる。   FIG. 5 is a bar graph showing the change in response (%) before and after exposure when the gas concentration in the air in Table 1 is 250 ppm. As can be seen from this graph, the response changes before and after exposure to the four volatile organics are quite different. In addition, referring to Tables 1 and 2, it can be seen that the degree of response change depends on the concentration of volatile organic substances. That is, by using this volatile organic substance sensor, qualitative evaluation and quantitative evaluation of the volatile organic substance can be performed at low cost.

従来のように、指標物質3の温度制御を行わない場合には、導入する大気の温度によって指標物質3の温度が変動するので、出力値が変動してしまい、受光デバイス2からの出力値から揮発性有機物の濃度を推定することが困難であった。この揮発性有機物センサ10では、指標物質3を所定温度に保持する温度制御部7を備える。そこで、この揮発性有機物センサによって、揮発性有機物を精度よく評価できる。なお、指標物質3の温度を上げた場合には安定なデータになる時間が早くなったが、濃度に対する応答量が小さくなった。   When the temperature control of the indicator substance 3 is not performed as in the prior art, the temperature of the indicator substance 3 fluctuates depending on the temperature of the air to be introduced, so that the output value fluctuates, and from the output value from the light receiving device 2 It was difficult to estimate the concentration of volatile organics. The volatile organic substance sensor 10 includes a temperature control unit 7 that maintains the index substance 3 at a predetermined temperature. Therefore, the volatile organic substance can be accurately evaluated by the volatile organic substance sensor. In addition, when the temperature of the indicator substance 3 was raised, the time for obtaining stable data was shortened, but the response amount to the concentration was small.

また、揮発性有機物センサ10において、サンプルガスに加湿を行う加湿装置又は除湿を行う除湿装置等の湿度制御部をさらに設けてもよい。この場合、指標物質3が水分子に対して感受性を持つ場合に、水分子の影響を小さくすることができる。加湿装置には、水分子透過膜、水によるバブリング装置など、除湿装置には、冷却管、乾燥剤(酸化カルシウムなど)充填管などを用いることができる。   In the volatile organic sensor 10, a humidity control unit such as a humidifier that humidifies the sample gas or a dehumidifier that performs dehumidification may be further provided. In this case, when the index substance 3 is sensitive to water molecules, the influence of water molecules can be reduced. The humidifier can be a water molecule permeable membrane, a water bubbling device, etc., and the dehumidifier can be a cooling tube, a desiccant (calcium oxide etc.) filled tube, or the like.

なお、上記の揮発性有機物は、悪臭物質でもあるので、この揮発性有機物センサは、悪臭センサとして用いることができる。その場合、においの感じ方は各個人で異なるという主観的な面もあるので、揮発性有機物質の濃度と臭い強度の関係をあらかじめデータベースとして、この揮発性有機物センサ内のメモリに記憶させておいてもよい。あるいは、該データベースを外部装置に記憶させておき、必要に応じて取得してもよい。この揮発性有機物センサの評価値と該データベースとを比較することにより、悪臭度を客観的に評価する悪臭センサとして用いることができる。   In addition, since said volatile organic substance is also a malodor substance, this volatile organic substance sensor can be used as a malodor sensor. In that case, since there is a subjective aspect that the smell is different for each individual, the relationship between the concentration of the volatile organic substance and the odor intensity is stored in advance as a database in the memory in the volatile organic substance sensor. May be. Alternatively, the database may be stored in an external device and acquired as necessary. By comparing the evaluation value of the volatile organic substance sensor with the database, the sensor can be used as a malodor sensor that objectively evaluates the malodor degree.

なお、上記の4つの揮発性有機物(2−プロパノール、アセトアルデヒド、トリエチルアミン、酢酸)は、悪臭物質である、アルコール類(ブタノールなど)、アルデヒド類(ホルムアルデヒドなど)、アミン類、有機酸(酪酸など)の代表として用いたものであり、これらに限定するものではない。この揮発性有機物センサは、上記4物質以外の悪臭物質の評価にも用いることができる。   The above four volatile organic substances (2-propanol, acetaldehyde, triethylamine, acetic acid) are malodorous substances such as alcohols (butanol etc.), aldehydes (formaldehyde etc.), amines, organic acids (butyric acid etc.) However, the present invention is not limited to these examples. This volatile organic substance sensor can also be used for evaluation of malodorous substances other than the above four substances.

なお、受光デバイス2の発光ダイオードの出力評価回路としては、TALANTA、第63巻、Issue 1、第167頁−第173頁、2004年5月に示される方法を用いることができる。この方法について以下に説明する。まず、受光デバイス2としての発光ダイオードには発光時とは逆のバイアスを印加しておく。それにより、発光部の半導体を挟む2つの電極に電荷が蓄積され、発光ダイオードはコンデンサーとして働く。半導体に光が照射されると、受光した光強度に応じた抵抗値を持つため、半導体を通して蓄積された電荷が移動して減少する。その結果、2電極間の電圧は下がる。例えば、最初に逆バイアスとして5V印加し、その後、一定の電圧、例えば、1.7Vまで低下するまでの時間(減衰時間)を計測する。この減衰時間は半導体の抵抗、すなわち受光した光強度に依存する。そこで、減衰時間を計ることによって受光した光強度を定量的に得ることができる。   In addition, as an output evaluation circuit of the light emitting diode of the light receiving device 2, the method shown in TALANTA, Vol. 63, Issue 1, pp. 167 to 173, May 2004 can be used. This method will be described below. First, a bias reverse to that during light emission is applied to the light emitting diode as the light receiving device 2. Thereby, electric charges are accumulated in the two electrodes sandwiching the semiconductor of the light emitting part, and the light emitting diode functions as a capacitor. When the semiconductor is irradiated with light, the electric charge accumulated through the semiconductor moves and decreases because it has a resistance value corresponding to the received light intensity. As a result, the voltage between the two electrodes decreases. For example, 5 V is first applied as a reverse bias, and then a time (decay time) until the voltage is reduced to a certain voltage, for example, 1.7 V is measured. This decay time depends on the resistance of the semiconductor, that is, the received light intensity. Therefore, the received light intensity can be quantitatively obtained by measuring the decay time.

実施の形態2
本発明の実施の形態2に係る揮発性有機物センサは、実施の形態1に係る揮発性有機物センサと比較すると、指標物質3として、ナイルレッドに代えて、メチルレッド、ライハルト色素、あるいはコバルトポルフィリン、鉄ポルフィリン等の金属錯体を用いる点で相違する。指標物質3には、5,10,15,20−テトラキス(ペンタフルオロフェニル)21H,23H−ポルフィリン鉄(III)を用いる。これは、Fe(TPFP)と略称される。指標物質3のスポットの調製は、ナイルレッドと同様にして行うことができる。図6に、実施の形態1と同様な方法で、揮発性有機物としてトリエチルアミンおよび酢酸を含むサンプルガスを評価した結果を示す。この揮発性有機物センサによって、図6のグラフに示すように、揮発性有機物のトリエチルアミンと酢酸を識別することができる。
Embodiment 2
Compared with the volatile organic substance sensor according to Embodiment 1, the volatile organic substance sensor according to Embodiment 2 of the present invention is replaced with Nile Red as the indicator substance 3, methyl red, Reichart dye, or cobalt porphyrin, The difference is that a metal complex such as iron porphyrin is used. For the indicator substance 3, 5,10,15,20-tetrakis (pentafluorophenyl) 21H, 23H-porphyrin iron (III) is used. This is abbreviated as Fe (TPFP). The spot of the indicator substance 3 can be prepared in the same manner as Nile red. FIG. 6 shows the results of evaluating a sample gas containing triethylamine and acetic acid as volatile organic substances by the same method as in the first embodiment. As shown in the graph of FIG. 6, this volatile organic substance sensor can distinguish triethylamine and acetic acid, which are volatile organic substances.

実施の形態3.
本発明の実施の形態3に係る揮発性有機物センサは、実施の形態1に係る有機物センサを実質的に二組備えているものと考えることができる。この揮発性有機物センサでは、2つの指標物質を用いる。第1指標物質には、実施の形態1の指標物質のナイルレッドを用い、第2指標物質には、実施の形態2の指標物質のFe(TPFP)を用いる。臭い物質(揮発性有機物)として、酢酸または2−プロパノールまたはトリエチルアミンの250ppm混入の空気を用いる。
Embodiment 3 FIG.
It can be considered that the volatile organic sensor according to Embodiment 3 of the present invention includes substantially two sets of the organic sensor according to Embodiment 1. In this volatile organic sensor, two indicator substances are used. The first indicator substance is Nile Red, which is the indicator substance of Embodiment 1, and the indicator substance Fe (TPFP) of Embodiment 2 is used as the second indicator substance. As the odorous substance (volatile organic substance), air mixed with 250 ppm of acetic acid or 2-propanol or triethylamine is used.

この揮発性有機物センサによって、実施の形態1と同様な実験を行ったところ、第1指標物質のナイルレッドによって、トリエチルアミンと他の2物質を識別でき、第2指標物質のFe(TPFP)によって、酢酸と他の2物質をそれぞれ識別できた。そこで、第1指標物質のナイルレッドと第2指標物質のFe(TPFP)の両方の結果から、酢酸、2−プロパノール、トリエチルアミンの3物質を識別することができた。また、このように指標物質を2種類以上用いて得た評価データを用いて悪臭度の判断を精度よく行うことができる。   When this volatile organic substance sensor was used to perform the same experiment as in the first embodiment, triethylamine and the other two substances could be identified by the first indicator substance Nile Red, and by the second indicator substance Fe (TPFP), Acetic acid and the other two substances could be distinguished from each other. Therefore, from the results of both the first indicator substance Nile Red and the second indicator substance Fe (TPFP), three substances, acetic acid, 2-propanol and triethylamine, could be identified. In addition, the malodor degree can be accurately determined using the evaluation data obtained by using two or more kinds of indicator substances in this way.

なお、上記各実施の形態に係る揮発性有機物センサでは、発光デバイスには発光ダイオードを用いているが、これに限られない。例えば、発光デバイスとして、広い波長域の光、例えば、白色LED、白熱灯、蛍光灯等の白色光を発光するデバイスと所定の波長域の光のみを通過させるバンドパスフィルタとを組み合わせたものを用いてもよい。このように発光デバイスとして白色光を発光するデバイスとバンドパスフィルタとを組み合わせることによって、所望の発光中心波長を有する発光デバイスを簡易に構成することができる。なお、白色光を発光する1つの白色光発光デバイスと、シャッタとバンドパスフィルタとを組み合わせてもよい。この場合、シャッタを順次開閉することで発光デバイスを順次発光させることができる。これにより、所望の発光中心波長を有する発光デバイスを簡易に構成することができる。   In the volatile organic sensor according to each of the above embodiments, a light emitting diode is used as a light emitting device, but the present invention is not limited to this. For example, as a light emitting device, a combination of a device that emits light in a wide wavelength range, for example, white light such as a white LED, an incandescent lamp, and a fluorescent lamp, and a bandpass filter that passes only light in a predetermined wavelength range. It may be used. In this way, by combining a device that emits white light as a light emitting device and a bandpass filter, a light emitting device having a desired emission center wavelength can be easily configured. Note that one white light emitting device that emits white light, a shutter, and a band pass filter may be combined. In this case, the light emitting devices can sequentially emit light by sequentially opening and closing the shutters. Thereby, the light-emitting device which has a desired light emission center wavelength can be comprised easily.

また、以上の実施の形態において、本発明に係る揮発性有機物センサは、出力と濃度等との間の変換用データを格納するメモリや変換のための演算処理装置を備えていてもよい。さらに、変換用データを記憶する外部記憶装置から通信によって該変換用データを取得するかあるいは、演算結果を外部に送る発信器やアンテナ等の通信手段をさらに備えてもよい。またさらに、この揮発性有機物センサは、乾電池、蓄電池、太陽電池等の電源、データや演算結果を表示する表示装置を備えていてもよい。また、必要に応じて、演算結果に基づいて警報するアラーム装置、さらに、アラーム装置にアラーム設定値を入力するキー等を併せて備えていてもよい。   Moreover, in the above embodiment, the volatile organic substance sensor according to the present invention may include a memory for storing conversion data between output and concentration, and an arithmetic processing unit for conversion. Furthermore, the data for conversion may be acquired by communication from an external storage device that stores the data for conversion, or communication means such as a transmitter or an antenna for sending the calculation result to the outside may be further provided. Furthermore, the volatile organic substance sensor may include a power source such as a dry battery, a storage battery, and a solar battery, and a display device that displays data and calculation results. Further, if necessary, an alarm device for alarming based on the calculation result, and a key for inputting an alarm set value to the alarm device may be provided.

本発明の実施の形態1による揮発性有機物センサを示す概略図である。It is the schematic which shows the volatile organic substance sensor by Embodiment 1 of this invention. 図1の発光デバイス及び受光デバイスの位置関係を示す概略平面図である。It is a schematic plan view which shows the positional relationship of the light emitting device and light receiving device of FIG. 本発明の実施の形態1に係るよる揮発性有機物センサに用いる指標物質のナイルレッドの化学構造式である。It is a chemical structural formula of Nile Red which is an indicator substance used in the volatile organic substance sensor according to Embodiment 1 of the present invention. 本発明の実施の形態1による揮発性有機物センサに用いる指標物質のスペクトル及びスペクトル変化を示す図である。It is a figure which shows the spectrum and spectrum change of the parameter | index substance used for the volatile organic substance sensor by Embodiment 1 of this invention. 本発明の実施の形態1における表1の結果を示すグラフである。It is a graph which shows the result of Table 1 in Embodiment 1 of this invention. 本発明の実施の形態2における結果を示すグラフである。It is a graph which shows the result in Embodiment 2 of this invention.

符号の説明Explanation of symbols

1a、1b、1c、1d、1e、1f、1g 発光デバイス、2 受光デバイス、3 指標物質、4 ポンプ、5 配管、6 測定セル、7 温度制御装置、8 位置決め治具、9 制御部、10 揮発性有機物センサ
1a, 1b, 1c, 1d, 1e, 1f, 1g Light emitting device, 2 Light receiving device, 3 Indicator material, 4 Pump, 5 Piping, 6 Measurement cell, 7 Temperature controller, 8 Positioning jig, 9 Control unit, 10 Volatilization Organic matter sensor

Claims (13)

第1の状態から、所定の揮発性有機物と接触することによって第2の状態に変化する指標物質と、
前記指標物質の温度を制御する温度制御部と、
第1波長の光を前記指標物質に照射する第1発光デバイスと、
前記第1波長と異なる第2波長の光を前記指標物質に照射する第2発光デバイスと、
前記指標物質からの反射光又は透過光を受光して電気信号を出力する受光デバイスと、
前記第1発光デバイスから前記指標物質に前記第1波長の光を照射し、前記受光デバイスで前記指標物質からの反射光又は透過光を受光して出力される第1電気信号を観測し、前記第2発光デバイスから前記指標物質に前記第2波長の光を照射し、前記受光デバイスで前記指標物質からの反射光又は透過光を受光して出力される第2電気信号を観測し、前記第1電気信号と前記第2電気信号とに基づいて前記指標物質が前記第1状態であるか前記第2状態であるかを判別し、評価対象のガス中における前記揮発性有機物の有無を評価する制御部と
を備えることを特徴とする揮発性有機物センサ。
An indicator substance that changes from a first state to a second state by contact with a predetermined volatile organic substance;
A temperature control unit for controlling the temperature of the indicator substance;
A first light emitting device for irradiating the indicator substance with light of a first wavelength;
A second light emitting device for irradiating the indicator substance with light having a second wavelength different from the first wavelength;
A light receiving device that receives reflected light or transmitted light from the indicator substance and outputs an electrical signal; and
Irradiating the indicator substance with light of the first wavelength from the first light emitting device, observing a first electric signal output by receiving reflected or transmitted light from the indicator substance with the light receiving device, and Irradiating the indicator substance with light of the second wavelength from a second light emitting device, observing a second electrical signal output by receiving reflected or transmitted light from the indicator substance with the light receiving device, Based on one electric signal and the second electric signal, it is determined whether the indicator substance is in the first state or the second state, and the presence or absence of the volatile organic substance in the gas to be evaluated is evaluated. A volatile organic substance sensor comprising a control unit.
前記受光デバイスは、電圧を印加することによって前記第1波長及び前記第2波長より長波長の光を発光する発光ダイオードとして機能することを特徴とする請求項1に記載の揮発性有機物センサ。   2. The volatile organic sensor according to claim 1, wherein the light receiving device functions as a light emitting diode that emits light having a wavelength longer than the first wavelength and the second wavelength by applying a voltage. 前記指標物質は、前記第2の状態の前記指標物質からの反射光又は透過光のスペクトルが、前記第1の状態の前記指標物質からの反射光又は透過光のスペクトルと比較して、前記第1波長又は前記第2波長の少なくとも一方の波長で異なる光強度を有することを特徴とする請求項1又は2に記載の揮発性有機物センサ。   The indicator substance has a spectrum of reflected or transmitted light from the indicator substance in the second state compared to a spectrum of reflected or transmitted light from the indicator substance in the first state. 3. The volatile organic sensor according to claim 1, wherein the volatile organic substance sensor has different light intensities at one wavelength or at least one of the second wavelengths. 前記第1波長及び前記第2波長の両方と異なる第3波長の光を前記指標物質に照射する第3発光デバイスであって、前記第1状態及び前記第2状態の両方で、前記第3波長の光について前記指標物質からの反射光又は透過光を受光して前記受光デバイスから出力される第3電気信号が実質的に同一である第3発光デバイスをさらに備えることを特徴とする請求項1から3のいずれか一項に記載の揮発性有機物センサ。   A third light emitting device for irradiating the indicator substance with light having a third wavelength different from both the first wavelength and the second wavelength, wherein the third wavelength is in both the first state and the second state. The light emitting device further comprises a third light emitting device that receives reflected light or transmitted light from the indicator substance and outputs a third electrical signal that is substantially the same from the light receiving device. 4. The volatile organic sensor according to any one of items 1 to 3. 前記第1発光デバイス及び前記第2発光デバイスの少なくとも一方は、発光ダイオードであることを特徴とする請求項1から4のいずれか一項に記載の揮発性有機物センサ。   5. The volatile organic substance sensor according to claim 1, wherein at least one of the first light emitting device and the second light emitting device is a light emitting diode. 前記第1発光デバイス及び前記第2発光デバイスの少なくとも一方は、エレクトロルミネッセンス素子であることを特徴とする請求項1から5のいずれか一項に記載の揮発性有機物センサ。   6. The volatile organic substance sensor according to claim 1, wherein at least one of the first light-emitting device and the second light-emitting device is an electroluminescence element. 前記第1発光デバイス、前記第2発光デバイス、及び前記受光デバイスは、前記第1及び第2発光デバイスからの光を前記指標物質で反射し、前記指標物質からの反射光を前記受光デバイスで受光するように配置されていることを特徴とする請求項1から6のいずれか一項に記載の揮発性有機物センサ。   The first light emitting device, the second light emitting device, and the light receiving device reflect light from the first and second light emitting devices with the indicator material, and receive reflected light from the indicator material with the light receiving device. The volatile organic substance sensor according to any one of claims 1 to 6, wherein the volatile organic substance sensor is arranged so as to perform. 前記第1発光デバイス、前記第2発光デバイス、及び前記受光デバイスは、前記第1及び第2発光デバイスからの光が前記指標物質を透過し、前記指標物質からの透過光を前記受光デバイスで受光するように配置されていることを特徴とする請求項1から6のいずれか一項に記載の揮発性有機物センサ。   In the first light emitting device, the second light emitting device, and the light receiving device, light from the first and second light emitting devices transmits the indicator substance, and light transmitted from the indicator substance is received by the light receiving device. The volatile organic substance sensor according to any one of claims 1 to 6, wherein the volatile organic substance sensor is arranged so as to perform. 複数の異なる指標物質を含み、前記複数の発光デバイス、及び前記受光デバイスの対象となる指標物質を変える位置決め治具をさらに備え、さらに、該複数の異なる指標物質を用いたそれぞれの測定結果に基づいて、前記評価対象のガスを評価することを特徴とする請求項1から8のいずれか一項に記載の揮発性有機物センサ。   A positioning jig that includes a plurality of different indicator substances, and that changes a target substance of the plurality of light-emitting devices and the light-receiving device, and further, based on respective measurement results using the plurality of different indicator substances The volatile organic sensor according to any one of claims 1 to 8, wherein the gas to be evaluated is evaluated. 前記指標物質を収納し、前記指標物質に前記評価対象のガスを接触させる容器をさらに備えることを特徴とする請求項1から9のいずれか一項に記載の揮発性有機物センサ   The volatile organic substance sensor according to any one of claims 1 to 9, further comprising a container that houses the indicator substance and makes the gas to be evaluated contact the indicator substance. 前記指標物質は、ナイルレッド、金属ポルフィリン、メチルレッドの群から選ばれる少なくとも一つであることを特徴とする請求項1から10のいずれか一項に記載の揮発性有機物センサ。   11. The volatile organic sensor according to claim 1, wherein the indicator substance is at least one selected from the group consisting of Nile red, metal porphyrin, and methyl red. 第1指標物質を含む第1組の請求項1から10のいずれか一項に記載の前記揮発性有機物センサと、
第2指標物質を含む第2組の請求項1から10のいずれか一項に記載の前記揮発性有機物センサと
を備え、
前記第2指標物質による測定結果を用いて前記第1指標物質による測定結果を較正し、前記評価対象のガスを評価することを特徴とする揮発性有機物センサ。
The volatile organic substance sensor according to any one of claims 1 to 10, wherein the volatile organic substance sensor includes a first indicator substance.
A volatile organic substance sensor according to any one of claims 1 to 10 comprising a second indicator substance.
A volatile organic substance sensor characterized by calibrating the measurement result of the first indicator substance using the measurement result of the second indicator substance and evaluating the gas to be evaluated.
指標物質を含む請求項1から8、又は10のいずれか一項に記載の前記揮発性有機物センサを複数備え、それぞれ含む指標物質がお互いに異なり、それぞれの有機物センサの測定結果に基づいて、前記評価対象のガスを評価することを特徴とする揮発性有機物センサ。
A plurality of the volatile organic matter sensors according to any one of claims 1 to 8, or 10 comprising an indicator substance, each of the indicator substances being different from each other, based on the measurement results of the respective organic matter sensors, A volatile organic sensor characterized by evaluating a gas to be evaluated.
JP2005071476A 2005-03-14 2005-03-14 Volatile organic matter sensor Pending JP2006250890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005071476A JP2006250890A (en) 2005-03-14 2005-03-14 Volatile organic matter sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005071476A JP2006250890A (en) 2005-03-14 2005-03-14 Volatile organic matter sensor

Publications (2)

Publication Number Publication Date
JP2006250890A true JP2006250890A (en) 2006-09-21
JP2006250890A5 JP2006250890A5 (en) 2007-03-08

Family

ID=37091546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005071476A Pending JP2006250890A (en) 2005-03-14 2005-03-14 Volatile organic matter sensor

Country Status (1)

Country Link
JP (1) JP2006250890A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012168174A (en) * 2011-02-09 2012-09-06 Honeywell Internatl Inc Systems and methods for wavelength spectrum analysis for detection of various gases using treated tape
JP2012522249A (en) * 2009-03-30 2012-09-20 スリーエム イノベイティブ プロパティズ カンパニー Photoelectron method and device for analyte detection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101734A (en) * 1986-10-18 1988-05-06 Toshiba Corp Automatic chemical analyzer
JPH06249850A (en) * 1993-02-26 1994-09-09 Nippon Koden Corp Carbon dioxide gas monitor
JPH1062350A (en) * 1996-08-14 1998-03-06 Ebara Corp Gas detecting method and gas detecting device using gas-reactive pigment
JP2001141644A (en) * 1999-11-09 2001-05-25 Hitachi Ltd Reflectance measuring apparatus
JP2002168790A (en) * 2000-11-29 2002-06-14 Sony Corp Detector of reductive air pollutant, its concentration measure, its detection method and its concentration measuring method
JP2003247989A (en) * 2001-12-17 2003-09-05 Tomohiko Hashiba Measuring method and measuring instrument for formaldehyde concentration in gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101734A (en) * 1986-10-18 1988-05-06 Toshiba Corp Automatic chemical analyzer
JPH06249850A (en) * 1993-02-26 1994-09-09 Nippon Koden Corp Carbon dioxide gas monitor
JPH1062350A (en) * 1996-08-14 1998-03-06 Ebara Corp Gas detecting method and gas detecting device using gas-reactive pigment
JP2001141644A (en) * 1999-11-09 2001-05-25 Hitachi Ltd Reflectance measuring apparatus
JP2002168790A (en) * 2000-11-29 2002-06-14 Sony Corp Detector of reductive air pollutant, its concentration measure, its detection method and its concentration measuring method
JP2003247989A (en) * 2001-12-17 2003-09-05 Tomohiko Hashiba Measuring method and measuring instrument for formaldehyde concentration in gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KING TONG LAU ET AL.: "Novel fused-LEDs devices as optical sensors for colorimetric analysis", TALANTA, vol. Volume 63, Issue 1, JPN6009060204, 10 May 2004 (2004-05-10), pages 167 - 173, ISSN: 0001469033 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522249A (en) * 2009-03-30 2012-09-20 スリーエム イノベイティブ プロパティズ カンパニー Photoelectron method and device for analyte detection
JP2012168174A (en) * 2011-02-09 2012-09-06 Honeywell Internatl Inc Systems and methods for wavelength spectrum analysis for detection of various gases using treated tape
US10656095B2 (en) 2011-02-09 2020-05-19 Honeywell International Inc. Systems and methods for wavelength spectrum analysis for detection of various gases using a treated tape

Similar Documents

Publication Publication Date Title
Yeh et al. Applications of LEDs in optical sensors and chemical sensing device for detection of biochemicals, heavy metals, and environmental nutrients
US7364700B2 (en) Ozone gas sensing element, detection apparatus, and measurement method
US6197254B1 (en) Self-contained assaying apparatus
US20200209158A1 (en) Analytical test device
JP5076142B2 (en) Fluorometer
Tymecki et al. Fluorimetric detector and sensor for flow analysis made of light emitting diodes
JP2006250890A (en) Volatile organic matter sensor
Yokota et al. An optical sensor for analysis of soil nutrients by using LED light sources
US20140057360A1 (en) Arrangement and method for detecting hydrogen peroxide
US6455320B1 (en) Solar cell sensors, process for their manufacture and their use
JP2004177247A (en) Method of measuring carbon dioxide
CN116297279A (en) Method, system, device and equipment for detecting concentration of formaldehyde gas/VOC gas
Martín et al. Design of a low-cost optical instrument for pH fluorescence measurements
US10677734B2 (en) Method and apparatus for optical measurement of liquid sample
Eipel et al. Determination of ozone in ambient air with a chemiluminescence reagent film detector
KR20150120249A (en) Method of measuring formaldehyde concentration of gasand measuring instrument
JP2016029401A (en) Fluorometric analyzer
KR101806763B1 (en) Proactive portable algae detecting apparatus
JP3648105B2 (en) Nitrogen dioxide gas detection method and nitrogen dioxide gas detection device
CN210775518U (en) Calibration system for analyte detectors
JP3742975B2 (en) Gas detection method and apparatus used for gas detection
McEvoy et al. Optical sensors for application in intelligent food-packaging technology
JP2006250766A (en) State evaluation device
JPH0786461B2 (en) How to measure humidity
JPS63133039A (en) Evaluation of material permeation performance of thin film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323