JP2006250603A - Sensing method and sensing device by photosensor - Google Patents

Sensing method and sensing device by photosensor Download PDF

Info

Publication number
JP2006250603A
JP2006250603A JP2005065158A JP2005065158A JP2006250603A JP 2006250603 A JP2006250603 A JP 2006250603A JP 2005065158 A JP2005065158 A JP 2005065158A JP 2005065158 A JP2005065158 A JP 2005065158A JP 2006250603 A JP2006250603 A JP 2006250603A
Authority
JP
Japan
Prior art keywords
light
optical fiber
detection region
light receiving
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005065158A
Other languages
Japanese (ja)
Inventor
Tetsuyuki Terauchi
哲行 寺内
Norihisa Handa
典久 半田
Hiroki Murakami
弘記 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2005065158A priority Critical patent/JP2006250603A/en
Publication of JP2006250603A publication Critical patent/JP2006250603A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely detect the presence or absence of a body to be detected in a detection region that is clean and is under a high-temperature environment. <P>SOLUTION: An opening 2 is provided on a sidewall 1a of a quartz box 1, and a pipe-like member 6 for connection is mounted so that it passes through the opening 2. In the member 6 for connection, the base end section of a quartz glass member 3c that is formed in a slenderly cylindrical shape and is arranged so that the tip section reaches an area near the detection region 4 in the quartz box 1, and the tip section of a parallel type optical fiber 17 of a reflection type optical fiber sensor 8 is mounted. Light 13 guided via an optical fiber wire 10 for light projection of the parallel type optical fiber 17 is guided to an area near the detection region 4 through the quartz glass member 3c with low loss for projecting toward the detection region 4. Reflected light 13a occurring when the object 5 to be detected exists in the detection region 4 is received by the tip surface of the quartz glass member 3c near the detection region, is guided inside the quartz glass member 3c while the loss is small, and is received by an optical fiber wire 12 for receiving light. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光センサの投光部より所要の検出領域へ投光を行い、該検出領域より上記光センサの受光部へ受光される光量の変化を基に、上記検出領域における被検出体の有無や挙動を検出する光センサによるセンシング方法及び装置に関するものである。   The present invention projects light from a light projecting unit of a photosensor to a required detection region, and changes the amount of light received from the detection region to the light receiving unit of the photosensor. The present invention relates to a sensing method and apparatus using an optical sensor for detecting presence or absence and behavior.

一般に、各種製造現場等において、ワークが所定位置に配置されているか否かを検出したり、あるいは、ワークが何処に位置しているかを検出する場合のように、所要の検出領域における被検出体の有無の検出を行う技術として、被検出体の検出を光を媒体として行うようにしたセンシング技術があり、この種のセンシング技術に用いられる装置としては、たとえば、発光ダイオード等の光源より出力される光を所要の検出領域へ向けて投光するための投光部と、上記検出領域からの光を受光してフォトダイオード等の光検出器へ入力させるための受光部とを備えて、上記投光部より検出領域へ投光を行う状態にて、該検出領域より受光部へ受光される光量の変化を基に、上記検出領域における被検出体の有無を検出できるようにした光センサ(光電スイッチ)が広く知られている。かかる光センサとしては、被検出体の検出を行うべく上記受光部にて受光させる光の種類に応じて反射型、透過型、反射回帰型の3つの形式のものがある。   In general, in various manufacturing sites, etc., it is possible to detect whether or not the workpiece is placed at a predetermined position, or to detect where the workpiece is located. As a technology for detecting the presence or absence of light, there is a sensing technology in which detection of an object to be detected is performed using light as a medium. As a device used in this type of sensing technology, for example, a light source such as a light emitting diode is used. A light projecting unit for projecting light toward the required detection region, and a light receiving unit for receiving light from the detection region and inputting the light to a photodetector such as a photodiode. In a state where light is projected from the light projecting unit to the detection region, a light sensor configured to detect the presence or absence of the detection target in the detection region based on the change in the amount of light received from the detection region to the light receiving unit. (Photoelectric switch) is widely known. As such an optical sensor, there are three types of sensors of a reflection type, a transmission type, and a reflection regression type according to the type of light received by the light receiving unit in order to detect the detection target.

すなわち、上記反射型の光センサは、投光部と受光部を、所要の検出領域に臨むよう並べて設置した構成としてある。これにより、光源より出力される光を上記投光部から検出領域へ向けて投光させると、該投光された光は、上記検出領域に被検出体が存在していないときには、単に散逸されてしまい、上記受光部へはほとんど入射されることがないようにしてある。一方、上記検出領域に被検出体が存在しているときには、上記投光部より検出領域へ向けて投光された光は、上記検出領域に存在している被検出体により正反射あるいは散乱反射され、これらの反射光が上記受光部にて受光されて光検出器により検出されることから、受光量が増加させられることとなるようにしてある。したがって、この受光部にて受光される光量が、初期状態より増加するか否かに基づいて、上記検出領域における被検出体の有無を検出できるようにしてある。   That is, the reflection type optical sensor has a configuration in which the light projecting unit and the light receiving unit are arranged side by side so as to face a required detection region. As a result, when the light output from the light source is projected from the light projecting unit toward the detection area, the projected light is simply dissipated when there is no object to be detected in the detection area. Therefore, the light is hardly incident on the light receiving portion. On the other hand, when an object to be detected exists in the detection area, the light projected from the light projecting unit toward the detection area is regularly reflected or scattered by the object to be detected existing in the detection area. Since the reflected light is received by the light receiving unit and detected by the photodetector, the amount of received light is increased. Therefore, the presence / absence of the detection object in the detection region can be detected based on whether or not the amount of light received by the light receiving unit increases from the initial state.

上記透過型の光センサは、投光部と受光部とを、所要の検出領域を挟んで互いに向き合うように設置した構成としてある。これにより、光源より出力される光を、投光部より、上記検出領域を挟んで対向する受光部へ向けて投光させると、上記検出領域に被検出体が存在していないときには、上記投光部より投光される光は、遮られることなく検出領域を通過(透過)して、上記受光部にて受光されて光検出器により検出される。一方、上記検出領域に被検出体が存在しているときには、上記投光部より投光された光は、上記被検出体が光を通さないものである場合は該被検出体により遮られて受光部に到達できなくなり、又、上記被検出体が半透明や光を散乱させるものである場合には、受光部にて受光される光量が減少させられるようになる。したがって、この受光部にて受光される光量が初期状態より減少するか否かに基づいて、上記検出領域における被検出体の有無を検出できるようにしてある。   The transmission type optical sensor has a configuration in which a light projecting unit and a light receiving unit are installed so as to face each other with a required detection area interposed therebetween. As a result, when the light output from the light source is projected from the light projecting unit toward the light receiving unit facing the detection region, the light projecting unit does not exist in the detection region. The light projected from the light section passes (transmits) through the detection region without being blocked, is received by the light receiving section, and is detected by the photodetector. On the other hand, when the detected object is present in the detection area, the light projected from the light projecting unit is blocked by the detected object when the detected object does not pass the light. When it becomes impossible to reach the light receiving section, and when the detected object is translucent or scatters light, the amount of light received by the light receiving section is reduced. Therefore, the presence / absence of the detection object in the detection region can be detected based on whether or not the amount of light received by the light receiving unit decreases from the initial state.

上記反射回帰型の光センサは、投光部と受光部を、所要の検出領域に臨むよう並べて設置し、更に、ミラー状の反射板を、上記検出領域を挟んで投光部及び受光部と対向するよう設けた構成としてある。これにより、光源より出力される光を、上記投光部より検出領域へ向けて投光させると、検出領域に被検出体が存在しない場合には、上記投光部より投光された光が検出領域を通過して反射板に達し、該反射板にて反射された光が再び検出領域を通過して受光部に受光されて、光検出器にて検出される。一方、上記検出領域に被検出体が存在しているときには、上記投光部より投光された光が反射板にて反射されて受光部に達する光路が、被検出体により遮られるようになるため、上述した透過型の光センサと同様の原理により上記検出領域における被検出体の有無を検出できるようにしてある。   The reflection regression type optical sensor has a light projecting unit and a light receiving unit arranged side by side so as to face a required detection region, and further, a mirror-like reflector is disposed between the light projecting unit and the light receiving unit across the detection region. A configuration is provided so as to face each other. As a result, when the light output from the light source is projected toward the detection region from the light projecting unit, the light projected from the light projecting unit is not present in the detection region. The light that passes through the detection region and reaches the reflection plate, is reflected by the reflection plate, passes through the detection region again, is received by the light receiving unit, and is detected by the photodetector. On the other hand, when the detection object is present in the detection area, the light path from the light projected from the light projecting unit to the light receiving unit after being reflected by the reflecting plate is blocked by the detected object. Therefore, the presence / absence of the detection object in the detection region can be detected based on the same principle as that of the transmission type optical sensor described above.

又、上記反射型、透過型、反射回帰型の各形式の光センサの一種として、上記したと同様の光源の出力側と、光検出器の入力側に、それぞれ光導波路となる光ファイバの基端側を接続して、該光ファイバの先端面を、投光部や受光部として機能させることができるようにした構成とし、これにより、狭い場所等においても投光部と受光部を自在に設置できるようにしてなる光ファイバセンサも広く知られている。   In addition, as a kind of optical sensor of each of the reflection type, transmission type, and reflection regression type, optical fiber bases that are optical waveguides on the output side of the light source and the input side of the photodetector are the same as described above. The end side is connected so that the front end surface of the optical fiber can function as a light projecting part or a light receiving part. This allows the light projecting part and the light receiving part to be freely used even in a narrow place. Optical fiber sensors that can be installed are also widely known.

すなわち、透過型の光ファイバセンサとしては、たとえば、発光ダイオード等の光源と、フォトダイオード等の光検出器を備えてなるセンサ本体を有し、該センサ本体における光源の出力側と光検出器の入力側に、投光用と受光用の2本の光ファイバの基端側をそれぞれ接続し、上記投光用光ファイバの先端部に、金属製あるいは樹脂製として光ファイバ素線の先端部を保持できるようにしてある投光側センサヘッドを取り付けると共に、上記受光用光ファイバの先端部に、上記投光側と同様の受光側センサヘッドを取り付けて、該投光側センサヘッドと受光側センサヘッドとを、所要の検出領域を挟んで互いに向き合うように設置した構成としたものが一般的に知られている。かかる構成により、上記センサ本体の光源より投光用光ファイバを経て導かれる光を、上記投光側センサヘッドに保持されている投光部としての投光用光ファイバの先端面(投光面)より、上記検出領域を挟んで対向する受光側センサヘッドへ向けて投光させると、上記検出領域に被検出体が存在していないときには、上記投光用光ファイバの投光面より投光される光は、遮られることなく検出領域を通過して、上記受光側センサヘッドに保持されている受光部としての受光用光ファイバの先端面(受光面)にて受光され、この受光された光が受光用光ファイバを経てセンサ本体の光検出器へ伝えられて検出される。一方、上記検出領域に被検出体が存在しているときには、上記投光用光ファイバの投光面より投光された光が上記被検出体によって遮られるようになる。したがって、上述した透過型の光センサと同様の原理により、受光部としての上記受光用光ファイバの受光面にて受光される光量が初期状態より減少するか否かに基づいて、上記検出領域における被検出体の有無を検出できるようにしてある。   That is, as a transmissive optical fiber sensor, for example, a sensor body having a light source such as a light emitting diode and a photodetector such as a photodiode is provided. Connect the proximal end of the two optical fibers for light projection and light reception to the input side, and connect the distal end of the optical fiber strand made of metal or resin to the distal end of the optical fiber for projection A light emitting side sensor head that can be held is attached, and a light receiving side sensor head similar to the light projecting side is attached to the tip of the light receiving optical fiber. Generally known is a configuration in which a head is installed so as to face each other across a required detection area. With this configuration, the light guided from the light source of the sensor main body through the light projecting optical fiber is converted into a front end surface (light projecting surface) of the light projecting optical fiber as a light projecting portion held by the light projecting side sensor head. Therefore, when light is projected toward the light receiving side sensor head across the detection area, light is projected from the light projecting surface of the light projecting optical fiber when no object to be detected exists in the detection area. The received light passes through the detection region without being blocked, and is received by the front end surface (light receiving surface) of the light receiving optical fiber as the light receiving portion held by the light receiving side sensor head. The light is transmitted to the light detector of the sensor body through the light receiving optical fiber and detected. On the other hand, when the detected object is present in the detection region, the light projected from the light projecting surface of the light projecting optical fiber is blocked by the detected object. Therefore, based on the same principle as the above-described transmission type optical sensor, based on whether or not the amount of light received by the light receiving surface of the light receiving optical fiber as the light receiving unit is reduced from the initial state, in the detection region. The presence or absence of the detected object can be detected.

又、反射型の光ファイバセンサとしては、上記と同様にセンサ本体に基端側をそれぞれ接続してある投光用光ファイバと受光用光ファイバの先端部に、金属製あるいは樹脂製として、上記投光用と受光用の各光ファイバの先端部を近接させてほぼ平行に保持できるようにしてある投受光一体式のセンサヘッドを取り付けて、この投受光一体式センサヘッドを、所要の検出領域の前後、左右、上下いずれかの方向の片側位置に、該検出領域に臨むように設置した構成のものがある。かかる構成により、上記センサ本体の光源より投光用光ファイバを経て導かれる光を、上記投受光一体式のセンサヘッドに保持されている投光部としての投光用光ファイバの先端面(投光面)より、上記検出領域へ向けて投光させると、該投光された光は、上記検出領域に被検出体が存在していないときには、単に散逸されることにより、上記投受光一体式のセンサヘッドに保持されている受光部としての受光用光ファイバの先端面(受光面)へはほとんど入射されることがないようにしてある。一方、上記検出領域に被検出体が存在しているときには、上記投光用光ファイバの投光面より検出領域へ向けて投光された光は、上記検出領域に存在している被検出体により正反射あるいは散乱反射され、これらの反射光が上記受光用光ファイバの受光面にて受光され、この受光された光が受光用光ファイバを経てセンサ本体の光検出器へ伝えられて検出されるようになる。したがって、上述した反射型の光センサと同様の原理により、受光部としての受光用光ファイバの受光面にて受光される光量が初期状態より増加するか否かに基づいて、上記検出領域における被検出体の有無を検出できるようにしたものが提案されている(たとえば、特許文献1参照)。   In addition, as a reflection type optical fiber sensor, the light projecting optical fiber and the light receiving optical fiber, each of which is connected to the sensor body at the base end side in the same manner as described above, are made of metal or resin, A light emitting / receiving integrated sensor head is attached so that the ends of the optical fibers for light projecting and receiving can be held close to each other in close proximity. There is a configuration in which it is installed so as to face the detection region at one side position in any of the front, rear, left and right directions. With this configuration, the light guided from the light source of the sensor body through the light projecting optical fiber is converted into a light projecting optical fiber front end surface (projecting light) as a light projecting unit held by the light projecting / receiving integrated sensor head. When light is projected toward the detection region from the light surface), the projected light is simply dissipated when there is no object to be detected in the detection region. The optical fiber for receiving light as a light receiving portion held by the sensor head is hardly incident on the front end surface (light receiving surface). On the other hand, when the detection target exists in the detection region, the light projected toward the detection region from the light projection surface of the light projecting optical fiber is detected in the detection region. The reflected light is received by the light receiving surface of the light receiving optical fiber, and the received light is transmitted to the light detector of the sensor body through the light receiving optical fiber and detected. Become so. Therefore, based on the same principle as that of the reflection type optical sensor described above, the amount of light received by the light receiving surface of the light receiving optical fiber as the light receiving unit is increased in the detection region based on whether or not the amount of light received from the initial state is increased. A device that can detect the presence or absence of a detection body has been proposed (see, for example, Patent Document 1).

更に、反射型の光ファイバセンサの別の形式のものとしては、センサ本体に投光用と受光用の2本の光ファイバを介して投受光一体式のセンサヘッドを取り付ける構成に代えて、投光用の光ファイバ素線の周囲に、複数本の受光用の光ファイバ素線を同軸状に配置して、該投光用光ファイバ素線と受光用光ファイバ素線を纏めて同軸型の1本のケーブルとした投受光共用の光ファイバの先端側に、投受光一体式のセンサヘッドを取り付けるようにしたものも提案されている(たとえば、特許文献2参照)。なお、上記投光用光ファイバ素線と受光用光ファイバ素線とを纏めて1本のケーブルとする投受光共用の光ファイバとしては、上記同軸型の他に、投光用と受光用の2本の光ファイバ素線を平行に配置して一緒に纏めて被覆した平行型や、円形の断面を分割した2つの半円形状の領域に、多数の投光用光ファイバ素線と受光用光ファイバ素線がそれぞれ分けて配置されるようにしてある分割型のものも広く知られている。   Further, as another type of reflection type optical fiber sensor, instead of a configuration in which a sensor head integrated with light projection and reception is mounted on the sensor body through two optical fibers for light projection and light reception, A plurality of receiving optical fiber strands are coaxially arranged around the optical fiber strand for light, and the projecting optical fiber strand and the receiving optical fiber strand are combined to form a coaxial type. There has also been proposed one in which a sensor head integrated with light transmission and reception is attached to the front end side of the optical fiber for light transmission and reception that is a single cable (for example, see Patent Document 2). In addition to the coaxial type, the optical fiber for projecting and receiving light and the light receiving optical fiber are combined into a single cable. A large number of optical fiber strands for light projection and light reception are arranged in a parallel type in which two optical fiber strands are arranged in parallel and covered together or in two semicircular regions divided into a circular cross section. A split type in which the optical fiber strands are arranged separately is also widely known.

更に又、反射回帰型の光ファイバセンサとしては、上記反射型の光ファイバセンサの投受光一体式のセンサヘッドと同様の投光部と受光部を備えてなるセンサヘッドと、ミラー状の反射板を、所要の検出領域を挟んで互いに対向するよう設けた構成として、検出領域に被検出体が存在しない場合には、上記センサヘッドの投光部より投光された光が検出領域を通過して反射板に達し、該反射板にて反射された光が再び検出領域を通過して受光部に受光されるようにしたものが一般的に知られている。この構成のものによれば、検出領域に被検出体が存在するときには、上記センサヘッドの投光部より投光された光が反射板にて反射されて受光部に達する光路が、被検出体により遮られるようになるため、上述した反射回帰型の光センサと同様の原理により、受光部としての受光用光ファイバの受光面にて受光される光量が初期状態より増加するか否かに基づいて、上記検出領域における被検出体の有無を検出できるようにしてある。   Further, as a reflection regression type optical fiber sensor, a sensor head comprising a light projecting part and a light receiving part similar to the light projecting / receiving integrated sensor head of the reflection type optical fiber sensor, and a mirror-like reflecting plate Are arranged so as to face each other with the required detection area interposed therebetween, and when the detection target does not exist in the detection area, the light projected from the light projecting portion of the sensor head passes through the detection area. It is generally known that the light reaching the reflecting plate and reflected by the reflecting plate passes through the detection region again and is received by the light receiving unit. According to this configuration, when the detection target exists in the detection area, the light path that is reflected by the reflection plate from the light projecting unit of the sensor head and reaches the light receiving unit is the detected object. Based on whether the amount of light received by the light receiving surface of the light receiving optical fiber as the light receiving portion increases from the initial state based on the same principle as the above-described reflection regression type optical sensor. Thus, the presence / absence of the detected object in the detection region can be detected.

ところで、高温炉におけるワークの加熱処理を行う場合等に、該高温炉内部のような高温環境下の検出領域にて、ワーク等の被検出体の有無の検出を行うことが必要とされることがある。この場合、上記高温炉内部の如き高温環境下における披検出体を光学的に検出するための手段の一つとしては、高温炉の炉体に窓を設け、炉体外部で通常環境下となる上記窓の外側に、たとえば、上述した反射型の光センサの投光部と受光部を設置したり、反射型の光ファイバセンサの投受光一体式センサヘッドを設置して、炉体内の検出領域に対して窓越しに投受光を行わせることにより、高温環境下となる炉体内部の被検出体からの反射光の有無を窓越しに検出して、上記高温環境下における被検出体の有無の検出を行う手法が考えられる。   By the way, when heat-treating a workpiece in a high-temperature furnace, it is necessary to detect the presence or absence of a detection object such as a workpiece in a detection region in a high-temperature environment such as the inside of the high-temperature furnace. There is. In this case, as one of means for optically detecting the detection object in the high temperature environment such as the inside of the high temperature furnace, a window is provided in the furnace body of the high temperature furnace, and the normal environment is provided outside the furnace body. Outside the window, for example, the light projecting part and the light receiving part of the reflection type optical sensor described above are installed, or the light emitting and receiving integrated sensor head of the reflection type optical fiber sensor is installed, so that the detection area in the furnace body By detecting the presence or absence of reflected light from the detected object inside the furnace body in a high temperature environment through the window by projecting and receiving light through the window, the presence or absence of the detected object in the high temperature environment It is conceivable to detect this.

又、高温環境下となる所要の検出領域にて被検出体を光学的に検出するための別の手法としては、図11に示す如く、反射型の光ファイバセンサにて、センサ本体aに投受光一体式センサヘッドbを接続している投光用と受光用の各光ファイバcにおける上記投受光一体式センサヘッドb寄りの所要の長さの領域を、ガラスで形成されたファイバ素線(ファイバ芯線)をシリコン製等のジャケットで被覆してなる耐熱用光ファイバdとすると共に、該投光用と受光用の各耐熱用光ファイバdの先端部に取り付ける投受光一体式センサヘッドbを、検出領域の高温環境に耐え得るような耐熱性を備えてなるものとして、該耐熱性を備えた投受光一体式センサヘッドbを、上記高温環境下にある所要の検出領域の近傍位置に、該検出領域へ臨むよう設置すると共に、該センサヘッドbの設置位置から、高温環境と通常環境との境界壁e部分に至るまでは、上記投光用と受光用の耐熱用光ファイバdがそれぞれ配置されるようにしてなる構成として、上記投受光一体式センサヘッドbより高温環境下にある検出領域に対し直接投受光を行って、被検出体の検出を直接的に行うようにすることも考えられてきている(たとえば、特許文献3参照)。   As another method for optically detecting a detection object in a required detection region under a high temperature environment, a reflective optical fiber sensor is used to project the sensor body a as shown in FIG. A region of a required length near the light projecting / receiving integrated sensor head b in each of the light projecting and receiving optical fibers c to which the light receiving integrated sensor head b is connected is a fiber element made of glass ( A light-receiving optical sensor d formed by coating a fiber core wire with a jacket made of silicon or the like; The light emitting and receiving integrated sensor head b having the heat resistance is positioned near the required detection region in the high temperature environment, as having heat resistance that can withstand the high temperature environment of the detection region. I will face the detection area The light emitting and receiving heat-resistant optical fibers d are arranged from the position where the sensor head b is installed to the boundary wall e between the high temperature environment and the normal environment. As a configuration, it has been considered to directly detect and detect a detection object by directly projecting and receiving light on a detection region in a higher temperature environment than the above-described sensor head b. For example, see Patent Document 3).

なお、耐熱性を付与した光ファイバとしては、図12に示す如く、コアgとクラッドhとからなる光ファイバ素線iの外周に、カーボン被膜j、下地金属層k、該下地金属層kよりも厚い金属層lを順に被覆してなる金属被覆光ファイバfも提案されている(たとえば、特許文献4参照)。符号mは上記金属被覆光ファイバfの外周に所要のスペースnが形成されるよう設けた金属シースである。   As shown in FIG. 12, the optical fiber imparted with heat resistance includes a carbon coating j, a base metal layer k, and a base metal layer k on the outer periphery of an optical fiber wire i composed of a core g and a cladding h. A metal-coated optical fiber f obtained by sequentially coating a thick metal layer 1 has also been proposed (see, for example, Patent Document 4). Reference numeral m denotes a metal sheath provided so that a required space n is formed on the outer periphery of the metal-coated optical fiber f.

ところで、液晶・半導体業界におけるガラス基板やウェハの加熱に用いる炉、たとえば、液晶パネル製造におけるシリコン膜付ガラス基板のアニール(焼成)用の炉(以下、単にアニール炉という)においては、炉内が600〜700℃という非常に高温の環境になる。更に、上記アニール炉では、炉内部に、金属イオンによる汚染や耐熱樹脂等からの発塵等による汚染が生じると、製品の品質に影響を及ぼすようになるため、このような金属汚染や耐熱樹脂の発塵等の汚染が生じることは好ましくない。そのために、上記アニール炉では、通常、炉内部の表面は、石英ガラスに代表される金属汚染や発塵の虞がない材質の部材により構成されている。すなわち、炉内部を、たとえば、石英ガラスにより内面が全面的に覆われた石英ボックス(石英チャンバ)とし、更に、該石英ボックス内にて、加熱処理の対象である上記シリコン膜付ガラス基板を、所要高さ位置に保持する必要がある場合には、炉底部より、直径数mm程度の石英ガラス製のピンを、上記保持すべきシリコン膜付ガラス基板の四隅部と対応する配置や四隅部及び中央部と対応する配置等、所要の配置となるように多数本立設し、該各ピンの上側に、上記シリコン膜付ガラス基板を載置するようにして、炉内部を、上記のような金属汚染や耐熱樹脂の発塵等の汚染が生じない清浄環境とすることができるようにしている。   By the way, in a furnace used for heating a glass substrate or a wafer in the liquid crystal / semiconductor industry, for example, a furnace for annealing (firing) a glass substrate with a silicon film in manufacturing a liquid crystal panel (hereinafter simply referred to as an annealing furnace), the inside of the furnace is It becomes a very high temperature environment of 600-700 degreeC. Furthermore, in the above annealing furnace, if the inside of the furnace is contaminated by metal ions or dust generated from heat-resistant resin, etc., it will affect the quality of the product. Contamination such as dust generation is not preferable. Therefore, in the annealing furnace, the surface inside the furnace is usually made of a member made of a material that is free from the risk of metal contamination and dust generation typified by quartz glass. That is, the inside of the furnace is, for example, a quartz box (quartz chamber) whose inner surface is entirely covered with quartz glass, and further, in the quartz box, the glass substrate with a silicon film that is an object of heat treatment, When it is necessary to hold at the required height position, the quartz glass pins having a diameter of several millimeters are arranged from the bottom of the furnace, corresponding to the four corners of the glass substrate with silicon film to be held, A large number of such as the arrangement corresponding to the central portion are erected so that the required arrangement is obtained, and the glass substrate with the silicon film is placed on the upper side of each pin so that the inside of the furnace is made of the above metal. A clean environment free from contamination such as contamination and heat-resistant resin dust generation can be achieved.

特開2001−221918号公報JP 2001-221918 A 特開平8−43629号公報JP-A-8-43629 特開2002−162312号公報Japanese Patent Application Laid-Open No. 2002-162312 特開平6−300944号公報JP-A-6-300944

ところが、高温炉内部のような高温環境下にある検出領域における被検出体の有無を、上記高温炉の炉体に設けた窓の外側に設置した反射型光センサの投光部及び受光部や、反射型の光ファイバセンサの投受光一体式センサヘッドより、窓越しに投受光を行わせることで検出する手法では、センサ投光部より投光された光が、検出領域に存在する被検出体により反射され、この反射光がセンサ受光部へ受光されるようになるときの光の経路が、投光時と受光時に窓を2回通るようになる。そのため、上記センサ投光部より検出領域へ向けて投光される光が窓を炉外側より炉内側へ透過する際、及び、受光すべき上記被検出体による反射光が窓を炉内側より炉外側へ透過する際に、それぞれ散乱が生じるようになる。このために、上記センサ受光部にて最終的に受光される光は、上記窓を透過するときの光の散乱を2回受けた光となることから、窓透過時の光の散乱によって生じる光量の減少の影響が相乗されるため、上記反射型の光センサや光ファイバセンサの光検出器にて検出される光量の低下が問題になる。   However, the presence or absence of an object to be detected in a detection region in a high-temperature environment such as the inside of a high-temperature furnace, the light projecting part and the light-receiving part of a reflective optical sensor installed outside the window provided in the furnace body of the high-temperature furnace, In the method of detecting by projecting and receiving light through a window from a sensor head integrated with a reflection type optical fiber sensor, the light projected from the sensor projecting unit is detected in the detection area. The light path when the reflected light is reflected by the body and received by the sensor light receiving unit passes through the window twice during light projection and light reception. Therefore, when the light projected from the sensor light projecting part toward the detection region passes through the window from the outside of the furnace to the inside of the furnace, and the reflected light from the detected object to be received passes through the window from the inside of the furnace to the furnace. When transmitting to the outside, scattering occurs. For this reason, since the light finally received by the sensor light receiving unit is light that has been scattered twice when passing through the window, the amount of light generated by the scattering of light when passing through the window Therefore, there is a problem that the amount of light detected by the photodetector of the reflection type optical sensor or the optical fiber sensor is lowered.

又、上記反射型の光センサ又は光ファイバセンサのいずれを用いる場合であっても、投光部及び受光部は共に炉外に設置されるため、上記検出領域へ向けて投光される光、及び、受光すべき上記被検出体による反射光は、いずれも高温炉内部では上記炉体の窓と上記検出領域の間の長い空間を通過しなければならず、このために、上記投光される光が炉体の窓を透過した後、検出領域までの空間部を通過する際、及び、受光すべき上記被検出体による反射光が検出領域から上記窓に達するまでの空間部を通過する際に、それぞれ外乱による影響を受けてノイズが混入される虞がある。したがって、上記光センサや光ファイバセンサの受光部にて最終的に受光される光では、上記高温炉内部にて窓から検出領域までの往路(投光時の光路)と復路(受光時の光路)でそれぞれ混入するノイズの影響が相乗されるため、上記反射型の光センサや光ファイバセンサの光検出器にて検出される光のS/N比が低くなり、このため、被検出体の検出精度が低いという問題がある。   In addition, even when using either the reflection type optical sensor or the optical fiber sensor, since the light projecting unit and the light receiving unit are both installed outside the furnace, the light projected toward the detection region, In addition, the reflected light from the detected object to be received must pass through a long space between the window of the furnace body and the detection area inside the high-temperature furnace. After passing through the window of the furnace body and passing through the space part to the detection area, and through the space part until the reflected light from the detected object to be received reaches the window from the detection area At this time, there is a possibility that noise is mixed under the influence of disturbance. Therefore, in the light finally received by the light receiving part of the optical sensor or the optical fiber sensor, the forward path (light path during light projection) and the return path (light path during light reception) from the window to the detection area inside the high temperature furnace. ), The S / N ratio of the light detected by the light detector of the reflection type optical sensor or the optical fiber sensor is lowered. There is a problem that detection accuracy is low.

一方、高温環境下となる検出領域にて被検出体の有無を検出するために、特許文献3及び特許文献4に示された如き耐熱用の光ファイバd,fや、特許文献3に示された如き高温環境下に配置できるようにしてある投受光一体式センサヘッドbを採用して、該センサヘッドbを炉内における検出領域の近傍位置に設置する形式のものでは、検出領域に近接させて投受光用のセンサヘッドbを設置できるため、上記検出領域に存在する被検出体と投受光用のセンサヘッドbとの間を往復する光路を短くすることができることから、光量の低下を抑えることができる。又、外乱によるノイズも少なく抑制できて、検出光のS/N比を高めることができ、これにより、検出領域における被検出体の有無の検出精度を向上させることができると考えられる。しかし、上記従来の投受光一体式センサヘッドbや耐熱用の光ファイバd,fは、その表面を、金属や耐熱樹脂で覆うことで耐熱性を得るようにしてあるため、上述したシリコン膜付ガラス基板のアニール炉のように、炉内に金属イオンによる汚染や耐熱樹脂の発塵等の汚染がない清浄性が要求される、液晶・半導体業界におけるガラス基板やウェハを加熱するための装置内には、採用できないという問題がある。   On the other hand, in order to detect the presence / absence of an object to be detected in a detection region under a high temperature environment, the heat-resistant optical fibers d and f as shown in Patent Document 3 and Patent Document 4 are disclosed in Patent Document 3. In the case of adopting a sensor head b that is integrated with a light projecting / receiving unit that can be placed in a high temperature environment such as this, and the sensor head b is installed in the furnace in the vicinity of the detection region, the sensor head b is placed close to the detection region. Since the light projecting / receiving sensor head b can be installed, the optical path reciprocating between the detected object existing in the detection area and the light projecting / receiving sensor head b can be shortened. be able to. In addition, noise due to disturbance can be suppressed to a small level, and the S / N ratio of the detection light can be increased, thereby improving the detection accuracy of the presence or absence of the detection object in the detection region. However, since the conventional sensor head b with integrated light emitting and receiving and the heat-resistant optical fibers d and f are provided with heat resistance by covering their surfaces with metal or heat-resistant resin, Inside an apparatus for heating glass substrates and wafers in the liquid crystal / semiconductor industry where the furnace is required to be clean without contamination caused by metal ions or heat-resistant resin dust, such as an annealing furnace for glass substrates Has a problem that it cannot be adopted.

更に、従来提案されている耐熱性を備えた投受光一体式センサヘッドbでは、上記したアニール炉のような600〜700℃という高温環境においては高温耐性が不十分になる虞もある。   Furthermore, in the conventionally proposed light-and-light integrated sensor head b having heat resistance, the high-temperature resistance may be insufficient in a high-temperature environment of 600 to 700 ° C. such as the above-described annealing furnace.

そこで、本発明は、清浄性が要求され且つ高温環境下となる検出領域における被検出体の有無の検出や挙動の検出を光を媒体として行う際の光量の低下を抑制できると共に、検出精度を向上させることができる光センサによるセンシング方法及び装置を提供しようとするものである。   Therefore, the present invention can suppress the decrease in the amount of light when detecting the presence or absence of the detection target in the detection region where the cleanliness is required and in a high temperature environment and detecting the behavior using the light as a medium, and the detection accuracy. It is an object of the present invention to provide a sensing method and apparatus using an optical sensor that can be improved.

本発明は、上記課題を解決するために、請求項1に係る発明及び請求項8に係る発明に対応して、清浄及び又は高温となる内部環境と外部環境との境界部よりも外部環境側の所要個所に設けた光センサの投光部より出力される光を、上記内部環境下に設定してある所要の検出領域に対し投光し、該投光された光の上記検出領域における反射光を、上記光センサの受光部にて受光するときに、上記投光される光と反射光の一方又は双方を、上記境界部の近傍位置と上記内部環境下における検出領域又は該検出領域の近傍位置との間で光導波部材を通して導くようにし、上記光センサの受光部にて受光される光量の変化に基づき、上記検出領域における被検出体の有無や挙動を検出する光センサによるセンシング方法及び装置とする。   In order to solve the above-mentioned problems, the present invention corresponds to the invention according to claim 1 and the invention according to claim 8, and the external environment side from the boundary between the clean and / or high temperature internal environment and the external environment. The light output from the light projecting portion of the photosensor provided at the required location is projected to the required detection area set in the internal environment, and the reflected light is reflected at the detection area. When light is received by the light receiving unit of the optical sensor, one or both of the projected light and the reflected light are detected in the vicinity of the boundary and the detection region in the internal environment or the detection region. A sensing method using an optical sensor that detects the presence and behavior of a detected object in the detection region based on a change in the amount of light received by the light receiving unit of the optical sensor, guided through an optical waveguide member to and from a nearby position And a device.

又、請求項2に係る発明及び請求項9に係る発明に対応して、清浄及び又は高温となる内部環境と外部環境との境界部よりも外部環境側の所要個所に設けた投光部と受光部を備えた光センサの上記投光部より出力される光を、上記内部環境下に設定してある所要の検出領域に対し投光し、上記検出領域を挟んで上記光センサの投光部及び受光部と反対側に設けてある反射板により反射される上記投光された光の反射光を、上記光センサの受光部にて受光するときに、上記投光される光と反射光の一方又は双方を、上記境界部の近傍位置と上記内部環境下の検出領域又は該検出領域の近傍位置との間で光導波部材を通して導くようにし、上記光センサの受光部にて受光される光量の変化に基づき、上記検出領域における被検出体の有無を検出する光センサによるセンシング方法及び装置とする。   Corresponding to the invention according to claim 2 and the invention according to claim 9, a light projecting portion provided at a required location on the external environment side of the boundary between the clean and / or high temperature internal environment and the external environment; The light output from the light projecting unit of the optical sensor having the light receiving unit is projected to a required detection area set in the internal environment, and the light sensor projects the light across the detection area. When the reflected light of the projected light reflected by the reflecting plate provided on the opposite side of the light receiving portion and the light receiving portion is received by the light receiving portion of the photosensor, the projected light and the reflected light One or both of them is guided through an optical waveguide member between a position in the vicinity of the boundary portion and a detection region in the internal environment or a position in the vicinity of the detection region, and is received by the light receiving portion of the optical sensor. Based on the change in the amount of light, detect the presence or absence of the detection object in the detection area And sensing method and apparatus according to the optical sensor.

更に、請求項3に係る発明及び請求項10に係る発明に対応して、清浄及び又は高温となる内部環境と外部環境との境界部よりも外部環境側の所要個所に設けた光センサの投光部より出力される光を、上記内部環境下に設定してある所要の検出領域に対し投光し、上記検出領域を通過する光を、上記外部環境側に設けた光センサの受光部にて受光するときに、上記投光される光と検出領域を通過して受光される光の一方又は双方を、上記境界部の近傍位置と上記内部環境下における検出領域又は該検出領域の近傍位置との間で光導波部材を通して導くようにし、上記光センサの受光部にて受光される光量の変化に基づき、上記検出領域における被検出体の有無を検出する光センサによるセンシング方法及び装置とする。   Further, in response to the invention according to claim 3 and the invention according to claim 10, the projection of the optical sensor provided at a required location on the external environment side rather than the boundary between the clean and / or high temperature internal environment and the external environment. The light output from the light section is projected to a required detection area set in the internal environment, and the light passing through the detection area is sent to the light receiving section of the photosensor provided on the external environment side. One or both of the projected light and the light received through the detection area when the light is received, the position near the boundary and the detection area or the position near the detection area in the internal environment And a sensing method and apparatus using an optical sensor that detects the presence or absence of a detection object in the detection region based on a change in the amount of light received by the light receiving unit of the optical sensor. .

上述した各構成における光センサとして、投光部と受光部の一方又は双方を光導波部材の外部環境側の端部に臨むよう配してなる光ファイバセンサを用いるようにする。   As the optical sensor in each configuration described above, an optical fiber sensor in which one or both of the light projecting unit and the light receiving unit are arranged to face the end portion on the external environment side of the optical waveguide member is used.

又、上記各構成における光導波部材を、検出領域の下側に配設して、該光導波部材の上側に、検出領域に配置する被検出体を載置して支持できるようにした構成とする。   Further, the optical waveguide member in each of the above configurations is disposed below the detection region, and the detection object disposed in the detection region can be placed and supported on the upper side of the optical waveguide member. To do.

更に、上記各構成における光導波部材として、光センサの投光部より投光される光に対し高い透過率を有する材質製のもの、高温耐性を有する材質製及び又は発塵性の低い材質製のものを用いるようにする。   Furthermore, the optical waveguide member in each of the above configurations is made of a material having a high transmittance with respect to light projected from the light projecting portion of the optical sensor, a material having a high temperature resistance, or a material having a low dust generation property. Try to use one.

又、上記各構成における光導波部材として、石英ガラス製のものを用いるようにしたり、細長い円柱形状又は細長い円筒形状とした構成のものとしたり、光ファイバの被覆を剥離して露出させた光ファイバ素線を用いるようにした構成とする。   Further, as the optical waveguide member in each of the above structures, a quartz glass member is used, or an elongated cylindrical shape or elongated cylindrical shape is used. It is set as the structure which used the strand.

本発明によれば、以下の如き優れた効果を発揮する。   According to the present invention, the following excellent effects are exhibited.

(1)清浄及び又は高温となる内部環境と外部環境との境界部よりも外部環境側の所要個所に設けた光センサの投光部より出力される光を、上記内部環境下に設定してある所要の検出領域に対し投光し、該投光された光の上記検出領域における反射光を、上記光センサの受光部にて受光するときに、上記投光される光と反射光の一方又は双方を、上記境界部の近傍位置と上記内部環境下における検出領域又は該検出領域の近傍位置との間で光導波部材を通して導くようにしたり、上記検出領域を挟んで上記光センサの投光部及び受光部と反対側に設けてある反射板により反射される上記投光された光の反射光を、上記光センサの受光部にて受光するときに、上記投光される光と反射光の一方又は双方を、上記境界部の近傍位置と上記内部環境下の検出領域又は該検出領域の近傍位置との間で光導波部材を通して導くようにしたり、あるいは、光センサの投光部より出力される光を、上記内部環境下に設定してある所要の検出領域に対し投光し、上記検出領域を通過する光を、上記外部環境側に設けた光センサの受光部にて受光するときに、上記投光される光と検出領域を通過して受光される光の一方又は双方を、上記境界部の近傍位置と上記内部環境下における検出領域又は該検出領域の近傍位置との間で光導波部材を通して導くようにし、上記光センサの受光部にて受光される光量の変化に基づき、上記検出領域における被検出体の有無を検出する光センサによるセンシング方法及び装置としてあるので、上記清浄及び又は高温となる内部環境に設定してある検出領域における被検出体の有無を、上記清浄及び又は高温となる内部環境に何ら影響を与えることなく検出することができる。
(2)しかも、光センサの投光部より投光された光が検出領域に達するまでの光の経路と、検出領域より上記光センサの受光部に達する光の経路の一方又は双方を、光導波部材を通すことによって光の損失を抑えることができるため、上記検出領域に被検出体が存在するときと、存在しないときの光量の増減のレンジを拡大することができ、上記清浄及び又は高温環境に設定された検出領域での被検出体の有無の検出精度の向上化を図ることができる。
(3)更に、光センサの投光部より投光された光が検出領域に達するまでの光の経路と、検出領域より上記光センサの受光部に達する光の経路の一方又は双方を、光導波部材を通すことによって光が空間を通過するときの光路を短くできるため、外乱の影響を抑えることができて、検出する光のS/N比を高いものとすることができる。したがって、上記の如き清浄及び又は高温環境に設定された検出領域での被検出体の有無の検出を、精度よく行うことができる。
(4)光センサとして、投光部と受光部の一方又は双方を光導波部材の外部環境側の端部に臨むよう配してなる光ファイバセンサを用いるようにすると、投光部や受光部となる光ファイバ素線の先端部を、光導波部材の外部環境側の端部に容易に近接配置できるようになるため、光センサの投光部や受光部と光導波部材の外部環境側の端部との間における光の伝搬を効率よく行わせるのに有利なものとすることができる。
(5)光導波部材を、検出領域の下側に配設して、該光導波部材の上側に、検出領域に配置する被検出体を載置して支持できるようにした構成とすることにより、上記光導波部材を、被検出体を支持する支持用の部材として利用することができると共に、このように、被検出体を支持することにより、該光導波部材と被検出体を接触状態とさせることができることから、光センサより投光、受光する光が空間部を通過するときの光路を更に短縮させることが可能になる。
(6)光導波部材として、光センサの投光部より投光される光に対し高い透過率を有する材質製のものを用いるようにすることにより、光センサの投光部より投光された光が検出領域に達するまでの光の経路と、検出領域より上記光センサの受光部に達する光の経路の一方又は双方を、光導波部材を通すときの光の損失の抑制に有利なものとすることができて、検出領域での被検出体の有無の検出精度の向上化に有利なものとすることができる。
(7)光導波部材として、高温耐性を有する材質製及び又は発塵性の低い材質製のものを用いるようにすることにより、検出領域の設定される内部環境が高温環境である場合や、金属汚染や発塵を防止すべき清浄環境である場合、又は、高温環境で且つ清浄環境である場合に容易に適用することができる。
(8)光導波部材として、石英ガラス製のものを用いるようにすることにより、光センサの投光部より出力される光に対する高い透過率と、高温耐性と、発塵を生じない性状を備えた光導波部材を容易に得ることができる。
(9)光導波部材を、細長い円柱形状又は細長い円筒形状とした構成とすることにより、該光導波部材内における光の伝搬方向を、軸心方向に絞ることができる。更に、細長い円柱形状とするときには、円柱壁面を利用した全反射を生じさせ易くすることができる。一方、細長い円筒形状とするときには、内壁面を利用した光の反射を生じさせやすくすることができる。したがって、光導波部材を細長い円柱形状と円筒形状のいずれとする場合においても、該光導波部材内を伝搬される光の損失を抑えるのに有利なものとすることができる。
(10)光導波部材として、光ファイバの被覆を剥離して露出させた光ファイバ素線を用いるようにした構成とすることにより、光導波部材を別途設ける必要をなくすことができて、コストの削減化を図る上で有利なものとすることが可能になる。
(1) The light output from the light projecting portion of the photosensor provided at the required location on the external environment side than the boundary between the clean and / or high temperature internal environment and the external environment is set in the internal environment. When light is projected to a predetermined detection area and the reflected light of the projected light in the detection area is received by the light receiving unit of the photosensor, one of the projected light and the reflected light Or both may be guided through an optical waveguide member between a position in the vicinity of the boundary and a detection area in the internal environment or a position in the vicinity of the detection area, or light projection of the optical sensor across the detection area When the reflected light of the projected light reflected by the reflecting plate provided on the opposite side of the light receiving portion and the light receiving portion is received by the light receiving portion of the photosensor, the projected light and the reflected light One or both of the above, the position near the boundary and the internal environment The required detection in which the light is guided through the optical waveguide member between the detection area of the sensor and the position near the detection area, or the light output from the light projecting portion of the optical sensor is set in the internal environment. When the light passing through the detection area and light passing through the detection area is received by the light receiving portion of the optical sensor provided on the external environment side, the light is projected and received through the detection area. One or both of the light beams are guided through an optical waveguide member between a position in the vicinity of the boundary and the detection area in the internal environment or a position in the vicinity of the detection area, and received by the light receiving section of the optical sensor. As a sensing method and apparatus using an optical sensor that detects the presence or absence of a detection object in the detection area based on a change in the amount of light to be detected, the detection in the detection area set in the clean and / or high internal environment is performed. The presence or absence of Detai can be detected without influencing the internal environment of the above-described cleaning and or high temperature.
(2) In addition, one or both of a light path until the light projected from the light projecting unit of the optical sensor reaches the detection region and a light path reaching the light receiving unit of the photo sensor from the detection region are guided. Since the loss of light can be suppressed by passing the wave member, the range of increase / decrease in the amount of light when the detection target exists in the detection region and when it does not exist can be expanded, and the clean and / or high temperature It is possible to improve the detection accuracy of the presence / absence of the detection object in the detection region set in the environment.
(3) Further, one or both of a light path until the light projected from the light projecting unit of the optical sensor reaches the detection region and a light path reaching the light receiving unit of the photo sensor from the detection region are guided. Since the optical path when light passes through the space can be shortened by passing through the wave member, the influence of disturbance can be suppressed and the S / N ratio of the detected light can be increased. Therefore, the presence / absence of the detection target in the detection region set in the clean and / or high-temperature environment as described above can be accurately detected.
(4) When an optical fiber sensor in which one or both of the light projecting unit and the light receiving unit are arranged so as to face the end portion on the external environment side of the optical waveguide member is used as the optical sensor, the light projecting unit and the light receiving unit are used. The end portion of the optical fiber becomes a close proximity to the end portion of the optical waveguide member on the external environment side, so that the light projecting portion and the light receiving portion of the optical sensor and the external environment side of the optical waveguide member It can be advantageous for efficient propagation of light between the end portions.
(5) By arranging the optical waveguide member on the lower side of the detection region and placing the object to be detected arranged on the detection region on the upper side of the optical waveguide member so as to be supported. The optical waveguide member can be used as a supporting member for supporting the detection target, and by supporting the detection target in this way, the optical waveguide member and the detection target are brought into contact with each other. Therefore, it is possible to further shorten the optical path when light projected and received from the optical sensor passes through the space.
(6) By using a light waveguide member made of a material having a high transmittance for the light projected from the light projecting portion of the optical sensor, the light is projected from the light projecting portion of the optical sensor. One or both of the light path until the light reaches the detection area and the light path from the detection area to the light receiving portion of the optical sensor is advantageous for suppressing light loss when passing through the optical waveguide member. This can be advantageous for improving the detection accuracy of the presence or absence of the detection target in the detection region.
(7) By using an optical waveguide member made of a material having a high temperature resistance and a material having a low dusting property, the internal environment where the detection region is set is a high temperature environment, or a metal The present invention can be easily applied to a clean environment in which contamination and dust generation should be prevented, or a high temperature environment and a clean environment.
(8) By using an optical waveguide member made of quartz glass, it has a high transmittance for light output from the light projecting portion of the optical sensor, high temperature resistance, and properties that do not generate dust. An optical waveguide member can be easily obtained.
(9) By making the optical waveguide member into an elongated columnar shape or an elongated cylindrical shape, the light propagation direction in the optical waveguide member can be narrowed down to the axial direction. Further, when the elongated cylindrical shape is used, total reflection using the cylindrical wall surface can be easily generated. On the other hand, when an elongated cylindrical shape is used, it is possible to easily cause light reflection using the inner wall surface. Therefore, regardless of whether the optical waveguide member has an elongated columnar shape or a cylindrical shape, it can be advantageous to suppress loss of light propagated in the optical waveguide member.
(10) By adopting a configuration in which an optical fiber strand that is exposed by peeling off the coating of the optical fiber is used as the optical waveguide member, there is no need to separately provide an optical waveguide member. It is possible to make it advantageous for reduction.

以下、本発明を実施するための最良の形態を図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は本発明の光センサによるセンシング方法及び装置の実施の一形態を示すもので、光センサとして投光部と受光部が別体式としてある反射型の光ファイバセンサによるセンシングを行うものについて適用する場合を示す。   FIG. 1 shows an embodiment of a sensing method and apparatus using an optical sensor according to the present invention, which is applied to an optical sensor that performs sensing using a reflective optical fiber sensor having a light projecting unit and a light receiving unit as separate units. Indicates when to do.

清浄環境で且つ高温環境とされる内部環境と、外部環境との境界部として、たとえば、液晶パネル製造過程のシリコン膜付ガラス基板のアニール炉における石英ボックス(石英チャンバ)1を構成している天井壁、側壁、床のいずれか、たとえば、一側壁1aの所要個所に、内外方向に貫通する所要口径の開口部2を設け、該開口部2の炉内側に、光導波部材を、その先端部(一端部)が、上記シリコン膜付ガラス基板の如き被検出体5の検出を行うべき所要の検出領域4の近傍位置、あるいは、該検出領域4に被検出体5が配置されるときに該被検出体5の表面に接するようになる位置に達するようにすると共に、基端部(他端部)が、上記開口部2に位置して外部へ露出されるよう配置して、後述する結合用部材6により保持させるようにする。ここで、光導波部材とは、光を高い透過率で伝搬可能な単一の材料による部材、又は、光を高い透過率で伝搬するコア部と、該コア部の外周に設けた上記コア部よりも低い屈折率の材料によるクラッド部とからなる二重構造の部材、又は、中空の筒状として、内壁面を光の反射面として機能させることにより、片方の端部より内部空間へ入射した光を該内部空間を通して他方の端部まで低損失で導くことができる部材をいい、本実施の形態では、たとえば、単一の石英ガラスにより製作した柱状の石英ガラス部材3としてある。   For example, a ceiling constituting a quartz box (quartz chamber) 1 in an annealing furnace for a glass substrate with a silicon film in the manufacturing process of a liquid crystal panel is used as a boundary between the clean environment and the high temperature environment. An opening 2 having a required diameter penetrating inward and outward is provided at a required portion of one of the walls, side walls, and floor, for example, one side wall 1a, and an optical waveguide member is provided at the tip of the opening 2 inside the furnace. (One end) is in the vicinity of the required detection region 4 where the detection target 5 such as the glass substrate with silicon film is to be detected, or when the detection target 5 is disposed in the detection region 4 Arrangement is made so as to reach the position where it comes into contact with the surface of the detection object 5 and the base end portion (the other end portion) is positioned so as to be exposed to the outside by being located in the opening portion 2, and will be described later. So as to be held by the member 6 To. Here, the optical waveguide member is a member made of a single material capable of propagating light with high transmittance, or a core portion that propagates light with high transmittance, and the core portion provided on the outer periphery of the core portion. As a double-structured member consisting of a clad portion made of a material having a lower refractive index, or as a hollow cylinder, the inner wall surface functions as a light reflecting surface, so that it enters the inner space from one end. It refers to a member that can guide light through the internal space to the other end with a low loss. In this embodiment, for example, the columnar quartz glass member 3 is made of a single quartz glass.

上記光導波部材を石英ガラス部材3、すなわち、石英ガラス製としたのは、石英ガラスが、後述する光ファイバセンサ8の投光部より出力される光に対して高い透過率を有する材質であると共に、高温耐性を備えた材質であり、更には、金属汚染の虞がなく且つ発塵性の低い材質であるためである。なお、本明細書において、高い透過率とは、上記光ファイバセンサ8で用いる光に関して、一般に透明とみなせるような透過率、あるいは、通常、透過光学材料として使用されている部材に要求される程度の透過率を意味するものとする。又、高温耐性とは、250℃以上、好ましくは700℃以上の高温環境の下で使用可能な特性を意味するものとする。更に、発塵性が低い材質とは、一般に、クリーンルームで用いる部材に要求されるような低発塵性の材質を意味するものとする。   The optical waveguide member is made of quartz glass member 3, that is, made of quartz glass, because quartz glass is a material having a high transmittance with respect to light output from a light projecting portion of an optical fiber sensor 8 to be described later. At the same time, it is a material having high temperature resistance, and furthermore, it is a material having no risk of metal contamination and low dust generation. In the present specification, the high transmittance means a transmittance that can be generally regarded as transparent with respect to the light used in the optical fiber sensor 8, or a degree required for a member that is usually used as a transmission optical material. It means the transmittance. The high temperature resistance means a characteristic that can be used in a high temperature environment of 250 ° C. or higher, preferably 700 ° C. or higher. Furthermore, a material having low dust generation generally means a low dust generation material as required for a member used in a clean room.

又、上記石英ボックス1の一側壁1aに設けた開口部2近傍の所要位置に、図1に示すように窓ガラス7aを備えてなる所要サイズの窓7を設ける。上記窓ガラス7aは、上記石英ガラス部材3と同様に、光ファイバセンサ8の投光部より出力される光に対して高い透過率を有すると共に、高温耐性を備え、且つ金属汚染の虞がなくて発塵性の低い材質製としてあり、たとえば、石英ガラス製としてある。   Further, a window 7 of a required size including a window glass 7a is provided at a required position near the opening 2 provided on one side wall 1a of the quartz box 1 as shown in FIG. Like the quartz glass member 3, the window glass 7a has a high transmittance with respect to light output from the light projecting portion of the optical fiber sensor 8, has high temperature resistance, and has no risk of metal contamination. For example, it is made of quartz glass.

更に、石英ボックス1外部の所要個所には、光源及び光検出器を備えてなるセンサ本体(図示せず)と、該センサ本体における光源の出力側及び光検出器の入力側にそれぞれ個別に基端部を接続してある投光用光ファイバ9及び受光用光ファイバ11とからなる光センサとしての反射型光ファイバセンサ8を設ける。上記反射型光ファイバセンサ8の投光用光ファイバ9の先端部は、上記石英ボックス側壁1aの開口部2の位置にて結合用部材6により保持させ、該投光用光ファイバ9の先端部を上記石英ガラス部材3の外部環境側の端部となる基端部に光学的に接続して、該投光用光ファイバ9の投光部としての投光用光ファイバ素線10の先端部から上記石英ガラス部材3の基端部へ光の伝搬を行うことができるようにする。一方、上記反射型光ファイバセンサ8の受光用光ファイバ11は、その先端部を、上記石英ボックス側壁1aに設けた窓7の外側近傍に位置させると共に、該受光用光ファイバ11の受光部としての受光用光ファイバ素線12の先端部(先端面)を、上記窓7越しに石英ボックス1内部の検出領域4に臨むように配置して図示しない支持機構により支持、固定させる。これにより、上記投光用光ファイバ9の投光用光ファイバ素線10を経てセンサ本体より導かれた光13を、上記石英ガラス部材3を通して石英ボックス1内における検出領域4の近傍位置まで導いてから、該検出領域4へ向けて投光できるようにしてある。この投光の際、上記検出領域4に被検出体5が存在する場合には、上記投光された光13が被検出体5によって正反射あるいは散乱反射されるので、その反射光13aを、上記石英ボックス側壁1aの窓7を通して上記受光用光ファイバ11の受光用光ファイバ素線12の先端面へ受光させることができるようにしてある。   Further, a required portion outside the quartz box 1 is individually provided on a sensor body (not shown) having a light source and a photodetector, and on the output side of the light source and the input side of the photodetector in the sensor body. A reflection type optical fiber sensor 8 is provided as an optical sensor composed of a light projecting optical fiber 9 and a light receiving optical fiber 11 to which ends are connected. The tip of the light projecting optical fiber 9 of the reflective optical fiber sensor 8 is held by the coupling member 6 at the position of the opening 2 of the quartz box side wall 1a, and the tip of the light projecting optical fiber 9 is retained. Is connected optically to the base end portion which is the end portion on the external environment side of the quartz glass member 3, and the distal end portion of the projecting optical fiber 10 as the projecting portion of the projecting optical fiber 9 So that light can be propagated to the base end of the quartz glass member 3. On the other hand, the light receiving optical fiber 11 of the reflection type optical fiber sensor 8 has its tip positioned near the outside of the window 7 provided on the quartz box side wall 1a, and as a light receiving portion of the light receiving optical fiber 11. The light receiving optical fiber 12 is arranged so that the front end (tip surface) of the light receiving optical fiber 12 faces the detection region 4 inside the quartz box 1 through the window 7 and is supported and fixed by a support mechanism (not shown). As a result, the light 13 guided from the sensor body through the projecting optical fiber 10 of the projecting optical fiber 9 is guided to the position near the detection region 4 in the quartz box 1 through the quartz glass member 3. Then, light can be projected toward the detection area 4. At the time of this light projection, if the detected object 5 exists in the detection region 4, the projected light 13 is specularly reflected or scattered and reflected by the detected object 5, so that the reflected light 13a is Light can be received through the window 7 on the side wall 1a of the quartz box to the front end surface of the light receiving optical fiber 12 of the light receiving optical fiber 11.

詳述すると、先ず、上記石英ボックス1の側壁1aの開口部2には、外径を上記開口部2の内径と同じ大きさとし且つ内径を上記投光用光ファイバ9の外径と同じ寸法として所要の長さのパイプ形状に形成したセラミックやガラス等、金属汚染や発塵を生じない耐熱材料製の結合用部材6を挿入して、該結合用部材6の軸心方向両端部が炉内外方向にそれぞれ所要寸法ずつ突出するよう配置し、更に、該結合用部材6の外周面所要個所を、上記開口部2に固定させるようにする。   Specifically, first, the opening 2 of the side wall 1 a of the quartz box 1 has the same outer diameter as the inner diameter of the opening 2 and the inner diameter is the same as the outer diameter of the light projecting optical fiber 9. Insert a coupling member 6 made of a heat-resistant material that does not cause metal contamination or dust generation, such as ceramic or glass formed into a pipe shape of a required length, and both axial ends of the coupling member 6 are inside and outside the furnace Each of the connecting members 6 is disposed so as to protrude in the direction by a required dimension, and the required portion of the outer peripheral surface of the coupling member 6 is fixed to the opening 2.

次に、上記結合用部材6における炉内側への突出部分の内側には、上記投光用光ファイバ9と同様の外径を有する細長い円柱形状とし、且つ両端面を軸心方向に直角な平面となるよう研摩してある石英ガラス部材3の基端部を挿入して、該石英ガラス部材3を保持させるようにする。又、上記結合用部材6における炉外側への突出部分には、上記投光用光ファイバ9の先端部を、投光用光ファイバ素線10が先端に露出し、且つ該露出された投光用光ファイバ素線10の先端面が軸心方向に直角な平面となるよう研摩した状態にて挿入して、該投光用光ファイバ9の先端部を結合用部材6に保持させ、上記結合用部材6の中間部内側にて、上記投光用光ファイバ9の光ファイバ素線10の先端面と、上記石英ガラス部材3における外部環境側の端部となる基端面が面接触するようにする。なお、上記投光用光ファイバ7の先端部と石英ガラス部材3の基端部とは、結合用部材6の内側に固定するようにしてある。図1中、9aは上記投光用光ファイバ9における被覆、11aは上記受光用光ファイバ11における被覆である。   Next, on the inner side of the protruding portion of the coupling member 6 toward the furnace inside, a flat cylindrical shape having an outer diameter similar to that of the projecting optical fiber 9 and both end faces are perpendicular to the axial direction. Then, the base end portion of the quartz glass member 3 polished so as to be inserted is inserted to hold the quartz glass member 3. Further, the projecting portion of the coupling member 6 to the outside of the furnace exposes the tip of the light projecting optical fiber 9 and the light projecting optical fiber 10 is exposed at the tip. The optical fiber strand 10 is inserted in a polished state so that the front end surface of the optical fiber strand 10 is a plane perpendicular to the axial direction, and the front end portion of the light projecting optical fiber 9 is held by the coupling member 6, Inside the intermediate portion of the member 6, the distal end surface of the optical fiber strand 10 of the light projecting optical fiber 9 and the proximal end surface serving as the end portion on the external environment side of the quartz glass member 3 are in surface contact. To do. The distal end portion of the light projecting optical fiber 7 and the proximal end portion of the quartz glass member 3 are fixed inside the coupling member 6. In FIG. 1, 9 a is a coating on the light projecting optical fiber 9, and 11 a is a coating on the light receiving optical fiber 11.

上記石英ガラス部材3を細長い円柱形状としたのは、該石英ガラス部材3に上記投光用光ファイバ9の投光用光ファイバ素線10より入射する光13の通過する方向を、円柱軸方向に絞り、これにより、石英ガラス部材3の円柱側面において、該石英ガラス部材3と、石英ボックス1内の雰囲気ガスとの屈折率の差に基づく全反射を起こし易くさせて、上記石英ガラス部材3の基端面へ投光用光ファイバ素線10より入射する光13を、該石英ガラス部材3内部での損失を抑えた状態にて先端面まで伝搬させることができるようにするためである。したがって、上記石英ガラス部材3の径は、形状が維持できる等、必要な強度が得られる範囲内においてできるだけ細くするほうが好ましい。   The quartz glass member 3 has an elongated cylindrical shape because the direction in which the light 13 incident from the light projecting optical fiber 10 of the light projecting optical fiber 9 passes through the quartz glass member 3 is the cylinder axis direction. Accordingly, total reflection based on the difference in refractive index between the quartz glass member 3 and the atmospheric gas in the quartz box 1 is easily caused on the cylindrical side surface of the quartz glass member 3, so that the quartz glass member 3 is This is because the light 13 incident from the projecting optical fiber 10 to the base end face can be propagated to the front end face in a state where the loss inside the quartz glass member 3 is suppressed. Therefore, it is preferable to make the diameter of the quartz glass member 3 as thin as possible within a range where necessary strength can be obtained, for example, the shape can be maintained.

上記の構成としてあるので、清浄で且つ高温環境下となる上記アニール炉の石英ボックス1内に設定された所要の検出領域4にて、本発明のセンシング装置を用いて被検出体5の有無の検出を行う場合は、反射型光ファイバセンサ8の本体の光源より投光用光ファイバ9の投光用光ファイバ素線10を経て導いた光13を、該投光用光ファイバ素線10の先端面(投光面)より出力(投光)させるようにする。次に、この投光用光ファイバ素線10の先端面から投光される光13を、石英ガラス部材3へ基端面側より入射させた後、高い透過率を有する該石英ガラス部材3内を、全反射を利用して光の損失を抑えた状態で石英ガラス部材3の先端面位置、すなわち、上記検出領域4の近傍位置まで導いてから、該石英ガラス部材3の先端面より検出領域4へ向けて投光させるようにする。   With the above configuration, the presence or absence of the detected object 5 is detected using the sensing device of the present invention in the required detection region 4 set in the quartz box 1 of the annealing furnace that is clean and in a high temperature environment. When detecting, the light 13 guided from the light source of the main body of the reflection type optical fiber sensor 8 through the light projecting optical fiber 10 of the light projecting optical fiber 9 is transmitted to the light projecting optical fiber 10. Output (project light) from the tip surface (projection surface). Next, after the light 13 projected from the distal end surface of the light projecting optical fiber 10 is incident on the quartz glass member 3 from the base end surface side, the inside of the quartz glass member 3 having high transmittance is passed through. Then, after guiding to the position of the tip surface of the quartz glass member 3, that is, in the vicinity of the detection region 4 in a state where light loss is suppressed using total reflection, the detection region 4 is detected from the tip surface of the quartz glass member 3. So that the light is emitted toward

上記検出領域4に被検出体5が存在していない場合には、上記石英ガラス部材3の先端面より検出領域4へ投光された光13は、該検出領域4にて散逸されてしまい、反射光はほとんど生じることはない。そのため、上記石英ボックス側壁1aに設けた窓7の外側に配置してある上記反射型光ファイバセンサ8の受光用光ファイバ11の受光用光ファイバ素線12の先端面(受光面)にて受光される光は、該受光用光ファイバ素線12の受光面に到達するバックグラウンドの光に限られることから、該受光用光ファイバ素線12を経てセンサ本体の光検出器にて検出される受光量は小さいものとなる。   When the detection object 5 is not present in the detection region 4, the light 13 projected from the tip surface of the quartz glass member 3 to the detection region 4 is dissipated in the detection region 4. Reflected light hardly occurs. Therefore, the light is received by the front end surface (light receiving surface) of the light receiving optical fiber 12 of the light receiving optical fiber 11 of the reflective optical fiber sensor 8 disposed outside the window 7 provided on the quartz box side wall 1a. Since the light to be transmitted is limited to the background light reaching the light receiving surface of the light receiving optical fiber 12, it is detected by the photodetector of the sensor body through the light receiving optical fiber 12. The amount of received light is small.

一方、図1に二点鎖線で示す如く、上記検出領域4に被検出体5が存在している場合には、上記石英ガラス部材3の先端面より検出領域4へ向けて投光された光13は、該検出領域4に存在する上記被検出体5により正反射あるいは散乱反射され、この正反射あるいは散乱反射もしくは正反射と散乱反射の双方によって生じる反射光13aのうち、石英ボックス側壁1aに設けた窓7を通った(窓ガラス7aを透過した)反射光13aが、該窓7の外側近傍位置に配設してある上記受光用光ファイバ11の受光用光ファイバ素線12の受光面へ受光されるようになる。この場合にも、上記したバックグラウンドの光は、受光用光ファイバ素線12の受光面へ入射されているため、該受光用光ファイバ素線12に受光される光量としては、上記検出領域4に被検出体5が存在していない場合に比して、上記受光用光ファイバ素線12の受光面へ到達する被検出体5による反射光13aの分が加算されることとなる。   On the other hand, as shown by a two-dot chain line in FIG. 1, when the detection object 5 exists in the detection region 4, the light projected from the tip surface of the quartz glass member 3 toward the detection region 4. 13 is specularly reflected or scattered and reflected by the detected object 5 existing in the detection region 4, and is reflected on the quartz box side wall 1 a out of the reflected light 13 a generated by the specular reflection, scattering reflection, or both regular reflection and scattering reflection. The reflected light 13a that has passed through the provided window 7 (transmitted through the window glass 7a) is disposed at a position near the outside of the window 7, and the light receiving surface of the light receiving optical fiber 12 of the light receiving optical fiber 11 is provided. To receive light. Also in this case, since the background light is incident on the light receiving surface of the light receiving optical fiber 12, the amount of light received by the light receiving optical fiber 12 is the detection region 4. Compared to the case where the detected object 5 does not exist, the reflected light 13a from the detected object 5 reaching the light receiving surface of the light receiving optical fiber 12 is added.

したがって、該受光用光ファイバ素線12を経てセンサ本体の光検出器にて検出される受光量が、初期状態より増加しているか否かに基づいて、上記石英ボックス1内の検出領域4に、被検出体5が存在しているか否かを、従来の反射型の光ファイバセンサと同様に検出することができるようになる。   Therefore, based on whether or not the amount of light received by the photodetector of the sensor body through the light receiving optical fiber 12 is increased from the initial state, the detection region 4 in the quartz box 1 is set in the detection region 4. Whether or not the detected object 5 is present can be detected in the same manner as the conventional reflective optical fiber sensor.

このように、本発明においては、上記石英ボックス1内には、石英ガラス部材3と、石英ガラス製の窓ガラス7aと、金属汚染や発塵を生じない耐熱材料製としてある結合用部材6のみが露出されているだけであるため、従来の光ファイバセンサにおけるセンサヘッドや光ファイバの耐熱用被覆等に由来する金属汚染や耐熱樹脂の発塵が生じる虞を未然に防止することができる。このため、清浄で且つ高温環境となるアニール炉の石英ボックス1内に設定された検出領域4における被検出体5の有無を、上記清浄で且つ高温環境に何ら影響を与えることなく検出することができる。   Thus, in the present invention, only the quartz glass member 3, the quartz glass window glass 7a, and the coupling member 6 made of a heat-resistant material that does not cause metal contamination and dust generation are contained in the quartz box 1. Since only is exposed, it is possible to prevent the risk of metal contamination and heat-resistant resin dusting from the sensor head and the heat-resistant coating of the optical fiber in the conventional optical fiber sensor. Therefore, it is possible to detect the presence or absence of the detection target 5 in the detection region 4 set in the quartz box 1 of the annealing furnace that is clean and has a high temperature environment without affecting the clean and high temperature environment. it can.

しかも、上記石英ガラス部材3や石英ガラス製の窓ガラス7aは、優れた高温耐性を備えているため、炉内が600〜700℃となるようなアニール炉の石英ボックス1内の如き高温条件、更には、石英ガラスの軟化点付近に至るまでの更なる高温条件下にある検出領域4であっても被検出体5の有無を検出することが可能になる。   Moreover, since the quartz glass member 3 and the window glass 7a made of quartz glass have excellent high temperature resistance, the high temperature conditions such as in the quartz box 1 of the annealing furnace in which the furnace is 600 to 700 ° C., Further, it is possible to detect the presence or absence of the detection object 5 even in the detection region 4 under further high temperature conditions up to the vicinity of the softening point of quartz glass.

石英ガラス部材3内では、基端面より入射する光13を、石英ガラス部材3が有する高い光透過性と、全反射を利用して光の損失を抑えた状態で先端面へ伝えることができるようにしてあるため、上記反射型光ファイバセンサ8における投光用光ファイバ9の投光用光ファイバ素線10より出力する光13を、効率よく検出領域4の近傍まで導いて、該石英ガラス部材3の先端面より検出領域4へ向けて投光できる。   In the quartz glass member 3, the light 13 incident from the base end surface can be transmitted to the distal end surface in a state where the loss of light is suppressed by using the high light transmittance of the quartz glass member 3 and total reflection. Therefore, the light 13 output from the light projecting optical fiber 10 of the light projecting optical fiber 9 in the reflective optical fiber sensor 8 is efficiently guided to the vicinity of the detection region 4, and the quartz glass member The light can be projected toward the detection region 4 from the tip surface of 3.

そのため、上記反射型光ファイバセンサ8の投光部としての投光用光ファイバ9の先端より検出領域4へ達するまでの間における光量の減少を防ぐことができる。これにより、上記反射型光ファイバセンサ8の投光部としての投光用光ファイバ9の先端部より投光された光13が、検出領域4に存在する被検出体5により反射され、この反射光13aが上記反射型光ファイバセンサ8の受光部としての受光用光ファイバ11の先端部へ受光されるようになるときの光の経路上で、石英ボックス側壁1aに設けた窓7を通る光を、上記検出領域4の被検出体5による反射光13aのみとすることができる。したがって、たとえ、上記被検出体5による反射光13aが上記窓7を透過する際に散乱を生じるとしても、反射型の光センサや光ファイバセンサの投光部及び受光部を共に窓の外部に設けて窓越しに投受光を行わせる場合のように、投光する光と受光すべき被検出体の反射光の双方が窓を透過することによって該窓における光の散乱による光量の減少が相乗されていた場合に比して、光検出器にて検出される光量の低下を抑制することができる。よって、上記検出領域4に被検出体5が存在するときと、存在しないときの光量の増減のレンジを拡大することができる。   For this reason, it is possible to prevent a decrease in the amount of light before reaching the detection region 4 from the tip of the light projecting optical fiber 9 as the light projecting portion of the reflective optical fiber sensor 8. As a result, the light 13 projected from the tip of the light projecting optical fiber 9 as the light projecting section of the reflection type optical fiber sensor 8 is reflected by the detected object 5 existing in the detection region 4, and this reflection The light passing through the window 7 provided in the quartz box side wall 1a on the light path when the light 13a is received by the tip of the light receiving optical fiber 11 as the light receiving portion of the reflection type optical fiber sensor 8. Can be only reflected light 13a by the detection object 5 in the detection region 4. Therefore, even if the reflected light 13a from the detected object 5 is scattered when passing through the window 7, both the light projecting part and the light receiving part of the reflection type optical sensor or optical fiber sensor are outside the window. As in the case where the light is projected and received through the window, both the light to be projected and the reflected light of the detection target to be received are transmitted through the window, so that the reduction in the amount of light due to light scattering in the window is synergistic. Compared with the case where it was done, the fall of the light quantity detected with a photodetector can be suppressed. Therefore, the range of increase / decrease in the amount of light when the detected object 5 exists in the detection region 4 and when it does not exist can be expanded.

又、上記反射型光ファイバセンサ8の投光部としての投光用光ファイバ9の先端部より投光された光13が、検出領域4に存在する被検出体5により反射され、この反射光13aが上記反射型光ファイバセンサ8の受光部としての受光用光ファイバ11の先端部へ受光されるようになるときの光の経路上で、上記検出領域4と窓7との間の空間を通過する光を、上記検出領域4の被検出体5による反射光13aのみとすることができる。したがって、たとえ、上記被検出体5による反射光13aが、上記検出領域4から上記窓7に達するまでの空間部を通過する際に、外乱による影響を受けてノイズが混入されるとしても、反射型の光センサや光ファイバセンサの投光部及び受光部を共に窓の外部に設けて窓越しに投受光を行わせる場合、すなわち、窓から検出領域までの光の往路と復路でそれぞれ混入するノイズ量が相乗されていた場合に比して、混入されるノイズを低減させることができる。これにより、上記反射型光ファイバセンサ8における検出光のS/N比を高めることができる。よって、上記石英ボックス1内のような清浄環境で且つ高温環境にある検出領域4での被検出体5の有無の検出を、精度よく行うことができる。   Further, the light 13 projected from the tip of the light projecting optical fiber 9 as the light projecting section of the reflection type optical fiber sensor 8 is reflected by the detected object 5 existing in the detection region 4, and this reflected light. A space between the detection region 4 and the window 7 is formed on the light path when the light 13a is received by the tip of the light receiving optical fiber 11 serving as the light receiving portion of the reflective optical fiber sensor 8. The light passing therethrough can be only the reflected light 13a by the detected object 5 in the detection region 4. Therefore, even if the reflected light 13a from the detected object 5 passes through the space from the detection region 4 to the window 7, even if noise is mixed under the influence of disturbance, the reflected light 13a is reflected. When the light projecting part and the light receiving part of the optical sensor and the optical fiber sensor are both provided outside the window and light is projected and received through the window, that is, they are mixed in the forward and backward paths of light from the window to the detection area, respectively. The mixed noise can be reduced as compared with the case where the amount of noise is synergistic. Thereby, the S / N ratio of the detection light in the reflective optical fiber sensor 8 can be increased. Therefore, the presence / absence of the detection object 5 in the detection region 4 in a clean environment such as the inside of the quartz box 1 and in a high temperature environment can be accurately detected.

次に、図2は図1に示した実施の形態と同様に、光センサとして投光部と受光部が別体式としてある反射型の光ファイバセンサによるセンシングを行うものについて適用する場合の別の例を示すもので、図1に示したと同様の構成において、反射型光ファイバセンサ8の投光部としての投光用光ファイバ9の先端部を、アニール炉の石英ボックス1の側壁1aの炉内側にて先端部が所要の検出領域4の近傍まで突出するように配設してなる石英ガラス部材3の基端部に光学的に接続し、一方、上記反射型光ファイバセンサ8の受光部としての受光用光ファイバ11の先端部を、上記石英ボックス側壁1aに設けた窓7の外側近傍位置に、上記窓7越しに石英ボックス1内部の上記検出領域4に臨むよう配設した構成に代えて、反射型光ファイバセンサ8の投光部としての投光用光ファイバ9の先端部を、石英ボックス1の側壁1aに設けた窓7の外側近傍位置に、上記窓7越しに石英ボックス1内部の所要の検出領域4に臨むよう配設し、一方、上記反射型光ファイバセンサ8の受光部としての受光用光ファイバ11の先端部を、アニール炉の石英ボックス1の側壁1aの炉内側にて先端部が上記検出領域4の近傍まで突出するように配設してなる石英ガラス部材3の基端部に、光学的に接続する構成としたものである。   Next, as in the embodiment shown in FIG. 1, FIG. 2 shows another case in which sensing is performed by a reflection type optical fiber sensor in which a light projecting unit and a light receiving unit are separated as an optical sensor. For example, in the same configuration as shown in FIG. 1, the tip of the projecting optical fiber 9 as the projecting unit of the reflective optical fiber sensor 8 is connected to the furnace of the side wall 1 a of the quartz box 1 of the annealing furnace. It is optically connected to the base end of the quartz glass member 3 that is arranged so that the front end protrudes to the vicinity of the required detection region 4 on the inside, while the light receiving portion of the reflective optical fiber sensor 8 The tip of the light receiving optical fiber 11 is arranged in the vicinity of the outside of the window 7 provided on the quartz box side wall 1a so as to face the detection region 4 inside the quartz box 1 through the window 7. Instead, reflective optical fiber A required detection region inside the quartz box 1 is passed through the window 7 at a position near the outside of the window 7 provided on the side wall 1a of the quartz box 1 at the tip end of the light projecting optical fiber 9 as the light projecting part of the sensor 8. 4, while the front end of the light receiving optical fiber 11 serving as the light receiving portion of the reflective optical fiber sensor 8 is located on the inner side of the side wall 1 a of the quartz box 1 of the annealing furnace, the front end is the above. The quartz glass member 3 is disposed so as to protrude to the vicinity of the detection region 4 and is optically connected to the base end portion of the quartz glass member 3.

具体的には、図1の実施の形態と同様に、石英ボックス1の側壁1aに開口部2を設け、該開口部2に、上記石英ガラス部材3の基端部を、パイプ状の結合用部材6を介し取り付けると共に、石英ボックス側壁1aにおける上記開口部2近傍の所要位置に、石英ガラス製の窓ガラス7aを備えた窓7を設ける。   Specifically, as in the embodiment of FIG. 1, an opening 2 is provided in the side wall 1 a of the quartz box 1, and the base end of the quartz glass member 3 is connected to the opening 2 in a pipe-like connection. A window 7 having a window glass 7a made of quartz glass is provided at a required position in the vicinity of the opening 2 in the quartz box side wall 1a while being attached via the member 6.

更に、図1の実施の形態における石英ガラス部材3の基端部と反射型光ファイバセンサ8の投光用光ファイバ9の先端部との光学的な接続方法と同様にして、上記結合用部材6の炉外側の突出部分に、反射型光ファイバセンサ8の受光用光ファイバ11の先端部を挿入して取り付けて、上記石英ガラス部材3の基端部から上記受光用光ファイバ11の受光部としての受光用光ファイバ素線12の先端部へ光の伝搬を行なうことができるようにする。又、上記石英ボックス側壁1aの窓7の外側近傍位置に、上記反射型光ファイバセンサ8の投光部としての投光用光ファイバ9の先端部を、図1の実施の形態における石英ボックス側壁1aの窓7の外側近傍位置への受光用光ファイバ11の配設方法と同様にして配設する。その他の構成は図1に示したものと同様であり、同一のものには同一符号が付してある。   Further, in the same manner as the optical connection method between the base end portion of the quartz glass member 3 and the tip end portion of the light projecting optical fiber 9 of the reflection type optical fiber sensor 8 in the embodiment of FIG. 6 is inserted and attached to the protruding portion outside the furnace 6 of the reflection type optical fiber sensor 8, and the light receiving portion of the light receiving optical fiber 11 is inserted from the base end portion of the quartz glass member 3. The light can be propagated to the tip of the optical fiber 12 for receiving light. Further, the tip end portion of the light projecting optical fiber 9 as the light projecting portion of the reflection type optical fiber sensor 8 is disposed at a position near the outside of the window 7 of the quartz box side wall 1a, and the quartz box side wall in the embodiment of FIG. The light receiving optical fiber 11 is disposed in the same manner as the light receiving optical fiber 11 near the outside of the window 1a. Other configurations are the same as those shown in FIG. 1, and the same components are denoted by the same reference numerals.

本実施の形態のセンシング装置を用いて上記石英ボックス1内に設定された所要の検出領域4にて、被検出体5の有無の検出を行う場合は、反射型光ファイバセンサ8のセンサ本体の光源より投光用光ファイバ9の投光用光ファイバ素線10を経て導いた光13を、投光部としての該投光用光ファイバ素線10の先端面(投光面)より出力(投光)させ、この出力された光13を、窓7を通して上記検出領域4へ投光させる。この状態において、上記検出領域4に被検出体5が存在していない場合には、上記投光用光ファイバ素線10の先端面より窓7を通して検出領域4へ投光された光13は、該検出領域4にて散逸されてしまうため、検出領域4の近傍位置に配されている石英ガラス部材3の先端面へ入射することはない。そのため、上記石英ガラス部材3の基端面に光学的に接続してある上記反射型光ファイバセンサ8の受光部としての受光用光ファイバ11の受光用光ファイバ素線12の先端面(受光面)にて受光される光は、バックグラウンドの光に限られることから、該受光用光ファイバ素線12を経てセンサ本体の光検出器にて検出される受光量は小さいものとなる。   When detecting the presence or absence of the detected object 5 in the required detection region 4 set in the quartz box 1 using the sensing device of the present embodiment, the sensor body of the reflective optical fiber sensor 8 is detected. The light 13 guided from the light source through the light projecting optical fiber 10 of the light projecting optical fiber 9 is output from the front end surface (light projecting surface) of the light projecting optical fiber 10 as the light projecting portion ( The output light 13 is projected onto the detection region 4 through the window 7. In this state, when the detection target 5 does not exist in the detection region 4, the light 13 projected to the detection region 4 through the window 7 from the tip surface of the light projecting optical fiber 10 is Since it is dissipated in the detection region 4, it does not enter the tip surface of the quartz glass member 3 disposed in the vicinity of the detection region 4. Therefore, the front end surface (light receiving surface) of the light receiving optical fiber 12 of the light receiving optical fiber 11 as the light receiving portion of the reflective optical fiber sensor 8 optically connected to the base end surface of the quartz glass member 3. Since the light received at is limited to background light, the amount of received light detected by the photodetector of the sensor body via the light receiving optical fiber 12 is small.

一方、図2に二点鎖線で示す如く、上記検出領域4に被検出体5が存在している場合には、上記投光用光ファイバ9の投光用光ファイバ素線10の先端面より検出領域4へ向けて窓7越しに投光された光13は、該検出領域4に存在する上記被検出体5により正反射あるいは散乱反射され、この正反射あるいは散乱反射もしくは正反射と散乱反射の双方によって生じる反射光13aが、上記検出領域4の近傍に配されている石英ガラス部材3の先端面へ入射されるようになる。この石英ガラス部材3へ先端面より入射した反射光13aは、高い透過率を有する該石英ガラス部材3内を、全反射を利用して光の損失を抑えた状態で石英ガラス部材3の基端部まで導かれ、該石英ガラス部材3の基端面より受光用光ファイバ11の受光用光ファイバ素線12の先端面(受光面)へ受光されるようになる。この場合にも、上記したバックグラウンドの光は、受光用光ファイバ素線12の受光面へ入射されているため、該受光用光ファイバ素線12に受光される光量としては、上記検出領域4に被検出体5が存在していない場合に比して、上記受光用光ファイバ素線12の受光面へ到達する被検出体5による反射光13aの分が加算されることとなる。   On the other hand, as shown by a two-dot chain line in FIG. 2, when the detected object 5 is present in the detection region 4, The light 13 projected through the window 7 toward the detection area 4 is specularly reflected or scattered and reflected by the detected object 5 existing in the detection area 4, and the regular reflection or scattered reflection or regular reflection and scattering reflection. The reflected light 13 a generated by both of the light enters the front end surface of the quartz glass member 3 disposed in the vicinity of the detection region 4. The reflected light 13a incident on the quartz glass member 3 from its front end surface is transmitted through the quartz glass member 3 having a high transmittance, and the base end of the quartz glass member 3 in a state where light loss is suppressed using total reflection. And is received from the proximal end surface of the quartz glass member 3 to the distal end surface (light receiving surface) of the light receiving optical fiber 12 of the light receiving optical fiber 11. Also in this case, since the background light is incident on the light receiving surface of the light receiving optical fiber 12, the amount of light received by the light receiving optical fiber 12 is the detection region 4. Compared to the case where the detected object 5 does not exist, the reflected light 13a from the detected object 5 reaching the light receiving surface of the light receiving optical fiber 12 is added.

したがって、図1の実施の形態と同様に、受光用光ファイバ素線12を経てセンサ本体の光検出器にて検出される受光量が、初期状態より増加しているか否かに基づいて、上記石英ボックス1内の検出領域4に、被検出体5が存在しているか否かを検出することができるようになる。   Therefore, as in the embodiment of FIG. 1, the amount of received light detected by the photodetector of the sensor body via the light receiving optical fiber 12 is based on whether or not the amount of light received is increased from the initial state. It becomes possible to detect whether or not the detection object 5 is present in the detection region 4 in the quartz box 1.

更に、石英ガラス部材3内では、先端面より入射する被検出体5の反射光13を、石英ガラス部材3が有する高い光透過性と、全反射を利用して光の損失を抑えた状態で基端面へ伝えることができるようにしてあるため、上記検出領域4に被検出体5が存在するときの該被検出体5による反射光13aを、検出領域4の近傍位置より石英ボックス側壁部1aまで効率よく導いて、反射型光ファイバセンサ8における受光用光ファイバ11の受光用光ファイバ素線12ヘ受光させることができる。このため、検出領域4より上記反射型光ファイバセンサ8の受光部としての受光用光ファイバ11の先端に達するまでの間における光量の減少を防ぐことができる。   Further, in the quartz glass member 3, the reflected light 13 of the detection target 5 incident from the front end surface is in a state in which light loss is suppressed by utilizing the high light transmittance of the quartz glass member 3 and total reflection. Since the light can be transmitted to the base end face, the reflected light 13a from the detection object 5 when the detection object 5 is present in the detection region 4 is transmitted from the vicinity of the detection region 4 to the quartz box side wall 1a. Thus, the light receiving optical fiber 12 of the light receiving optical fiber 11 in the reflection type optical fiber sensor 8 can receive light. For this reason, it is possible to prevent a decrease in the amount of light from the detection region 4 until reaching the tip of the light receiving optical fiber 11 as the light receiving portion of the reflective optical fiber sensor 8.

これにより、上記反射型光ファイバセンサ8の投光部としての投光用光ファイバ9の先端部より投光された光13が、検出領域4に存在する被検出体5により反射され、この反射光13aが上記反射型光ファイバセンサ8の受光部としての受光用光ファイバ11の先端部へ受光されるようになるときの光の経路上で、石英ボックス側壁1aに設けた窓7及び該窓7と検出領域4との間の空間を通過する光を、上記投光用光ファイバ9より投光された光13のみとすることができる。   As a result, the light 13 projected from the tip of the light projecting optical fiber 9 as the light projecting section of the reflection type optical fiber sensor 8 is reflected by the detected object 5 existing in the detection region 4, and this reflection On the light path when the light 13a is received by the tip of the light receiving optical fiber 11 as the light receiving portion of the reflection type optical fiber sensor 8, the window 7 provided on the quartz box side wall 1a and the window The light passing through the space between 7 and the detection region 4 can be only the light 13 projected from the light projecting optical fiber 9.

したがって、本実施の形態においても、上記反射型光ファイバセンサ8における光検出器にて検出される光量の低下を抑制することができて、上記検出領域4に被検出体5が存在するときと、存在しないときの光量の増減のレンジを拡大することができる。又、上記反射型光ファイバセンサ8における検出光のS/N比を高めることができて、上記石英ボックス1内のような清浄環境で且つ高温環境にある検出領域4での被検出体5の有無の検出精度を向上させることが可能になる等、図1の実施の形態と同様の効果を得ることができる。更に、本実施の形態では、被検出体5からの反射光13aの受光側の経路上に石英ガラス部材3を設けて、検出領域4における被検出体5の有無の検出に直接的に関与する上記反射光13aの損失を抑えた状態で反射型光ファイバセンサ8の受光部へ受光させることができるようにしてあるため、検出領域4における被検出体5の有無の検出感度の向上化が期待できる。   Therefore, also in the present embodiment, a decrease in the amount of light detected by the photodetector in the reflection type optical fiber sensor 8 can be suppressed, and when the detected object 5 exists in the detection region 4 The range of increase / decrease in the amount of light when it does not exist can be expanded. Further, the S / N ratio of the detection light in the reflection type optical fiber sensor 8 can be increased, and the detection object 5 in the detection region 4 in a clean environment and a high temperature environment such as in the quartz box 1 can be obtained. The same effect as the embodiment of FIG. 1 can be obtained, such as the presence / absence detection accuracy being improved. Further, in the present embodiment, the quartz glass member 3 is provided on the path on the light receiving side of the reflected light 13a from the detected object 5 and is directly involved in the detection of the presence or absence of the detected object 5 in the detection region 4. Since the light receiving unit of the reflection type optical fiber sensor 8 can receive light while suppressing the loss of the reflected light 13a, the detection sensitivity of the presence or absence of the detection target 5 in the detection region 4 is expected to be improved. it can.

次いで、図3は図1に示した実施の形態と同様に、光センサとして投光部と受光部が別体式としてある反射型の光ファイバセンサによるセンシングを行うものについて適用する場合の更に別の例を示すもので、図1に示したと同様の構成において、反射型光ファイバセンサ8の投光部としての投光用光ファイバ9の先端部と、受光部としての受光用光ファイバ11の先端部のうち、上記投光用光ファイバ9の先端部のみを、アニール炉の石英ボックス1の側壁1aの炉内側にて先端部が所要の検出領域4の近傍まで突出するように配設してなる石英ガラス部材3の基端部に光学的に接続した構成に代えて、上記反射型光ファイバセンサ8の投光部としての投光用光ファイバ9の先端部と、受光部としての受光用光ファイバ11の先端部の双方を、アニール炉の石英ボックス側壁1aの炉内側にて先端部が所要の検出領域4の近傍まで突出するように配設してなる個別の石英ガラス部材3の基端部に、それぞれ光学的に接続するようにしたものである。   Next, as in the embodiment shown in FIG. 1, FIG. 3 shows still another case in which sensing is performed using a reflection type optical fiber sensor in which a light projecting unit and a light receiving unit are separated as an optical sensor. For example, in the same configuration as shown in FIG. 1, the tip end of a light projecting optical fiber 9 as a light projecting portion of the reflective optical fiber sensor 8 and the tip of a light receiving optical fiber 11 as a light receiving portion are shown. Only the tip of the light projecting optical fiber 9 is arranged so that the tip protrudes to the vicinity of the required detection region 4 inside the side wall 1a of the quartz box 1 of the annealing furnace. Instead of the optically connected configuration to the base end portion of the quartz glass member 3, the distal end portion of the light projecting optical fiber 9 as the light projecting portion of the reflective optical fiber sensor 8 and the light receiving portion as the light receiving portion. Both ends of the optical fiber 11 , And optically connected to the base ends of the individual quartz glass members 3 that are arranged so that the front ends protrude to the vicinity of the required detection region 4 on the inside of the quartz box side wall 1a of the annealing furnace. It is what you do.

具体的に説明すると、図3に示すものは、上記石英ボックス側壁1aの所要位置に、近接する2つの開口部2を設け、該各開口部2に、それぞれ図1に示した石英ガラス部材3と同様の石英ガラス部材3aと3bの基端部を、結合用部材6aと6bを介して個別に取り付ける。更に、上記反射型光ファイバセンサ8の投光部としての投光用光ファイバ9の先端部を、一方の石英ガラス部材3aの基端部に、又、受光用光ファイバ11の先端部を、他方の石英ガラス部材3bの基端部に、それぞれ光学的に接続するようにしてある。   More specifically, the one shown in FIG. 3 is provided with two adjacent openings 2 at a required position of the quartz box side wall 1a, and each of the openings 2 has the quartz glass member 3 shown in FIG. The base ends of the quartz glass members 3a and 3b similar to the above are individually attached via the coupling members 6a and 6b. Furthermore, the distal end portion of the light projecting optical fiber 9 as the light projecting portion of the reflective optical fiber sensor 8 is disposed at the base end portion of one quartz glass member 3a, and the distal end portion of the light receiving optical fiber 11 is disposed. The other quartz glass member 3b is optically connected to the base end portion thereof.

なお、上記石英ボックス側壁1aの各開口部2への結合用部材6を介した投光側及び受光側の各石英ガラス部材3a及び3bの取付方法は、いずれも図1の実施の形態に示した石英ガラス部材3の開口部2への取付方法と同様としてある。又、上記各石英ガラス部材3aと3bの基端部と、投光用と受光用の各光ファイバ9と11の先端部との光学的な接続方法は、いずれも図1の実施の形態における石英ガラス部材3の基端部と反射型光ファイバセンサ8の投光用光ファイバ9の先端部との光学的な接続方法と同様としてある。その他の構成は図1に示したものと同様であり、同一のものには同一符号が付してある。   The method for attaching the light emitting side and light receiving side quartz glass members 3a and 3b via the coupling member 6 to each opening 2 of the quartz box side wall 1a is shown in the embodiment of FIG. The method of attaching the quartz glass member 3 to the opening 2 is the same. Further, the optical connection method between the proximal end portions of the quartz glass members 3a and 3b and the distal end portions of the light projecting and receiving optical fibers 9 and 11 is the same as that in the embodiment of FIG. This is the same as the optical connection method between the proximal end portion of the quartz glass member 3 and the distal end portion of the light projecting optical fiber 9 of the reflection type optical fiber sensor 8. Other configurations are the same as those shown in FIG. 1, and the same components are denoted by the same reference numerals.

本実施の形態によれば、清浄で且つ高温環境下となる上記石英ボックス1内に設定された所要の検出領域4にて、被検出体5の有無の検出を行う場合、反射型光ファイバセンサ8のセンサ本体の光源より投光用光ファイバ9の投光用光ファイバ素線10を経て導いた光13を、投光部としての該投光用光ファイバ素線10の先端面(投光面)より出力(投光)させると、図1の場合と同様に、この投光用光ファイバ9の先端部より出力された光13は、投光側の石英ガラス部材3aの基端面より入射されるようになるため、高い光透過性を有する該投光側の石英ガラス部材3a内にて、全反射を利用して光の損失を抑えた状態で効率よく検出領域4近傍の先端面まで導かれ、該投光側の石英ガラス部材3aの先端面より検出領域4へ向けて投光できる。   According to the present embodiment, when detecting the presence or absence of the detection object 5 in the required detection region 4 set in the quartz box 1 which is clean and in a high temperature environment, the reflection type optical fiber sensor The light 13 guided from the light source of the sensor body 8 through the light projecting optical fiber 10 of the light projecting optical fiber 9 is used as the front end surface of the light projecting optical fiber 10 as a light projecting unit (light projecting). When the light is output (projected) from the surface, the light 13 output from the distal end portion of the optical fiber for projection 9 is incident from the base end surface of the quartz glass member 3a on the projecting side, as in FIG. Therefore, in the quartz glass member 3a on the light-projecting side having high light transmittance, the tip surface near the detection region 4 can be efficiently obtained in a state where light loss is suppressed by using total reflection. Guided and projected toward the detection region 4 from the front end surface of the quartz glass member 3a on the projection side It can be.

この投光された光13は、上記検出領域4に被検出体5が存在しないときには散逸される。一方、図3に二点鎖線で示す如く、検出領域4に被検出体5が存在するときに、上記投光された光13の被検出体5による反射光13aが生じると、この反射光13aが、検出領域の近傍位置にて上記受光用光ファイバ11の先端部に光学的に接続してある受光側の石英ガラス部材3bの先端面へ入射されるようになるため、高い光透過性を有する該受光側の石英ガラス部材3b内にて、全反射を利用して光の損失を抑えた状態で効率よく基端面まで導かれ、該受光側の石英ガラス部材3の基端面より、上記反射型光ファイバセンサ8の受光部としての受光用光ファイバ11の受光用光ファイバ素線12の先端面へ受光させることができ、この受光された反射光13aが、該受光用光ファイバ素線12を経て光検出器へ導かれるようになる。   The projected light 13 is dissipated when the detection object 5 is not present in the detection region 4. On the other hand, as shown by a two-dot chain line in FIG. 3, when reflected light 13 a is generated by the detected object 5 of the projected light 13 when the detected object 5 exists in the detection region 4, the reflected light 13 a is generated. Is incident on the distal end surface of the quartz glass member 3b on the light receiving side that is optically connected to the distal end portion of the light receiving optical fiber 11 at a position in the vicinity of the detection region. In the quartz glass member 3b on the light receiving side, the light is efficiently guided to the base end surface while suppressing the loss of light using total reflection, and the reflection is performed from the base end surface of the quartz glass member 3 on the light receiving side. The light receiving optical fiber 11 of the light receiving optical fiber 11 serving as the light receiving portion of the optical fiber sensor 8 can receive light on the tip surface of the light receiving optical fiber strand 12, and the received reflected light 13 a is received by the light receiving optical fiber strand 12. Then, the light is guided to the photodetector.

したがって、本実施の形態によっても、石英ボックス1内の検出領域4における被検出体5の有無を、受光用光ファイバ素線12を経てセンサ本体の光検出器にて検出される受光量の変化に基づいて検出することができる。しかも、本実施の形態では、上記反射型光ファイバセンサ8の投光部としての投光用光ファイバ9の先端部より投光された光13が、検出領域4に存在する被検出体5により反射され、この反射光13aが上記反射型光ファイバセンサ8の受光部としての受光用光ファイバ11の先端部へ受光されるようになるときの光の経路上で、投光される光13及び被検出体5による反射光13aのいずれも窓を通ることがなくなると共に、検出領域4と窓の間の空間部を通過することもなくなる。このため、上記反射型光ファイバセンサ8の投光部としての投光用光ファイバ9の先端部から被検出体5まで、及び、該被検出体5より上記反射型光ファイバセンサ8の受光部としての受光用光ファイバ11の先端部まで光13,13aが往来するときの光量の減少を更に抑制することができて、上記検出領域4に被検出体5が存在するときと、存在しないときの光量の増減のレンジを更に拡大することができる。又、上記光ファイバセンサ8における検出光のS/N比を更に高めることができて、上記石英ボックス1内のような清浄環境で且つ高温環境にある検出領域4での被検出体5の有無の検出精度を更に向上させることができる。   Therefore, also according to the present embodiment, the presence or absence of the detection object 5 in the detection region 4 in the quartz box 1 is changed by the change in the amount of received light detected by the photodetector of the sensor body through the light receiving optical fiber 12. Can be detected based on Moreover, in the present embodiment, the light 13 projected from the tip of the light projecting optical fiber 9 as the light projecting section of the reflective optical fiber sensor 8 is detected by the detected object 5 present in the detection region 4. The reflected light 13a is reflected on the light path when the reflected light 13a is received by the distal end portion of the light receiving optical fiber 11 as the light receiving portion of the reflection type optical fiber sensor 8, and the projected light 13 and None of the reflected light 13a from the detection object 5 passes through the window and does not pass through the space between the detection region 4 and the window. For this reason, from the front-end | tip part of the optical fiber 9 for light projection as a light projection part of the said reflection type optical fiber sensor 8 to the to-be-detected body 5, and the light-receiving part of the said reflection type optical fiber sensor 8 from this to-be-detected body 5 When the detection target 5 is present in the detection region 4 and when the detection target 5 is not present, it is possible to further suppress a decrease in the amount of light when the light 13, 13a travels to the tip of the light receiving optical fiber 11 as The range of increase / decrease in the amount of light can be further expanded. Further, the S / N ratio of the detection light in the optical fiber sensor 8 can be further increased, and the presence or absence of the detection object 5 in the detection region 4 in a clean environment and a high temperature environment such as in the quartz box 1. The detection accuracy can be further improved.

図4(イ)(ロ)は図3に示した実施の形態の変形例を示すもので、図3に示したと同様の構成において、反射型光ファイバセンサ8の投光用光ファイバ9の先端部と受光用光ファイバ11の先端部を、個別に対応する石英ガラス部材3aと3bの基端部に、それぞれ光学的に接続するようにした構成に代えて、アニール炉の石英ボックス1の側壁1aの炉内側にて先端部が所要の検出領域4の近傍位置、あるいは、該検出領域4に被検出体5が配置されるときに該被検出体5の表面に接するようになる位置に達するように配置してある投受光共用の1つの光導波部材としての石英ガラス部材3cの他端部に、上記反射型光ファイバセンサ8の投光部としての投光用光ファイバ9の先端部と、受光部としての受光用光ファイバ11の先端部とを一緒に光学的に接続するようにしたものである。   4 (a) and 4 (b) show a modification of the embodiment shown in FIG. 3. In the same configuration as shown in FIG. 3, the tip of the light projecting optical fiber 9 of the reflective optical fiber sensor 8 is shown. Instead of the structure in which the optical fiber 11 and the distal end of the light receiving optical fiber 11 are optically connected to the base ends of the corresponding quartz glass members 3a and 3b, respectively, the side wall of the quartz box 1 of the annealing furnace Inside the furnace of 1a, the tip reaches a position near the required detection area 4 or a position where the detection object 5 comes into contact with the surface of the detection object 5 when the detection object 5 is arranged in the detection area 4. The other end portion of the quartz glass member 3c serving as one optical waveguide member shared for light projection and reception disposed in this manner is connected to the tip portion of the light projecting optical fiber 9 as the light projecting portion of the reflective optical fiber sensor 8. A tip of the light receiving optical fiber 11 as a light receiving portion; It is obtained so as to optically connect together.

詳述すると、図4(イ)(ロ)に示すものは、先ず、上記石英ボックス1の一側壁1aに、上記投光用光ファイバ9と受光用光ファイバ11の外径の和よりもやや大きい内径の開口部2を設ける。更に、図3に示した結合用部材6と同様のセラミックやガラス等、金属汚染や発塵を生じない耐熱材料製として、外径を上記開口部2の内径と同じ大きさとすると共に一端側に光導波部材取付用凹部16を形成し且つ他端側にファイバ取付孔15a,15bを貫通させて有する所要の長さ寸法の結合用部材14を凹部16側が内側となるように上記開口部2に挿入し、該結合用部材14の軸心方向両端部が炉内外方向にそれぞれ所要寸法ずつ突出するように配置して、該結合用部材14の外周面所要個所を、上記開口部2に固定させるようにする。   More specifically, the one shown in FIGS. 4 (a) and 4 (b) is a little more than the sum of the outer diameters of the light projecting optical fiber 9 and the light receiving optical fiber 11 on one side wall 1a of the quartz box 1. An opening 2 having a large inner diameter is provided. Furthermore, the outer diameter is made the same size as the inner diameter of the opening 2 and made of one end side, made of a heat-resistant material that does not cause metal contamination and dust generation such as ceramic and glass similar to the coupling member 6 shown in FIG. An optical waveguide member mounting recess 16 is formed in the opening 2 so that the coupling member 14 having a required length having the fiber mounting holes 15a and 15b penetrating on the other end is disposed on the recess 16 side. Inserting and arranging the both ends of the coupling member 14 in the axial center direction so as to project each required dimension in the inside and outside of the furnace, and fixing the required portion of the outer peripheral surface of the coupling member 14 to the opening 2 Like that.

上記結合用部材14の炉外側に開口する2つのファイバ取付孔15a,15bは、図4(ロ)に示す如く、上記投光用光ファイバ9及び受光用光ファイバ11のそれぞれの径とほぼ同様の直径とし、且つ上記石英ボックス側壁1aとほぼ対応する位置まで達するようにして、隣接させて設けてある。一方、該結合用部材14の炉内側の端面に形成した凹部16は、上記ファイバ取付孔15a,15bにそれぞれ投光用光ファイバ9と受光用光ファイバ11を挿入するときに、上記投光用光ファイバ9の投光用光ファイバ素線10と、受光用光ファイバ11の受光用光ファイバ素線12が配置される径方向位置よりも大きな内径としてあり、上記各ファイバ取付孔15a及び15bと連通するように設けてある。   The two fiber mounting holes 15a and 15b opened to the outside of the coupling member 14 are substantially the same as the diameters of the light projecting optical fiber 9 and the light receiving optical fiber 11 as shown in FIG. And adjacent to each other so as to reach a position substantially corresponding to the quartz box side wall 1a. On the other hand, the recess 16 formed in the end surface inside the furnace of the coupling member 14 is used when the light projecting optical fiber 9 and the light receiving optical fiber 11 are inserted into the fiber mounting holes 15a and 15b, respectively. The inner diameter of the optical fiber 9 is larger than the radial position where the light-receiving optical fiber 12 and the light-receiving optical fiber 12 of the light-receiving optical fiber 11 are arranged. The fiber mounting holes 15a and 15b It is provided to communicate.

上記投受光共用の石英ガラス部材3cは、上記結合用部材14の光導波部材取付用凹部16の内径と対応した外径を有する細長い円柱形状とすると共に、両端面を軸心方向に直角な平面となるように研摩しておく。   The quartz glass member 3c used for both light projection and reception has an elongated cylindrical shape having an outer diameter corresponding to the inner diameter of the optical waveguide member mounting recess 16 of the coupling member 14, and both end surfaces are planes perpendicular to the axial direction. Grind so that it becomes.

次に、上記石英ガラス部材3cの基端部を上記結合用部材14の光導波部材取付用凹部16の内側に挿入して固定する。又、上記結合用部材14における炉外側の各ファイバ取付孔15a,15bの内側には、上記反射型光ファイバセンサ8の投光用光ファイバ9の先端部と受光用光ファイバ11の先端部を、それぞれ投光用光ファイバ素線10と受光用光ファイバ素線12を先端に露出させ且つ該露出された各光ファイバ素線10,12の先端面が軸心方向に直角な平面となるよう研摩した状態にて挿入して、それぞれ固定し、上記結合用部材14の中間部内側にて、上記投光用及び受光用の各光ファイバ素線10,12の先端面と、上記石英ガラス部材3cの基端面が面接触するようにする。これにより、上記投光用光ファイバ9の投光部としての投光用光ファイバ素線10の先端部から上記石英ガラス部材3cの基端部へ、又、該石英ガラス部材3cの基端部から上記受光用光ファイバ11の受光部としての受光用光ファイバ素線12の先端部へ、それぞれ光の伝搬を行なうことができるようにしてある。   Next, the base end portion of the quartz glass member 3c is inserted into the optical waveguide member mounting recess 16 of the coupling member 14 and fixed. Further, inside the fiber mounting holes 15a and 15b outside the furnace in the coupling member 14, the tip of the light projecting optical fiber 9 and the tip of the light receiving optical fiber 11 of the reflection type optical fiber sensor 8 are provided. The light projecting optical fiber 10 and the light receiving optical fiber 12 are exposed at the tips, respectively, and the exposed tip surfaces of the exposed optical fiber strands 10 and 12 are in a plane perpendicular to the axial direction. Inserted in a polished state, fixed respectively, and inside the intermediate portion of the coupling member 14, the tip surfaces of the light projecting and receiving optical fiber strands 10 and 12, and the quartz glass member The base end face of 3c is brought into surface contact. Thereby, from the front-end | tip part of the optical fiber 10 for light projection as a light projection part of the said optical fiber 9 for light projection to the base end part of the said quartz glass member 3c, and the base end part of this quartz glass member 3c The light can be propagated from the light receiving optical fiber 11 to the tip of the light receiving optical fiber 12 as the light receiving portion of the light receiving optical fiber 11.

その他の構成は図3に示したものと同様であり、同一のものには同一符号が付してある。   Other configurations are the same as those shown in FIG. 3, and the same components are denoted by the same reference numerals.

本実施の形態によれば、清浄で且つ高温環境下となる上記石英ボックス1内に設定された所要の検出領域4にて、被検出体5の有無の検出を行う場合、反射型光ファイバセンサ8のセンサ本体の光源より投光用光ファイバ9の投光用光ファイバ素線10を経て導いた光13を、投光部としての該投光用光ファイバ素線10の先端面(投光面)より出力(投光)させると、この投光用光ファイバ9の先端部より出力された光13は、上記石英ガラス部材3cの基端面より入射され、該石英ガラス部材3c内にて、光の損失を抑えた状態で効率よく検出領域4近傍の先端面まで導かれて、該投光側の石英ガラス部材3aの先端面より検出領域4へ向けて投光できる。又、図4に二点鎖線で示す如く、検出領域4に被検出体5が存在するときに生じる、上記投光された光13の被検出体5による反射光13aは、検出領域の近傍位置にて上記石英ガラス部材3cの先端面へ入射されるようになり、この反射光13aは、該石英ガラス部材3c内にて、光の損失を抑えた状態で効率よく基端面まで導かれて、該基端面より上記反射型光ファイバセンサ8の受光部としての受光用光ファイバ11の受光用光ファイバ素線12の先端面へ受光させることができる。   According to the present embodiment, when detecting the presence or absence of the detected object 5 in the required detection region 4 set in the quartz box 1 which is clean and in a high temperature environment, the reflection type optical fiber sensor The light 13 guided from the light source of the sensor main body 8 through the light projecting optical fiber 10 of the light projecting optical fiber 9 is used as a light emitting portion. When the light is output (projected) from the surface), the light 13 output from the distal end portion of the optical fiber 9 for projecting light is incident from the base end surface of the quartz glass member 3c, and within the quartz glass member 3c, In a state where light loss is suppressed, the light can be efficiently guided to the front end surface in the vicinity of the detection region 4, and can be projected toward the detection region 4 from the front end surface of the quartz glass member 3 a on the light projection side. Further, as shown by a two-dot chain line in FIG. 4, the reflected light 13a of the projected light 13 generated by the detected object 5 when the detected object 5 is present in the detected area 4 is located in the vicinity of the detected area. The reflected light 13a is efficiently guided to the base end surface while suppressing loss of light in the quartz glass member 3c. Light can be received from the base end face to the front end face of the light receiving optical fiber 12 of the light receiving optical fiber 11 as the light receiving portion of the reflection type optical fiber sensor 8.

なお、本実施の形態では、上記石英ガラス部材3cを投受光共用としてあるため、上記検出領域4に被検出体5が存在しないときに受光用光ファイバ素線12の先端面にて受光されるバックグラウンドの光に対し、投光する光13が上記石英ガラス部材3cの先端面等で内部反射されることによって生じる内部反射光が加わるようになる。しかし、上記石英ガラス部材3cにおける内部反射光は、検出領域4に被検出体5が存在することで生じる反射光13aに比して小さい光量に限られる。したがって、受光用光ファイバ素線12の先端面に受光される光が、上記検出領域4に被検出体5が存在しないときのバックグラウンドの光のみである場合と、このバックグラウンドの光に検出領域4に被検出体5が存在することによって生じる反射光13aが加算された光となる場合との受光量の変化を、センサ本体の光検出器で十分検出可能な変化量で生じさせることができる。   In this embodiment, since the quartz glass member 3c is used for both light projection and reception, light is received at the front end surface of the light receiving optical fiber 12 when the detection object 5 is not present in the detection region 4. Internally reflected light generated by the reflected light 13 being internally reflected by the tip surface of the quartz glass member 3c or the like is added to the background light. However, the internally reflected light in the quartz glass member 3c is limited to a light amount smaller than the reflected light 13a generated by the presence of the detected object 5 in the detection region 4. Therefore, the case where the light received by the front end surface of the light receiving optical fiber 12 is only the background light when the detection target 5 is not present in the detection region 4 and the background light is detected. A change in the amount of light received when the reflected light 13a generated by the presence of the detected object 5 in the region 4 is added may be caused by a change that can be sufficiently detected by the photodetector of the sensor body. it can.

したがって、本実施の形態によっても、図3に示した実施の形態と同様に、清浄環境で且つ高温環境下となる石英ボックス1内の検出領域4における被検出体5の有無を、受光用光ファイバ素線12を経てセンサ本体の光検出器にて検出される受光量の変化に基づいて検出することができる。又、上記反射型光ファイバセンサ8の投光部としての投光用光ファイバ9の先端部より投光された光13が、検出領域4に存在する被検出体5により反射され、この反射光13aが上記反射型光ファイバセンサ8の受光部としての受光用光ファイバ11の先端部へ受光されるようになるときの光の経路は、いずれも投受光共用の石英ガラス部材3cを経るようになるため、投光される光13及び被検出体5による反射光13aのいずれも窓を通ることがなくなると共に、検出領域4と窓の間の空間部を通過することもなくなることから、図3に示した実施の形態と同様の効果を得ることができる。更に、本実施の形態では、投受光共用の石英ガラス部材3cを1つ設けるのみでよいため、図3に示した実施の形態に比して、部材点数を削減できて、製造の手間及びコストの削減化が期待できる。   Therefore, also in the present embodiment, as in the embodiment shown in FIG. 3, the presence or absence of the detection object 5 in the detection region 4 in the quartz box 1 in a clean environment and in a high temperature environment is determined based on the light for receiving light. Detection is possible based on a change in the amount of received light detected by the photodetector of the sensor body through the fiber strand 12. Further, the light 13 projected from the tip of the light projecting optical fiber 9 as the light projecting section of the reflection type optical fiber sensor 8 is reflected by the detected object 5 existing in the detection region 4, and this reflected light. The light path when the light 13a is received by the tip of the light receiving optical fiber 11 serving as the light receiving portion of the reflection type optical fiber sensor 8 passes through the quartz glass member 3c for both light projection and light reception. Therefore, neither the projected light 13 nor the reflected light 13a from the detected object 5 passes through the window, and does not pass through the space between the detection region 4 and the window. The same effects as those of the embodiment shown in FIG. Furthermore, in this embodiment, since only one quartz glass member 3c for both light and light reception is provided, the number of members can be reduced as compared with the embodiment shown in FIG. Can be expected.

又、図5は本発明の実施の他の形態として、光センサとして投受光部を一体式としてある反射型光ファイバセンサによる光センシングを行うものについて適用する場合を示すもので、以下のような構成としてある。   FIG. 5 shows another embodiment of the present invention, which is applied to an optical sensor that performs optical sensing using a reflection type optical fiber sensor in which a light projecting / receiving unit is integrated. As a configuration.

すなわち、図4に示したと同様の構成において、石英ボックス1外部の所要個所に設ける反射型光ファイバセンサ8を、図示しないセンサ本体と、該センサ本体における光源の出力側と光検出器の入力側に基端部をそれぞれ個別に接続してなる投光用光ファイバ9及び受光用光ファイバ11とからなる構成とすることに代えて、反射型光ファイバセンサ8を、図示しないセンサ本体と、該センサ本体における光源の出力側及び光検出器の入力側に、それぞれ基端部が接続してある投光用光ファイバ素線10及び受光用光ファイバ素線12を纏めて1本のケーブルとしてなる投受光共用の光ファイバ、たとえば、平行型光ファイバ17とからなる構成として、該反射型光ファイバセンサ8の投光部となる上記投光用光ファイバ素線10の先端部と、受光部となる上記受光用光ファイバ素線12の先端部が、一本の平行型光ファイバ17の先端部にて一体となるようにする。更に、上記平行型光ファイバ17の先端部を、図4に示したと同様にアニール炉の石英ボックス1の側壁1aの炉内側にて先端部が所要の検出領域4の近傍まで突出するように配設してなる投受光共用の石英ガラス部材3cの基端部に、光学的に接続するようにする。   That is, in the same configuration as shown in FIG. 4, a reflection type optical fiber sensor 8 provided at a required location outside the quartz box 1 includes a sensor body (not shown), a light source output side and a light detector input side of the sensor body. Instead of a configuration comprising a light projecting optical fiber 9 and a light receiving optical fiber 11 each having a base end connected individually to the optical fiber, a reflection type optical fiber sensor 8 includes a sensor body (not shown), The light projecting optical fiber 10 and the light receiving optical fiber 12, each having a proximal end connected to the light source output side and the light detector input side of the sensor body, are combined into a single cable. The tip of the projecting optical fiber 10 serving as the light projecting portion of the reflective optical fiber sensor 8 is configured as a light projecting / receiving optical fiber, for example, a parallel optical fiber 17. , The tip portion of the light receiving optical fiber 12 serving as the light receiving unit is set to be an integral at the distal end portion of one of the parallel optical fiber 17. Furthermore, the tip of the parallel optical fiber 17 is arranged so that the tip protrudes to the vicinity of the required detection region 4 inside the side wall 1a of the quartz box 1 of the annealing furnace, as shown in FIG. It is optically connected to the base end portion of the quartz glass member 3c used for both light projection and reception.

具体的には、上記石英ボックス側壁1aの所要個所に、開口部2を設け、該開口部2に、外径を上記開口部2の内径と同じ大きさとし且つ内径を上記平行型光ファイバ17の外径と同じ寸法として所要の長さのパイプ形状に形成したセラミックやガラス等、金属汚染や発塵を生じない耐熱材料製の結合用部材6を挿入して、該結合用部材6の軸心方向両端部が炉内外方向にそれぞれ所要寸法ずつ突出するよう配置し、更に、該結合用部材6の外周面所要個所を、上記開口部2に固定させるようにする。   Specifically, an opening 2 is provided at a required portion of the quartz box side wall 1 a, the outer diameter of the opening 2 is the same as the inner diameter of the opening 2, and the inner diameter is the same as that of the parallel optical fiber 17. Insert a coupling member 6 made of a heat-resistant material that does not cause metal contamination or dust generation, such as ceramic or glass, having the same dimension as the outer diameter and formed into a pipe shape of a required length, and the shaft center of the coupling member 6 Both end portions in the direction are arranged so as to project each required dimension in the inside / outside direction of the furnace, and further, a required portion of the outer peripheral surface of the coupling member 6 is fixed to the opening 2.

次に、上記結合用部材6における炉内側への突出部分の内側には、上記平行型光ファイバ17と同様の外径を有する細長い円柱形状として両端面を軸心方向に直角な平面となるよう研摩してある投受光共用の石英ガラス部材3cの基端部を挿入して、該石英ガラス部材3cを保持させるようにする。又、上記結合用部材6における炉外側への突出部分には、上記平行型光ファイバ17の先端部を挿入するが、この際、投光用及び受光用の各光ファイバ素線10,12を共に先端に露出させて、該露出された各光ファイバ素線10,12の先端面を軸心方向に直角な平面となるよう研摩した状態として挿入し、該平行型光ファイバ17の先端部を結合用部材6に保持させるようにする。更に、上記結合用部材6の中間部内側にて、上記投光用及び受光用の各光ファイバ素線10,12の先端面と、上記石英ガラス部材3cの基端面が面接触するようにして、上記結合用部材6の内側に、上記石英ガラス部材3cの基端部と上記平行型光ファイバ17の先端部とを固定するようにしてある。   Next, inside the protruding portion of the coupling member 6 toward the furnace inside, an elongated cylindrical shape having the same outer diameter as that of the parallel optical fiber 17 is formed so that both end faces are planes perpendicular to the axial direction. The base end portion of the polished quartz glass member 3c that is polished for light transmission and reception is inserted to hold the quartz glass member 3c. The tip of the parallel optical fiber 17 is inserted into the protruding portion of the coupling member 6 to the outside of the furnace. At this time, the optical fiber strands 10 and 12 for projecting and receiving light are connected. Both ends are exposed at the tip, and the exposed tip surfaces of the optical fiber strands 10 and 12 are inserted in a polished state so as to be a plane perpendicular to the axial direction, and the tip portion of the parallel optical fiber 17 is inserted. The coupling member 6 is held. Further, inside the intermediate portion of the coupling member 6, the distal end surfaces of the light projecting and receiving optical fiber strands 10 and 12 and the proximal end surface of the quartz glass member 3c are in surface contact. The proximal end portion of the quartz glass member 3c and the distal end portion of the parallel optical fiber 17 are fixed inside the coupling member 6.

なお、図5中、17aは上記投受光共用の平行型光ファイバ17における被覆である。その他の構成は図4に示したものと同様であり、同一のものには同一符号が付してある。   In FIG. 5, reference numeral 17a denotes a coating on the parallel optical fiber 17 used for both light projection and reception. Other configurations are the same as those shown in FIG. 4, and the same components are denoted by the same reference numerals.

本実施の形態によれば、清浄で且つ高温環境下となる上記石英ボックス1内に設定された所要の検出領域4にて、被検出体5の有無の検出を行う場合には、反射型光ファイバセンサ8のセンサ本体の光源より上記平行型光ファイバ17の投光用光ファイバ素線10を経て導いた光13を、投光部としての該投光用光ファイバ素線10の先端面(投光面)より出力(投光)させるようにする。この出力された光13は、図4に示した実施の形態と同様に、上記石英ガラス部材3cの基端面より入射され、該石英ガラス部材3c内にて、光の損失を抑えた状態で効率よく検出領域4近傍の先端面まで導かれて、該投光側の石英ガラス部材3aの先端面より検出領域4へ向けて投光させられる。又、図5に二点鎖線で示す如く、検出領域4に被検出体5が存在するときに生じる、上記投光された光13の被検出体5による反射光13aは、検出領域の近傍位置にて上記石英ガラス部材3cの先端面へ入射されるようになる。これにより、この反射光13aは、該石英ガラス部材3c内にて、光の損失を抑えた状態で効率よく基端面まで導かれるようになり、該基端面より上記平行型光ファイバ17の受光部としての受光用光ファイバ素線12の先端面へ受光させることができる。   According to the present embodiment, when detecting the presence or absence of the detection object 5 in the required detection region 4 set in the quartz box 1 that is clean and in a high temperature environment, the reflection type light is used. The light 13 guided from the light source of the sensor body of the fiber sensor 8 through the light projecting optical fiber 10 of the parallel optical fiber 17 is the front end surface of the light projecting optical fiber 10 as a light projecting portion ( Output (project light) from the light projection surface. As in the embodiment shown in FIG. 4, the output light 13 is incident from the base end face of the quartz glass member 3c, and is efficient in a state where light loss is suppressed in the quartz glass member 3c. The light is often guided to the front end surface in the vicinity of the detection region 4 and is projected toward the detection region 4 from the front end surface of the quartz glass member 3a on the light projecting side. Further, as shown by a two-dot chain line in FIG. 5, the reflected light 13a of the projected light 13 generated when the detected object 5 is present in the detected area 4 is located in the vicinity of the detected area. The incident light enters the tip surface of the quartz glass member 3c. As a result, the reflected light 13a is efficiently guided to the base end face in the quartz glass member 3c while suppressing the loss of light, and the light receiving portion of the parallel optical fiber 17 from the base end face. Can be received on the tip surface of the light receiving optical fiber 12.

したがって、本実施の形態によっても、清浄環境で且つ高温環境下となる石英ボックス1内の検出領域4における被検出体5の有無を、受光用光ファイバ素線12を経てセンサ本体の光検出器にて検出される受光量の変化に基づいて検出することができる。この際、上記反射型光ファイバセンサ8の投光部としての平行型光ファイバ17における投光用光ファイバ素線10の先端部より投光された光13が、検出領域4に存在する被検出体5により反射され、この反射光13aが上記反射型光ファイバセンサ8の受光部としての平行型光ファイバ17における受光用光ファイバ素線12の先端部へ受光されるようになるときの光の経路上で、投光される光13及び被検出体5による反射光13aのいずれも窓を通ることがなくなると共に、検出領域4と窓の間の空間部を通過することもなくなる。このため、図4に示した実施の形態と同様の効果を得ることができる。   Therefore, also in the present embodiment, the presence or absence of the detection object 5 in the detection region 4 in the quartz box 1 that is in a clean environment and in a high temperature environment is detected by the photodetector of the sensor body via the optical fiber 12 for light reception. Can be detected based on the change in the amount of received light detected at. At this time, the light 13 projected from the tip of the projecting optical fiber 10 in the parallel optical fiber 17 serving as the projecting unit of the reflective optical fiber sensor 8 is present in the detection region 4. The reflected light 13a is reflected by the body 5, and the reflected light 13a is received by the tip of the light receiving optical fiber 12 in the parallel optical fiber 17 as the light receiving portion of the reflective optical fiber sensor 8. On the path, the projected light 13 and the reflected light 13a from the detected object 5 do not pass through the window, and do not pass through the space between the detection region 4 and the window. For this reason, the effect similar to embodiment shown in FIG. 4 can be acquired.

次に、図6は図5に示した実施の形態の応用例を示すもので、図5に示したと同様の構成において、投受光共用の石英ガラス部材3cを、アニール炉の石英ボックス1の一側壁1aの炉内側に、所要の検出領域4の近傍まで突出するように配設してなる構成に代えて、上記石英ボックス1内にて加熱処理すべきシリコン膜付ガラス基板のような被検出体5を所要高さ位置に保持するために、炉底部に立設するようにしてあるワーク支持用の石英ピン18のうちの1本を石英ガラス部材として利用できるようにしたものである。   Next, FIG. 6 shows an application example of the embodiment shown in FIG. 5. In a configuration similar to that shown in FIG. 5, a quartz glass member 3c used for both light transmission and reception is attached to a quartz box 1 of an annealing furnace. Instead of a configuration in which the side wall 1a is disposed inside the furnace so as to protrude to the vicinity of the required detection region 4, a detection target such as a glass substrate with a silicon film to be heat-treated in the quartz box 1 is provided. In order to hold the body 5 at a required height position, one of the quartz pins 18 for supporting a workpiece, which is erected on the bottom of the furnace, can be used as a quartz glass member.

すなわち、石英ボックス1の底板1bの所要位置、すなわち、該底板1b上に、被検出体5の四隅部や、四隅部と中央部等に対応するよう所要の配置で立設するようにしてあるワーク支持用の石英ピン18の配列に合わせた、たとえば、被検出体5の中央部と対応する位置に、開口部2を設け、該開口部2に、図5に示したと同様に、炉内外方向に貫通するようパイプ状の結合用部材6を取り付ける。該結合用部材6の炉内側となる上端側には、上端が他の石英ピン18と同様の高さ位置に達する細長い円柱状として、上下両端面を円柱軸方向に直角な平面に研摩してある石英ガラス部材3dの下端部を挿入して、該石英ガラス部材3dを保持させるようにすると共に、上記結合用部材6の炉外側となる下端側に、図5に示したと同様に、投光用及び受光用の各光ファイバ素線10,12の先端面が軸心方向と直角な平面となるよう研摩してある平行型光ファイバ17の先端部を挿入配置して、上記結合用部材6の上下方向の中間部の内側にて、上記石英ガラス部材3dの下端面に、上記平行型光ファイバ17の投光用及び受光用の各光ファイバ素線10,12の先端面(上端面)を面接触させた状態にて、上記結合用部材6の内側に、上記石英ガラス部材3dの下端部と上記平行型光ファイバ17の先端部とを固定するようにしたものである。   That is, a required position of the bottom plate 1b of the quartz box 1, that is, on the bottom plate 1b, is erected on the bottom plate 1b in a required arrangement so as to correspond to the four corners, the four corners and the center, and the like. For example, an opening 2 is provided at a position corresponding to the center portion of the detection object 5 in accordance with the arrangement of the quartz pins 18 for supporting the workpiece, and the opening 2 is provided inside and outside the furnace in the same manner as shown in FIG. A pipe-shaped coupling member 6 is attached so as to penetrate in the direction. On the upper end side, which is the inside of the furnace of the coupling member 6, the upper and lower end surfaces are polished in a plane perpendicular to the cylinder axis direction, with the upper end reaching the same height position as the other quartz pins 18. A lower end portion of a certain quartz glass member 3d is inserted to hold the quartz glass member 3d, and light is projected onto the lower end side, which is the outside of the furnace of the coupling member 6, as shown in FIG. The distal end portion of the parallel optical fiber 17 polished so that the distal end surface of each of the optical fiber strands 10 and 12 for receiving and receiving becomes a plane perpendicular to the axial direction is inserted and arranged, and the coupling member 6 Of the optical fiber strands 10 and 12 for projecting and receiving light of the parallel optical fiber 17 on the lower end surface of the quartz glass member 3d on the inner side in the vertical direction. In the surface contact state, the inside of the coupling member 6 The lower end of the quartz glass member 3d and is obtained so as to fix the tip end portion of the parallel optical fiber 17.

本実施の形態では、被検出体5は、石英ガラス部材3dの上側に載置されて支持されることとなるため、上記被検出体5の有無を検出すべき検出領域4は、上記石英ガラス部材3dの直上位置となる。その他の構成は図5に示したものと同様であり、同一のものには同一符号が付してある。   In the present embodiment, the detection object 5 is placed and supported on the upper side of the quartz glass member 3d. Therefore, the detection region 4 for detecting the presence or absence of the detection object 5 is the quartz glass. The position is directly above the member 3d. Other configurations are the same as those shown in FIG. 5, and the same components are denoted by the same reference numerals.

本実施の形態においても上記実施の形態と同様な効果を得ることができ、更に、上記石英ガラス部材3dを、他の石英ピン18と同様に、石英ボックス1内にて加熱処理すべき被検出体5を支持するための支持用の部材として利用することができる。このように、石英ガラス部材3dの上側に被検出体5を支持させる場合には、該石英ガラス部材3dの上端面(先端面)と被検出体5を接触状態とさせることができるため、石英ガラス部材3dの先端面より検出領域4へ投光される光13、及び、該検出領域4に存在する被検出体5により反射されて石英ガラス部材3dの上端面に受光されることとなる反射光13aが空間部を通過するときの光路を更に短縮させることが可能になる。   In the present embodiment, the same effect as in the above embodiment can be obtained, and furthermore, the quartz glass member 3d is to be detected in the quartz box 1 in the same manner as the other quartz pins 18. It can be used as a supporting member for supporting the body 5. As described above, when the object to be detected 5 is supported on the upper side of the quartz glass member 3d, the upper end surface (tip surface) of the quartz glass member 3d and the object to be detected 5 can be brought into contact with each other. The light 13 projected from the front end surface of the glass member 3d to the detection region 4 and the reflection reflected by the detection target 5 existing in the detection region 4 and received by the upper end surface of the quartz glass member 3d. It is possible to further shorten the optical path when the light 13a passes through the space.

次いで、図7は本発明の実施の更に他の形態として、図5に示した実施の形態の変形例を示すもので、図5に示したアニール炉の石英ボックス1の側壁1aの内側における光導波部材を石英ガラス部材3cとする構成に代えて、図5に示したと同様の投受光共用の平行型光ファイバ17の被覆17aを剥離して露出させた投光用及び受光用の光ファイバ素線10,12を光導波部材として用いるようにしたものである。   Next, FIG. 7 shows a modified example of the embodiment shown in FIG. 5 as still another embodiment of the present invention. The light beam inside the side wall 1a of the quartz box 1 of the annealing furnace shown in FIG. In place of the configuration in which the wave member is the quartz glass member 3c, the light projecting and receiving optical fiber elements in which the coating 17a of the parallel optical fiber 17 for both projecting and receiving light similar to that shown in FIG. The wires 10 and 12 are used as optical waveguide members.

具体的には、上記石英ボックス1の側壁面に、図5に示したと同様に開口部2を設け、該開口部2に、たとえば、セラミックやガラス等、金属汚染や発塵を生じない耐熱材料により形成した取付部材19を嵌合して取り付けるようにする。該取付部材19の炉外側となる一側面には、上記平行型光ファイバ17の径とほぼ同様の直径とし、且つ所要の深さ寸法を有するファイバ取付用凹部20を設け、該ファイバ取付用凹部20の内底面に、上記平行型光ファイバ17の投光用及び受光用の各光ファイバ素線10,12を挿通させるようにするファイバ素線挿通孔21a,21bを穿設する。   Specifically, an opening 2 is provided on the side wall surface of the quartz box 1 in the same manner as shown in FIG. 5, and the opening 2 has a heat resistant material that does not cause metal contamination or dust generation, such as ceramic or glass. The attachment member 19 formed by the above is fitted and attached. A fiber mounting recess 20 having a diameter substantially the same as the diameter of the parallel optical fiber 17 and having a required depth is provided on one side surface of the mounting member 19 which is the outside of the furnace. Fiber strand insertion holes 21a and 21b through which the optical fiber strands 10 and 12 for projecting and receiving light of the parallel optical fiber 17 are inserted are formed in the inner bottom surface of the optical fiber 20.

上記平行型光ファイバ17は、投光用及び受光用の各光ファイバ素線10,12を石英ガラス製としてあり、先端部の被覆17aを除去することにより、上記投光用及び受光用の各光ファイバ素線10,12を所要の長さ寸法に亘り露出させるようにしてある。該平行型光ファイバ17の各光ファイバ素線10,12の先端部の被覆17aを除去した部分は、それぞれ上記取付部材19のファイバ素線挿通孔21a,21bに挿通させて石英ボックス1の内部に挿入して位置させ、上記平行型光ファイバ17の被覆17aの先端部を、取付部材19のファイバ取付用凹部20に嵌合させて固定させるようにしてある。更に、上記平行型光ファイバ17の被覆17aの先端部が取り付けてある上記取付部材19を、上記石英ボックス1の一側壁1aの開口部2に嵌合させて取り付けることにより、上記取付部材19のファイバ素線挿通孔21a,21bを通して炉内側へ突出する上記投光用及び受光用の各光ファイバ素線10,12の先端面が、石英ボックス1の内部の所要の検出領域4の近傍位置に達すると共に、該検出領域4に臨んで配置されるようにしてある。   The parallel optical fiber 17 is made of quartz glass for the optical fiber wires 10 and 12 for projecting and receiving light, and by removing the coating 17a at the tip, each of the projecting and receiving optical fibers 17 and 12 is made. The optical fiber strands 10 and 12 are exposed over a required length. The portions of the parallel optical fiber 17 from which the coatings 17a of the optical fiber strands 10 and 12 are removed are inserted into the fiber strand insertion holes 21a and 21b of the mounting member 19, respectively. The distal end portion of the coating 17a of the parallel optical fiber 17 is fitted into the fiber mounting recess 20 of the mounting member 19 and fixed. Further, the attachment member 19 to which the tip of the coating 17a of the parallel optical fiber 17 is attached is fitted into the opening 2 of the one side wall 1a of the quartz box 1, thereby attaching the attachment member 19 to the attachment member 19. The front end surfaces of the light projecting and receiving optical fiber strands 10 and 12 projecting into the furnace through the fiber strand insertion holes 21a and 21b are positioned in the vicinity of the required detection region 4 inside the quartz box 1. And reaches the detection area 4.

その他の構成は図5に示したものと同様であり、同一のものには同一符号が付してある。   Other configurations are the same as those shown in FIG. 5, and the same components are denoted by the same reference numerals.

本実施の形態によれば、センサ本体の光源より投光用光ファイバ素線10を経て石英ボックス1の一側壁1a位置まで導かれる光13は、石英ボックス1内に被覆17aを除去された状態で配置されている上記投光用光ファイバ素線10によりそのまま継続して該投光用光ファイバ素線10の先端面が位置している検出領域4の近傍まで伝搬された後、該投光用光ファイバ素線10の先端面(投光面)より上記検出領域4へ向けて投光される。上記検出領域4に被検出体5が存在して該被検出体5により反射光13aが生じるときには、該反射光13aは、石英ボックス1内に被覆17aを除去された状態で配置されている受光用光ファイバ素線12の先端面(受光面)に、上記検出領域4の近傍位置にて受光され、該受光用光ファイバ素線12を通して、石英ボックス1の外方へ導かれた後、そのまま、センサ本体の光検出部へ導かれるようになる。   According to the present embodiment, the light 13 guided from the light source of the sensor body through the light projecting optical fiber 10 to the position of the one side wall 1a of the quartz box 1 has the coating 17a removed in the quartz box 1. Then, the light is continuously propagated to the vicinity of the detection region 4 where the distal end surface of the light projecting optical fiber 10 is located by the light projecting optical fiber 10 arranged in the step, and then the light is projected. Light is projected toward the detection region 4 from the front end surface (light projecting surface) of the optical fiber strand 10 for use. When the detection object 5 exists in the detection area 4 and the reflected light 13a is generated by the detection object 5, the reflected light 13a is received in the quartz box 1 with the coating 17a removed. Light is received at the front end surface (light receiving surface) of the optical fiber strand 12 for use at a position near the detection region 4, guided to the outside of the quartz box 1 through the optical fiber strand 12 for light reception, and as it is. Then, the light is guided to the light detection unit of the sensor body.

したがって、本実施の形態によっても、図5に示した実施の形態と同様に、清浄環境で且つ高温環境下となる石英ボックス1内の検出領域4における被検出体5の有無を、受光用光ファイバ素線12を経てセンサ本体の光検出器にて検出される受光量の変化に基づいて検出することができる。   Therefore, also in the present embodiment, as in the embodiment shown in FIG. 5, the presence or absence of the detection object 5 in the detection region 4 in the quartz box 1 in a clean environment and in a high temperature environment is determined by the light for receiving light. Detection is possible based on a change in the amount of received light detected by the photodetector of the sensor body through the fiber strand 12.

しかも、取付部材19に、ファイバ素線挿通孔21a,21bを設けて、投光用及び受光用の各光ファイバ素線10,12のみを挿通させるようにしてあるため、石英ボックス1内に、上記平行型光ファイバ17の被覆17aが露出されることはない。このために、本実施の形態によっても、図5に示した実施の形態と同様に、清浄環境で且つ高温環境下の検出領域4における被検出体5の有無の検出を精度よく行うことができる。更には、図5に示した如き光導波部材としての石英ガラス部材3cを、別途用意する必要をなくすことができて、コストの削減化を図る上で有利なものとすることが可能になる。   Moreover, since the fiber strand insertion holes 21a and 21b are provided in the mounting member 19 so that only the optical fiber strands 10 and 12 for light projection and light reception are inserted, The coating 17a of the parallel optical fiber 17 is not exposed. For this reason, also in the present embodiment, as in the embodiment shown in FIG. 5, it is possible to accurately detect the presence or absence of the detection target 5 in the detection region 4 in a clean environment and in a high temperature environment. . Further, it is possible to eliminate the necessity of separately preparing a quartz glass member 3c as an optical waveguide member as shown in FIG. 5, and it is possible to make it advantageous for cost reduction.

なお、上記においては、石英ボックス1の一側壁1aに、開口部2を設けて、該開口部2に、ファイバ取付用凹部20と光ファイバ素線挿通孔21a,21bを備えた取付部材19を介して平行型光ファイバ17の先端部を取り付けるものとして示したが、上記石英ボックス1の一側壁1aの外面に、上記取付部材19に設けたと同様に内底面にファイバ素線挿通孔21a,21bを備えてなるファイバ取付用凹部20を直接設けて、該ファイバ取付用凹部20に、先端部の被覆17aを除去して投光用及び受光用の各光ファイバ素線10,12を所要長さに亘り露出させてなる平行型光ファイバ17の先端部を、直接取り付けるようにしてもよい。   In the above description, the opening 2 is provided in one side wall 1a of the quartz box 1, and the mounting member 19 having the fiber mounting recess 20 and the optical fiber strand insertion holes 21a and 21b in the opening 2 is provided. It is shown that the tip of the parallel optical fiber 17 is attached to the fiber, but the fiber strand insertion holes 21a and 21b are provided on the inner bottom surface on the outer surface of the one side wall 1a of the quartz box 1 in the same manner as the attachment member 19 is provided. The fiber mounting recess 20 is directly provided, and the fiber mounting recess 20 is stripped of the coating 17a at the tip, and the optical fiber strands 10 and 12 for projecting and receiving light have the required length. You may make it attach directly the front-end | tip part of the parallel type optical fiber 17 exposed over.

図8は本発明の実施の更に他の形態として、図5に示した実施の形態の別の変形例を示すもので、図5に示したアニール炉の石英ボックス1の一側壁1aの内側における光導波部材を、細長い円柱形状の石英ガラス部材3cとする構成に代えて、細長い円筒形状の中空導波部材22を光導波部材として用いるようにしたものである。   FIG. 8 shows another modified example of the embodiment shown in FIG. 5 as still another embodiment of the present invention. In the inner side of one side wall 1a of the quartz box 1 of the annealing furnace shown in FIG. Instead of the configuration in which the optical waveguide member is an elongated cylindrical quartz glass member 3c, an elongated cylindrical hollow waveguide member 22 is used as the optical waveguide member.

すなわち、図5に示したと同様に、上記石英ボックス側壁1aの所要個所に、開口部2を設け、該開口部2に、外径を上記開口部2の内径と同じ大きさとし且つ内径を上記平行型光ファイバ17の外径と同じ寸法として所要の長さのパイプ形状に形成した結合用部材6を挿入して、該結合用部材6の軸心方向両端部が炉内外方向にそれぞれ所要寸法ずつ突出するようにして、上記開口部2に固定させるようにする。   That is, as shown in FIG. 5, an opening 2 is provided at a required portion of the quartz box side wall 1a, the outer diameter of the opening 2 is the same as the inner diameter of the opening 2, and the inner diameter is parallel to the parallel. The connecting member 6 formed in a pipe shape having a required length and the same size as the outer diameter of the mold optical fiber 17 is inserted, and both end portions in the axial center direction of the connecting member 6 are respectively required in the inside and outside of the furnace. It protrudes so as to be fixed to the opening 2.

上記中空導波部材22は、上記石英ガラス部材3cと同様に、高温耐性を備え、且つ金属汚染の虞がなくて発塵性の低い材質製、たとえば、石英ガラス製としてあり、更に、上記平行型光ファイバ17と同様の外径を有する細長い円筒形状としてあり、内壁面を光の反射面として機能させることにより、片方の端部より内部空間へ入射した光を、内壁面における反射を利用しながら該内部空間を通して他方の端部まで低損失で導くことができるようにしてある。更に、上記中空導波部材22は、先端の開口部が、石英ボックス1の内部の所要の検出領域4の近傍位置に達すると共に、該検出領域4に臨むよう配置させた状態にて、該中空導波部材22の基端部を、上記結合用部材6における炉内側への突出部分の内側に挿入して保持させるようにする。   Similar to the quartz glass member 3c, the hollow waveguide member 22 is made of a material having high temperature resistance and no risk of metal contamination and low dusting property, for example, quartz glass. The optical fiber 17 has an elongated cylindrical shape having the same outer diameter. By making the inner wall surface function as a light reflecting surface, the light incident on the inner space from one end can be reflected on the inner wall surface. However, it is possible to guide the other end through the internal space with low loss. Further, the hollow waveguide member 22 has the opening at the tip reaching the position near the required detection region 4 inside the quartz box 1 and is disposed so as to face the detection region 4. The base end portion of the waveguide member 22 is inserted and held inside the protruding portion of the coupling member 6 toward the furnace inside.

上記平行型光ファイバ17は、上記のように投光用及び受光用の各光ファイバ素線10,12を石英ガラス製としてあり、上記中空導波部材22の基端側の開口部に被覆17aが露出されないようにするために、先端部分の被覆17aを所要寸法に亘り除去して、上記投光用及び受光用の各光ファイバ素線10,12の先端部をそれぞれ短く露出(突出)させ、該光ファイバ素線10,12の先端部露出部に遮蔽部材23を配置するようにする。該遮蔽部材23は、たとえば、石英ガラスやセラミックス等、高温耐性を備え、且つ金属汚染の虞がなくて発塵性の低い材質により形成した上記平行型光ファイバ17と同様の外径を有する円盤状の上記各光ファイバ素線10,12と対応する個所に、それぞれファイバ素線挿通孔24a,24bを穿設してなる構成としてあり、該遮蔽部材23に設けてある各ファイバ素線挿通孔24a,24bに、上記平行型光ファイバ17の先端部の被覆17aが除去されている上記各光ファイバ素線10,12の突出部分をそれぞれ嵌合させるようにする。これにより、上記平行型光ファイバ17の先端部における被覆17aの先端面側を、上記遮蔽部材23によって覆うことができるようにすると共に、上記各光ファイバ素線10,12の先端部は、上記遮蔽部材23の各ファイバ素線挿通孔24a,24bを通して露出させることができるようにしてある。   In the parallel optical fiber 17, the light projecting and light receiving optical fibers 10, 12 are made of quartz glass as described above, and the opening 17 on the base end side of the hollow waveguide member 22 is covered with 17 a. In order to prevent the exposure, the coating 17a of the tip portion is removed over a required dimension, and the tip portions of the light projecting and receiving optical fiber strands 10 and 12 are exposed (projected) short, respectively. The shielding member 23 is disposed on the exposed end portion of the optical fiber strands 10 and 12. The shielding member 23 is a disk having an outer diameter similar to that of the parallel optical fiber 17 formed of a material having high temperature resistance such as quartz glass and ceramics and having no risk of metal contamination and low dust generation. Fiber strand insertion holes 24a and 24b are formed at locations corresponding to the optical fiber strands 10 and 12, respectively, and each fiber strand insertion hole provided in the shielding member 23 is formed. The protruding portions of the optical fiber strands 10 and 12 from which the coating 17a at the tip end portion of the parallel optical fiber 17 is removed are fitted into 24a and 24b, respectively. Thus, the tip surface side of the coating 17a at the tip portion of the parallel optical fiber 17 can be covered with the shielding member 23, and the tip portions of the optical fiber strands 10 and 12 are It can be exposed through the fiber strand insertion holes 24a, 24b of the shielding member 23.

上記構成としてあるので、上記結合用部材6における炉外側への突出部分に、先端側に上記遮蔽部材23を取り付けた状態の上記平行型光ファイバ17の先端部を挿入して、該平行型光ファイバ17の先端部を結合用部材6に保持させるようにすると共に、上記結合用部材6の中間部内側にて、上記投光用及び受光用の各光ファイバ素線10,12の先端面が、上記中空導波部材22の基端側の開口部の内側に露出されるようにし、上記結合用部材6の内側に、上記中空導波部材22の基端部と上記平行型光ファイバ17の先端部とを固定するようにしてある。   Since it has the above configuration, the tip of the parallel optical fiber 17 with the shielding member 23 attached to the tip is inserted into the protruding portion of the coupling member 6 toward the outside of the furnace. The tip end of the fiber 17 is held by the coupling member 6, and the tip surfaces of the light projecting and receiving optical fiber strands 10 and 12 are located inside the coupling member 6. The hollow waveguide member 22 is exposed to the inside of the opening on the proximal end side, and the proximal end portion of the hollow waveguide member 22 and the parallel optical fiber 17 are disposed inside the coupling member 6. The tip is fixed.

その他の構成は図5に示したものと同様であり、同一のものには同一符号が付してある。   Other configurations are the same as those shown in FIG. 5, and the same components are denoted by the same reference numerals.

本実施の形態によれば、センサ本体の光源より投光用光ファイバ素線10を経て石英ボックス1の側壁1a位置まで導かれる光13は、上記投光用光ファイバ素線10の先端部より投光されて、上記中空導波部材22の内部空間へ基端側開口部を通して入射される。この中空導波部材22の内部空間へ入射された光13は、該中空導波部材22の内壁面における反射を利用して、上記内部空間内を軸心方向の先端側へ低損失で伝搬された後、該内部空間の先端側の開口部より、上記検出領域4へ向けて投光される。上記検出領域4に被検出体5が存在して該被検出体5により反射光13aが生じるときには、該反射光13aは、上記検出領域4の近傍位置にて上記中空導波部材22の内部空間へ、先端側開口部を通して入射される。この中空導波部材22の内部空間へ先端側より入射された上記披検出体5による反射光13aは、該中空導波部材22の内壁面における反射を利用して、上記内部空間内を軸心方向の基端側へ低損失で伝搬された後、該内部空間の基端側の開口部に露出されている平行型光ファイバ17の受光用光ファイバ素線12の先端面へ受光され、該受光用光ファイバ素線12を経てセンサ本体の光検出部へ導かれて検出されるようになる。   According to the present embodiment, the light 13 guided from the light source of the sensor body through the light projecting optical fiber 10 to the side wall 1a position of the quartz box 1 is transmitted from the tip of the light projecting optical fiber 10. The light is projected and enters the internal space of the hollow waveguide member 22 through the proximal end side opening. The light 13 incident on the internal space of the hollow waveguide member 22 is propagated through the internal space to the tip end side in the axial direction with low loss using reflection on the inner wall surface of the hollow waveguide member 22. After that, light is projected toward the detection region 4 from the opening on the front end side of the internal space. When the detection object 5 is present in the detection area 4 and the reflected light 13a is generated by the detection object 5, the reflected light 13a is transmitted to the internal space of the hollow waveguide member 22 at a position near the detection area 4. Is incident through the opening on the tip side. The reflected light 13a incident on the inner space of the hollow waveguide member 22 from the front end side is reflected in the inner wall surface of the hollow waveguide member 22 and is axially centered in the inner space. Is transmitted to the base end side in the direction with low loss, and then received by the front end surface of the light receiving optical fiber 12 of the parallel optical fiber 17 exposed at the opening on the base end side of the internal space, The light is detected by being guided to the light detection portion of the sensor body through the light receiving optical fiber 12.

したがって、本実施の形態によっても、図5に示した実施の形態と同様に、清浄環境で且つ高温環境下となる石英ボックス1内の検出領域4における被検出体5の有無を、受光用光ファイバ素線12を経てセンサ本体の光検出器にて検出される受光量の変化に基づいて検出することができて、図5に示したと同様の効果を得ることができる。   Therefore, also in the present embodiment, as in the embodiment shown in FIG. 5, the presence or absence of the detection object 5 in the detection region 4 in the quartz box 1 in a clean environment and in a high temperature environment is determined as the light for receiving light. Detection can be performed based on a change in the amount of received light detected by the photodetector of the sensor body via the fiber strand 12, and the same effect as shown in FIG. 5 can be obtained.

ところで、上記図1、図2、図3、図4(イ)(ロ)、図5、図6、図7、図8にそれぞれ示した実施の形態は、いずれも、反射型光ファイバセンサ8を用いて、受光用光ファイバ素線12を経てセンサ本体の光検出器にて検出される光量が、検出領域4に被検出体5が存在しないときには、バックグラウンドの光のみの受光量であるのに対し、検出領域4に被検出体5が存在するときには、上記バックグラウンドの光に上記被検出体5による反射光13aが加算された受光量になる、という原理に基づいて、上記検出領域4における被検出体5の有無を、受光用光ファイバ素線12を経てセンサ本体の光検出器にて検出される受光量の変化に基づいて検出するものとして示したが、上記被検出体5による反射光13aの光量は、該被検出体5に対し近接している個所では大きな光量として受光でき、上記被検出体5より離隔するにしたがって受光可能な光量が小さくなる、ということに鑑みて、上記センサ本体の光検出器にて検出される受光量の増減に基づいて、上記検出領域4にて、上記反射型光ファイバセンサ8の投光部及び受光部を設置した個所に対する被検出体5の近接、離反方向の挙動を検出させるようにしてもよい。   By the way, in each of the embodiments shown in FIGS. 1, 2, 3, 4 (A), (B), 5, 6, 7, and 8, the reflective optical fiber sensor 8 is used. When the detected object 5 does not exist in the detection region 4, the amount of light detected by the photodetector of the sensor main body through the light receiving optical fiber 12 is the amount of light received only in the background. On the other hand, based on the principle that when the detection object 5 is present in the detection area 4, the received light amount is obtained by adding the reflected light 13 a from the detection object 5 to the background light. 4 indicates that the presence or absence of the detected object 5 is detected based on a change in the amount of received light detected by the photodetector of the sensor body via the light receiving optical fiber 12. The amount of the reflected light 13a produced by the In view of the fact that light can be received as a large amount of light at locations close to each other and the amount of light that can be received decreases as the distance from the detection object 5 increases, the light is detected by the photodetector of the sensor body. Based on the increase / decrease in the amount of received light, the detection region 4 is made to detect the behavior of the detected object 5 in the proximity and separation direction with respect to the place where the light projecting unit and the light receiving unit of the reflective optical fiber sensor 8 are installed. May be.

すなわち、たとえば、アニール炉の石英ボックス1内の検出領域4に、被検出体5が一方より搬入、搬出されるようにしてある場合、該検出領域4を挟んで上記被検出体5の搬入、搬出側と対向する側となる他方側に、上記反射型光ファイバセンサ8の投光部及び受光部を、いずれか一方又は双方に光導波部材を介在させた状態で配設してなる構成として、上記被検出体5が検出領域4へ搬入されるときには、上記反射型光ファイバセンサ8の投光部及び受光部に対し被検出体5が次第に近接する一方、上記被検出体5が検出領域4より搬出されるときには、上記反射型光ファイバセンサ8の投光部及び受光部より被検出体5が次第に離隔するようにした状態において、上記受光部にて受光される検出領域4の被検出体5による反射光13aの光量が、所定のしきい値を上回ると、上記被検出体5が受光部に対し或る距離よりも近接した位置に存在すると判断し、又、上記所定のしきい値を下回ると、上記被検出体5が受光部に対し上記した或る距離よりも離隔した位置に存在すると判断することによって、上記被検出体5が受光部に対し上記或る距離よりも近接したか否かを判定することによって、上記被検出体5の挙動の検出に用いるようにしてもよい。更には、予め、大小異なる複数のしきい値を設定しておくことにより、被検出体5の受光部との位置関係を、上記と同様にして或る距離を基準として該距離よりも近接しているか又は離隔しているかを判断するときの基準となる距離を複数設定して、被検出体5の反射光13aの光量を、上記複数設定してある各しきい値ごとに上回っているか否かをそれぞれ判定することによって、被検出体5と受光部との位置関係を、複数の距離レベルを基準として検出できるようにし、この検出される距離レベルの変化に基づいて、上記被検出体5の受光部に対する近接、離隔方向の挙動を検出するようにしてもよい。   That is, for example, when the detection object 5 is carried into and out of the detection region 4 in the quartz box 1 of the annealing furnace, the detection object 5 is carried in between the detection region 4, As a configuration in which the light projecting portion and the light receiving portion of the reflection type optical fiber sensor 8 are disposed on the other side, which is the side facing the carry-out side, with an optical waveguide member interposed between one or both of them. When the detected object 5 is carried into the detection area 4, the detected object 5 gradually approaches the light projecting part and the light receiving part of the reflective optical fiber sensor 8, while the detected object 5 is in the detection area. 4, when the detection object 5 is gradually separated from the light projecting part and the light receiving part of the reflective optical fiber sensor 8, the detection area 4 detected by the light receiving part is detected. Reflected light 13a by the body 5 When the amount of light exceeds a predetermined threshold value, it is determined that the detection object 5 is present at a position closer to the light receiving unit than a certain distance. By determining that the detection body 5 exists at a position separated from the light receiving unit by a certain distance, it is determined whether or not the detection object 5 is closer to the light receiving unit than the certain distance. Thus, the detection target 5 may be used for detecting the behavior. Furthermore, by setting a plurality of threshold values that are different in size in advance, the positional relationship with the light receiving unit of the detected object 5 is made closer to the distance on the basis of a certain distance in the same manner as described above. Whether or not the light quantity of the reflected light 13a of the detected object 5 exceeds each of the set threshold values. By determining each of these, the positional relationship between the detected object 5 and the light receiving unit can be detected based on a plurality of distance levels, and the detected object 5 is based on the detected change in distance level. You may make it detect the approach of the proximity | contact with respect to a light-receiving part, and the separation direction.

更には、上記反射型光ファイバセンサ8の投光部より、所定周波数の単色光を投光させるようにし、この状態にて、受光部にて受光される被検出体5による反射光13aの上記投光した光からの周波数変化を検出することにより、上記反射型光ファイバセンサの投光部及び受光部の設置個所に対する上記被検出体5の近接方向もしくは離隔方向の挙動を検出させるようにすることも可能である。   Further, monochromatic light having a predetermined frequency is projected from the light projecting unit of the reflective optical fiber sensor 8, and in this state, the reflected light 13a received by the detected body 5 received by the light receiving unit is described above. By detecting a change in frequency from the projected light, it is possible to detect the behavior of the detected object 5 in the proximity direction or the separation direction with respect to the projecting portion and the light receiving portion of the reflective optical fiber sensor. It is also possible.

図9は本発明の実施の更に他の形態として、光センサとして投光部と受光部を別体式としてある透過型の光ファイバセンサ8aを用いてセンシングを行う場合を示すものである。   FIG. 9 shows a case where sensing is performed using a transmission type optical fiber sensor 8a having a light projecting part and a light receiving part as separate optical sensors as still another embodiment of the present invention.

すなわち、アニール炉の石英ボックス1の前後方向又は左右方向に対向する側壁、あるいは、天井壁と床板(図では図上左右方向の側壁1aとして示してある)における、石英ボックス1内に設定される所要の検出領域4を挟んで対向する2個所に、開口部2をそれぞれ設け、該各開口部2に、図3に示した結合用部材6a,6bと同様のパイプ状の結合用部材6a,6bをそれぞれ取り付けると共に、該各結合用部材6a,6bの炉内側の突出部に、先端部が上記検出領域4の近傍位置に達するようにしてある図3に示したと同様の石英ガラス部材3a,3bの基端側を、それぞれ個別に挿入して配置した構成とする。   That is, it is set in the quartz box 1 on the side wall facing the front-rear direction or the left-right direction of the quartz box 1 of the annealing furnace, or on the ceiling wall and the floor plate (shown as the side wall 1a in the left-right direction in the drawing). Openings 2 are respectively provided at two locations facing each other with a required detection region 4 interposed therebetween, and pipe-like coupling members 6a, 6b similar to the coupling members 6a, 6b shown in FIG. 6b, and a quartz glass member 3a similar to that shown in FIG. 3 with the tip portion reaching the position in the vicinity of the detection region 4 at the protrusion inside the furnace of each coupling member 6a, 6b. The base end side of 3b is set to be inserted and arranged individually.

更に、上記一方の結合用部材6aの炉外側の突出部には、外部の所要位置に設置してある透過型光ファイバセンサ8aにおけるセンサ本体(図示せず)の光源に基端側を接続してある投光用光ファイバ25の先端部を挿入して保持し、軸心方向に直角な平面となるように研摩してある投光部としての投光用光ファイバ素線26の先端面を上記結合用部材6aの中間部の内側にて、上記石英ガラス部材3aの基端面に面接触するようにしてあり、図3の場合と同様に、結合用部材6aの内側に、上記石英ガラス部材3aの基端部と、投光用光ファイバ25の先端部を共に固定するようにしてある。   Furthermore, the base end side is connected to the light source of the sensor main body (not shown) in the transmission type optical fiber sensor 8a installed in the external required position on the protrusion outside the furnace of the one coupling member 6a. The tip end surface of the light projecting optical fiber 25 is inserted and held as a light projecting portion which is polished so as to be a plane perpendicular to the axial direction. The inner surface of the coupling member 6a is in surface contact with the base end surface of the quartz glass member 3a, and the quartz glass member is disposed on the inner side of the coupling member 6a as in FIG. The base end portion 3a and the tip end portion of the light projecting optical fiber 25 are fixed together.

又、他方の結合用部材6bの炉外側の突出部には、上記センサ本体の光検出器に基端側を接続してある受光用光ファイバ27の先端部を挿入して保持し、先端面が軸心方向に直角な平面となるように研摩してある受光部としての受光用光ファイバ素線28の先端面を上記結合用部材6bの中間部の内側にて、上記石英ガラス部材3bの基端面に面接触するようにしてあり、上記と同様に結合用部材6bの内側に、上記石英ガラス部材3bの基端部と、受光用光ファイバ27の先端部を共に固定するようにしてある。これにより、上記各結合用部材6aと6bにそれぞれ取り付けられた各石英ガラス部材3aと3bの先端面同士が、検出領域4を挟んで向き合うようにしてある。   Further, the distal end portion of the light receiving optical fiber 27 having the proximal end connected to the photodetector of the sensor body is inserted and held in the projecting portion outside the furnace of the other coupling member 6b. The tip surface of the light receiving optical fiber 28 as a light receiving portion polished so as to be a plane perpendicular to the axial direction is inside the intermediate portion of the coupling member 6b, and the quartz glass member 3b. The base end face is brought into surface contact, and the base end portion of the quartz glass member 3b and the front end portion of the light receiving optical fiber 27 are fixed inside the coupling member 6b in the same manner as described above. . As a result, the tip surfaces of the quartz glass members 3a and 3b attached to the coupling members 6a and 6b face each other with the detection region 4 in between.

なお、図9における符号25aは上記投光用光ファイバ25の被覆を、又、27aは上記受光用光ファイバ27の被覆をそれぞれ示す。その他、図3に示したものと同一のものには同一符号が付してある。   In FIG. 9, reference numeral 25 a indicates the coating of the light projecting optical fiber 25, and 27 a indicates the coating of the light receiving optical fiber 27. Other components that are the same as those shown in FIG.

本実施の形態におけるセンシング装置により、石英ボックス1内の検出領域4における被検出体5の有無の検出を行う場合は、センサ本体の光源より投光用光ファイバ25を経て導かれる光13を、該投光用光ファイバ25の先端側に接続してある投光側の石英ガラス部材3aを通して石英ボックス1内へ導くと共に、該石英ガラス部材3aの有する高い光透過性と全反射を利用して光の損失を抑えながら上記石英ボックス1内の検出領域4の近傍位置となる上記石英ガラス部材3aの先端面(投光面)まで導いた後、該石英ガラス部材3aの投光面より検出領域4へ向けて投光させる。これにより、上記検出領域4に被検出体5が存在していないときには、上記検出領域4へ向けて投光された光は、該検出領域4を通過した後、検出領域4を間に挟んで上記投光側の石英ガラス部材3aと対向する位置で、且つ該検出領域4の近傍に配されている受光側の石英ガラス部材3bの先端面(受光面)にて受光され、この受光された光は、該石英ガラス部材3bの有する高い光透過性と全反射を利用して光の損失を抑えながら上記石英ボックス1の壁面に形成してある開口部2位置まで導かれた後、該受光側の石英ガラス部材3bの基端側に取り付けてある受光用光ファイバ27へ伝えられ、該受光用光ファイバ27を経てセンサ本体における光検出部へ伝えられて光量が検出されるようになる。   When the presence or absence of the detected object 5 in the detection region 4 in the quartz box 1 is detected by the sensing device in the present embodiment, the light 13 guided from the light source of the sensor body through the light projecting optical fiber 25 is The light is guided to the quartz box 1 through the quartz glass member 3a on the projection side connected to the tip side of the light projecting optical fiber 25, and the high light transmittance and total reflection of the quartz glass member 3a are utilized. After guiding to the tip surface (light projecting surface) of the quartz glass member 3a that is in the vicinity of the detection region 4 in the quartz box 1 while suppressing light loss, the detection region is detected from the light projecting surface of the quartz glass member 3a. Light is projected toward 4. As a result, when the detection target 5 is not present in the detection region 4, the light projected toward the detection region 4 passes through the detection region 4 and then sandwiches the detection region 4 therebetween. The light is received at the front end surface (light receiving surface) of the light receiving side quartz glass member 3b disposed in the vicinity of the light emitting side quartz glass member 3a and in the vicinity of the detection region 4. The light is guided to the position of the opening 2 formed in the wall surface of the quartz box 1 while suppressing the loss of light by utilizing the high light transmittance and total reflection of the quartz glass member 3b, and then the light reception. The light is transmitted to the light receiving optical fiber 27 attached to the base end side of the quartz glass member 3b on the side, and is transmitted to the light detection unit in the sensor body through the light receiving optical fiber 27 so that the light quantity is detected.

一方、上記検出領域4に、図9に二点鎖線で示す如く、被検出体5が存在しているときには、上記投光用光ファイバ25より投光側の石英ガラス部材3aを経て検出領域4の近傍位置まで導かれた後、該石英ガラス部材3aの投光面より検出領域4へ向けて投光される光13が、該検出領域4に存在する被検出体5により遮られたり、反射されたり、該被検出体5が半透明のものの場合には上記投光される光13の一部が吸収される。このため、上記受光側の石英ガラス部材3bの先端面(受光面)にて受光される光量が減少し、該石英ガラス部材3b、受光用光ファイバ27を経てセンサ本体の光検出器にて検出される光量が減少されるようになる。   On the other hand, as shown by a two-dot chain line in FIG. 9, when the detection object 5 exists in the detection region 4, the detection region 4 passes through the quartz glass member 3 a on the light projecting side from the light projecting optical fiber 25. Then, the light 13 projected from the projection surface of the quartz glass member 3a toward the detection region 4 is blocked or reflected by the detected object 5 existing in the detection region 4. When the detected object 5 is translucent, a part of the projected light 13 is absorbed. For this reason, the amount of light received by the tip surface (light receiving surface) of the quartz glass member 3b on the light receiving side is reduced, and is detected by the photodetector of the sensor body through the quartz glass member 3b and the light receiving optical fiber 27. The amount of light emitted is reduced.

したがって、該受光用光ファイバ27を経てセンサ本体の光検出器にて検出される受光量が、初期状態より減少しているか否かに基づいて、上記石英ボックス1内の検出領域4に、被検出体5が存在しているか否かを、従来の透過型光ファイバセンサと同様に検出することができるようになる。   Therefore, based on whether or not the amount of received light detected by the photodetector of the sensor main body via the light receiving optical fiber 27 is reduced from the initial state, the detection area 4 in the quartz box 1 is covered with the detection area 4. Whether or not the detector 5 is present can be detected in the same manner as a conventional transmission optical fiber sensor.

又、本実施の形態によっても、図3の実施の形態と同様に、石英ボックス1内には、石英ガラス部材3a,3bと、金属汚染や発塵を生じない耐熱材料製の結合用部材6a,6bのみが露出されるため、清浄で且つ高温環境となるアニール炉の石英ボックス1内に設定された検出領域4における被検出体5の有無を、上記清浄で且つ高温環境に何ら影響を与えることなく検出することができる。   Also in the present embodiment, as in the embodiment of FIG. 3, in the quartz box 1, quartz glass members 3a and 3b and a coupling member 6a made of a heat-resistant material that does not cause metal contamination and dust generation. , 6b is exposed, the presence or absence of the detection object 5 in the detection region 4 set in the quartz box 1 of the annealing furnace that is clean and in a high temperature environment has an influence on the clean and high temperature environment. Can be detected without any problem.

更に、上記投光用光ファイバ25より出力する光13を、投光側の石英ガラス部材3aを通して効率よく検出領域4の近傍まで導いて、該石英ガラス部材3aの先端面より検出領域4へ向けて投光できると共に、検出領域4を透過した光13を、該検出領域4の近傍位置となる受光側の石英ガラス部材3bの先端面で受光した後、効率よく受光用光ファイバ27の受光面まで導くことができるため、図3の実施の形態と同様に、投光側と受光側の光の経路上に窓が存在することはなく、したがって、上記検出領域4に被検出体5が存在するときと、存在しないときの光量の増減のレンジを拡大することができる。又、上記検出領域4に被検出体5が存在しているときには、受光側の石英ガラス部材3bの受光面となる先端面が、上記検出領域4の近傍に位置していることから、上記検出領域4にて光13を遮る被検出体5と、上記受光面との距離を接近させることができて、外乱の影響を受ける虞を抑制できて、S/Nを高めることができる。したがって、上記石英ボックス1内のような清浄環境で且つ高温環境にある検出領域4での被検出体5の有無の検出を、精度よく行うことが可能となる。   Further, the light 13 output from the light projecting optical fiber 25 is efficiently guided to the vicinity of the detection region 4 through the quartz glass member 3a on the light projecting side, and directed toward the detection region 4 from the tip surface of the quartz glass member 3a. After the light 13 transmitted through the detection region 4 is received by the tip surface of the quartz glass member 3b on the light receiving side that is in the vicinity of the detection region 4, the light receiving surface of the light receiving optical fiber 27 is efficiently received. As in the embodiment of FIG. 3, there is no window on the light path on the light emitting side and the light receiving side, and therefore the detected object 5 exists in the detection region 4. The range of increase / decrease in the amount of light when it is present and when it is not present can be expanded. When the detected object 5 is present in the detection region 4, the tip surface that is the light receiving surface of the quartz glass member 3b on the light receiving side is located in the vicinity of the detection region 4, so that the detection is performed. The distance between the detected object 5 that blocks the light 13 in the region 4 and the light receiving surface can be made closer, and the possibility of being affected by disturbance can be suppressed, and the S / N can be increased. Therefore, it is possible to accurately detect the presence or absence of the detection object 5 in the detection region 4 in a clean environment as in the quartz box 1 and in a high temperature environment.

図10は本発明の実施の更に他の形態を示すもので、図5と同様の構成において、光センサとして、反射型光ファイバセンサ8を用いることに代えて、反射回帰型の光ファイバセンサ8bを用いてセンシングを行う場合を示すものである。   FIG. 10 shows still another embodiment of the present invention. In the same configuration as in FIG. 5, instead of using the reflective optical fiber sensor 8 as the optical sensor, a reflective regression optical fiber sensor 8b is used. This shows a case where sensing is performed using.

すなわち、図5に示したと同様に、石英ボックス1の側壁1aに設けた開口部2に、石英ボックス1内の所要の検出領域へ向けて突出するよう配した投受光共用の石英ガラス部材3cの基端部と、該石英ガラス部材3cの基端部に対して投受光を行うための投受光共用の平行型光ファイバ17の先端部とを、結合用部材6を介して取り付けてなる構成において、上記石英ボックス1内にて、上記検出領域4を挟んで上記石英ガラス部材3cの先端面(投光面)と対向する位置に、ミラー状の反射板29を設ける。これにより、上記検出領域4に被検出体5が存在しないときには、上記図5の実施の形態で説明したと同様に、センサ本体の光源より上記平行型光ファイバ17の投光用光ファイバ素線10から、石英ガラス部材3cを経ることにより光の損失を抑えた状態にて上記検出領域4の近傍位置まで導いて、該石英ガラス部材3の投光面となる先端面より検出領域4へ向けて投光させる光13を、該検出領域4を通過させた後、上記反射板29にて反射させ、この反射光を再び検出領域4を通過させてから、上記石英ガラス部材3cの先端面に受光できるようにしてある。   That is, as shown in FIG. 5, the quartz glass member 3 c for both light and light used for light projection and reception is arranged in the opening 2 provided on the side wall 1 a of the quartz box 1 so as to protrude toward a required detection region in the quartz box 1. In a configuration in which a proximal end portion and a distal end portion of a parallel optical fiber 17 used for light projection and reception for performing light projection and reception with respect to the proximal end portion of the quartz glass member 3 c are attached via a coupling member 6. In the quartz box 1, a mirror-like reflecting plate 29 is provided at a position facing the tip surface (light projecting surface) of the quartz glass member 3 c with the detection region 4 interposed therebetween. Thus, when the detection object 5 does not exist in the detection region 4, the light projecting optical fiber strand of the parallel optical fiber 17 from the light source of the sensor body is the same as described in the embodiment of FIG. 10 through the quartz glass member 3c to a position near the detection region 4 in a state in which the loss of light is suppressed, and toward the detection region 4 from the tip surface serving as the light projection surface of the quartz glass member 3 The light 13 to be projected is allowed to pass through the detection region 4 and then reflected by the reflecting plate 29. The reflected light passes again through the detection region 4, and is then applied to the tip surface of the quartz glass member 3c. It is designed to receive light.

その他の構成は図5に示したものと同様であり、同一のものには同一符号が付してある。   Other configurations are the same as those shown in FIG. 5, and the same components are denoted by the same reference numerals.

したがって、本実施の形態によれば、図10に二点鎖線で示す如く、上記検出領域4に被検出体5が存在するようになると、上記検出領域4を通過していた光13及び反射板29による反射光が遮られて、受光量が減るようになるため、上記図9の透過型光ファイバセンサ8aを用いた場合と同様に、センサ本体の光検出器にて検出される受光量が、初期状態より減少しているか否かに基づいて、上記石英ボックス1内の検出領域4に、被検出体5が存在しているか否かを検出することができるようになる。このため、本実施の形態によっても、図5に示した実施の形態と同様の効果を得ることができる。   Therefore, according to the present embodiment, as shown by a two-dot chain line in FIG. 10, when the detection object 5 is present in the detection region 4, the light 13 and the reflector that have passed through the detection region 4. Since the light reflected by the light 29 is blocked and the amount of light received decreases, the amount of light received detected by the light detector of the sensor body is the same as in the case of using the transmission optical fiber sensor 8a of FIG. Whether or not the detected object 5 is present in the detection region 4 in the quartz box 1 can be detected based on whether or not it is decreased from the initial state. Therefore, the present embodiment can provide the same effects as those of the embodiment shown in FIG.

次に、被検出体5の有無を検出すべき検出領域4のおかれた内部環境が、光ファイバセンサによる外部からのセンシングでは光の損失が生じ易い環境、高温環境、清浄環境のうちのいずれか1つ、あるいは、2つの特徴を備えた環境である場合について説明する。この場合、図1、図2、図3、図4(イ)(ロ)、図5、図6、図7、図8、図9、図10の各実施の形態と同様の構成において、光導波部材を、高い光透過率を有する材質製のものとすれば、光ファイバセンサより検出領域4へ投光、受光する過程における光の損失を抑えることが期待でき、又、光導波部材を高温耐性を有する材質製のものとすれば、検出領域4の設定される内部環境が高温環境である場合に容易に適用でき、更に、光導波部材を金属汚染の虞がなく且つ発塵性の低い材質製のものとすれば、検出領域4の設定される内部環境が金属汚染及び発塵を防止すべき清浄環境である場合に容易に適用できる、という効果がそれぞれ得られることから、上記検出領域4のおかれる内部環境の特徴に応じて、上記光の高い透過率、高温耐性、発塵性が低いという特性のうちのいずれか1つあるいは2つの特性を備えた材質製の光導波部材を適宜選択して用いるようにすればよい。   Next, the internal environment in which the detection region 4 where the presence / absence of the detected object 5 is to be detected is one of an environment in which light loss is likely to occur when sensing from the outside using an optical fiber sensor, a high temperature environment, and a clean environment. A case where the environment has one or two features will be described. In this case, in the same structure as each embodiment of FIG. 1, FIG. 2, FIG. 3, FIG. 4 (A) (B), FIG. 5, FIG. 6, FIG. 7, FIG. If the wave member is made of a material having a high light transmittance, it can be expected that light loss in the process of projecting and receiving light from the optical fiber sensor to the detection region 4 can be suppressed, and the optical waveguide member can be heated at a high temperature. If it is made of a material having resistance, it can be easily applied when the internal environment in which the detection region 4 is set is a high temperature environment, and the optical waveguide member has no risk of metal contamination and low dust generation. If the material is made of a material, the detection area 4 can be easily applied when the internal environment in which the detection area 4 is set is a clean environment in which metal contamination and dust generation should be prevented. 4. High light transmittance and high according to the characteristics of the internal environment Resistance, it is sufficient to appropriately selected and used material made of optical waveguide member having any one or two characteristics of that characteristic is low dusting.

なお、本発明は上記した各実施の形態のみに限定されるものではない。たとえば、図1、図2、図3、図4(イ)(ロ)、図5、図6、図9、図10に示した各実施の形態においては、石英ガラス部材3,3a,3b,3c,3dの基端面と、光ファイバ9,11,17,25,27の光ファイバ素線10,12,26,28の先端面は、共に軸心方向に直角な平面となるように研摩して互いに面接触させるものとして説明したが、光ファイバ素線10,12,26,28と石英ガラス部材3,3a,3b,3c,3dにおける外部環境側の端部との間で光を伝搬するときに、所望の伝搬効率が得られれば、上記石英ガラス部材3,3a,3b,3c,3dにおける外部環境側の端部に、光ファイバ素線10,12,26,28の先端部を、多少の隙間が生じた状態で臨むように配置したり、あるいは、両者の接触面が多少平面となっていなくてもよい。又、図1、図2、図3、図5、図6、図8、図9、図10では、石英ボックス1に設けた開口部2に、石英ガラス部材3,3a,3b,3c,3dの基端部と、光ファイバ9,11,17,25,27の先端部とを、結合用部材6,6a,6bを介して一緒に取り付けるものとして示したが、石英ボックス1の内側に石英ガラス部材3,3a,3b,3c,3dのみが露出されるようにすれば、たとえば、石英ガラス部材3,3a,3b,3c,3dの外部環境側の端部となる基端部を、石英ボックス1の側壁1aや底板1b等の隔壁を貫通して多少外部に突出するように配置してもよく、更には、上記のように、石英ガラス部材3,3a,3b,3c,3dの基端部を石英ボックス1の側壁1aや底板1b等の隔壁を貫通して多少外部に突出するように配置させて、該石英ガラス部材3,3a,3b,3c,3dの基端部を、石英ボックス1の隔壁に直接取り付けるようにしてもよい。又、上記のように、石英ボックス1の側壁1aや底板1b等の隔壁を貫通して多少外部に突出するように配置させた石英ガラス部材3,3a,3b,3c,3dの基端部に、結合用部材6,6a,6bを省略して、光ファイバ9,11,17,25,27の先端部を直接取り付けるようにしてもよい。この場合、石英ガラス部材3,3a,3b,3c,3dの基端面に、光ファイバ9,11,17,25,27の光ファイバ素線10,12,26,28の先端面を、光ファイバ素線同士の接続に多く用いられている溶着により接続するようにしてもよい。更に、石英ガラス部材3,3a,3b,3c,3dは、単一の石英ガラス製のものとして、該石英ガラス部材3,3aの屈折率と、石英ボックス1の内部雰囲気との屈折率の差に基づいて、円柱側面における全反射を生じさせるものとして説明したが、軸心部に透明な石英ガラスによるコア部を備えると共に、その外周に、より屈折率の低いクラッド部を備えてなる構成として、該コア部とクラッド部との境界面で全反射を生じさせるものとしてもよい。   Note that the present invention is not limited to only the above-described embodiments. For example, in each embodiment shown in FIG. 1, FIG. 2, FIG. 3, FIG. 4 (A) (B), FIG. 5, FIG. 6, FIG. The base end surfaces of 3c and 3d and the end surfaces of the optical fiber strands 10, 12, 26, and 28 of the optical fibers 9, 11, 17, 25, and 27 are polished so as to be a plane perpendicular to the axial direction. However, light is propagated between the optical fiber strands 10, 12, 26, 28 and the ends of the quartz glass members 3, 3a, 3b, 3c, 3d on the external environment side. Sometimes, if the desired propagation efficiency is obtained, the end portions of the optical fiber strands 10, 12, 26, 28 at the ends of the quartz glass members 3, 3a, 3b, 3c, 3d on the external environment side, Arrange them so that they have a slight gap between them, or connect them Surface may not become a little plane. Further, in FIGS. 1, 2, 3, 5, 6, 8, 9, and 10, quartz glass members 3, 3a, 3b, 3c, and 3d are provided in the opening 2 provided in the quartz box 1. The base end portion of the optical fiber 9 and the tip end portions of the optical fibers 9, 11, 17, 25, 27 are shown as being attached together via the coupling members 6, 6 a, 6 b. If only the glass members 3, 3 a, 3 b, 3 c, 3 d are exposed, for example, the base end portion serving as the end portion of the quartz glass members 3, 3 a, 3 b, 3 c, 3 d on the external environment side is made of quartz. The box 1 may be disposed so as to pass through the partition walls such as the side wall 1a and the bottom plate 1b of the box 1 and to protrude to the outside. Further, as described above, the base of the quartz glass members 3, 3a, 3b, 3c, 3d The end penetrates through the partition wall such as the side wall 1a and the bottom plate 1b of the quartz box 1 and protrudes to the outside. And arranged so as to, quartz glass member 3, 3a, 3b, 3c, a proximal end portion of 3d, it may be attached directly to the partition wall quartz box 1. Further, as described above, the quartz glass members 3, 3a, 3b, 3c, and 3d are arranged so as to protrude through the partition walls such as the side wall 1a and the bottom plate 1b of the quartz box 1 so as to protrude to the outside. Alternatively, the coupling members 6, 6 a, 6 b may be omitted, and the tip portions of the optical fibers 9, 11, 17, 25, 27 may be directly attached. In this case, the distal end surfaces of the optical fiber strands 10, 12, 26, and 28 of the optical fibers 9, 11, 17, 25, and 27 are disposed on the proximal end surfaces of the quartz glass members 3, 3a, 3b, 3c, and 3d. You may make it connect by welding often used for the connection of strands. Further, the quartz glass members 3, 3 a, 3 b, 3 c and 3 d are made of a single quartz glass, and the difference in refractive index between the quartz glass members 3 and 3 a and the internal atmosphere of the quartz box 1. Based on the above, it has been described as causing total reflection on the side surface of the cylinder, but the axial center portion is provided with a core portion made of transparent quartz glass, and the outer periphery thereof is provided with a cladding portion having a lower refractive index. The total reflection may be caused at the boundary surface between the core portion and the cladding portion.

図5、図6、図8、図9、図10の各実施の形態における投受光共用の光ファイバとしては、平行型の光ファイバ17を示したが、同軸型や分割型の光ファイバを用いるようにしてもよい。又、図7の実施の形態における光ファイバは、投受光用の各光ファイバ素線が、被覆のない状態でも形状を保持できる強度を備えていれば、同軸型の光ファイバを用いるようにしてもよい。更に、図1、図2、図9、図10の各実施の形態において、光導波部材を、石英ガラス部材3,3a,3b,3cとする構成に代えて、図7に示した光ファイバ17の光ファイバ素線10,12と同様に、光ファイバ9,11,17,25,27の先端部の被覆9a,11a,17a,25a,27aを除去して所要の長さ寸法に亘り露出させた光ファイバ素線10,12,26,28を、光導波部材として利用するようにしてもよい。   Although the parallel type optical fiber 17 is shown as the optical fiber for light transmission and reception in each of the embodiments of FIGS. 5, 6, 8, 9, and 10, a coaxial type or a split type optical fiber is used. You may do it. The optical fiber in the embodiment of FIG. 7 is a coaxial optical fiber as long as each optical fiber for light transmission and reception has a strength capable of maintaining the shape even without a coating. Also good. Furthermore, in each of the embodiments shown in FIGS. 1, 2, 9, and 10, the optical fiber 17 shown in FIG. 7 is used instead of the optical waveguide member made of quartz glass members 3, 3a, 3b, and 3c. As in the case of the optical fiber wires 10 and 12, the coatings 9a, 11a, 17a, 25a, and 27a at the tips of the optical fibers 9, 11, 17, 25, and 27 are removed and exposed for a required length. Further, the optical fiber strands 10, 12, 26, 28 may be used as an optical waveguide member.

図9の実施の形態では、投光側及び受光側の双方に、石英ボックス1内における検出領域4の近傍位置まで突出する石英ガラス部材3a,3bを設けるものとして示したが、投光側又は受光側の石英ガラス部材3a又は3bのいずれか一方を省略してもよい。この場合、投光側の石英ガラス部材3aを省略する場合には、石英ボックス1における受光側の石英ガラス部材3bの先端面と対向する側壁1aに、図1に示した実施の形態における窓7と同様の窓を設けて、該窓の外側に投光用光ファイバ25の先端部を設置し、検出領域4を通過して受光側の石英ガラス部材3bの先端面(受光面)へ到達させるための光13を、上記投光用光ファイバ25の先端部から窓越しに投光させるようにすればよい。一方、受光側の石英ガラス部材3bを省略する場合には、石英ボックス1における投光側の石英ガラス部材3aの先端面と対向する側壁1aに、図1に示した実施の形態における窓7と同様の窓を設けて、該窓の外側に受光用光ファイバ27の先端部を設置し、上記投光側の石英ガラス部材3aの先端面より投光されて検出領域4を通過する光13を、上記受光用光ファイバ27の先端部へ窓越しに受光させるようにすればよい。このように、投光側又は受光側のいずれか一方の石英ガラス部材3a又は3bを省略する場合であっても、残る受光側又は投光側では、光の経路を石英ガラス部材3b又は3aを通すことにより、光量の損失を抑制できると共に、空間を通過する距離を短くしてノイズの混入を抑制できる。したがって、投光側及び受光側を共に石英ボックス1の外部に設ける場合に比して、検出領域に被検出体が存在するときと、存在しないときの光量の増減のレンジを拡大することができると共に、検出する光のS/N比を高いものとすることができて、上記検出領域での被検出体の有無の検出精度の向上化を図ることができる。   In the embodiment of FIG. 9, the quartz glass members 3 a and 3 b that protrude to the position near the detection region 4 in the quartz box 1 are provided on both the light projecting side and the light receiving side. Either the quartz glass member 3a or 3b on the light receiving side may be omitted. In this case, when the quartz glass member 3a on the light emitting side is omitted, the window 7 in the embodiment shown in FIG. 1 is formed on the side wall 1a facing the front end surface of the quartz glass member 3b on the light receiving side in the quartz box 1. The tip of the light projecting optical fiber 25 is installed outside the window, and passes through the detection region 4 to reach the tip surface (light receiving surface) of the quartz glass member 3b on the light receiving side. The light 13 may be projected through the window from the tip of the light projecting optical fiber 25. On the other hand, when the quartz glass member 3b on the light receiving side is omitted, the side wall 1a facing the front end surface of the quartz glass member 3a on the light projecting side in the quartz box 1 and the window 7 in the embodiment shown in FIG. A similar window is provided, the tip of the light receiving optical fiber 27 is installed outside the window, and the light 13 that is projected from the tip of the quartz glass member 3a on the light projecting side and passes through the detection region 4 is transmitted. The light receiving optical fiber 27 may receive light through the window at the distal end. In this way, even when either the light emitting side or the light receiving side of the quartz glass member 3a or 3b is omitted, the remaining light receiving side or the light projecting side is configured to pass the light path through the quartz glass member 3b or 3a. By passing the light, loss of light quantity can be suppressed, and the distance through the space can be shortened to prevent noise from entering. Therefore, as compared with the case where both the light projecting side and the light receiving side are provided outside the quartz box 1, the range of increase / decrease in the amount of light when the detection target exists in the detection region and when it does not exist can be expanded. At the same time, the S / N ratio of the light to be detected can be increased, and the detection accuracy of the presence or absence of the detection object in the detection region can be improved.

図9の実施の形態における透過型光ファイバセンサの投光側と受光側に設けてある石英ガラス部材3a又は3bのいずれか一方、及び、図10の実施の形態における石英ガラス部材3cを、図6に示した石英ガラス部材3dと同様に、上端面が検出領域4に達するよう石英ボックス1の底板1bより立設して、検出領域の下側に配設してなる構成として、これらの石英ガラス部材3a,3b,3cを、検出領域4に配置すべき被検出体5を上側に載置して支持するための支持用の部材として利用できるようにしてもよい。   9 shows either the quartz glass member 3a or 3b provided on the light projecting side and the light receiving side of the transmission optical fiber sensor in the embodiment of FIG. 9, and the quartz glass member 3c in the embodiment of FIG. Similarly to the quartz glass member 3d shown in FIG. 6, these quartz members are constructed such that the upper end surface thereof stands up from the bottom plate 1b of the quartz box 1 so as to reach the detection region 4 and is arranged below the detection region. The glass members 3a, 3b, and 3c may be used as supporting members for placing and supporting the detected object 5 to be arranged in the detection region 4 on the upper side.

図10の反射回帰型の光ファイバセンサ8bにおける投光部及び受光部の構成を、図1、図2、図3、図4(イ)(ロ)、図7の各実施の形態における反射型光ファイバセンサ8における投光部及び受光部と同様の構成として、投光部と受光部の一方又は双方に石英ガラス部材を光学的に接続するようにしてもよい。   The configurations of the light projecting unit and the light receiving unit in the reflection regression type optical fiber sensor 8b of FIG. 10 are shown in FIG. 1, FIG. 2, FIG. 3, FIG. As a configuration similar to the light projecting unit and the light receiving unit in the optical fiber sensor 8, a quartz glass member may be optically connected to one or both of the light projecting unit and the light receiving unit.

図1、図2、図3、図4(イ)(ロ)、図5、図6、図9、図10の各実施の形態では光導波部材として、石英ガラス部材3,3a,3b,3c,3dを示したが、高い光透過率と、高温耐性を備え、更に、金属汚染が許容値以下となると共に発塵性が低い材質であれば、アルカリガラスや透明セラミック、光学部品として使用される結晶等、石英ガラス以外の材質のものを使用してもよい。又、上記光導波部材の形状は、石英ガラス部材3,3a,3b,3c,3dの形状として示したように、全反射を利用して光の損失を抑える点からすると、細長い円柱形状とすることが望ましいが、光の損失が許容値以下であれば、いかなる形状を採用するようにしてもよい。   1, 2, 3, 4 (b), (b), 5, 6, 9, and 10, quartz glass members 3, 3 a, 3 b, and 3 c are used as optical waveguide members. 3d, but it has high light transmittance, high temperature resistance, metal contamination is less than the allowable value and low dust generation, it can be used as alkali glass, transparent ceramic, and optical parts. A material other than quartz glass such as a crystal may be used. The shape of the optical waveguide member is an elongated cylindrical shape from the viewpoint of suppressing the loss of light by utilizing total reflection as shown as the shape of the quartz glass members 3, 3a, 3b, 3c, 3d. However, any shape may be adopted as long as the loss of light is less than the allowable value.

図8の実施の形態における光導波部材としての筒型の中空導波部材22は、内壁面における反射を利用して光の損失を抑える点からすると、細長い円筒形状とすることが望ましいが、光の損失が許容値以下であれば、いかなる形状を採用するようにしてもよい。   The cylindrical hollow waveguide member 22 as the optical waveguide member in the embodiment of FIG. 8 is preferably an elongated cylindrical shape from the viewpoint of suppressing light loss by utilizing reflection on the inner wall surface. Any shape may be adopted as long as the loss is less than the allowable value.

図1、図2、図3、図4(イ)(ロ)、図5、図6、図9、図10の各実施の形態における光導波部材としては、細長い円柱形状の石英ガラス部材3,3a,3b,3c,3dを示したが、図8に示したと同様の細長い中空導波部材22を用いるようにしてもよい。   1, 2, 3, 4 (b), (b), FIG. 5, FIG. 6, FIG. 9, and FIG. Although 3a, 3b, 3c, 3d are shown, an elongated hollow waveguide member 22 similar to that shown in FIG. 8 may be used.

光センサとしては、投光部や受光部を、光導波部材としての石英ガラス部材3,3a,3b,3c,3dの外部環境側の端部に容易に近接配置できるようにして、光センサの投光部や受光部と光導波部材の外部環境側の端部との間における光の伝搬を効率よく行わせるという観点からすると、反射型、透過型又は反射回帰型の光ファイバセンサ8,8a、8bを用いることが好ましいが、一般の反射型、透過型又は反射回帰型の光センサを用いて、該光センサの投光部や受光部を、対応する石英ガラス部材3,3a,3b,3c,3dの外部環境側の端部に臨むように配設するようにしてもよい。   As the optical sensor, the light projecting part and the light receiving part can be easily placed close to the external environment side ends of the quartz glass members 3, 3a, 3b, 3c, 3d as the optical waveguide members. From the viewpoint of efficiently transmitting light between the light projecting unit and the light receiving unit and the end portion of the optical waveguide member on the external environment side, the reflection type, transmission type, or reflection regression type optical fiber sensors 8, 8a. 8b, but using a general reflection type, transmission type or reflection regression type optical sensor, the light projecting part and the light receiving part of the optical sensor are connected to the corresponding quartz glass members 3, 3a, 3b, You may make it arrange | position so that the edge part by the side of the external environment of 3c, 3d may be faced.

清浄環境及び又は高温環境となる環境に設定された所要の検出領域にて、被検出体の有無を光学的に検出することが望まれるものであれば、液晶パネル製造過程のシリコン膜付ガラス基板のアニール炉における石英ボックスの内部に設定される検出領域以外のいかなる検出領域における被検出体の検出にも適用できる。その他本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   If it is desired to optically detect the presence or absence of an object to be detected in a required detection area set in a clean environment and / or a high temperature environment, a glass substrate with a silicon film in the process of manufacturing a liquid crystal panel The present invention can be applied to detection of an object to be detected in any detection region other than the detection region set inside the quartz box in the annealing furnace. Of course, various changes can be made without departing from the scope of the present invention.

本発明の光センサによるセンシング方法及び装置の実施の一形態として、光センサとして投光部と受光部が別体式の反射型の光ファイバセンサによるセンシングを行うものについて適用する場合を示す概略切断平面図である。As an embodiment of the sensing method and apparatus using the optical sensor of the present invention, a schematic cutting plane showing a case where the optical sensor is applied to a sensor that performs sensing using a separate reflection type optical fiber sensor with a light projecting unit and a light receiving unit. FIG. 本発明の実施の他の形態として、光センサとして投光部と受光部が別体式の反射型の光ファイバセンサによるセンシングを行うものについて適用する場合の別の例を示す概略切断平面図である。FIG. 10 is a schematic plan view showing another example of a case where the present invention is applied to an optical sensor that performs sensing using a reflection type optical fiber sensor in which a light projecting unit and a light receiving unit are separated from each other. . 本発明の実施の更に他の形態として、光センサとして投光部と受光部が別体式の反射型の光ファイバセンサによるセンシングを行うものについて適用する場合の更に別の例を示す概略切断平面図である。As still another embodiment of the present invention, a schematic cut plan view showing still another example of the case where the light sensor and the light receiving part perform sensing with a separate reflection type optical fiber sensor as an optical sensor. It is. 本発明の実施の更に他の形態として、光センサとして投光部と受光部が別体式の反射型の光ファイバセンサによるセンシングを行うものについて適用する場合の変形例を示すもので、(イ)は概略切断平面図、(ロ)は結合用部材を炉外側より見た概略図である。As still another embodiment of the present invention, as a photosensor, a light-emitting unit and a light-receiving unit are shown as modified examples in which sensing is performed by a separate-type reflective optical fiber sensor. Is a schematic cut plan view, and (b) is a schematic view of the coupling member as seen from the outside of the furnace. 本発明の実施の更に他の形態として、光センサとして投受光部を一体式としてある反射型光ファイバセンサによるセンシングを行うものについて適用する場合を示す概略切断平面図である。As another embodiment of the present invention, it is a schematic cut plan view showing a case where the present invention is applied to an optical sensor that performs sensing with a reflection type optical fiber sensor in which a light projecting / receiving unit is integrated. 本発明の実施の更に他の形態として、光センサとして投受光部を一体式としてある反射型光ファイバセンサによるセンシングを行うものについて適用する場合の応用例を示す概略切断側面図である。As another embodiment of the present invention, it is a schematic cut side view showing an application example in the case of applying to a sensor that performs sensing by a reflection type optical fiber sensor in which a light projecting / receiving unit is integrated as an optical sensor. 本発明の実施の更に他の形態として、光センサとして投受光部を一体式としてある反射型光ファイバセンサによるセンシングを行うものについて適用する場合の変形例を示す概略切断平面図である。As another embodiment of the present invention, it is a schematic cut plan view showing a modification in the case of applying to sensing using a reflection type optical fiber sensor in which a light projecting / receiving unit is integrated as an optical sensor. 本発明の実施の更に他の形態として、光センサとして投受光部を一体式としてある反射型光ファイバセンサによるセンシングを行うものについて適用する場合の別の変形例を示す概略切断平面図である。As another embodiment of the present invention, it is a schematic cut plan view showing another modification when applied to a sensor that performs sensing by a reflection type optical fiber sensor in which a light projecting / receiving unit is integrated as an optical sensor. 本発明の実施の更に他の形態として、光センサとして投光部と受光部を別体式としてある透過型の光ファイバセンサによるセンシングを行うものについて適用する場合を示す概略切断平面図である。As another embodiment of the present invention, it is a schematic cut plan view showing a case where the present invention is applied to an optical sensor that performs sensing with a transmissive optical fiber sensor in which a light projecting unit and a light receiving unit are separated. 本発明の実施の更に他の形態として、光センサとして反射回帰型の光ファイバセンサによるセンシングを行うものについて適用する場合を示す概略切断平面図である。It is a general | schematic cut-off top view which shows the case where it applies about what performs the sensing by a reflection regression type optical fiber sensor as an optical sensor as another form of implementation of this invention. 従来提案されている高温環境で使用するための反射型光ファイバセンサの一例を示す概要図である。It is a schematic diagram which shows an example of the reflection type optical fiber sensor for using in the high temperature environment proposed conventionally. 従来提案されている耐熱用光ファイバの一例を示す断面図である。It is sectional drawing which shows an example of the conventionally proposed heat-resistant optical fiber.

符号の説明Explanation of symbols

1 石英ボックス
1a 側壁
1b 底板
3,3a,3b,3c,3d 石英ガラス部材(光導波部材)
4 検出領域
5 被検出体
8,8a,8b 光ファイバセンサ
9 投光用光ファイバ
9a 被覆
10 投光用光ファイバ素線(投光部)
11 受光用光ファイバ
11a 被覆
12 受光用光ファイバ素線(受光部)
13 光
13a 反射光
17 平行型光ファイバ
17a 被覆
22 中空導波部材(光導波部材)
25 投光用光ファイバ
25a 被覆
26 投光用光ファイバ素線(投光部)
27 投光用光ファイバ
27a 被覆
28 投光用光ファイバ素線(投光部)
29 反射板
DESCRIPTION OF SYMBOLS 1 Quartz box 1a Side wall 1b Bottom plate 3, 3a, 3b, 3c, 3d Quartz glass member (optical waveguide member)
DESCRIPTION OF SYMBOLS 4 Detection area | region 5 Detected object 8, 8a, 8b Optical fiber sensor 9 Optical fiber for light projection 9a Coating | coated 10 Optical fiber strand for light projection (light projection part)
DESCRIPTION OF SYMBOLS 11 Optical fiber for light reception 11a Covering 12 Optical fiber strand for light reception (light-receiving part)
13 light 13a reflected light 17 parallel optical fiber 17a coating 22 hollow waveguide member (optical waveguide member)
25 Optical fiber for projecting light 25a Coating 26 Optical fiber for projecting light (projecting unit)
27 Optical Fiber for Light Projection 27a Coating 28 Optical Fiber Wire for Light Projection (Light Projecting Unit)
29 Reflector

Claims (17)

清浄及び又は高温となる内部環境と外部環境との境界部よりも外部環境側の所要個所に設けた光センサの投光部より出力される光を、上記内部環境下に設定してある所要の検出領域に対し投光し、該投光された光の上記検出領域における反射光を、上記光センサの受光部にて受光するときに、上記投光される光と反射光の一方又は双方を、上記境界部の近傍位置と上記内部環境下における検出領域又は該検出領域の近傍位置との間で光導波部材を通して導くようにし、上記光センサの受光部にて受光される光量の変化に基づき、上記検出領域における被検出体の有無や挙動を検出することを特徴とする光センサによるセンシング方法。   The light output from the light projecting portion of the optical sensor provided at a required location on the external environment side than the boundary between the clean and / or high temperature internal environment and the external environment is set in the required internal environment. When light is projected to the detection area and the reflected light of the projected light in the detection area is received by the light receiving unit of the photosensor, one or both of the projected light and the reflected light is received. Based on the change in the amount of light received by the light receiving portion of the photosensor, the light guide member guides between the position near the boundary and the detection area in the internal environment or the position near the detection area. A sensing method using an optical sensor, characterized by detecting the presence / absence and behavior of an object to be detected in the detection region. 清浄及び又は高温となる内部環境と外部環境との境界部よりも外部環境側の所要個所に設けた投光部と受光部を備えた光センサの上記投光部より出力される光を、上記内部環境下に設定してある所要の検出領域に対し投光し、上記検出領域を挟んで上記光センサの投光部及び受光部と反対側に設けてある反射板により反射される上記投光された光の反射光を、上記光センサの受光部にて受光するときに、上記投光される光と反射光の一方又は双方を、上記境界部の近傍位置と上記内部環境下の検出領域又は該検出領域の近傍位置との間で光導波部材を通して導くようにし、上記光センサの受光部にて受光される光量の変化に基づき、上記検出領域における被検出体の有無を検出することを特徴とする光センサによるセンシング方法。   The light output from the light projecting unit of the light sensor provided with the light projecting unit and the light receiving unit provided at a required location on the external environment side than the boundary between the clean and / or high temperature internal environment and the external environment, The light projecting on a required detection area set in the internal environment and reflected by a reflector provided on the opposite side of the light projecting part and the light receiving part of the optical sensor across the detection area When the reflected light of the emitted light is received by the light receiving portion of the photosensor, one or both of the projected light and the reflected light are detected in the vicinity of the boundary portion and the detection region in the internal environment. Or detecting the presence / absence of an object to be detected in the detection region based on a change in the amount of light received by the light receiving unit of the optical sensor. Sensing method using an optical sensor. 清浄及び又は高温となる内部環境と外部環境との境界部よりも外部環境側の所要個所に設けた光センサの投光部より出力される光を、上記内部環境下に設定してある所要の検出領域に対し投光し、上記検出領域を通過する光を、上記外部環境側に設けた光センサの受光部にて受光するときに、上記投光される光と検出領域を通過して受光される光の一方又は双方を、上記境界部の近傍位置と上記内部環境下における検出領域又は該検出領域の近傍位置との間で光導波部材を通して導くようにし、上記光センサの受光部にて受光される光量の変化に基づき、上記検出領域における被検出体の有無を検出することを特徴とする光センサによるセンシング方法。   The light output from the light projecting portion of the optical sensor provided at a required location on the external environment side than the boundary between the clean and / or high temperature internal environment and the external environment is set in the required internal environment. When the light that is projected to the detection area and the light that passes through the detection area is received by the light receiving portion of the optical sensor provided on the external environment side, the light is projected and received through the detection area. One or both of the light to be transmitted is guided through an optical waveguide member between a position in the vicinity of the boundary portion and a detection region in the internal environment or a position in the vicinity of the detection region. A sensing method using an optical sensor, wherein the presence / absence of an object to be detected in the detection region is detected based on a change in the amount of received light. 光センサとして、投光部と受光部の一方又は双方を光導波部材の外部環境側の端部に臨むよう配してなる光ファイバセンサを用いるようにする請求項1、2又は3記載の光センサによるセンシング方法。   4. An optical fiber sensor according to claim 1, wherein one or both of a light projecting portion and a light receiving portion is disposed so as to face an end portion on the external environment side of the optical waveguide member. Sensing method using sensors. 光導波部材として、光センサの投光部より投光される光に対し高い透過率を有する材質製のものを用いるようにする請求項1、2、3又は4記載の光センサによるセンシング方法。   5. The sensing method using an optical sensor according to claim 1, wherein the optical waveguide member is made of a material having a high transmittance with respect to light projected from a light projecting portion of the optical sensor. 光導波部材として、高温耐性を有する材質製及び又は発塵性の低い材質製のものを用いるようにする請求項1、2、3、4又は5記載の光センサによるセンシング方法。   6. The sensing method using an optical sensor according to claim 1, 2, 3, 4, or 5, wherein an optical waveguide member made of a material having a high temperature resistance and / or a material having a low dusting property is used. 光導波部材として、石英ガラス製のものを用いるようにする請求項1、2、3、4、5又は6記載の光センサによるセンシング方法。   7. A sensing method using an optical sensor according to claim 1, wherein a member made of quartz glass is used as the optical waveguide member. 清浄及び又は高温となる内部環境と外部環境との境界部よりも外部環境側の所要個所に、上記内部環境下に設定してある所要の検出領域に対して投光部より投光し且つ該投光された光の上記検出領域における反射光を受光部にて受光できるようにしてある光センサを設け、更に、上記光センサの投光部より投光する光と上記光センサの受光部に受光させる反射光の一方又は双方を導くための光導波部材を、上記境界部の近傍位置と上記内部環境下の検出領域又は該検出領域の近傍位置との間に備えてなる構成を有することを特徴とする光センサによるセンシング装置。   The light projecting unit projects light to the required detection area set in the internal environment above the boundary between the clean and / or high temperature internal environment and the external environment. An optical sensor is provided so that the reflected light of the projected light in the detection region can be received by the light receiving unit, and further, the light projected from the light projecting unit of the photo sensor and the light receiving unit of the photo sensor are provided. An optical waveguide member for guiding one or both of the reflected light to be received is provided between the position near the boundary and the detection area in the internal environment or the position near the detection area. Sensing device with a featured optical sensor. 清浄及び又は高温となる内部環境と外部環境との境界部よりも外部環境側の所要個所に、投光部と受光部を備えた光センサを設けて、上記内部環境下に設定してある所要の検出領域に対して投光部より投光すると共に、上記検出領域を挟んで上記投光部及び受光部の反対側に設けてある反射板により反射される上記投光された光の反射光を受光部にて受光できるようにし、更に、上記光センサの投光部より投光する光と上記光センサの受光部に受光させる反射光の一方又は双方を導くための光導波部材を、上記境界部の近傍位置と上記内部環境下の検出領域又は該検出領域の近傍位置との間に備えてなる構成を有することを特徴とする光センサによるセンシング装置。   A light sensor equipped with a light projecting part and a light receiving part is provided at a required location on the external environment side of the boundary between the clean and / or high temperature internal environment and the external environment, and is set in the above internal environment. The reflected light of the projected light is projected from the light projecting unit to the detection region of the light and is reflected by a reflector provided on the opposite side of the light projecting unit and the light receiving unit across the detection region. An optical waveguide member for guiding one or both of the light projected from the light projecting portion of the photosensor and the reflected light received by the light receiving portion of the photosensor, A sensing device using an optical sensor, having a configuration provided between a position near a boundary and a detection region under the internal environment or a position near the detection region. 清浄及び又は高温となる内部環境と外部環境との境界部よりも外部環境側の所要個所に、上記内部環境下に設定してある所要の検出領域に対して投光部より投光し且つ上記検出領域を通過する光を受光部にて受光できるようにしてある光センサを設け、更に、上記光センサの投光部より投光する光と上記光センサの受光部に受光させる上記検出領域の透過光の一方又は双方を導くための光導波部材を、上記境界部の近傍位置と上記内部環境下の検出領域又は該検出領域の近傍位置との間に備えてなる構成を有することを特徴とする光センサによるセンシング装置。   Projecting from the light projecting unit to the required detection area set in the internal environment above the boundary between the clean and / or high temperature internal environment and the external environment on the external environment side An optical sensor is provided so that light passing through the detection region can be received by the light receiving unit, and further, the light projected from the light projecting unit of the photo sensor and the detection region received by the light receiving unit of the photo sensor are provided. An optical waveguide member for guiding one or both of the transmitted light is provided between a position near the boundary and a detection region in the internal environment or a position near the detection region. Sensing device with optical sensor. 光センサを、投光部と受光部の一方又は双方を光導波部材の外部環境側の端部に臨むよう配してなる光ファイバセンサとした請求項8、9又は10記載の光センサによるセンシング装置。   11. The sensing by the optical sensor according to claim 8, 9 or 10, wherein the optical sensor is an optical fiber sensor in which one or both of the light projecting portion and the light receiving portion are arranged so as to face an end portion on the external environment side of the optical waveguide member. apparatus. 光導波部材を、検出領域の下側に配設して、該光導波部材の上側に、検出領域に配置する被検出体を載置して支持できるようにした請求項8、9、10又は11記載の光センサによるセンシング装置。   The optical waveguide member is disposed below the detection region, and an object to be detected disposed in the detection region can be placed and supported above the optical waveguide member. 11. A sensing device using the optical sensor according to 11. 光導波部材を、光センサの投光部より投光される光に対して高い透過率を有する材質製のものとした請求項8、9、10、11又は12記載の光センサによるセンシング装置。   13. The sensing device using an optical sensor according to claim 8, wherein the optical waveguide member is made of a material having a high transmittance with respect to light projected from a light projecting portion of the optical sensor. 光導波部材を、高温耐性を有する材質製及び又は発塵性の低い材質製のものとした請求項8、9、10、11、12又は13記載の光センサによるセンシング装置。   14. The sensing device using an optical sensor according to claim 8, wherein the optical waveguide member is made of a material having high temperature resistance and / or a material having low dusting property. 光導波部材を、石英ガラス製のものとした請求項8、9、10、11、12、13又は14記載の光センサによるセンシング装置。   The sensing device using an optical sensor according to claim 8, 9, 10, 11, 12, 13 or 14, wherein the optical waveguide member is made of quartz glass. 光導波部材を、細長い円柱形状又は細長い円筒形状とした請求項8、9、10、11、12、13、14又は15記載の光センサによるセンシング装置。   The sensing device using an optical sensor according to claim 8, 9, 10, 11, 12, 13, 14 or 15, wherein the optical waveguide member has an elongated cylindrical shape or an elongated cylindrical shape. 光導波部材として、光ファイバの被覆を剥離して露出させた光ファイバ素線を用いるようにした請求項8、9、10、11、12、13、14、15又は16記載の光センサによるセンシング装置。   17. The sensing by the optical sensor according to claim 8, 9, 10, 11, 12, 13, 14, 15 or 16, wherein an optical fiber strand which is exposed by peeling off the coating of the optical fiber is used as the optical waveguide member. apparatus.
JP2005065158A 2005-03-09 2005-03-09 Sensing method and sensing device by photosensor Withdrawn JP2006250603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005065158A JP2006250603A (en) 2005-03-09 2005-03-09 Sensing method and sensing device by photosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005065158A JP2006250603A (en) 2005-03-09 2005-03-09 Sensing method and sensing device by photosensor

Publications (1)

Publication Number Publication Date
JP2006250603A true JP2006250603A (en) 2006-09-21

Family

ID=37091284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005065158A Withdrawn JP2006250603A (en) 2005-03-09 2005-03-09 Sensing method and sensing device by photosensor

Country Status (1)

Country Link
JP (1) JP2006250603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2232197A1 (en) * 2007-11-07 2010-09-29 Tomra Systems ASA An apparatus, an optical unit and devices for use in detection of objects
JP2014529557A (en) * 2011-09-02 2014-11-13 テールズ Optical system for detecting the winding state of a cable in a winder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2232197A1 (en) * 2007-11-07 2010-09-29 Tomra Systems ASA An apparatus, an optical unit and devices for use in detection of objects
JP2011503573A (en) * 2007-11-07 2011-01-27 トムラ・システムズ・エイ・エス・エイ Apparatus, optical unit and device used for detecting symmetrical objects
EP2232197A4 (en) * 2007-11-07 2014-04-02 Tomra Systems Asa An apparatus, an optical unit and devices for use in detection of objects
JP2014529557A (en) * 2011-09-02 2014-11-13 テールズ Optical system for detecting the winding state of a cable in a winder

Similar Documents

Publication Publication Date Title
JP6564418B2 (en) Optical power monitor device and laser device
CN102844942A (en) Light intensity monitoring circuit and fiber laser system
JP4511857B2 (en) Sensor using photonic crystal and detection method of target substance
JP2010073019A (en) Flame detector
JP6420932B1 (en) Optical density measuring device and method of manufacturing optical density measuring device
TW201905515A (en) Optical component, optical device, and method of manufacturing optical component
KR101299135B1 (en) Reflective probe type apparatus for detecting gas and method for detecting gas using optical fiber with hollow core
JP6530521B2 (en) Optical waveguide and optical concentration measuring device
US5274721A (en) Fiber optic system and method
JP2015156019A (en) optical fiber termination of low back reflection
JP2006250603A (en) Sensing method and sensing device by photosensor
WO2021117265A1 (en) Cylinder inner surface inspection device
US20170038514A1 (en) Light source apparatus and endoscope apparatus with the light source apparatus
US20200284727A1 (en) Chemical sensing device using fluorescent sensing material
JP5282065B2 (en) Optical module and optical detection method
JP2011145216A (en) Hot-line detection device
JP2008170327A (en) Refractive index detector and liquid level detector
US9946040B2 (en) Optical fibers without cladding
US7103250B1 (en) Optical fiber with high small-angle scatter and sensor using same
JP2007248213A (en) Curvature sensor
US9597765B2 (en) Fiber optic dielectric waveguide structure for modal multiplexed communication and method of manufacture
JP5135141B2 (en) Flame detector
EP2245491A1 (en) A fiber optic imaging apparatus
WO2024018737A1 (en) Optical fiber end face observing device, and optical fiber end face observing method
JP2008089554A (en) Optical fiber sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080908