JP2006250513A - Far infrared radiation cooling device - Google Patents

Far infrared radiation cooling device Download PDF

Info

Publication number
JP2006250513A
JP2006250513A JP2005072008A JP2005072008A JP2006250513A JP 2006250513 A JP2006250513 A JP 2006250513A JP 2005072008 A JP2005072008 A JP 2005072008A JP 2005072008 A JP2005072008 A JP 2005072008A JP 2006250513 A JP2006250513 A JP 2006250513A
Authority
JP
Japan
Prior art keywords
infrared radiation
far
group
transfer member
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005072008A
Other languages
Japanese (ja)
Inventor
Hiroshi Amano
浩 天野
Satoshi Kamiyama
智 上山
Motoaki Iwatani
素顕 岩谷
Misao Iwata
美佐男 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2005072008A priority Critical patent/JP2006250513A/en
Publication of JP2006250513A publication Critical patent/JP2006250513A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a far infrared radiation cooling device having higher radiation cooling performance than conventional one. <P>SOLUTION: The far infrared radiation cooling device 10 comprises a far infrared radiation layer 16 formed of a fine crystal grain aggregate of a far infrared radiation material and provided on the surface of a heat transfer member 14. Thus, heat conducted from a semiconductor 12 is radiated as radiation energy from the far infrared radiation layer 16. The far infrared radiation layer 16 develops high radiation cooling performance without the need for a binder or a base material formed of a material having low far infrared radiation capability. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、伝熱部材の表面に固着された遠赤外線輻射層から電磁波を放射することによってその伝熱部材を冷却するための遠赤外線放射冷却装置に関するものである。   The present invention relates to a far-infrared radiation cooling device for cooling a heat transfer member by radiating electromagnetic waves from a far-infrared radiation layer fixed to the surface of the heat transfer member.

限られたスペースで、低コストで最大限の冷却を実現するためのものとして、伝熱部材の表面に固着された遠赤外線輻射層から電磁波を放射することによってその伝熱部材を冷却するための遠赤外線放射冷却装置が知られている。たとえば、特許文献1に記載された電子部品用放熱材がそれである。これによれば、アルミナ、ジルコニア、チタニア、コージェライト、β−スポジューメン、チタン酸アルミニウム、繊維元素酸化物系セラミックス等の遠赤外線を放射する物質が、たとえばシリコン系樹脂、ガラス、多孔質セラミックスなどの中実或いは多孔質の基材中に混入されることにより構成される。
特開平7−161884号公報
For cooling the heat transfer member by radiating electromagnetic waves from the far-infrared radiation layer fixed to the surface of the heat transfer member as a way to achieve maximum cooling at a low cost in a limited space Far-infrared radiant cooling devices are known. For example, this is the heat dissipating material for electronic components described in Patent Document 1. According to this, substances emitting far infrared rays, such as alumina, zirconia, titania, cordierite, β-spodumene, aluminum titanate, fiber element oxide ceramics, silicon resin, glass, porous ceramics, etc. It is configured by being mixed in a solid or porous substrate.
Japanese Patent Application Laid-Open No. 7-161884

ところで、上記従来の電子部品用放熱材では、遠赤外線輻射材料を結合させるために一般的に輻射効率が低い結合剤が用いられるため、理論限界に近い十分な冷却性能が得られないという不都合があった。   By the way, in the said conventional heat dissipation material for electronic components, since the binder with low radiation efficiency is generally used in order to couple | bond a far-infrared radiation material, inconvenience that sufficient cooling performance close | similar to a theoretical limit cannot be obtained. there were.

本発明は以上の事情を背景として為されたものであり、その目的とするところは、従来のものに比較して高い放射冷却性能が得られる遠赤外線放射冷却装置を提供することにある。   The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a far-infrared radiation cooling device capable of obtaining a high radiation cooling performance as compared with the conventional one.

本発明者は、遠赤外線放射冷却装置の遠赤外線輻射層の放射冷却性能について研究を重ねるうち、従来の遠赤外線輻射層は、遠赤外線輻射材料が基材(ベース材)中に混入されたり或いは樹脂などの有機結合剤やガラス質などの無機結合剤により結合されることにより構成されており、その基材や結合剤自体は遠赤外線輻射材料よりも遠赤外線輻射能の低い物質であることが、放射冷却性能を得るための障害となっていると推定し、基材や結合剤を用いないで、遠赤外線輻射材料の微結晶粒の集合体から遠赤外線輻射層を構成すると、その遠赤外線輻射能が高くなり好適に高い放射冷却性能が得られることを見出した。本発明はこのような知見に基づいて為されたものである。   While the inventor has repeatedly studied the radiation cooling performance of the far-infrared radiation layer of the far-infrared radiation cooling apparatus, the conventional far-infrared radiation layer has a far-infrared radiation material mixed into the base material (base material) or It is configured by being bound by an organic binder such as resin or an inorganic binder such as glass, and the base material or the binder itself is a substance having lower far-infrared radiation ability than far-infrared radiation material. Estimating that it is an obstacle to obtaining radiant cooling performance, and constructing a far-infrared radiation layer from a collection of fine crystal grains of far-infrared radiation material without using a substrate or a binder, its far-infrared radiation It has been found that the radiation ability is increased and a suitably high radiation cooling performance can be obtained. The present invention has been made based on such findings.

すなわち、上記課題を解決するための請求項1に係る発明の遠赤外線放射冷却装置の要旨とするところは、遠赤外線輻射材料の微結晶粒の集合体から構成された遠赤外線輻射層を、伝熱部材の表面に備えたことにある。   That is, the gist of the far-infrared radiation cooling device of the invention according to claim 1 for solving the above-described problem is that a far-infrared radiation layer composed of an aggregate of fine crystal grains of a far-infrared radiation material is transmitted through the far-infrared radiation layer. It is provided on the surface of the heat member.

また、請求項2に係る発明の要旨とするところは、前記遠赤外線輻射材料は、前記遠赤外線輻射材料が溶射されることにより前記伝熱部材の表面に固着されたものであることにある。   Further, the gist of the invention according to claim 2 is that the far-infrared radiation material is fixed to the surface of the heat transfer member by spraying the far-infrared radiation material.

また、請求項3に係る発明の要旨とするところは、前記遠赤外線輻射材料は、Wienの変位則の式から実際の温度に基づいて決まるピーク波長以上の波長を吸収するが、可視、赤外、遠赤外に相当する所定波長の電磁波を反射するものであることにある。   Further, the gist of the invention according to claim 3 is that the far-infrared radiation material absorbs a wavelength greater than or equal to a peak wavelength determined based on an actual temperature from the Wien's displacement law equation. In addition, the electromagnetic wave having a predetermined wavelength corresponding to the far infrared is reflected.

また、請求項4に係る発明の要旨とするところは、前記伝熱部材の表面に固着された遠赤外線輻射層から放射された電磁波を流体により吸収するための電磁波吸収手段を、さらに含むものである。   The gist of the invention according to claim 4 further includes electromagnetic wave absorbing means for absorbing electromagnetic waves radiated from the far-infrared radiation layer fixed to the surface of the heat transfer member by a fluid.

請求項1に係る発明の遠赤外線放射冷却装置によれば、遠赤外線輻射材料の微結晶粒の集合体から構成された遠赤外線輻射層を伝熱部材の表面に備えていることから、遠赤外線輻射能の低い物質からなる結合材や基材を用いる必要がなく、高い放射冷却性能が得られる。   According to the far-infrared radiation cooling apparatus of the invention according to claim 1, since the far-infrared radiation layer composed of the aggregate of the fine crystal grains of the far-infrared radiation material is provided on the surface of the heat transfer member, the far-infrared radiation It is not necessary to use a binder or a substrate made of a substance having low radiation ability, and high radiation cooling performance can be obtained.

また、請求項2に係る発明の遠赤外線放射冷却装置によれば、前記遠赤外線輻射材料は、前記遠赤外線輻射材料が溶射されることにより前記伝熱部材の表面に固着されたものであることから、遠赤外線輻射能の低い物質からなる結合材や基材を用いていないので、高い放射冷却性能が得られる。   According to the far-infrared radiation cooling apparatus of the invention according to claim 2, the far-infrared radiation material is fixed to the surface of the heat transfer member by spraying the far-infrared radiation material. Therefore, since a binder or base material made of a substance having low far-infrared radiation is not used, high radiation cooling performance can be obtained.

また、請求項3に係る発明の遠赤外線放射冷却装置によれば、前記遠赤外線輻射材料は、Wienの変位則の式から実際の温度に基づいて決まるピーク波長以上の波長を吸収するが、可視、赤外、遠赤外に相当する所定波長の電磁波を反射するものであることから、理論限界に近い十分な放射冷却性能が得られる。   According to the far-infrared radiation cooling apparatus of the invention according to claim 3, the far-infrared radiation material absorbs a wavelength that is equal to or greater than the peak wavelength determined based on the actual temperature from the Wien's displacement law equation. Since it reflects an electromagnetic wave having a predetermined wavelength corresponding to infrared and far infrared, sufficient radiation cooling performance close to the theoretical limit can be obtained.

また、請求項4に係る発明の遠赤外線放射冷却装置によれば、前記伝熱部材の表面に固着された遠赤外線輻射層から放射された電磁波を流体により吸収する電磁波吸収手段をさらに備えたものであるので、一層、高い放射冷却性能が得られる。   According to the far-infrared radiation cooling device of the invention according to claim 4, further comprising an electromagnetic wave absorbing means for absorbing the electromagnetic wave radiated from the far-infrared radiation layer fixed to the surface of the heat transfer member by the fluid. Therefore, higher radiation cooling performance can be obtained.

ここで、好適には、前記伝熱部材は、少なくとも基材が銀、銀合金、銅、銅合金、アルミニウム、アルミニウム合金などの熱伝導率の高い金属から構成されたものである。このようにすれば、伝熱部材の熱が好適に遠赤外線輻射層に伝熱される。銅合金等の基材の表面に対してニッケルメッキ、金メッキ等の表面処理が施されたものであってもよい。   Here, preferably, in the heat transfer member, at least the base material is made of a metal having a high thermal conductivity such as silver, a silver alloy, copper, a copper alloy, aluminum, or an aluminum alloy. In this way, the heat of the heat transfer member is suitably transferred to the far infrared radiation layer. The surface of the base material such as a copper alloy may be subjected to surface treatment such as nickel plating or gold plating.

また、好適には、前記伝熱部材は、動作時に発熱する半導体素子に直接的または間接的に固着されたものであり、その半導体素子を冷却するためにその半導体素子から発生する熱を伝導するものである。このようにすれば、その半導体素子が効率良く放熱され、性能が維持されたり、耐久性が高められる。半導体素子としては、高出力LED、高出力LD、高速演算可能な中央演算処理素子(CPU)等が考えられる。   Preferably, the heat transfer member is directly or indirectly fixed to a semiconductor element that generates heat during operation, and conducts heat generated from the semiconductor element to cool the semiconductor element. Is. In this way, the semiconductor element is efficiently dissipated, performance is maintained, and durability is enhanced. As the semiconductor element, a high-power LED, a high-power LD, a central processing element (CPU) capable of high-speed computation, and the like can be considered.

また、好適には、前記電磁波吸収手段に用いられる流体は、空気、炭酸ガス、水蒸気を含む空気、アンモニアガス等の遠赤外線を吸収可能なガスや、着色された水や油等の遠赤外線を吸収可能な液体が用いられる。   Preferably, the fluid used in the electromagnetic wave absorbing means is a gas capable of absorbing far infrared rays such as air, carbon dioxide gas, air containing water vapor, ammonia gas, or far infrared rays such as colored water or oil. Absorbable liquids are used.

また、好適には、前記遠赤外線輻射材料は、(1) (1-a) 4族(IVA 族)乃至7族(VIIA族)、または14族(VIB 族)のカーバイド類、(1-b) 4族、または14族のボライド類、(1-c) 4族、13族(VB 族)、または14族のナイトライド類、(1-d) 6族(VIA 族)、7族(VIIA族)、8族(VIII族)、9族(IB族)、10族(IIB 族)、11族(IIIB族)の酸化物類のうちの少なくとも1種の単一成分、(2) 2族(IIA 族)と6族、7族、8族、9族との間の反応により得られるスピネル構造物(AB )、(3) (ランタノイド族、2族)と6族、7族、8族、9族との間の反応により得られるペロブスカイト構造物(ABO )、(4) 主たる成分がSiO 、Al +B 、Na O、KO、Li Oで構成されたガラス、(5) そのガラス中に上記(1) の単一成分、上記(2) のスピネル構造物、上記(3) のペロブスカイト構造物のうちの1種若しくは複数種を分散させたガラス組成物から構成されたものである。このような遠赤外線輻射材料によれば、高い放射冷却性能が得られる。 Preferably, the far-infrared radiation material comprises (1) (1-a) group 4 (IVA group) to group 7 (VIIA group) or group 14 (VIB group) carbides, (1-b ) Group 4 or 14 borides, (1-c) Group 4, 13 (VB) or 14 nitrides, (1-d) Group 6 (VIA), Group 7 (VIIA Group), Group 8 (Group VIII), Group 9 (Group IB), Group 10 (Group IIB), Group 11 (Group IIIB) oxides, at least one single component, (2) Group 2 Spinel structure (AB 2 O 3 ), (3) (Lantanoid group, Group 2) and Group 6, Group 7 obtained by reaction between Group (IIA) and Group 6, Group 7, Group 8, Group 9 Perovskite structure (ABO 3 ) obtained by the reaction between group 8 and group 9, (4) The main components are SiO 2 , Al 2 O 3 + B 2 O 3 , Na 2 O, K 2 O, Li 2 Glass composed of O, (5) A glass composition in which one or more of the single component (1), the spinel structure (2), and the perovskite structure (3) are dispersed in a glass. is there. According to such a far infrared radiation material, high radiation cooling performance can be obtained.

また、好適には、遠赤外線輻射層は、粉末式或いは棒式の炎溶射、爆裂溶射、プラズマ溶射などの溶射装置を用いて前記遠赤外線輻射材料を伝熱部材の表面に溶射することにより構成される。この伝熱部材の表面には、密着性を良くするためなどの表面処理および加熱処理が予め行われる。これにより、遠赤外線輻射層は、微細な溶滴が衝突させられてそれが急冷させられることによって互いに固着した遠赤外線輻射材料の微結晶粒の集合体から構成される。上記炎溶射では、たとえば酸素−アセチレン炎で加熱した粉末状或いは棒の遠赤外線輻射材料からの溶射粒子を所定の速度で伝熱部材の表面に衝突させる。上記爆裂溶射では、爆発によって遠赤外線輻射材料粒子を高速で伝熱部材の表面に衝突させ、その衝突による加熱で密着させる。上記プラズマ溶射は、放電電極間で発生させた高温ガス(プラズマ)を熱源として用いることにより遠赤外線輻射材料からの溶射粒子を所定の速度で伝熱部材の表面に高速で衝突させる。いずれの溶射でも、遠赤外線輻射材料の微粒子が結合剤を用いないで伝熱部材の表面に固着される。   Preferably, the far-infrared radiation layer is formed by spraying the far-infrared radiation material on the surface of the heat transfer member using a thermal spraying device such as powder-type or rod-type flame spraying, explosion spraying, and plasma spraying. Is done. The surface of the heat transfer member is subjected in advance to surface treatment and heat treatment for improving adhesion. Thus, the far-infrared radiation layer is composed of an aggregate of fine crystal grains of the far-infrared radiation material fixed to each other when fine droplets collide with each other and rapidly cooled. In the flame spraying, for example, spray particles from a far-infrared radiation material in the form of a powder or a rod heated by an oxygen-acetylene flame are collided with the surface of the heat transfer member at a predetermined speed. In the explosive spraying, the far-infrared radiation material particles are collided with the surface of the heat transfer member at high speed by explosion, and are brought into close contact by heating due to the collision. In the plasma spraying, a high-temperature gas (plasma) generated between the discharge electrodes is used as a heat source to cause the sprayed particles from the far-infrared radiation material to collide with the surface of the heat transfer member at a high speed. In any thermal spraying, fine particles of the far-infrared radiation material are fixed to the surface of the heat transfer member without using a binder.

以下、本発明の一実施例である遠赤外線放射冷却装置10を図1を用いて説明する。図1において、半導体素子12は、高速CPU用ICチップ、高出力LEDチップ、高出力半導体レーザダイオードチップ、インバータ用IGBT、パワートランジスタチップなどであり、その作動時には発熱が伴い、且つ出力特性或いは作動性能を維持するために所定の温度以下に冷却される必要があるものである。半導体素子12は、高い熱伝導性を有する伝熱部材14の一面に、接着剤による接着、加熱押圧による熱圧着、半田付などにより固着されている。本実施例では、遠赤外線輻射層16が固着され伝熱部材14が遠赤外線放射冷却装置10として機能している。   Hereinafter, a far infrared radiation cooling apparatus 10 according to an embodiment of the present invention will be described with reference to FIG. In FIG. 1, a semiconductor element 12 is an IC chip for a high-speed CPU, a high-power LED chip, a high-power semiconductor laser diode chip, an IGBT for an inverter, a power transistor chip or the like. In order to maintain performance, it is necessary to be cooled below a predetermined temperature. The semiconductor element 12 is fixed to one surface of the heat transfer member 14 having high thermal conductivity by bonding with an adhesive, thermocompression bonding by heat pressing, soldering, or the like. In this embodiment, the far infrared radiation layer 16 is fixed, and the heat transfer member 14 functions as the far infrared radiation cooling device 10.

上記伝熱部材14は、たとえば無酸素銅などの高い熱伝導性を有する金属から構成され、必要に応じてその表面に防錆性、半田付性を高めるためなどのメッキが施されている。この伝熱部材14は、熱リザーバとして機能するものであり、その他面には、遠赤外線輻射材料が溶射されることによって遠赤外線輻射層16が固着されている。この溶射には、たとえば、放電電極間で発生させた高温ガス(プラズマ)を熱源として用いることにより遠赤外線輻射材料の細かな溶滴が生成され、その溶滴である溶射粒子が比較的高い速度で伝熱部材14の表面に衝突させるプラズマ溶射装置が用いられる。   The heat transfer member 14 is made of, for example, a metal having high thermal conductivity such as oxygen-free copper, and is plated on its surface to enhance rust prevention and solderability as necessary. The heat transfer member 14 functions as a heat reservoir, and a far infrared radiation layer 16 is fixed to the other surface by spraying a far infrared radiation material. In this spraying, for example, by using a high-temperature gas (plasma) generated between the discharge electrodes as a heat source, fine droplets of the far-infrared radiation material are generated, and the sprayed particles as the droplets have a relatively high velocity. Then, a plasma spraying device that collides with the surface of the heat transfer member 14 is used.

上記遠赤外線輻射層16は、遠赤外線輻射材料の細かな溶滴が衝突させられることによって、遠赤外線輻射材料の微粒子が互いに固着した集合体から構成されている。すなわち、本実施例の遠赤外線輻射層16は、専ら遠赤外線輻射材料の微粒子から構成されており、その遠赤外線輻射材料の微粒子を相互に結合させ且つ伝熱部材14の表面に固着させるためのガラス質等の結合剤が用いられていない点に特徴がある。   The far-infrared radiation layer 16 is composed of an aggregate in which fine particles of the far-infrared radiation material collide with each other, so that fine particles of the far-infrared radiation material are fixed to each other. That is, the far-infrared radiation layer 16 of the present embodiment is composed exclusively of fine particles of the far-infrared radiation material, and the fine particles of the far-infrared radiation material are bonded to each other and fixed to the surface of the heat transfer member 14. It is characterized in that no binder such as glass is used.

上記遠赤外線輻射層16を構成する遠赤外線輻射材料は、(1) (1-a) 4族(IVA 族)乃至7族(VIIA族)、または14族(VIB 族)のカーバイド類、(1-b) 4族、または14族のボライド類、(1-c) 4族、13族(VB 族)、または14族のナイトライド類、(1-d) 6族(VIA 族)、7族(VIIA族)、8族(VIII族)、9族(IB族)、10族(IIB 族)、11族(IIIB族)の酸化物類のうちの少なくとも1種の単一成分、(2) 2族(IIA 族)と6族、7族、8族、9族との間の反応により得られるスピネル構造物(AB )、(3) (ランタノイド族、2族)と6族、7族、8族、9族との間の反応により得られるペロブスカイト構造物(ABO )、(4) 主たる成分がSiO 、Al +B 、Na O、K O、Li Oで構成された高融点ガラス、(5) その高融点ガラス中に上記(1) の単一成分、上記(2) のスピネル構造物、上記(3) のペロブスカイト構造物のうちの1種若しくは複数種を分散させたガラス組成物から構成されたものである。 The far-infrared radiation material constituting the far-infrared radiation layer 16 includes (1) (1-a) Group 4 (IVA group) to Group 7 (VIIA group) or Group 14 (VIB group) carbides, (1 -b) Group 4 or 14 borides, (1-c) Group 4, 13 (VB) or 14 nitrides, (1-d) Group 6 (VIA), Group 7 (VII) Group 8 (Group VIII), Group 9 (Group IB), Group 10 (IIB Group), Group 11 (Group IIIB) oxides of at least one single component, (2) Spinel structure (AB 2 O 3 ) obtained by reaction between Group 2 (Group IIA) and Group 6, Group 7, Group 8, Group 9 (3) (Lantanoid Group 2, Group) and Group 6, Perovskite structure (ABO 3 ) obtained by reaction between Group 7, Group 8 and Group 9, (4) The main components are SiO 2 , Al 2 O 3 + B 2 O 3 , Na 2 O, K 2 O, High melting point composed of Li 2 O Glass, (5) a glass in which one or more of the single component (1), the spinel structure (2), and the perovskite structure (3) are dispersed in the high melting point glass It is composed of a composition.

上記の遠赤外線輻射層16を構成する遠赤外線輻射材料は、Wienの変位則の式(1) から実際の温度Tに基づいて決まるピーク波長λm (T)以上の波長を吸収するが、可視、赤外、遠赤外に相当する所定波長の電磁波を反射するものである。図2は、各温度Tにおいて上記遠赤外線輻射材料から放射されるエネルギ分布の例を示しており、所定温度Tにおける波長分布のピーク波長λm (T)は、図2中の斜線(1点鎖線)により表され、上記(1) 式に対応している。遠赤外線輻射層16を構成する遠赤外線輻射材料は、図2に示すように、黒体から放射されるエネルギの波長分布に近似しているため、理論限界に近い十分な放射冷却性能が得られる。   The far-infrared radiation material constituting the far-infrared radiation layer 16 absorbs a wavelength equal to or larger than the peak wavelength λm (T) determined based on the actual temperature T from the Wien's displacement law equation (1). It reflects electromagnetic waves having a predetermined wavelength corresponding to infrared and far infrared. FIG. 2 shows an example of the energy distribution radiated from the far-infrared radiation material at each temperature T. The peak wavelength λm (T) of the wavelength distribution at the predetermined temperature T is indicated by the diagonal line in FIG. ) And corresponds to the above equation (1). As shown in FIG. 2, the far-infrared radiation material constituting the far-infrared radiation layer 16 approximates the wavelength distribution of the energy radiated from the black body, so that sufficient radiation cooling performance close to the theoretical limit can be obtained. .

λm ×T=2898μm・K ・・・(1)   λm × T = 2898μm ・ K (1)

本実施例の遠赤外線放射冷却装置10によれば、遠赤外線輻射材料の微結晶粒の集合体から構成された遠赤外線輻射層16を伝熱部材14の表面に備えていることから、遠赤外線輻射層16にたとえば低融点ガラスなどの遠赤外線輻射能の低い物質からなる結合剤や基材を用いる必要がなく、高い放射冷却性能が得られる。   According to the far-infrared radiation cooling apparatus 10 of the present embodiment, the far-infrared radiation layer 16 composed of an aggregate of fine crystal grains of far-infrared radiation material is provided on the surface of the heat transfer member 14, so that the far-infrared radiation For the radiation layer 16, it is not necessary to use a binder or a substrate made of a material having low far-infrared radiation, such as low melting glass, and high radiation cooling performance can be obtained.

また、本実施例の遠赤外線放射冷却装置10によれば、遠赤外線輻射材料は、前記遠赤外線輻射材料が溶射されることにより伝熱部材14の表面に固着されたものであることから、遠赤外線輻射能の低い物質からなる結合材や基材を用いていないので、高い放射冷却性能が得られる。   Further, according to the far-infrared radiation cooling apparatus 10 of the present embodiment, the far-infrared radiation material is fixed to the surface of the heat transfer member 14 by spraying the far-infrared radiation material. Since a binder or base material made of a substance having low infrared radiation ability is not used, high radiation cooling performance can be obtained.

また、本実施例の遠赤外線放射冷却装置10によれば、遠赤外線輻射層16を構成する遠赤外線輻射材料は、Wienの変位則の式から実際の温度に基づいて決まるピーク波長以上の波長を吸収するが、可視、赤外、遠赤外に相当する所定波長の電磁波を反射するものであることから、理論限界に近い十分な放射冷却性能が得られる。   Further, according to the far-infrared radiation cooling apparatus 10 of the present embodiment, the far-infrared radiation material constituting the far-infrared radiation layer 16 has a wavelength equal to or greater than the peak wavelength determined based on the actual temperature from the Wien's displacement law equation. Although it absorbs, it reflects an electromagnetic wave having a predetermined wavelength corresponding to visible, infrared, and far infrared, so that sufficient radiation cooling performance close to the theoretical limit can be obtained.

次に、本発明の他の実施例を説明する。なお、以下の説明において前述の実施例と共通する部分には同一の符号を付して説明を省略する。   Next, another embodiment of the present invention will be described. In the following description, parts common to those in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.

図3は、遠赤外線放射冷却装置10に対応する遠赤外線輻射層16が半導体12の底面に直接的に固着されている例を示している。本実施例の半導体12は、たとえばサファイヤ基板の上に結晶成長させられたものであり、2〜300℃程度で遠赤外線輻射材料を溶射する。サファイヤ基板上に構成された半導体12からは、たとえば250℃以上とならないと電磁波の放射が開始されないが、たとえばCrO を遠赤外線輻射材料として用いた遠赤外線輻射層16からはそれよりも十分に低い温度で電磁波の放射が開始されるので、好適な放射冷却が得られるようになる。 FIG. 3 shows an example in which the far-infrared radiation layer 16 corresponding to the far-infrared radiation cooling apparatus 10 is directly fixed to the bottom surface of the semiconductor 12. The semiconductor 12 of this embodiment is, for example, grown on a sapphire substrate and sprays a far-infrared radiation material at about 2 to 300 ° C. Semiconductor 12 constructed on a sapphire substrate, for example, does not become 250 ° C. or more, the electromagnetic radiation is not started, for example, it more fully also from far-infrared radiation layer 16 with CrO 2 as a far-infrared radiating material Since radiation of electromagnetic waves is started at a low temperature, suitable radiation cooling can be obtained.

図4は、図1の実施例の伝熱部材14に対して空気を強制的に供給するファン20を設けた解放型循環を行う例を示している。この場合、空気中の水蒸気が遠赤外線輻射層16から放射される電磁波を吸収することによりその遠赤外線輻射層16による放射冷却が促進される。本実施例では、上記のファン20が、遠赤外線輻射層16から放射された電磁波を流体により吸収させる電磁波吸収手段或いは装置として機能している。   FIG. 4 shows an example in which open circulation is provided with a fan 20 for forcibly supplying air to the heat transfer member 14 of the embodiment of FIG. In this case, the water vapor in the air absorbs the electromagnetic waves emitted from the far-infrared radiation layer 16, thereby promoting radiation cooling by the far-infrared radiation layer 16. In the present embodiment, the fan 20 functions as an electromagnetic wave absorbing means or device that absorbs electromagnetic waves emitted from the far-infrared radiation layer 16 with a fluid.

図5および図6は、本発明者が行った実験結果であって、図1に示すものにおいて、半導体12としてLEDを用いてそれを以下の条件で作動させたときの温度上昇を測定したものである。◇印は遠赤外線輻射層16が設けられない場合、□印は1回コート(平均厚みが5〜15μm)により遠赤外線輻射層16が設けられた場合、△印は2回コート(平均厚みが10〜30μm)により遠赤外線輻射層16が設けられた場合をそれぞれ示している。   FIG. 5 and FIG. 6 show the results of experiments conducted by the present inventor, and the temperature rise when the LED shown in FIG. 1 is used as a semiconductor 12 and operated under the following conditions is measured. It is. ◇ indicates that the far-infrared radiation layer 16 is not provided, □ indicates that the far-infrared radiation layer 16 is provided once by coating (average thickness is 5 to 15 μm), and Δ indicates that the coating is twice (average thickness is 10 to 30 μm), the cases where the far-infrared radiation layer 16 is provided are shown.

図5の実験の作動条件
・風速0.05〜0.15m/s
・LEDの駆動電圧:6.30V
・LEDの駆動電流:700mA
・空気の温度:23℃
・空気の湿度:31%
Operating conditions of experiment of FIG. 5 / wind speed 0.05-0.15 m / s
LED drive voltage: 6.30V
・ LED drive current: 700mA
・ Air temperature: 23 ℃
・ Air humidity: 31%

図6の実験の作動条件
・風速1.80〜2.00m/s
・LEDの駆動電圧:6.30V
・LEDの駆動電流:700mA
・空気の温度:23℃
・空気の湿度:31%
Operating conditions and wind speed of the experiment of FIG. 6 1.80-2.00 m / s
LED drive voltage: 6.30V
・ LED drive current: 700mA
・ Air temperature: 23 ℃
・ Air humidity: 31%

低風速では、図5に示すように、遠赤外線輻射層16が設けられない場合に比較して、遠赤外線輻射層16が設けられた場合は、半導体12の温度が低く、特に2回コートにより遠赤外線輻射層16が設けられた場合(△印)では、50℃以上低くなっていた。高風速では、図6に示すように、遠赤外線輻射層16が設けられない場合に比較して、遠赤外線輻射層16が設けられた場合は、半導体12の温度が低く、1回コートにより遠赤外線輻射層16が設けられた場合(□印)では、40℃程度低くなっていた。2回コートにより遠赤外線輻射層16が設けられた場合(△印)では、30℃程度低くなっていた。   At a low wind speed, as shown in FIG. 5, when the far-infrared radiation layer 16 is provided, the temperature of the semiconductor 12 is low, particularly when the far-infrared radiation layer 16 is not provided. When the far-infrared radiation layer 16 was provided (Δ mark), the temperature was lowered by 50 ° C. or more. At high wind speeds, as shown in FIG. 6, when the far-infrared radiation layer 16 is provided, the temperature of the semiconductor 12 is lower when the far-infrared radiation layer 16 is not provided. When the infrared radiation layer 16 was provided (□ mark), it was about 40 ° C. lower. When the far-infrared radiation layer 16 was provided by coating twice (Δ mark), it was about 30 ° C. lower.

図7は、図3の実施例の裏面に遠赤外線輻射層16が設けられた半導体12に対して気体を強制的に供給するファン20を設けた閉鎖型循環を行う例を示している。この場合、半導体12およびファン20を収容するダクト22と、放熱用熱交換器24とが循環路に設けられており、例えば炭酸ガス、アンモニアなどの赤外線吸収ガス26がファン20によって循環させられる。本実施例では、上記のファン20およびダクト22等が、遠赤外線輻射層16から放射された電磁波を流体により吸収させる電磁波吸収手段或いは装置として機能している。   FIG. 7 shows an example in which closed circulation is provided with a fan 20 for forcibly supplying gas to the semiconductor 12 having the far-infrared radiation layer 16 provided on the back surface of the embodiment of FIG. In this case, a duct 22 that accommodates the semiconductor 12 and the fan 20 and a heat-dissipating heat exchanger 24 are provided in the circulation path, and an infrared absorbing gas 26 such as carbon dioxide or ammonia is circulated by the fan 20. In this embodiment, the fan 20 and the duct 22 function as an electromagnetic wave absorbing means or device that absorbs the electromagnetic wave radiated from the far-infrared radiation layer 16 with a fluid.

図4、図7の実施例の遠赤外線放射冷却装置10によれば、伝熱部材14或いは半導体12の表面或いは下面に固着された遠赤外線輻射層16から放射された電磁波を流体により吸収する電磁波吸収手段或いは装置をさらに備えたものであるので、一層、高い放射冷却性能が得られる。   According to the far-infrared radiation cooling apparatus 10 of the embodiment of FIGS. 4 and 7, the electromagnetic wave that is absorbed by the fluid from the far-infrared radiation layer 16 fixed to the surface or the lower surface of the heat transfer member 14 or the semiconductor 12. Since the absorption means or device is further provided, higher radiation cooling performance can be obtained.

(実験例1)
カーエヤコンを制御するためのインバータ用IGBTは、水冷装置により冷却されることにより実用されている。この推定装置を取りはずした場合、その温度は120℃以上となって動作不能となる。しかし、前述の実施例に示すように、遠赤外線輻射層16をその一面に設けると、その作動温度は実走行状態で55℃程度に保たれた。また、図7に示す実施例のように、上記インバータ用IGBTの周囲に炭酸ガスを流した場合は40℃程度の作動温度となり、カーエヤコンは通常の動作で作動した。
(Experimental example 1)
An inverter IGBT for controlling a car air conditioner is put into practical use by being cooled by a water cooling device. When this estimation device is removed, the temperature becomes 120 ° C. or higher and the operation becomes impossible. However, as shown in the above-described embodiment, when the far-infrared radiation layer 16 was provided on one surface, the operating temperature was maintained at about 55 ° C. in the actual running state. Further, as in the embodiment shown in FIG. 7, when carbon dioxide gas was allowed to flow around the inverter IGBT, the operating temperature was about 40 ° C., and the car air conditioner operated in a normal operation.

(実験例2)
クロック周波数2.8GHz、駆動電圧5V作動のペンティアム( インテル社商標)IV のパッケージの裏面に前述の遠赤外線輻射層16を固着し、通常のパーソナルコンピュータのワープロ動作を行ってその温度上昇を測定した。遠赤外線輻射層16を固着しないものは100℃に到達したが、遠赤外線輻射層16を設けたものは46℃に保持された。
(Experimental example 2)
The far-infrared radiation layer 16 was fixed to the back surface of a Pentium (Intel trademark) IV package operating at a clock frequency of 2.8 GHz and a driving voltage of 5 V, and the temperature rise was measured by performing a word processor operation of a normal personal computer. . Those in which the far-infrared radiation layer 16 was not fixed reached 100 ° C., but those in which the far-infrared radiation layer 16 was provided were maintained at 46 ° C.

なお、上述したのはあくまでも本発明の一実施例であり、本発明はその主旨を逸脱しない範囲において種々変更が加えられ得るものである。   The above description is merely an example of the present invention, and the present invention can be variously modified without departing from the spirit of the present invention.

本発明の一実施例の遠赤外線放射冷却装置を備えた半導体の構成を説明する略図である。It is the schematic explaining the structure of the semiconductor provided with the far-infrared radiation cooling device of one Example of this invention. 図1の実施例の遠赤外線輻射層を構成する遠赤外線輻射材料の放射エネルギ特性を示す図である。It is a figure which shows the radiant energy characteristic of the far-infrared radiation material which comprises the far-infrared radiation layer of the Example of FIG. 本発明の他の実施例の遠赤外線放射冷却装置を備えた半導体の構成を説明する略図であって、図1に相当する図である。It is the schematic explaining the structure of the semiconductor provided with the far-infrared radiation cooling device of the other Example of this invention, Comprising: It is a figure equivalent to FIG. 本発明の他の実施例の遠赤外線放射冷却装置を備えた半導体であって、解放型強制空冷のためのファンを備えた例を示す図である。It is a semiconductor provided with the far-infrared radiation cooling device of other examples of the present invention, and is a figure showing an example provided with a fan for open type forced air cooling. 遠赤外線輻射層の冷却性能を示すために、図4の実施例を用いて行った低風速の実験結果を示す図である。It is a figure which shows the experimental result of the low wind speed performed using the Example of FIG. 4 in order to show the cooling performance of a far-infrared radiation layer. 遠赤外線輻射層の冷却性能を示すために、図4の実施例を用いて行った高風速の実験結果を示す図である。It is a figure which shows the experimental result of the high wind speed performed using the Example of FIG. 4 in order to show the cooling performance of a far-infrared radiation layer. 本発明の他の実施例の遠赤外線放射冷却装置を備えた半導体であって、閉鎖型流体冷却のファンを備えた例を示す図である。It is a semiconductor provided with the far-infrared radiation cooling device of other examples of the present invention, and is a figure showing an example provided with a fan of closed type fluid cooling.

符号の説明Explanation of symbols

10:遠赤外線放射冷却装置
12:半導体(発熱体)
14:伝熱部材
16:遠赤外線輻射層
10: Far-infrared radiation cooling device 12: Semiconductor (heating element)
14: Heat transfer member 16: Far-infrared radiation layer

Claims (4)

遠赤外線輻射材料の微結晶粒の集合体から構成された遠赤外線輻射層を、伝熱部材の表面に備えたことを特徴とする遠赤外線放射冷却装置。 A far-infrared radiation cooling apparatus comprising a far-infrared radiation layer composed of an aggregate of fine crystal grains of a far-infrared radiation material on a surface of a heat transfer member. 前記遠赤外線輻射材料は、前記遠赤外線輻射材料が溶射されることにより前記伝熱部材の表面に固着されたものである請求項1の遠赤外線放射冷却装置。 The far-infrared radiation cooling device according to claim 1, wherein the far-infrared radiation material is fixed to the surface of the heat transfer member by spraying the far-infrared radiation material. 前記遠赤外線輻射材料は、Wienの変位則の式から実際の温度に基づいて決まるピーク波長以上の波長を吸収するが、可視、赤外、遠赤外に相当する所定波長の電磁波を反射するものである請求項1または2の遠赤外線放射冷却装置。 The far-infrared radiation material absorbs a wavelength that is equal to or greater than the peak wavelength determined based on the actual temperature from the Wien's displacement law equation, but reflects an electromagnetic wave having a predetermined wavelength corresponding to visible, infrared, and far-infrared. The far-infrared radiation cooling device according to claim 1 or 2. 前記伝熱部材の表面に固着された遠赤外線輻射層から放射された電磁波を流体により吸収するための電磁波吸収手段をさらに含むものである請求項1乃至3のいずれかの遠赤外線放射冷却装置。


4. The far-infrared radiation cooling apparatus according to claim 1, further comprising electromagnetic wave absorbing means for absorbing electromagnetic waves radiated from a far-infrared radiation layer fixed to the surface of the heat transfer member by a fluid.


JP2005072008A 2005-03-14 2005-03-14 Far infrared radiation cooling device Pending JP2006250513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005072008A JP2006250513A (en) 2005-03-14 2005-03-14 Far infrared radiation cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005072008A JP2006250513A (en) 2005-03-14 2005-03-14 Far infrared radiation cooling device

Publications (1)

Publication Number Publication Date
JP2006250513A true JP2006250513A (en) 2006-09-21

Family

ID=37091201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005072008A Pending JP2006250513A (en) 2005-03-14 2005-03-14 Far infrared radiation cooling device

Country Status (1)

Country Link
JP (1) JP2006250513A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068767A (en) * 2007-09-13 2009-04-02 Rinnai Corp Bathroom heating device with ventilating function
US20100040796A1 (en) * 2008-08-13 2010-02-18 San-Teng Chueh Heat-dissipating structure and manufacturing method thereof
US20150219410A1 (en) * 2014-01-31 2015-08-06 Asia Vital Components Co., Ltd. Heat Dissipation Structure Enhancing Heat Source Self Heat Radiation
CN108507227A (en) * 2018-04-20 2018-09-07 深圳瑞凌新能源科技有限公司 A kind of cooling water system using radiation refrigeration
CN109791016A (en) * 2016-09-30 2019-05-21 富士胶片株式会社 Radiate cooling device
WO2022181259A1 (en) * 2021-02-24 2022-09-01 国立研究開発法人産業技術総合研究所 Infrared absorber, method for manufacturing same, black-body radiation device, and radiative cooling device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203071A (en) * 1986-03-03 1987-09-07 Agency Of Ind Science & Technol Infrared sensor
JPH01223175A (en) * 1988-03-02 1989-09-06 Nippon Foil Mfg Co Ltd Production of fin material for heat-exchanger
JPH07161884A (en) * 1993-12-07 1995-06-23 Kitagawa Ind Co Ltd Heat radiation material for electronic part
JPH09215704A (en) * 1996-02-08 1997-08-19 Kenichi Yoshikawa Heat insulating and cold insulating implement
JPH10116945A (en) * 1996-10-14 1998-05-06 Kitagawa Ind Co Ltd Heat radiating plate
JPH10116944A (en) * 1996-10-08 1998-05-06 Kitagawa Ind Co Ltd Heat radiating plate
JPH10135383A (en) * 1996-10-30 1998-05-22 Canon Inc Electronic-part mounting board, and electronic appliance with the same
JPH10286417A (en) * 1997-04-11 1998-10-27 Nippon Mizushiyori Giken:Kk Deodorizing appliance
JP2000353889A (en) * 1999-06-09 2000-12-19 Nec Ibaraki Ltd Cooler
JP2002009348A (en) * 2000-06-21 2002-01-11 Susumu Kiyokawa Light emitting diode and its manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203071A (en) * 1986-03-03 1987-09-07 Agency Of Ind Science & Technol Infrared sensor
JPH01223175A (en) * 1988-03-02 1989-09-06 Nippon Foil Mfg Co Ltd Production of fin material for heat-exchanger
JPH07161884A (en) * 1993-12-07 1995-06-23 Kitagawa Ind Co Ltd Heat radiation material for electronic part
JPH09215704A (en) * 1996-02-08 1997-08-19 Kenichi Yoshikawa Heat insulating and cold insulating implement
JPH10116944A (en) * 1996-10-08 1998-05-06 Kitagawa Ind Co Ltd Heat radiating plate
JPH10116945A (en) * 1996-10-14 1998-05-06 Kitagawa Ind Co Ltd Heat radiating plate
JPH10135383A (en) * 1996-10-30 1998-05-22 Canon Inc Electronic-part mounting board, and electronic appliance with the same
JPH10286417A (en) * 1997-04-11 1998-10-27 Nippon Mizushiyori Giken:Kk Deodorizing appliance
JP2000353889A (en) * 1999-06-09 2000-12-19 Nec Ibaraki Ltd Cooler
JP2002009348A (en) * 2000-06-21 2002-01-11 Susumu Kiyokawa Light emitting diode and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068767A (en) * 2007-09-13 2009-04-02 Rinnai Corp Bathroom heating device with ventilating function
US20100040796A1 (en) * 2008-08-13 2010-02-18 San-Teng Chueh Heat-dissipating structure and manufacturing method thereof
US20150219410A1 (en) * 2014-01-31 2015-08-06 Asia Vital Components Co., Ltd. Heat Dissipation Structure Enhancing Heat Source Self Heat Radiation
CN109791016A (en) * 2016-09-30 2019-05-21 富士胶片株式会社 Radiate cooling device
CN109791016B (en) * 2016-09-30 2020-12-29 富士胶片株式会社 Radiation cooling device and its application in cooling of cooled body
CN108507227A (en) * 2018-04-20 2018-09-07 深圳瑞凌新能源科技有限公司 A kind of cooling water system using radiation refrigeration
CN108507227B (en) * 2018-04-20 2024-05-07 宁波瑞凌新能源科技有限公司 Cooling water system utilizing radiation refrigeration
WO2022181259A1 (en) * 2021-02-24 2022-09-01 国立研究開発法人産業技術総合研究所 Infrared absorber, method for manufacturing same, black-body radiation device, and radiative cooling device

Similar Documents

Publication Publication Date Title
US8631855B2 (en) System for dissipating heat energy
JP2006250513A (en) Far infrared radiation cooling device
JP5070014B2 (en) Heat dissipation device
US8283773B2 (en) Semiconductor device having anti-warping sheet
KR101388781B1 (en) Heat dissipation system for power module
JP2008060430A (en) Power converter
TW200418944A (en) Emulsion composition, coating film formed by using the composition and cooling structure with the coating film
CN106129240A (en) High-power LED chip based on Graphene material and COB method for packing thereof
JP2017208505A (en) Structure, and electronic component and electronic apparatus including the structure
US7468885B2 (en) Cooling device for interface card
JP2795626B2 (en) Electronic components with heat dissipation function
US20150136364A1 (en) Heat dissipation device
US20070120138A1 (en) Multi-layer light emitting device with integrated thermoelectric chip
US20100155021A1 (en) Heat exchange cooling structure
JP2698036B2 (en) Heat dissipation material for electronic components
JP2005228855A (en) Radiator
JP2005136211A (en) Cooling device
JP2002368326A (en) Method of cooling laser diode module and light source consisting thereof
US20080135213A1 (en) Composite mode transducer and cooling device having the composite mode transducer
JP2008244238A (en) Semiconductor device
JP2003037223A (en) Semiconductor device
JP7359642B2 (en) power semiconductor device
JP4682925B2 (en) Heat sink for elevator
TWI252900B (en) Lighting device featuring effective temperature lowering
JP2006203101A (en) Heating section having heat radiating structure

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Effective date: 20080314

Free format text: JAPANESE INTERMEDIATE CODE: A625

A711 Notification of change in applicant

Effective date: 20080418

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Effective date: 20080418

Free format text: JAPANESE INTERMEDIATE CODE: A821

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100609

A131 Notification of reasons for refusal

Effective date: 20100713

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100824

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322