JP2006250135A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2006250135A
JP2006250135A JP2005071962A JP2005071962A JP2006250135A JP 2006250135 A JP2006250135 A JP 2006250135A JP 2005071962 A JP2005071962 A JP 2005071962A JP 2005071962 A JP2005071962 A JP 2005071962A JP 2006250135 A JP2006250135 A JP 2006250135A
Authority
JP
Japan
Prior art keywords
injection valve
fuel injection
mover
valve
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005071962A
Other languages
Japanese (ja)
Inventor
Mitsuharu Miyata
充治 宮田
Toshio Jinno
敏夫 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005071962A priority Critical patent/JP2006250135A/en
Publication of JP2006250135A publication Critical patent/JP2006250135A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection valve capable of maintaining desired injection characteristics by always smoothing sliding movements of a movable element, solving adhesion of sticky material inside an oil passing groove, or preventing operation failure when closing the valve. <P>SOLUTION: The fuel injection valve comprises an injection valve body, an electromagnetic solenoid, and an opening/closing valve mechanism. The opening/closing valve mechanism filled with low-pressure fuel oil is provided with the movable element 5 driven by an energizing means and magnetic force of the electromagnetic solenoid. In the fuel injection valve with the movable element 5 having an attracting surface 5E separating from/contacting the electromagnetic solenoid, the movable element 5 is provided with a slant face where an energizing force to the rotational direction is generated by an action of the low-pressure fuel oil along with the displacement to the axial direction at an edge part of a notch 53 of a flat plate part 51, or provided with an obliquely-inclined slit at the peripheral edge part, or provided with a penetrating oil passing hole so as to be inclined, or provided with the oil passing groove having a curved surface formed to be radially bent on the attracting surface 5E. Thereby, the movable element 5 is rotated and the sliding movements are always smoothed to prevent the operation failure at the time of opening/closing the valve. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電磁弁を駆動することにより燃料噴射を断続する燃料噴射弁に関し、例えば、高圧供給ポンプによって加圧し、コモンレール内に蓄圧した高圧燃料を、内燃機関の燃焼室に噴射するための電磁制御式燃料噴射弁に適用して好適なものである。   The present invention relates to a fuel injection valve for intermittently injecting fuel by driving an electromagnetic valve. For example, an electromagnetic for injecting high-pressure fuel pressurized by a high-pressure supply pump and accumulated in a common rail into a combustion chamber of an internal combustion engine. It is suitable for application to a controlled fuel injection valve.

〔従来の技術〕
従来の燃料噴射弁としては、ディーゼルエンジンなどの蓄圧(コモンレール)式燃料噴射装置に用いられ、コモンレールから供給される高圧燃料をエンジンの燃焼室に噴射するものが知られている(特許文献1参照)。
[Conventional technology]
As a conventional fuel injection valve, one that is used in a pressure accumulation (common rail) type fuel injection device such as a diesel engine and injects high-pressure fuel supplied from the common rail into a combustion chamber of the engine is known (see Patent Document 1). ).

この燃料噴射弁は、内部に収容された制御ピストンの反噴射側に圧力制御室を設け、圧力制御室と燃料低圧側とを電磁弁で断続することにより燃料噴射時期を制御するものであり、また、圧力制御室の燃料流入側および流出側にそれぞれ流入絞りおよび流出絞りを設け、流出絞りの流路面積を流入絞りの流路面積よりも大きくすることにより、電磁弁の通電(オン)時、アーマチャが吸引され開弁し、圧力制御室の燃料圧力を低下させ、制御ピストンとともにニードル弁をリフトさせ燃料を噴射させるものが知られている。   This fuel injection valve is provided with a pressure control chamber on the non-injection side of the control piston housed inside, and controls the fuel injection timing by intermittently connecting the pressure control chamber and the fuel low pressure side with an electromagnetic valve. Also, an inflow restrictor and an outflow restrictor are provided on the fuel inflow side and the outflow side of the pressure control chamber, respectively, and the flow passage area of the outflow restrictor is made larger than the flow passage area of the inflow restrictor so that the solenoid valve is energized (ON). It is known that the armature is sucked and opened to reduce the fuel pressure in the pressure control chamber, and the needle valve is lifted together with the control piston to inject fuel.

上記のアーマチャ(可動子)は、開閉弁機構の弁体として作用し、付勢手段であるスプリングで下方(流出絞りの閉鎖方向)に付勢され、電磁ソレノイドで生じた磁力により上方(流出絞りの開放方向)に吸引されて上下に所定のストロークで変位する。   The above armature (movable element) acts as a valve body of the on-off valve mechanism, is urged downward (in the closing direction of the outflow restrictor) by a spring as an urging means, and is upward (outflow restrictor) by the magnetic force generated by the electromagnetic solenoid. And is displaced with a predetermined stroke up and down.

電磁弁内には低圧燃料油が導入されており、アーマチャ(可動子)の上下方向の変位には低圧燃料油の抵抗が生じる。このため、応答性の向上には低圧燃料油の抵抗の低減が重要である。従来より、可動子の平板部の外周には、複数の切欠きがもうけられており(図7参照)、流体(低圧燃料油)抵抗の低減と軽量化による変位の応答性の向上が図られている。   Low pressure fuel oil is introduced into the solenoid valve, and resistance of the low pressure fuel oil is generated in the vertical displacement of the armature (mover). For this reason, it is important to reduce the resistance of the low-pressure fuel oil to improve the responsiveness. Conventionally, a plurality of notches have been provided on the outer periphery of the flat plate portion of the mover (see FIG. 7), and the responsiveness of displacement is improved by reducing the resistance of the fluid (low pressure fuel oil) and reducing the weight. ing.

〔従来技術の不具合〕
図7に示すように、従来の可動子5は、平板部51の外周部に、複数の略V字形の切欠き53を等間隔に設けるとともに、平板部51の吸着面5Eに、各々のV字形の切欠き53の最奥部5Aに連通する通油溝58を設け、平板部51の上方への油の流入や流出を円滑にするとともに軽量化が図られている。また、アーマチャ(可動子)5が配されている可動子室内の燃料油は、エンジンの運転時には高温度となり、燃料油中に粘性物質が生成することが知られている。
[Problems with conventional technology]
As shown in FIG. 7, the conventional mover 5 is provided with a plurality of substantially V-shaped notches 53 on the outer periphery of the flat plate portion 51 at equal intervals, and on each suction surface 5 </ b> E of the flat plate portion 51. An oil passage groove 58 that communicates with the innermost portion 5A of the letter-shaped notch 53 is provided to facilitate the inflow and outflow of the oil above the flat plate portion 51 and to reduce the weight. Further, it is known that the fuel oil in the mover chamber in which the armature (mover) 5 is arranged has a high temperature when the engine is operated, and a viscous substance is generated in the fuel oil.

可動子室内に生成した粘性物質は、アーマチャ5の吸着面5Eとなっていない通油溝58に臨んだ可動子室内壁に付着し易い。この粘性物質の付着は必ずしも均等でないため、アーマチャ5の下方への変位の際に、平板部51の上方への燃料油の流入に不均一な分布を生じさせる。この分布は、アーマチャ5の上下動に対して平板部51を傾けるような付勢力が生じ、アーマチャ5のシャフト部52の摺動部分に局所的な摺動不良を引き起こし易い。この結果、電磁弁3の閉弁時に作動不良を起こし、所定の噴射特性が得られない問題が懸念されている。
特開平9−158811号公報
The viscous material generated in the mover chamber is likely to adhere to the wall of the mover chamber facing the oil passage groove 58 that is not the adsorption surface 5E of the armature 5. Since the adhesion of the viscous material is not necessarily uniform, when the armature 5 is displaced downward, a non-uniform distribution is generated in the inflow of the fuel oil above the flat plate portion 51. This distribution generates a biasing force that tilts the flat plate portion 51 with respect to the vertical movement of the armature 5, and easily causes local sliding failure in the sliding portion of the shaft portion 52 of the armature 5. As a result, there is a concern that a malfunction may occur when the electromagnetic valve 3 is closed and a predetermined injection characteristic cannot be obtained.
Japanese Patent Laid-Open No. 9-158811

近年、燃料噴射制御の精密化、噴霧燃料の微粒化の要請により、高圧燃料の圧力は、益々高圧化に向かい、一方では、背反する要求である小型・軽量、高耐久・信頼性が強く望まれている。つまり、高圧下での燃料噴射弁の耐久・信頼性向上が希求されており、その一つに、可動子の一箇所集中の摺動動作を防止し、もしくは粘性物質に対して、通油溝内への付着を防止し、閉弁時の作動不良を解消して噴射特性を良好に維持させる課題がある。   In recent years, due to the demand for precise fuel injection control and atomization of atomized fuel, the pressure of high-pressure fuel has been increasingly increased. On the other hand, the contradictory demands for small size, light weight, high durability, and reliability are strongly desired. It is rare. In other words, there is a need for improved durability and reliability of fuel injection valves under high pressure, and one of them is to prevent sliding movements concentrated on one point of the mover, or oil flow grooves against viscous substances. There is a problem of preventing the adhesion to the inside and eliminating the malfunction when the valve is closed to maintain the injection characteristics well.

本発明の目的は、可動子の摺動動作を常時円滑にし、もしくは通油溝内への粘状物質の付着を解消し、閉弁時の作動不良を防止して、所望の噴射特性を効果的に維持できる燃料噴射弁を提供することにある。   The object of the present invention is to make the sliding movement of the mover smooth at all times, or to eliminate the adhesion of sticky substances in the oil passage groove, to prevent malfunctions when the valve is closed, and to achieve desired injection characteristics. It is to provide a fuel injection valve that can be maintained efficiently.

〔請求項1の手段〕
噴射弁本体と噴射弁本体からの燃料噴射を断続する電磁弁とからなり、電磁弁は電磁ソレノイドと開閉弁機構とを備えており、開閉弁機構は、低圧燃料油が満たされている電磁弁内に配され、付勢手段と電磁ソレノイドの磁力とにより駆動される可動子を備えており、可動子は電磁ソレノイドに離接する吸着面を有する燃料噴射弁において、可動子に、可動子の軸方向の変位に伴う低圧燃料油の移動により、回転方向の付勢力が生じる作用面を設けたことを特徴とする形状を採用している。
[Means of Claim 1]
The solenoid valve includes an injection valve body and an electromagnetic valve that intermittently injects fuel from the injection valve body. The solenoid valve includes an electromagnetic solenoid and an opening / closing valve mechanism, and the opening / closing valve mechanism is an electromagnetic valve filled with low-pressure fuel oil. In the fuel injection valve having a suction surface that is separated from and in contact with the electromagnetic solenoid, the movable element is provided with a movable element shaft that is driven by the biasing means and the magnetic force of the electromagnetic solenoid. It adopts a shape characterized by providing a working surface that generates a biasing force in the rotational direction by the movement of the low-pressure fuel oil accompanying the displacement in the direction.

この構成によれば、可動子が回転しながら上下変位を起こすことにより、一箇所集中の摺動を解消し、常時新しい摺動面と摺動を実現し、局所的な摺動不良を防止する。また、可動子室内に発生する粘状物質の通油溝内への付着を防止し、閉弁時作動不良を解消できる。   According to this configuration, by moving the mover up and down while moving, it eliminates the concentrated sliding at one place, always realizes a new sliding surface and sliding, and prevents local sliding failure. . Further, the sticky substance generated in the mover chamber can be prevented from adhering to the oil passage groove, and the malfunction during valve closing can be eliminated.

〔請求項2の手段〕
請求項1に記載の燃料噴射弁において、可動子は、吸着面を形成する平板部を備えており、平板部の外周部には、複数の切欠きが形成されており、作用面は、切欠きの縁に形成された斜面により構成されていることを特徴とする形状を採用している。
[Means of claim 2]
2. The fuel injection valve according to claim 1, wherein the mover includes a flat plate portion that forms an adsorption surface, and a plurality of notches are formed in an outer peripheral portion of the flat plate portion, and the working surface is a cut surface. A shape characterized by a slope formed on the edge of the notch is adopted.

この構成によれば、可動子が回転しながら上下変位を起こすことにより、一箇所集中の摺動を解消し、常時新しい摺動面と摺動を実現し、局所的な摺動不良を防止する。また、可動子室内に発生する粘状物質の通油溝内への付着を防止し、閉弁時作動不良を解消できる。 According to this configuration, by moving the mover up and down while moving, it eliminates the concentrated sliding at one place, always realizes a new sliding surface and sliding, and prevents local sliding failure. . Further, the sticky substance generated in the mover chamber can be prevented from adhering to the oil passage groove, and the malfunction during valve closing can be eliminated.

〔請求項3の手段〕
請求項1または2に記載の燃料噴射弁において、可動子は、吸着面を形成する平板部を備えており、平板部の外周部には、複数の傾斜したスリットが形成されており、作用面は、スリットの斜面により構成されていることを特徴とする形状を採用している。
[Means of claim 3]
3. The fuel injection valve according to claim 1, wherein the mover includes a flat plate portion that forms an adsorption surface, and a plurality of inclined slits are formed on an outer peripheral portion of the flat plate portion, and the working surface. Adopts a shape characterized by being constituted by the slope of the slit.

この構成によれば、可動子が回転しながら上下変位を起こすことにより、一箇所集中の摺動を解消し、常時新しい摺動面と摺動を実現し、局所的な摺動不良を防止する。また、可動子室内に発生する粘状物質の通油溝内への付着を防止し、閉弁時作動不良を解消できる。   According to this configuration, by moving the mover up and down while moving, it eliminates the concentrated sliding at one place, always realizes a new sliding surface and sliding, and prevents local sliding failure. . Further, the sticky substance generated in the mover chamber can be prevented from adhering to the oil passage groove, and the malfunction during valve closing can be eliminated.

〔請求項4の手段〕
請求項1または2に記載の燃料噴射弁において、可動子は、吸着面を形成する平板部を備えており、平板部の切欠きと切欠きとの間にある切欠き間部の所定の円周上に配した通油孔を軸方向と傾斜して形成し、作用面は、通油孔の斜面により構成されていることを特徴とする形状を採用している。
[Means of claim 4]
3. The fuel injection valve according to claim 1, wherein the mover includes a flat plate portion that forms an adsorption surface, and a predetermined circle at a notch portion between the cutout of the flat plate portion. An oil passage hole arranged on the circumference is formed so as to be inclined with respect to the axial direction, and the working surface is formed by a slope of the oil passage hole.

この構成によれば、可動子が回転しながら上下変位を起こすことにより、一箇所集中の摺動を解消し、常時新しい摺動面と摺動を実現し、局所的な摺動不良を防止する。また、可動子室内に発生する粘状物質の通油溝内への付着を防止し、閉弁時作動不良を解消できる。   According to this configuration, by moving the mover up and down while moving, it eliminates the concentrated sliding at one place, always realizes a new sliding surface and sliding, and prevents local sliding failure. . Further, the sticky substance generated in the mover chamber can be prevented from adhering to the oil passage groove, and the malfunction during valve closing can be eliminated.

〔請求項5の手段〕
請求項1または2に記載の燃料噴射弁において、可動子は、吸着面を形成する平板部を備えており、吸着面には、吸着面の中心部と外周部とを連通する通油溝が設けられており、作用面は、通油溝を放射状に湾曲して形成された曲面により構成されていることを特徴とする形状を採用している。
[Means of claim 5]
3. The fuel injection valve according to claim 1, wherein the mover includes a flat plate portion that forms an adsorption surface, and the adsorption surface has an oil passage groove that communicates a central portion and an outer peripheral portion of the adsorption surface. The working surface has a shape characterized by a curved surface formed by radially bending the oil passage groove.

この構成によれば、可動子が回転しながら上下変位を起こすことにより、一箇所集中の摺動を解消し、常時新しい摺動面と摺動を実現し、局所的な摺動不良を防止する。また、可動子室内に発生する粘状物質の通油溝内への付着を防止し、閉弁時作動不良を解消できる。   According to this configuration, by moving the mover up and down while moving, it eliminates the concentrated sliding at one place, always realizes a new sliding surface and sliding, and prevents local sliding failure. . Further, the sticky substance generated in the mover chamber can be prevented from adhering to the oil passage groove, and the malfunction during valve closing can be eliminated.

この発明の最良の実施形態を、図に示す実施例1とともに説明する。   The best mode of the present invention will be described together with Example 1 shown in the drawings.

〔実施例1の構成〕
図1は、エンジンの燃焼室内へ間欠的に燃料を噴射する電磁制御式の燃料噴射弁を示し、図2は燃料噴射弁の要部である電磁弁の開閉弁機構を示す。
燃料噴射弁1は、ディーゼルエンジン用の蓄圧(コモンレール)式燃料噴射装置に用いられ、図示しないコモンレールから供給される高圧燃料をエンジンの燃焼室に噴射する。
燃料噴射弁1は噴射弁本体2と、該噴射弁本体2の後端に装着した電磁弁3と、先端に締結した燃料の噴射ノズル4とからなる。
電磁弁3は、図示しないエンジン制御装置(ECU)からのワイヤーハーネスに接続されるコネクタCが設けられており、ECUから送出される制御信号により制御される。
[Configuration of Example 1]
FIG. 1 shows an electromagnetically controlled fuel injection valve that intermittently injects fuel into a combustion chamber of an engine, and FIG. 2 shows an on-off valve mechanism of an electromagnetic valve that is a main part of the fuel injection valve.
The fuel injection valve 1 is used in a pressure accumulation (common rail) type fuel injection device for a diesel engine, and injects high pressure fuel supplied from a common rail (not shown) into a combustion chamber of the engine.
The fuel injection valve 1 includes an injection valve main body 2, an electromagnetic valve 3 attached to the rear end of the injection valve main body 2, and a fuel injection nozzle 4 fastened to the front end.
The solenoid valve 3 is provided with a connector C connected to a wire harness from an engine control unit (ECU) (not shown), and is controlled by a control signal sent from the ECU.

噴射弁本体2は、棒状を呈し、軸心に貫通したシリンダ21が設けられるとともに、シリンダ21に並行して高圧燃料流路22、および低圧燃料流路23が設けられた弁ボディ20を有する。
弁ボディ20の後端には、円筒状の電磁弁設置室10が設けられ、電磁弁設置室10には電磁弁3が装着されてリテーニングナット24により固定されている。弁ボディ20の先端には、噴射ノズル4が、リテーニングナット25により同軸的に締結されている。弁ボディ20の上部には斜め上方に傾斜して、いずれも筒状のインレット部26、およびアウトレット部27が設けられている。
The injection valve main body 2 has a valve body 20 having a rod shape and provided with a cylinder 21 penetrating the shaft center and a high-pressure fuel flow path 22 and a low-pressure fuel flow path 23 provided in parallel with the cylinder 21.
A cylindrical electromagnetic valve installation chamber 10 is provided at the rear end of the valve body 20, and the electromagnetic valve 3 is mounted in the electromagnetic valve installation chamber 10 and fixed by a retaining nut 24. The injection nozzle 4 is coaxially fastened to the tip of the valve body 20 by a retaining nut 25. A cylindrical inlet portion 26 and an outlet portion 27 are provided on the upper portion of the valve body 20 so as to be inclined obliquely upward.

電磁弁3は、電磁弁設置室10の上部に設置された電磁ソレノイド30、および電磁弁設置室10の下部に設置された開閉弁機構50からなる。開閉弁機構50は、可動子5と、可動子5を保持する可動子ホルダ6とを有する。
可動子ホルダ6の下部(電磁弁設置室10の下端部)はやや小径のプレート室70となっており、略円盤状の絞り弁ボディ7が収容されている。
開閉弁機構50の開閉弁動作と絞り弁ボディ7の圧力調整動作を併せて、圧力制御手段と称する。
The electromagnetic valve 3 includes an electromagnetic solenoid 30 installed at the upper part of the electromagnetic valve installation chamber 10 and an on-off valve mechanism 50 installed at the lower part of the electromagnetic valve installation chamber 10. The on-off valve mechanism 50 includes a mover 5 and a mover holder 6 that holds the mover 5.
The lower part of the mover holder 6 (the lower end part of the electromagnetic valve installation chamber 10) is a slightly small-diameter plate chamber 70 in which a substantially disc-shaped throttle valve body 7 is accommodated.
The on-off valve operation of the on-off valve mechanism 50 and the pressure adjustment operation of the throttle valve body 7 are collectively referred to as pressure control means.

図2において、電磁ソレノイド30は、強磁性材製で上端が鍔状の円筒32の外周に、複合磁性材を積層した磁気コア33を配し、磁気コア33の外周を強磁性材製外筒34で包囲し、磁気コア33内に電磁コイル35を配設した構造を有する。電磁ソレノイド30の下面は、可動子5を吸引する吸引面となっており、円筒32の下端面は、可動子5が衝突(当接)するストッパー面となっている。   In FIG. 2, an electromagnetic solenoid 30 is provided with a magnetic core 33 in which a composite magnetic material is laminated on the outer periphery of a cylinder 32 made of a ferromagnetic material and having a bowl-shaped upper end, and the outer periphery of the magnetic core 33 is formed of a ferromagnetic material outer cylinder. 34, and has a structure in which an electromagnetic coil 35 is disposed in the magnetic core 33. The lower surface of the electromagnetic solenoid 30 is a suction surface that sucks the mover 5, and the lower end surface of the cylinder 32 is a stopper surface on which the mover 5 collides (contacts).

可動子5は、平板部51およびシャフト部52とを有し、平板部51は、その上面が略平面であり、電磁ソレノイド30の下面に吸着される吸着面5Eとなっており、可動子室60に配されている。シャフト部52は円柱状を呈し、可動子ホルダ6の中心穴に摺動自在に嵌め込まれている。可動子ホルダ6は、電磁弁設置室10の内周に螺合され、締結軸力を生じ、絞り弁ボディ7をプレート室70の端面に接合させている。   The mover 5 has a flat plate portion 51 and a shaft portion 52, and the flat plate portion 51 has a substantially flat upper surface and is a suction surface 5 E that is attracted to the lower surface of the electromagnetic solenoid 30. 60. The shaft portion 52 has a cylindrical shape and is slidably fitted into the center hole of the mover holder 6. The mover holder 6 is screwed into the inner periphery of the electromagnetic valve installation chamber 10 to generate a fastening axial force, and joins the throttle valve body 7 to the end surface of the plate chamber 70.

シャフト部52の下端面の中心には、円筒部および円錐部からなる弁体室77が設けられ、弁体室77には窒化珪素製のボール弁78が収容されている。ボール弁78は上面が球状であるが、下面は絞り弁ボディ7の上面の流出絞り73を塞ぐシール平面状となっている。
可動子5は、円筒32内に配されたスプリング36で下方(閉弁方向)に付勢され、電磁ソレノイド30で生じた磁力により上方(開弁方向)に吸引されて上下に変位(図2の寸法L)する。
A valve body chamber 77 having a cylindrical portion and a conical portion is provided at the center of the lower end surface of the shaft portion 52, and a ball valve 78 made of silicon nitride is accommodated in the valve body chamber 77. The ball valve 78 has a spherical upper surface, but the lower surface has a sealing flat shape that closes the outflow restrictor 73 on the upper surface of the throttle valve body 7.
The mover 5 is urged downward (in the valve closing direction) by a spring 36 disposed in the cylinder 32, and is attracted upward (in the valve opening direction) by the magnetic force generated by the electromagnetic solenoid 30 and displaced up and down (FIG. 2). Dimension L).

電磁ソレノイド30、および開閉弁機構50が収容されている電磁弁設置室10は、低圧燃料流路23に連結した流出路13に連通しており、低圧燃料油で満たされている。このため、可動子5の上下方向の変位には、主に平板部51に低圧燃料油の抵抗が生じ、電磁弁3の応答性に影響を与える。電磁弁3の応答性を向上させるためには、平板部51の低圧燃料油の抵抗を低減すると共に、可動子5の重量を軽減して、迅速な動作を可能にすることが必要である。また、可動子5は、上下動に伴い衝撃が加わるため、耐久性の観点から重要な構成部分でもある。   The electromagnetic valve installation chamber 10 in which the electromagnetic solenoid 30 and the on-off valve mechanism 50 are accommodated communicates with the outflow passage 13 connected to the low-pressure fuel passage 23 and is filled with low-pressure fuel oil. For this reason, the displacement of the mover 5 in the vertical direction mainly causes the resistance of the low-pressure fuel oil in the flat plate portion 51 and affects the responsiveness of the electromagnetic valve 3. In order to improve the responsiveness of the solenoid valve 3, it is necessary to reduce the resistance of the low pressure fuel oil of the flat plate portion 51 and reduce the weight of the mover 5 to enable a quick operation. The mover 5 is also an important component from the viewpoint of durability because an impact is applied with the vertical movement.

従来の可動子5の平板部51には、図7に示すように、円盤の外周部の3箇所に等間隔(120度間隔)で、略V字形(扇形)の切欠き53を設けている。切欠き53は、低圧燃料油による抵抗の軽減と軽量化のために形成されており、形状および個数は適宜に決定される。隣合う切欠き53との間は、切欠き間部54を形成している。なお、切欠きの形状は、外周側が幅広で、中心側が幅狭の形状であれば、略V字形以外であってもよい。   As shown in FIG. 7, the flat plate portion 51 of the conventional mover 5 is provided with substantially V-shaped (fan-shaped) notches 53 at three positions on the outer periphery of the disk at regular intervals (120-degree intervals). . The notches 53 are formed to reduce resistance and reduce weight by the low-pressure fuel oil, and the shape and the number thereof are appropriately determined. A notch portion 54 is formed between the adjacent notches 53. Note that the shape of the notch may be other than a substantially V shape as long as the outer peripheral side is wide and the center side is narrow.

3個の切欠き間部54の中央には、所定の円周上に等間隔で軸方向に貫通した通油孔55が設けられている。切欠き間部54の外周の下面には約45度の面取りを有する外周斜面56が周設されている。そして、通油孔55は下面の外周部において外周斜面56の下方の環状空間5Cに連通しており、低圧燃料油による抵抗の軽減と軽量化とによる可動子5の変位の応答性の向上が図られている。   In the center of the three notch portions 54, an oil passage hole 55 is provided that penetrates in the axial direction at equal intervals on a predetermined circumference. An outer peripheral slope 56 having a chamfer of about 45 degrees is provided on the lower surface of the outer periphery of the notch 54. The oil passage hole 55 communicates with the annular space 5C below the outer peripheral slope 56 at the outer peripheral portion of the lower surface, and the responsiveness of the displacement of the mover 5 is improved by reducing the resistance and reducing the weight by the low-pressure fuel oil. It is illustrated.

平板部51の吸着面(上面)5Eの中心には、円形凹所57が形成され、スプリング36の下端が当接する座面となっている。円形凹所57の外周には、上方に僅かに突き出た円環状の当接平面5Dが形成されている。当接平面5Dは、円筒32のストッパー面(下端面)に対応した大きさを有する。円形凹所57からは、等間隔(60度間隔)に半径方向の6個の通油溝58が、当接平面5Dが構成する円環の外周より外側に至るまで形成され、3個の通油溝58は3個の切欠き53と連通している。   A circular recess 57 is formed at the center of the suction surface (upper surface) 5E of the flat plate portion 51, and serves as a seat surface with which the lower end of the spring 36 abuts. On the outer periphery of the circular recess 57, an annular contact plane 5D slightly protruding upward is formed. The contact plane 5D has a size corresponding to the stopper surface (lower end surface) of the cylinder 32. From the circular recess 57, six oil passage grooves 58 in the radial direction are formed at equal intervals (60 degree intervals) from the outer periphery of the ring formed by the abutting flat surface 5D to the outside. The oil groove 58 communicates with the three notches 53.

また、6個の通油溝58の中間位置に、円環状の当接平面5Dの突き出し部を欠落させた補助溝59が交互に形成されている。補助溝59は、通油溝58より小さく、6個の通油溝58内を通過する燃料油の不足を補い、迅速な燃料油の移動に寄与する。補助溝59の幅、深さ、個数、形成位置は、通油溝58と同様当接平面5Dが構成する円環の外周より外側に至るパターンにて適宜に設計できる。   In addition, auxiliary grooves 59 in which the protruding portions of the annular contact flat surface 5 </ b> D are missing are alternately formed at intermediate positions of the six oil passage grooves 58. The auxiliary groove 59 is smaller than the oil passage groove 58, compensates for the shortage of fuel oil passing through the six oil passage grooves 58, and contributes to rapid fuel oil movement. The width, depth, number, and formation position of the auxiliary grooves 59 can be appropriately designed in a pattern extending from the outer periphery of the ring formed by the contact flat surface 5 </ b> D similarly to the oil passage groove 58.

しかるに、本発明の実施例1では、図3に示すように、可動子5の平板部51の下面側において、切欠き53の縁部に沿って約45度の面取りを、切欠き53の最奥部5Aに向かうにつけ面取りを少なくするよう斜面をもって形成し、そして、この面取りを全ての切欠き53の同じ片側の縁部に設けることにより、あたかも羽根車の形になるように構成する。すると、可動子5の上下動に際し、低圧燃料油はこの傾斜面に沿って移動するが、斜面ゆえに燃料油の移動に伴って水平方向の作用力が発生する。この水平作用力が可動子5を回転させる。   However, in the first embodiment of the present invention, as shown in FIG. 3, chamfering of about 45 degrees along the edge of the notch 53 is performed on the lower surface side of the flat plate portion 51 of the movable element 5. A slope is formed so as to reduce chamfering toward the inner part 5A, and this chamfer is provided on the same one side edge of all the notches 53, so that it is shaped like an impeller. Then, when the mover 5 moves up and down, the low-pressure fuel oil moves along this inclined surface, but because of the inclined surface, a horizontal acting force is generated as the fuel oil moves. This horizontal acting force rotates the mover 5.

また、最奥部5Aに向かうにつけ面取りを少なくするよう斜面が形成されているが、これは可動子5の外周部に作用する水平作用力が、可動子5の回転力に最も効果的であるとの理由からであり、斜面が最奥部5Aに向かって一様に深く面取りが形成されていても構わない。また、斜面は可動子5の平板部51の下面側の切欠き53の片側縁部に沿って約45度の面取りを設けてあるが、これを平板部51の上面側の切欠き53の片側縁部に設けてもよいし、また、上下両面の切欠き53の縁部に、可動子5が円滑に回転する向き(傾き)で、対をなして設けても構わない。また、面取りされた斜面の形状は、ストレートに限ることなく、凸状であっても凹状であっても構わないし、面取りの勾配も約45度に限ることなく、これより大きくても小さくても構わない。   In addition, a slope is formed so as to reduce chamfering toward the innermost part 5A, but this is because the horizontal acting force acting on the outer peripheral part of the mover 5 is most effective for the rotational force of the mover 5. For this reason, the chamfer may be uniformly deeply formed toward the innermost part 5A. Further, the slope is provided with a chamfer of about 45 degrees along one side edge of the notch 53 on the lower surface side of the flat plate portion 51 of the movable element 5, and this is provided on one side of the notch 53 on the upper surface side of the flat plate portion 51. You may provide in an edge part, and you may provide in a direction (inclination) in which the needle | mover 5 rotates smoothly in the edge part of the notch 53 of upper and lower surfaces. Further, the shape of the chamfered slope is not limited to a straight shape, and may be convex or concave, and the chamfering slope is not limited to about 45 degrees, and may be larger or smaller than this. I do not care.

図2において、可動子ホルダ6は、上面には円形の上面凹所62が設けられ、下面の中央には下面凹所63が形成されている。上面凹所62には、上広がりのテーパを有する中心穴と、環状空間5Cに連通している切欠き65とを有する円環板66が嵌め込まれている。可動子ホルダ6には、切欠き53および環状空間5Cに連通した上下方向の連通穴67が形成されている。連通穴67は、傾斜穴68により下面凹所63と連通している。   In FIG. 2, the mover holder 6 is provided with a circular upper surface recess 62 on the upper surface and a lower surface recess 63 in the center of the lower surface. An annular plate 66 having a center hole having an upward taper and a notch 65 communicating with the annular space 5C is fitted into the upper surface recess 62. The mover holder 6 is formed with a vertical communication hole 67 communicating with the notch 53 and the annular space 5C. The communication hole 67 communicates with the lower surface recess 63 through the inclined hole 68.

絞り弁ボディ7は、その円周端面の一部が切り欠いてある略円形の円盤であり、その下端面には、その中心に円錐形状の凹所が形成され、圧力制御室40を構成し、この中心の上面側に流出絞り73が形成されている。また、圧力制御室40の円錐斜面に傾斜した連通孔40Aが開けられており、流入絞り74を介して、インレット部26の入口流路12と連通する。   The throttle valve body 7 is a substantially circular disk in which a part of its circumferential end surface is cut out. A conical recess is formed at the center of the lower end surface of the throttle valve body 7 to form a pressure control chamber 40. An outflow restrictor 73 is formed on the upper surface side of the center. In addition, a communication hole 40 </ b> A inclined in the conical slope of the pressure control chamber 40 is opened, and communicates with the inlet flow path 12 of the inlet portion 26 via the inflow throttle 74.

図1において、インレット部26の内部には、高圧燃料流路22に連通した高圧燃料流入路11、および高圧燃料流入路11とプレート室70とを連通する入口流路12が形成されている。コモンレールから供給された高圧燃料の燃料圧は、高圧燃料流入路11、入口流路12、流入絞り74を介して、圧力制御室40に導かれている。
アウトレット部27にはプレート室70を経て低圧燃料流路23に連通した流出路13が設けられており、燃料噴射弁1内の電磁弁設置室10やプレート室70の余剰燃料を外部に排出する排出流路を形成している。
In FIG. 1, a high-pressure fuel inflow passage 11 that communicates with the high-pressure fuel passage 22 and an inlet passage 12 that communicates the high-pressure fuel inflow passage 11 and the plate chamber 70 are formed inside the inlet portion 26. The fuel pressure of the high-pressure fuel supplied from the common rail is guided to the pressure control chamber 40 via the high-pressure fuel inflow passage 11, the inlet passage 12, and the inflow throttle 74.
The outlet portion 27 is provided with an outflow passage 13 communicating with the low-pressure fuel flow path 23 through the plate chamber 70, and discharges surplus fuel in the electromagnetic valve installation chamber 10 in the fuel injection valve 1 and the plate chamber 70 to the outside. A discharge channel is formed.

弁ボディ20の中心には、シリンダ21が貫通している。シリンダ21は、制御ピストン41を収容している。制御ピストン41は、円筒形の上下動ピストンである。制御ピストン41の上端は円錐台形状を有し、絞り弁ボディ7に形成された圧力制御室40に適切な隙間(空間)を形成して配設されている。圧力制御室40の圧力に応じ、制御ピストン41は下方に押され、シリンダ21内を摺動して移動する。一方、制御ピストン41の下端は、噴射ノズル4内に収容されるニードル弁42の上端部に当接している。
弁ボディ20の下端面にスプリング44が介装され、ニードル弁42を下方(閉弁)に付勢している。
A cylinder 21 passes through the center of the valve body 20. The cylinder 21 houses a control piston 41. The control piston 41 is a cylindrical vertical piston. The upper end of the control piston 41 has a truncated cone shape and is disposed in a pressure control chamber 40 formed in the throttle valve body 7 with an appropriate gap (space). In accordance with the pressure in the pressure control chamber 40, the control piston 41 is pushed downward and slides in the cylinder 21 to move. On the other hand, the lower end of the control piston 41 is in contact with the upper end portion of the needle valve 42 accommodated in the injection nozzle 4.
A spring 44 is interposed at the lower end surface of the valve body 20 to urge the needle valve 42 downward (closed).

噴射ノズル4は大径部のノズルボディ48および小径部のノズル49を有する二段筒型形状であり、該段差部にリテーニングナット25を掛け、弁ボディ20の先端に締結されている。ノズルボディ48の中心に、ニードル弁42を収容するニードル穴45が形成され、ニードル弁42を摺動支持するニードル摺動部45Aと高圧燃料油の通路となるニードル燃料通路45Bとを構成する。また、ニードル燃料通路45Bの上流側のニードル穴の中間位置には径大の大容積を有する袋穴部45Cが、傾斜する高圧燃料通路46と交差して設けられている。   The injection nozzle 4 has a two-stage cylindrical shape having a nozzle body 48 having a large diameter portion and a nozzle 49 having a small diameter portion. A retaining nut 25 is hung on the step portion and is fastened to the tip of the valve body 20. A needle hole 45 that accommodates the needle valve 42 is formed at the center of the nozzle body 48, and constitutes a needle sliding portion 45A that slides and supports the needle valve 42 and a needle fuel passage 45B that serves as a passage for high-pressure fuel oil. A bag hole portion 45C having a large volume and a large volume is provided at an intermediate position of the needle hole on the upstream side of the needle fuel passage 45B so as to intersect the inclined high pressure fuel passage 46.

また、ニードル燃料通路45Bの下流側にはニードル穴45の下端を塞ぐ、適度に薄肉のテーパ構造を有するノズル先端室49Aが構成され、ノズル先端室49Aには1個もしくは複数個適切な数の噴射孔43が適切な位置に設けられ、高圧燃料を噴霧する。   Further, a nozzle tip chamber 49A having an appropriately thin taper structure that closes the lower end of the needle hole 45 is formed on the downstream side of the needle fuel passage 45B, and one or a plurality of nozzle tip chambers 49A have an appropriate number. An injection hole 43 is provided at an appropriate position to spray high-pressure fuel.

ニードル弁42は、圧力制御室40の燃料圧およびスプリング44のバネ荷重による下方への付勢力と、噴射ノズル4内の燃料圧によりニードル弁42に加わる上方への付勢力とのバランスで上下動し、噴射孔43を開閉する。すなわち、圧力制御室40が低圧になったとき、制御ピストン41とニードル弁42とが上方に移動し、噴射孔43が開いて、高圧燃料流路22から噴射ノズル4に供給された高圧燃料が燃焼室に噴射される。   The needle valve 42 moves up and down by a balance between the downward biasing force due to the fuel pressure in the pressure control chamber 40 and the spring load of the spring 44 and the upward biasing force applied to the needle valve 42 by the fuel pressure in the injection nozzle 4. Then, the injection hole 43 is opened and closed. That is, when the pressure control chamber 40 becomes low pressure, the control piston 41 and the needle valve 42 move upward, the injection hole 43 is opened, and the high pressure fuel supplied from the high pressure fuel flow path 22 to the injection nozzle 4 is It is injected into the combustion chamber.

〔実施例1の作用〕
実施例1の燃料噴射弁1の作用を、図1〜3を用いて説明する。
この燃料噴射弁1は、電磁ソレノイド30へ通電されると、可動子5は電磁力により吸引されて上方に移動し、平板部51が円筒32の下面(ストッパー面)に衝突して停止する。このとき可動子5のV字形の切欠き53縁部の斜面に沿って低圧燃料油が移動するので、可動子5はこの斜面にて低圧燃料油から水平作用力を受け、回転しながらストッパー面に衝突する動作を示す。そして、可動子5に連動してボール弁78は上位に変位し、流出絞り73が開放されて低圧燃料の流出路13に連通するため、圧力制御室40内の圧力は瞬時低圧となって、シリンダ21内の制御ピストン41に作用する圧力バランスが崩れ、制御ピストン41は上方へ移動し、これに伴いニードル穴45内のニードル弁42は、袋穴部45Cの高圧燃料圧によって、上方へ移動し、噴射孔43を開放するとともに、袋穴部45Cからの高圧燃料が噴射孔43から噴霧する。
[Operation of Example 1]
The operation of the fuel injection valve 1 according to the first embodiment will be described with reference to FIGS.
When the fuel injection valve 1 is energized to the electromagnetic solenoid 30, the mover 5 is attracted by the electromagnetic force and moves upward, and the flat plate portion 51 collides with the lower surface (stopper surface) of the cylinder 32 and stops. At this time, since the low-pressure fuel oil moves along the slope of the edge of the V-shaped cutout 53 of the mover 5, the mover 5 receives the horizontal action force from the low-pressure fuel oil on this slope and rotates the stopper surface. The operation which collides with is shown. Then, the ball valve 78 is displaced upward in conjunction with the mover 5, and the outflow restrictor 73 is opened to communicate with the low pressure fuel outflow path 13, so that the pressure in the pressure control chamber 40 becomes an instantaneous low pressure, The pressure balance acting on the control piston 41 in the cylinder 21 is lost, the control piston 41 moves upward, and accordingly, the needle valve 42 in the needle hole 45 moves upward by the high pressure fuel pressure in the bag hole 45C. Then, the injection hole 43 is opened and the high-pressure fuel from the bag hole 45C is sprayed from the injection hole 43.

そして、電磁ソレノイド30の通電がオフされると、可動子5がスプリング36の付勢力で下方に移動し、ボール弁78が流出絞り73を塞ぎ、流入絞り74から高圧燃料圧が圧力制御室40に作用し、制御ピストン41は下方に移動し、同様にニードル弁42も下方に移動し、噴射孔43を塞いで、燃料の噴射は終了する。   When the energization of the electromagnetic solenoid 30 is turned off, the mover 5 moves downward by the urging force of the spring 36, the ball valve 78 closes the outflow throttle 73, and the high pressure fuel pressure is supplied from the inflow throttle 74 to the pressure control chamber 40. The control piston 41 moves downward, the needle valve 42 also moves downward, closes the injection hole 43, and the fuel injection ends.

〔実施例1の効果〕
本実施例では、開閉弁機構50を構成する可動子5が、そのV字形の切欠き53縁部の斜面に低圧燃料油の水平作用力を受けて回転しながら上下変位を起こすことにより、一箇所集中の摺動を解消し、常時新しい摺動面と摺動を実現し、局所的な摺動不良を防止する。また、可動子室60内に発生する粘状物質の通油溝内への付着を防止し、閉弁時作動不良を解消する。
[Effect of Example 1]
In the present embodiment, the mover 5 constituting the on-off valve mechanism 50 is displaced vertically while receiving the horizontal action force of the low-pressure fuel oil on the slope of the edge of the V-shaped notch 53, thereby causing a vertical displacement. Eliminates concentrated sliding and always realizes a new sliding surface and sliding to prevent local sliding failure. Further, the sticky substance generated in the mover chamber 60 is prevented from adhering to the oil passage groove, and the malfunction during valve closing is eliminated.

〔実施例2の構成〕
図4は、本発明の実施例2における可動子5の作用面の構成図を示す。実施例2において、実施例1と異なるのは、可動子5の平板部51の下面側において、V字形の切欠き53の縁部に沿って約45度の面取りを、最奥部5Aに向かうにつけ面取りを少なくするよう斜面をもって形成するのでなく、可動子5の平板部51の外周部に平板部を貫通するように、斜めに傾いたスリット5Sを略等間隔にて全周に多数個配設している。
[Configuration of Example 2]
FIG. 4 shows a configuration diagram of the working surface of the mover 5 according to the second embodiment of the present invention. The second embodiment is different from the first embodiment in that chamfering of about 45 degrees along the edge of the V-shaped notch 53 is directed to the innermost portion 5 </ b> A on the lower surface side of the flat plate portion 51 of the mover 5. Rather than being formed with a slope so as to reduce chamfering, a large number of obliquely inclined slits 5S are arranged on the entire circumference at substantially equal intervals so as to penetrate the flat plate portion in the outer peripheral portion of the flat plate portion 51 of the mover 5. Has been established.

そして、可動子5の上下動の変位に伴い、低圧燃料油はスリット5S内面に沿って移動するが、スリット5S内面は斜面となっているので、可動子5は燃料油の水平作用力を受ける。
なお、斜めに傾いたスリット5Sの内面は通常平面で形成され、また、スリット5Sの幅つまりスリット5Sの内面間距離は一定で形成されることが多いが、特にこれに拘ることなく凸面や凹面の曲面であっても、またスリット5Sの内面間距離が一定でなくても、また、スリット5Sの内面の少なくとも一方が所定(回転方向が一致する)の斜面であれば構わない。
The low-pressure fuel oil moves along the inner surface of the slit 5S as the movable member 5 moves up and down. However, since the inner surface of the slit 5S is an inclined surface, the movable member 5 receives the horizontal acting force of the fuel oil. .
It should be noted that the inner surface of the obliquely inclined slit 5S is usually formed as a flat surface, and the width of the slit 5S, that is, the distance between the inner surfaces of the slit 5S is often constant. Even if the distance between the inner surfaces of the slits 5S is not constant, at least one of the inner surfaces of the slits 5S may be a predetermined slope (the rotation direction coincides).

〔実施例2の効果〕
可動子5の上下動の変位に伴い、低圧燃料油はスリット5S内面に沿って移動するが、スリット5S内面は斜面となっているので、可動子5は燃料油の水平作用力を受け、回転する。外周部に、しかも多数個の斜面が構成されているので、流体の水平作用力を効果的に回転に変換する特徴を有する。これにより、可動子5は回転しながら上下摺動を起こすことにより、一箇所集中の摺動を解消し、常時新しい摺動面と摺動を実現し、局所的な摺動不良を防止する。また、可動子室内に発生する粘状物質の通油溝内への付着を防止し、閉弁時作動不良を解消する。
[Effect of Example 2]
As the mover 5 moves up and down, the low-pressure fuel oil moves along the inner surface of the slit 5S. However, since the inner surface of the slit 5S is an inclined surface, the mover 5 receives the horizontal action force of the fuel oil and rotates. To do. Since a large number of inclined surfaces are formed on the outer peripheral portion, it has a feature of effectively converting the horizontal acting force of the fluid into rotation. Thereby, the movable element 5 is caused to slide up and down while rotating, thereby eliminating the concentrated sliding at one place, realizing a new sliding surface and sliding at all times, and preventing local sliding failure. In addition, the sticky substance generated in the mover chamber is prevented from adhering to the oil passage groove, thereby eliminating the malfunction when the valve is closed.

〔実施例3の構成〕
図5は、実施例3における可動子5の構成図を示す。実施例3において、実施例1と異なるのは、可動子5の平板部51の下面側において、V字形の切欠き部の側部に沿って約45度の面取りを、最奥部5Aに向かうにつけ面取りを少なくするよう斜面をもって形成するのでなく、可動子5の平板部51の切欠き間部54の略中央に、所定の円周上に等間隔で軸方向に貫通した通油孔55を平板部51に対して斜めに傾けて設けている。そして、平板部51の下面まで貫通した通油孔55は、下面において、外周に約45度の面取りを有して周設された外周斜面56と交差し、環状空間5C(図2参照)に連通するよう構成されている。
[Configuration of Example 3]
FIG. 5 shows a configuration diagram of the mover 5 in the third embodiment. The third embodiment is different from the first embodiment in that chamfering of about 45 degrees is directed to the innermost portion 5A along the side of the V-shaped notch on the lower surface side of the flat plate portion 51 of the mover 5. Rather than forming an inclined surface so as to reduce chamfering, an oil passage hole 55 penetrating in the axial direction at an equal interval on a predetermined circumference is formed in the approximate center of the notch portion 54 of the flat plate portion 51 of the mover 5. It is provided obliquely with respect to the flat plate portion 51. The oil passage hole 55 penetrating to the lower surface of the flat plate portion 51 intersects with the outer peripheral inclined surface 56 having a chamfer of about 45 degrees on the outer periphery on the lower surface, and enters the annular space 5C (see FIG. 2). It is configured to communicate.

なお、実施例3では、斜めに傾けて貫通した通油孔55は、各切欠き間部54の中央に一箇所設けた説明であるが、これに限定されることなく各切欠き間部54には複数個の斜めに傾けて貫通した通油孔55を設けても構わない。また、貫通した通油孔の断面形状も円孔に限るものでなく、長円や楕円もしくは矩形状であってもよく、斜めに傾けた傾斜面が平板部51の上下面を始端および終端として周方向に構成される配置であるならば、断面形状はこれに限定はしない。   In the third embodiment, the oil passage hole 55 that is inclined and penetrated is provided in the center of each notch portion 54. However, the notch portion 54 is not limited to this. May be provided with a plurality of oil passage holes 55 which are inclined and penetrated. Further, the cross-sectional shape of the oil passage hole penetrating therethrough is not limited to a circular hole, and may be an ellipse, an ellipse, or a rectangular shape, and the inclined surface inclined obliquely has the upper and lower surfaces of the flat plate portion 51 as the start and end points. If it is the arrangement | positioning comprised by the circumferential direction, cross-sectional shape will not be limited to this.

〔実施例3の効果〕
この構成により、可動子5の上下動の変位に伴い、低圧燃料油は貫通した通油孔55内面に沿って移動するが、通油孔55内面は周方向に傾いた斜面となっているので、可動子5は燃料油の水平作用力を受け、回転する。これにより、可動子5は回転しながら上下摺動を起こすことにより、一箇所集中の摺動を解消し、常時新しい摺動面と摺動を実現し、局所的な摺動不良を防止する。また、可動子室内に発生する粘状物質の通油溝内への付着を防止し、閉弁時作動不良を解消する。
[Effect of Example 3]
With this configuration, the low-pressure fuel oil moves along the inner surface of the penetrating oil passage hole 55 as the mover 5 moves up and down. However, the inner surface of the oil passage hole 55 has a slope inclined in the circumferential direction. The mover 5 receives the horizontal acting force of the fuel oil and rotates. Thereby, the movable element 5 is caused to slide up and down while rotating, thereby eliminating the concentrated sliding at one place, realizing a new sliding surface and sliding at all times, and preventing local sliding failure. In addition, the sticky substance generated in the mover chamber is prevented from adhering to the oil passage groove, thereby eliminating the malfunction when the valve is closed.

〔実施例4の構成〕
図6は、実施例4における可動子5の平板部51の吸着面5Eの通油溝58の構成図を示す。可動子5の平板部51の吸着面5E中央に設けられた円形凹所57の外周には、上方に僅かに突き出た円環状の当接平面5Dが形成されている。当接平面5Dは、円筒32のストッパー面(下端面)に対応した大きさを有する。円形凹所57からは、等間隔(60度間隔)に放射状に6個の通油溝58が設けてある。この実施例4において、先の実施例1と異なるのは、通油溝58を半径方向(法線方向)にストレートに設けるのではなく、接線方向もしくは弓形の様な湾曲した曲線状に設け、また全周均等に通油溝58を配設することが特徴である。これにより、可動子5の上下動の変位に伴い、円形凹所57から流出する、もしくは流入する低圧燃料油が通油溝58に沿って移動するが、通油溝58は傾斜(湾曲)した構成となっているので、燃料油の移動は方向変換を伴い、回転力を発生する。
[Configuration of Example 4]
FIG. 6 shows a configuration diagram of the oil passage groove 58 of the suction surface 5E of the flat plate portion 51 of the mover 5 in the fourth embodiment. An annular contact plane 5D protruding slightly upward is formed on the outer periphery of the circular recess 57 provided at the center of the suction surface 5E of the flat plate portion 51 of the mover 5. The contact plane 5D has a size corresponding to the stopper surface (lower end surface) of the cylinder 32. From the circular recess 57, six oil passage grooves 58 are provided radially at equal intervals (60 degree intervals). In this fourth embodiment, the difference from the first embodiment is that the oil passage groove 58 is not provided straight in the radial direction (normal direction), but is provided in a curved curve shape such as a tangential direction or an arcuate shape, Further, it is characterized in that the oil passage grooves 58 are arranged uniformly over the entire circumference. As a result, the low-pressure fuel oil that flows out or flows in from the circular recess 57 moves along the oil passage groove 58 as the movable element 5 moves up and down, but the oil passage groove 58 is inclined (curved). Since it is configured, the movement of the fuel oil is accompanied by a direction change and generates a rotational force.

実施例4では、通油溝58を半径方向にストレートに配設するのではなく、湾曲した流路を略放射状に配設し、外周部に流出、流入させているが、燃料油が移動するときにその移動方向を変えることをその構成の特徴としているので、上記に記載した接線方向もしくは弓形の様な湾曲した曲線状のみに限定されず、ストレートであっても半径方向には傾いた放射状の構成であったり、多段に折れ曲がっていたり、円弧であったり、また、一様に湾曲していなくても構わない。   In the fourth embodiment, the oil passage groove 58 is not arranged straight in the radial direction, but the curved flow path is arranged substantially radially and flows out and flows into the outer peripheral portion, but the fuel oil moves. Since the structure is characterized by sometimes changing the moving direction, it is not limited to the tangential direction described above or a curved shape like a bow. It does not matter if it is configured as follows, is bent in multiple stages, is an arc, or is not uniformly curved.

6個の通油溝58の中間位置に、円環状の当接平面5Dの突き出し部を欠落させた補助溝59が、通油溝58より小さく、交互に形成されている。補助溝59は、通油溝58と略同様なパターンで、通油溝58と同じ方向に傾斜(湾曲)して構成されており、6個の通油溝58内を通過する燃料油の不足を補い、迅速な燃料油の移動に寄与する。そして、可動子5の上下動の変位に伴い、低圧燃料油が補助溝59に沿って移動し、そのパターンに従って方向を換えながら移動する。   Auxiliary grooves 59 in which the protruding portions of the annular contact plane 5D are missing are formed alternately in the middle positions of the six oil passage grooves 58, smaller than the oil passage grooves 58. The auxiliary grooves 59 are substantially the same pattern as the oil passage grooves 58 and are inclined (curved) in the same direction as the oil passage grooves 58, and there is insufficient fuel oil passing through the six oil passage grooves 58. It contributes to the rapid movement of fuel oil. As the mover 5 moves up and down, the low-pressure fuel oil moves along the auxiliary groove 59 and moves while changing the direction according to the pattern.

〔実施例4の効果〕
この構成により、可動子5の上下動の変位に伴い、円形凹所57から流出する、もしくは流入する低圧燃料油が通油溝58に沿って移動するが、通油溝58は傾斜(湾曲)した通油溝となっているので、燃料油の移動は方向変換を伴い、可動子5は燃料油から水平作用力を受け、回転する。また、補助溝59も同様に燃料油の水平作用力を受け、回転力を発生させる。これにより、可動子5は回転しながら上下摺動を起こすことにより、一箇所集中の摺動を解消し、常時新しい摺動面と摺動を実現し、局所的な摺動不良を防止する。また、可動子室内に発生する粘状物質の通油溝内への付着を防止し、閉弁時作動不良を解消する。
[Effect of Example 4]
With this configuration, the low-pressure fuel oil that flows out or flows in from the circular recess 57 moves along the oil passage groove 58 as the movable element 5 moves up and down, but the oil passage groove 58 is inclined (curved). Therefore, the movement of the fuel oil is accompanied by a change of direction, and the mover 5 receives a horizontal acting force from the fuel oil and rotates. Similarly, the auxiliary groove 59 receives the horizontal acting force of the fuel oil and generates a rotational force. Thereby, the movable element 5 is caused to slide up and down while rotating, thereby eliminating the concentrated sliding at one place, realizing a new sliding surface and sliding at all times, and preventing local sliding failure. In addition, the sticky substance generated in the mover chamber is prevented from adhering to the oil passage groove, thereby eliminating the malfunction when the valve is closed.

燃料噴射弁の断面図である(実施例1)。(Example 1) which is sectional drawing of a fuel injection valve. 図1の要部の断面図である(実施例1)。FIG. 2 is a cross-sectional view of a main part of FIG. 1 (Example 1). (a)は可動子の平面図であり、(b)は同正面図であり、(c)は同底面図である(実施例1)。(A) is a top view of a needle | mover, (b) is the same front view, (c) is the same bottom view (Example 1). (a)は可動子の平面図であり、(b)は同正面図であり、(c)は同底面図である(実施例2)。(A) is a top view of a needle | mover, (b) is the front view, (c) is the bottom view (Example 2). (a)は可動子の平面図であり、(b)は同正面図であり、(c)は同底面図である(実施例3)。(A) is a top view of a needle | mover, (b) is the front view, (c) is the bottom view (Example 3). 可動子の平面図である(実施例4)。(Example 4) which is a top view of a needle | mover. 可動子の斜視図である(従来例)。It is a perspective view of a needle | mover (conventional example).

符号の説明Explanation of symbols

1 燃料噴射弁
2 噴射弁本体
20 弁ボディ
3 電磁弁
30 電磁ソレノイド
36 スプリング(付勢手段)
4 噴射ノズル
40 圧力制御室
5 可動子(アーマチャ)
5A 切欠きの最奥部
5C 環状空間
5E 吸着面
5S スリット
50 開閉弁機構
51 平板部
52 シャフト部
53 切欠き
54 切欠き間部
55 通油孔
56 外周斜面
58 通油溝
59 補助溝
6 可動子ホルダ(アーマチャホルダ)
60 可動子室(アーマチャ室)
7 絞り弁ボディ
73 流出絞り
74 流入絞り
DESCRIPTION OF SYMBOLS 1 Fuel injection valve 2 Injection valve main body 20 Valve body 3 Electromagnetic valve 30 Electromagnetic solenoid 36 Spring (biasing means)
4 injection nozzle 40 pressure control chamber 5 mover (armature)
5A innermost part 5C of notch annular space 5E adsorption surface 5S slit 50 on-off valve mechanism 51 flat plate part 52 shaft part 53 notch 54 notch part 55 oil passage hole 56 outer peripheral slope 58 oil passage groove 59 auxiliary groove 6 mover Holder (armature holder)
60 Movable child room (armature room)
7 Throttle valve body 73 Outflow throttle 74 Inflow throttle

Claims (5)

噴射弁本体と前記噴射弁本体からの燃料噴射を断続する電磁弁とからなり、
該電磁弁は電磁ソレノイドと開閉弁機構とを備えており、
該開閉弁機構は、低圧燃料油が満たされている前記電磁弁内に配され、付勢手段と前記電磁ソレノイドの磁力とにより駆動される可動子を備えており、
該可動子は前記電磁ソレノイドに離接する吸着面を有する燃料噴射弁において、
前記可動子に、該可動子の軸方向の変位に伴う低圧燃料油の移動により、回転方向の付勢力が生じる作用面を設けたことを特徴とする燃料噴射弁。
It consists of an injection valve body and an electromagnetic valve that intermittently injects fuel from the injection valve body,
The electromagnetic valve includes an electromagnetic solenoid and an on-off valve mechanism,
The on-off valve mechanism includes a mover that is disposed in the electromagnetic valve filled with low-pressure fuel oil and that is driven by the biasing means and the magnetic force of the electromagnetic solenoid,
In the fuel injection valve, the mover has a suction surface that is separated from and in contact with the electromagnetic solenoid.
A fuel injection valve characterized in that the movable element is provided with a working surface that generates a biasing force in the rotational direction by the movement of the low-pressure fuel oil accompanying the displacement of the movable element in the axial direction.
請求項1に記載の燃料噴射弁において、前記可動子は、前記吸着面を形成する平板部を備えており、該平板部の外周部には、複数の切欠きが形成されており、前記作用面は、前記切欠きの縁に形成された斜面により構成されていることを特徴とする燃料噴射弁。   2. The fuel injection valve according to claim 1, wherein the mover includes a flat plate portion that forms the adsorption surface, and a plurality of notches are formed in an outer peripheral portion of the flat plate portion, The fuel injection valve according to claim 1, wherein the surface is constituted by a slope formed at an edge of the notch. 請求項1または2に記載の燃料噴射弁において、前記可動子は、前記吸着面を形成する平板部を備えており、該平板部の外周部には、複数の傾斜したスリットが形成されており、前記作用面は、前記スリットの斜面により構成されていることを特徴とする燃料噴射弁。   3. The fuel injection valve according to claim 1, wherein the mover includes a flat plate portion that forms the adsorption surface, and a plurality of inclined slits are formed on an outer peripheral portion of the flat plate portion. The fuel injection valve is characterized in that the working surface is constituted by an inclined surface of the slit. 請求項1または2に記載の燃料噴射弁において、前記可動子は、前記吸着面を形成する平板部を備えており、該平板部の切欠きと切欠きとの間にある切欠き間部の所定の円周上に配した通油孔を軸方向と傾斜して形成し、前記作用面は、前記通油孔の斜面により構成されていることを特徴とする燃料噴射弁。   3. The fuel injection valve according to claim 1, wherein the mover includes a flat plate portion that forms the adsorption surface, and a notch portion between the cutouts of the flat plate portion. A fuel injection valve characterized in that an oil passage hole arranged on a predetermined circumference is formed to be inclined with respect to the axial direction, and the working surface is constituted by a slope of the oil passage hole. 請求項1または2に記載の燃料噴射弁において、前記可動子は、前記吸着面を形成する平板部を備えており、前記吸着面には、該吸着面の中心部と外周部とを連通する通油溝が設けられており、前記作用面は、前記通油溝を放射状に湾曲して形成された曲面により構成されていることを特徴とする燃料噴射弁。   3. The fuel injection valve according to claim 1, wherein the movable element includes a flat plate portion that forms the adsorption surface, and a central portion and an outer peripheral portion of the adsorption surface communicate with the adsorption surface. A fuel injection valve, wherein an oil passage groove is provided, and the working surface is formed by a curved surface formed by radially bending the oil passage groove.
JP2005071962A 2005-03-14 2005-03-14 Fuel injection valve Pending JP2006250135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005071962A JP2006250135A (en) 2005-03-14 2005-03-14 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005071962A JP2006250135A (en) 2005-03-14 2005-03-14 Fuel injection valve

Publications (1)

Publication Number Publication Date
JP2006250135A true JP2006250135A (en) 2006-09-21

Family

ID=37090877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005071962A Pending JP2006250135A (en) 2005-03-14 2005-03-14 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP2006250135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102134090B1 (en) * 2019-02-11 2020-07-14 문병휘 Improved blade type dispensing valve
KR20210072541A (en) * 2019-12-09 2021-06-17 주식회사 현대케피코 armature built in injector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102134090B1 (en) * 2019-02-11 2020-07-14 문병휘 Improved blade type dispensing valve
KR20210072541A (en) * 2019-12-09 2021-06-17 주식회사 현대케피코 armature built in injector
KR102304682B1 (en) * 2019-12-09 2021-09-24 주식회사 현대케피코 armature built in injector

Similar Documents

Publication Publication Date Title
JP4277158B2 (en) Solenoid valve and fuel injection device using the same
EP2198149B1 (en) A fluid injector having a reed valve
US10859073B2 (en) Reciprocating pump injector
US7383812B2 (en) Fuel injector
JP3555264B2 (en) Fuel injection device for internal combustion engine
JP4026592B2 (en) Fuel injection valve
JPS59194072A (en) Injector for fuel of electromagnetic unit
JP5933423B2 (en) High pressure pump
JP2006170115A (en) Fluid regulating valve and fuel injection pump using the same
JP2006250135A (en) Fuel injection valve
JP3719461B2 (en) Accumulated fuel injection system
JP3757261B2 (en) Fuel injection valve
MXPA00012603A (en) Fuel injector assembly having a combined initial injection.
KR20040077933A (en) Fuel injection valve
JP2007297962A (en) Fuel injection nozzle
JP2003028020A (en) Control structure of nozzle needle in fuel injection valve
JP2001207935A (en) Fuel injection device assembly having improved solenoid operating type check valve
CN109736988B (en) Electric control single body fuel injection pump for single cylinder diesel engine
JP4099738B2 (en) Fuel injection device
JP2001173816A (en) Check valve and fuel injection pump using the valve
JP3988339B2 (en) solenoid valve
JP2008144632A (en) Cam mechanism mounting device
JP6457797B2 (en) Fuel injection nozzle
JP4483954B2 (en) pump
JPH11190259A (en) Fuel injection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070510

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080918

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331