JP2006250034A - Shaft coupling structure of wind power generation device - Google Patents

Shaft coupling structure of wind power generation device Download PDF

Info

Publication number
JP2006250034A
JP2006250034A JP2005067563A JP2005067563A JP2006250034A JP 2006250034 A JP2006250034 A JP 2006250034A JP 2005067563 A JP2005067563 A JP 2005067563A JP 2005067563 A JP2005067563 A JP 2005067563A JP 2006250034 A JP2006250034 A JP 2006250034A
Authority
JP
Japan
Prior art keywords
link member
wind power
shaft
coupling structure
shaft coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005067563A
Other languages
Japanese (ja)
Other versions
JP4738027B2 (en
Inventor
Hisao Miyake
寿生 三宅
Masaaki Shibata
昌明 柴田
Nozomi Kawasetsu
川節  望
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005067563A priority Critical patent/JP4738027B2/en
Publication of JP2006250034A publication Critical patent/JP2006250034A/en
Application granted granted Critical
Publication of JP4738027B2 publication Critical patent/JP4738027B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shaft coupling structure of a wind power generation device with high reliability increased in a large mis-alignment absorbing amount to facilitate a reduction in the size of the wind power generating device. <P>SOLUTION: In this shaft coupling of the wind power generation device connecting a speed increaser to a generator to transmit a shaft torque, a torque is transmitted through a link member 20 formed by laminating fiber-reinforced plastic thin-sheets on each other. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、風力発電装置に適用される軸カップリング構造に関する。   The present invention relates to a shaft coupling structure applied to a wind power generator.

従来より、風力発電装置においては、増速機と発電機との間を連結して軸トルクを伝達するとともに、両軸のミスアライメントを吸収する軸カップリングが用いられている。
このような風力発電装置用の軸カップリングとしては、ステンレス製の薄板を重ね合わせたディスク型カップリングが使用されている。
Conventionally, in wind turbine generators, a shaft coupling that transmits a shaft torque by connecting a speed increaser and a generator and absorbs misalignment of both shafts has been used.
As such a shaft coupling for a wind turbine generator, a disk-type coupling in which thin stainless steel plates are stacked is used.

さらに、近年の風力発電装置においては、風車の大型化に伴い、繊維強化プラスチック(FRP)製の厚板リンク方式を採用した軸カップリング構造もある。
また、軸トルクの伝達に用いられる駆動用カップリングとしては、耐久性を向上させるため、薄板であるラミネートプレートを複数枚重ね合わせて構成されたラミネートカップリングが提案されている。このラミネートカップリングにおいては、板厚の薄いラミネートを複数枚重ね合わせた中間部を、板厚の厚い両端のラミネートプレートで挟んで構成することにより、疲労破壊の防止や共振に対する信頼性が向上するとされる。(たとえば、特許文献1参照)
特開平11−324845号公報(図1参照)
Furthermore, in recent wind turbine generators, there is also a shaft coupling structure that employs a thick plate link system made of fiber reinforced plastic (FRP) as the wind turbine becomes larger.
Further, as a driving coupling used for transmission of shaft torque, a laminating coupling configured by laminating a plurality of thin laminating plates has been proposed in order to improve durability. In this laminate coupling, the intermediate part where a plurality of thin laminates are stacked is sandwiched between the laminate plates on both ends of the thick plate, thereby preventing fatigue failure and improving the reliability of resonance. Is done. (For example, see Patent Document 1)
Japanese Patent Laid-Open No. 11-324845 (see FIG. 1)

ところで、近年における風力発電装置の大型化に伴い、空力荷重の増加、ナセルの大型化及び軽量化が進み、特に増速機と発電機との間を連結する高速軸でのミスアライメント量が増加する傾向にある。しかしながら、従来のステンレス製薄板を重ね合わせたディスク型カップリングは、増加傾向にあるミスアライメントの吸収量に限界があるので、風力発電装置の大型化を困難にする要因の一つとなっている。
このような背景から、ミスアライメントの吸収量が大きく信頼性の高い風力発電装置の軸カップリング構造の開発が望まれる。
By the way, with the recent increase in size of wind turbine generators, the increase in aerodynamic load, the increase in size and weight of nacelles has progressed, and in particular, the amount of misalignment at the high-speed shaft connecting the gearbox and the generator has increased. Tend to. However, the conventional disk-type coupling in which thin stainless steel plates are superposed is one of the factors that make it difficult to increase the size of the wind power generator because there is a limit to the amount of misalignment that tends to increase.
From such a background, it is desired to develop a shaft coupling structure of a wind turbine generator that has a large misalignment absorption amount and high reliability.

本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、風力発電装置の大型化を容易にするため、ミスアライメントの吸収量が大きく信頼性の高い風力発電装置の軸カップリング構造を提供することにある。   The present invention has been made in view of the above circumstances. The purpose of the present invention is to increase the amount of misalignment and to provide a highly reliable wind power generator in order to facilitate the enlargement of the wind power generator. It is to provide a shaft coupling structure.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係る風力発電装置の軸カップリング構造は、増速機と発電機との間を連結して軸トルクの伝達をする風力発電装置の軸カップリング構造であって、繊維強化プラスチック製の薄板を積層してなるリンク部材を介してトルク伝達を行うことを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
A shaft coupling structure of a wind turbine generator according to the present invention is a shaft coupling structure of a wind turbine generator that transmits shaft torque by connecting a speed increaser and a generator, and is made of fiber-reinforced plastic. Torque is transmitted through a link member formed by laminating thin plates.

このような風力発電装置のカップリング構造によれば、繊維強化プラスチック製の薄板を積層してなるリンク部材を介してトルク伝達を行うので、ヤング率が小さくフレキシブル性の高いリンク部材により、トルクの伝達を確実に行うとともに、ミスアライメントの吸収量を増加させることができる。   According to such a coupling structure of a wind turbine generator, torque is transmitted through a link member formed by laminating thin plates made of fiber reinforced plastic. Transmission can be performed reliably and the amount of misalignment absorbed can be increased.

上述した本発明においては、前記リンク部材は、繊維材を同一方向に配列した一方向材と、該一方向材の両端連結部に貼り付けたダブルバイアスマット材とを組み合わせた構成であることが好ましく、これにより、リンク部材に作用する引張応力と略同方向に繊維材を配列して強度特性を最適化することができる。   In the present invention described above, the link member may have a configuration in which a unidirectional material in which fiber materials are arranged in the same direction and a double bias mat material attached to both end connecting portions of the unidirectional material. Preferably, this makes it possible to optimize the strength characteristics by arranging the fiber materials in substantially the same direction as the tensile stress acting on the link member.

上述した本発明によれば、フレキシブル性の高い繊維強化プラスチック(FRP)製薄板のリンクを重ね合わせた構成としたので、確実なトルク伝達に加えて、ミスアライメントの吸収量が大きく信頼性の高い風力発電装置の軸カップリング構造を提供することができる。このため、風力発電装置の大型化を妨げている要因の一つであるミスアライメントの問題が解消され、風力発電装置の大型化を容易にするという顕著な効果が得られる。
また、ミスアライメントの吸収量が大きい軸カップリング構造を採用することで、製造工場及び設置現場において増速機と発電機の間で厳密なセンターリングを行う必要がなくなるので、組立作業時の工数低減にも有効である。
According to the present invention described above, since the link of the highly flexible fiber reinforced plastic (FRP) thin plate is superposed, in addition to reliable torque transmission, the misalignment absorption amount is large and the reliability is high. A shaft coupling structure of a wind turbine generator can be provided. For this reason, the problem of misalignment, which is one of the factors hindering the increase in size of the wind turbine generator, is solved, and a remarkable effect of facilitating the increase in size of the wind turbine generator can be obtained.
In addition, by adopting a shaft coupling structure that absorbs a lot of misalignment, it is not necessary to perform exact centering between the gearbox and the generator at the manufacturing plant and installation site. It is also effective for reduction.

以下、本発明に係る風力発電装置の軸カップリング構造の一実施形態を図面に基づいて説明する。
図8に示す風力発電装置1は、基礎上に立設される支柱2と、支柱2の上端に設置されるナセル3と、略水平な軸線周りに回転可能としてナセル3に設けられるローターヘッド4とを有している。
ローターヘッド4には、その回転軸線周りに放射状にして複数枚の風車翼5が取り付けられている。これにより、ローターヘッド4の回転軸線方向から風車翼5に当たった風の力が、ローターヘッド4を回転軸線周りに回転させる動力に変換されるようになっている。
Hereinafter, an embodiment of a shaft coupling structure of a wind turbine generator according to the present invention will be described with reference to the drawings.
A wind turbine generator 1 shown in FIG. 8 includes a support column 2 standing on a foundation, a nacelle 3 installed at the upper end of the support column 2, and a rotor head 4 provided in the nacelle 3 so as to be rotatable about a substantially horizontal axis. And have.
A plurality of wind turbine blades 5 are attached to the rotor head 4 in a radial pattern around the rotation axis. As a result, the force of the wind striking the wind turbine blade 5 from the direction of the rotation axis of the rotor head 4 is converted into power for rotating the rotor head 4 around the rotation axis.

ナセル3の内部には、風力で回転する風車翼5及びロータヘッド4の回転数を増速して効率よく発電するため、図示しない増速機及び発電機が収納設置されている。増速機及び発電機の軸間は、カップリングを介して互いに連結し、軸トルクが伝達されるようになっている。
図1に示すように、両機器の入力軸6及び出力軸7を連結する軸間には、ミスアライメントを吸収してトルク伝達を行うため、軸カップリング装置10が設けられている。この軸カップリング装置10は、フレキシブル性の高い素材である繊維強化プラスチック(以下、FRP)製の薄板を複数枚積層してなるリンク部材20を介してトルク伝達を行うように構成されている。
Inside the nacelle 3, a speed increaser and a generator (not shown) are housed and installed in order to efficiently generate power by increasing the rotational speed of the wind turbine blades 5 and the rotor head 4 rotated by wind power. The shafts of the speed increaser and the generator are connected to each other via a coupling so that shaft torque is transmitted.
As shown in FIG. 1, a shaft coupling device 10 is provided between the shafts connecting the input shaft 6 and the output shaft 7 of both devices in order to absorb misalignment and transmit torque. The shaft coupling device 10 is configured to transmit torque via a link member 20 formed by laminating a plurality of thin plates made of fiber reinforced plastic (hereinafter referred to as FRP), which is a highly flexible material.

図示の軸カップリング装置10は、図2に示すように、軸部12の両端部に、すなわち入力軸6と軸部12との間及び出力軸7と軸部12との間に、各々4枚のリンク部材20を配置した構成とされる。
4枚のリンク部材20は、図2(a)に示すように、矩形状の両端部を略半円形状に切り欠いたもので、軸部12の中心軸(点C)を中心にして、同一面上の円周方向に90度ピッチで均等に配置されている。また、各リンク部材20の長手方向となる軸線Lは、軸部12の中心軸を通り、この中心軸と直交する軸部12の断面円周方向を90度に分割する直線Dと直交する配置とされる。
As shown in FIG. 2, the illustrated shaft coupling device 10 is provided at both ends of the shaft portion 12, that is, between the input shaft 6 and the shaft portion 12 and between the output shaft 7 and the shaft portion 12. The link member 20 is arranged.
As shown in FIG. 2 (a), the four link members 20 are obtained by cutting out both ends of a rectangular shape into a substantially semicircular shape, and centering on the central axis (point C) of the shaft portion 12, They are evenly arranged at a pitch of 90 degrees in the circumferential direction on the same plane. Further, the axis L that is the longitudinal direction of each link member 20 passes through the central axis of the shaft portion 12, and is disposed orthogonal to the straight line D that divides the cross-sectional circumferential direction of the shaft portion 12 orthogonal to the central axis into 90 degrees. It is said.

各リンク部材20は、一端が入力軸6側の端部に固着したフランジ6aにボルト・ナット13をもって固定され、他端が軸部12の端部に固着した支持板14にボルト・ナット15をもって固定されている。すなわち、各リンク部材20は、一端が入力軸6側に連結され、他端が軸部12側に連結された構成となる。なお、リンク部材20が入力軸6と連結される部分の支持板14は切り欠かれて存在せず、同様に、リンク部材20が軸部12と連結される部分のフランジ6aには、貫通孔6b(図1参照)が穿設されている。
また、図2(b)に示す出力軸7側については、リンク部材20等の配置を全体に円周方向へ90度回転させた構成とし、かつ、リンク部材20の一端を固定する相手が出力軸7のフランジ7aとなる以外は、実質的に上述した入力軸6側と同じになる。なお、図1における符号7bは、リンク部材20が軸部12と連結される部分のフランジ7aに穿設された貫通孔である。
Each link member 20 is fixed with a bolt and nut 13 to a flange 6a whose one end is fixed to the end on the input shaft 6 side, and has a bolt and nut 15 to a support plate 14 whose other end is fixed to the end of the shaft portion 12. It is fixed. That is, each link member 20 has a configuration in which one end is connected to the input shaft 6 side and the other end is connected to the shaft portion 12 side. The portion of the support plate 14 where the link member 20 is connected to the input shaft 6 is not cut out. Similarly, the flange 6a where the link member 20 is connected to the shaft portion 12 has a through hole. 6b (refer FIG. 1) is drilled.
In addition, the output shaft 7 side shown in FIG. 2B is configured such that the arrangement of the link member 20 and the like is rotated 90 degrees in the circumferential direction as a whole, and the other end that fixes one end of the link member 20 outputs Except for the flange 7a of the shaft 7, it is substantially the same as the input shaft 6 side described above. In addition, the code | symbol 7b in FIG. 1 is the through-hole drilled in the flange 7a of the part where the link member 20 is connected with the axial part 12. FIG.

続いて、上述したリンク部材20の構成を図3及び図4に基づいて説明する。
リンク部材20は、薄板積層体21の両端に連結部22,23を設けた構成とされる。連結部22,23は、薄板積層体21を貫通するスリーブ24の鍔部24aと、板状部材25とにより、薄板積層体21を両面から挟持した構成とされる。連結部22,23は、各々異なる面に鍔部24a及び板状部材25が配置されている。また、スリーブ24の貫通孔は、上述したボルト・ナット13,15を通す穴となる。
Then, the structure of the link member 20 mentioned above is demonstrated based on FIG.3 and FIG.4.
The link member 20 has a configuration in which connecting portions 22 and 23 are provided at both ends of the thin plate laminate 21. The connecting portions 22 and 23 are configured such that the thin plate laminate 21 is sandwiched from both sides by the flange portion 24 a of the sleeve 24 that penetrates the thin plate laminate 21 and the plate-like member 25. As for the connection parts 22 and 23, the collar part 24a and the plate-shaped member 25 are arrange | positioned at a respectively different surface. The through hole of the sleeve 24 is a hole through which the bolts and nuts 13 and 15 described above are passed.

薄板積層体21は、図4に示すFRP製薄板30を複数枚(たとえば7枚)積層したものである。FRP製薄板30は、繊維材を同一方向に配列した一方向材(UD材)よりなる板材31と、板材31の両端部にダブルバイアスマット材(DBM材)32を両面に貼り付けた連結部33とにより構成される。ここで使用するFRPの一方向材は、繊維材をリンク部材20の軸線Lと同一方向に配列した板材31とされる。また、ダブルバイアスマット材32は、複数方向から入力を受ける連結部33の補強材として機能するように、繊維材を複数方向(たとえば直交する2方向)に配列したFRP板材である。なお、図中の符号34は、上述したスリーブ24を挿入するための貫通孔である。
このように、両端部の両面にダブルバイアスマット材32を貼り付けたFRP製薄板30を複数枚積層した薄板積層体21は、図示されてはいないものの、実際には隣接する板材31間に、ダブルバイアスマット材32を2枚重ねた厚さに相当する微小な隙間が形成されている。
The thin plate laminate 21 is obtained by laminating a plurality of (for example, seven) FRP thin plates 30 shown in FIG. The FRP thin plate 30 includes a plate member 31 made of a unidirectional member (UD member) in which fiber materials are arranged in the same direction, and a connecting portion in which a double bias mat member (DBM member) 32 is attached to both ends of the plate member 31 on both sides. 33. The FRP unidirectional material used here is a plate material 31 in which fiber materials are arranged in the same direction as the axis L of the link member 20. The double bias mat member 32 is an FRP plate member in which fiber materials are arranged in a plurality of directions (for example, two orthogonal directions) so as to function as a reinforcing member for the connecting portion 33 that receives input from a plurality of directions. In addition, the code | symbol 34 in a figure is a through-hole for inserting the sleeve 24 mentioned above.
In this way, the thin plate laminate 21 in which a plurality of FRP thin plates 30 each having the double bias mat material 32 attached to both ends is laminated is not shown, but actually, between adjacent plate materials 31, A minute gap corresponding to the thickness of two double bias mat members 32 stacked is formed.

以下、上述した構成の軸カップリング装置10について、その動作及び作用を図1、図5ないし図7に基づいて説明する。
図5は、入力軸6から出力軸7にトルク伝達を行う場合において、軸カップリング装置10に作用する接線方向の力Ftを示している。この力Ftは、入力軸6の回転がフランジ6aを介してボルト・ナット13に伝達され、さらに、リンク部材20及びボルト・ナット15を介して支持板14に伝達される。このようにして支持板14と一体である軸部12に伝達されたトルクは、実質的に上述した入力軸6と同様の方法で出力軸7にトルク伝達が行われる。
Hereinafter, the operation and action of the shaft coupling device 10 having the above-described configuration will be described with reference to FIGS. 1 and 5 to 7.
FIG. 5 shows a tangential force Ft acting on the shaft coupling device 10 when torque is transmitted from the input shaft 6 to the output shaft 7. The force Ft is transmitted to the bolts and nuts 13 through the flange 6a and the rotation of the input shaft 6 is further transmitted to the support plate 14 through the link member 20 and the bolts and nuts 15. Thus, the torque transmitted to the shaft portion 12 that is integral with the support plate 14 is transmitted to the output shaft 7 in substantially the same manner as the input shaft 6 described above.

このような力Ftを受けると、リンク部材20においても、図6(a)に示すように、同様の力Ftが作用する。このような力Ftを受けることにより、図7に示すように、各板材31には引張力fとして作用するが、この引張力fと略同方向に繊維材を配列した一方向材が採用されている。この繊維材は引張応力が大きいため、一方向材の特性を利用することで強度上極めて有利になる。
また、入力軸6及び出力軸7間にミスアライメントが生じた場合、図6(b)に示すような力Fmがリンク部材20に作用する。この結果、リンク部材20の薄板積層体21には引張力fが作用するので、各板材31にも同様の引張力fが作用する。従って、この引張力fと略同方向に繊維材を配列した一方向材の採用により、リンク材20がフレキシブルに撓んで広範囲にわたってミスアライメントを吸収するとともに、強度面でも極めて有利になる。
When such a force Ft is received, a similar force Ft acts on the link member 20 as shown in FIG. By receiving such a force Ft, as shown in FIG. 7, each plate material 31 acts as a tensile force f. However, a unidirectional material in which fiber materials are arranged in substantially the same direction as the tensile force f is employed. ing. Since this fiber material has a large tensile stress, it is extremely advantageous in terms of strength by utilizing the characteristics of the unidirectional material.
Further, when misalignment occurs between the input shaft 6 and the output shaft 7, a force Fm as shown in FIG. 6B acts on the link member 20. As a result, since the tensile force f acts on the thin plate laminate 21 of the link member 20, the same tensile force f acts on each plate material 31. Therefore, by employing a unidirectional material in which fiber materials are arranged in substantially the same direction as the tensile force f, the link material 20 flexes flexibly to absorb misalignment over a wide range and is extremely advantageous in terms of strength.

すなわち、上述した風力発電装置のカップリング構造によれば、繊維強化プラスチック製の薄い板材31を積層してなるリンク部材20を介してトルク伝達を行うので、ヤング率が小さくフレキシブル性の高いリンク材20により、トルクの伝達を確実に行うとともに、強度面の向上とともに信頼性が増し、かつ、ミスアライメントの吸収量も増加させることができる。
また、リンク部材20は、軸線Lが中心Cを通り円周方向を分割する直線Dと直交するように配置され、かつ、繊維材を軸線Lと同一方向に配列した一方向材と、この一方向材の両端連結部に貼り付けたダブルバイアスマット材とを組み合わせた構成としたので、リンク部材20の軸線方向に作用する引張応力と略同方向に繊維材が配列されて強度特性を最適化することができる。
That is, according to the coupling structure of the wind power generator described above, torque transmission is performed through the link member 20 formed by laminating thin plate members 31 made of fiber reinforced plastic, so that the link material has a low Young's modulus and high flexibility. The torque 20 can be reliably transmitted, the strength can be improved, the reliability can be increased, and the misalignment absorption can be increased.
The link member 20 is arranged so that the axis L is perpendicular to a straight line D that passes through the center C and divides the circumferential direction, and the one-way material in which the fiber materials are arranged in the same direction as the axis L, Since the structure is combined with a double bias mat material attached to both ends of the directional material, the fiber material is arranged in substantially the same direction as the tensile stress acting in the axial direction of the link member 20 to optimize the strength characteristics. can do.

また、リンク部材20は、左右対称となるよう90度ピッチに4枚が配置されているので、逆回転方向のトルク伝達にも対応することが可能である。
なお、伝達トルクの大きさによっては、リンク部材20を3枚とすることも可能である。この場合、逆回転方向のトルク伝達に対しては、リンク部材20に圧縮力が付加される。
さらに、図4に示す薄板積層材は、ダブルバイアスマットを両端のスリーブ貫通孔の周囲にのみ配しいているが、伝達トルク及びミスアライメントの大きさによっては、ダブルバイアスマットを薄板積層材の全面に配することも可能である。
なお、本発明は上述した実施形態に限定されるものではなく、たとえば板材31の積層枚数など、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
In addition, since four link members 20 are arranged at a 90-degree pitch so as to be symmetrical, it is possible to cope with torque transmission in the reverse rotation direction.
Depending on the magnitude of the transmission torque, the number of link members 20 can be three. In this case, a compressive force is applied to the link member 20 for torque transmission in the reverse rotation direction.
Further, in the thin plate laminate shown in FIG. 4, the double bias mat is disposed only around the sleeve through holes at both ends. However, depending on the magnitude of the transmission torque and misalignment, the double bias mat is disposed on the entire surface of the thin plate laminate. It is also possible to arrange them.
In addition, this invention is not limited to embodiment mentioned above, For example, it can change suitably in the range which does not deviate from the summary of this invention, such as the lamination | stacking number of the board | plate materials 31.

本発明に係る風力発電装置のカップリング構造について、一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment about the coupling structure of the wind power generator which concerns on this invention. リンク部材の配列を示す図で、(a)は図1のA−A断面図、(b)は図1のB−B断面図である。It is a figure which shows the arrangement | sequence of a link member, (a) is AA sectional drawing of FIG. 1, (b) is BB sectional drawing of FIG. リンク部材の構成例を示す図で、(a)は平面図、(b)は一部断面正面図である。It is a figure which shows the structural example of a link member, (a) is a top view, (b) is a partial cross section front view. 繊維強化プラスチック(FRP)製薄板の構成例を示す図で、(a)は平面図、(b)は正面図、(c)は(a)のC−C断面図である。It is a figure which shows the structural example of a fiber reinforced plastic (FRP) thin plate, (a) is a top view, (b) is a front view, (c) is CC sectional drawing of (a). 図2(b)のリンク部材に対し、トルク伝達により作用する力Ftの方向を示す説明図である。It is explanatory drawing which shows the direction of force Ft which acts on a link member of FIG.2 (b) by torque transmission. リンク部材単体に作用する力の方向を示す説明図で、(a)はトルク伝達により作用する力Ftの方向を示し、(b)はミスアライメントの吸収により作用する力Fmの方向を示している。It is explanatory drawing which shows the direction of the force which acts on a link member single-piece | unit, (a) shows the direction of force Ft which acts by torque transmission, (b) has shown the direction of force Fm which acts by absorption of misalignment. . 繊維強化プラスチック(FRP)製薄板に作用する引張力fを示す説明図である。It is explanatory drawing which shows the tensile force f which acts on a fiber reinforced plastic (FRP) thin plate. 風力発電装置の構成例を示す側面図である。It is a side view which shows the structural example of a wind power generator.

符号の説明Explanation of symbols

1 風力発電装置
3 ナセル
6 入力軸
7 出力軸
6a,7a フランジ
10 軸カップリング装置
12 軸部
13,15 ボルト・ナット
14 支持板
20 リンク部材
21 薄板積層体
24 スリーブ
24a 鍔部
25 板状部材
30 FRP製薄板
31 板材(一方向材/UD材)
32 ダブルバイアスマット材(DBM材)
DESCRIPTION OF SYMBOLS 1 Wind power generator 3 Nacelle 6 Input shaft 7 Output shaft 6a, 7a Flange 10 Shaft coupling device 12 Shaft part 13, 15 Bolt and nut 14 Support plate 20 Link member 21 Thin plate laminated body 24 Sleeve 24a Eave part 25 Plate-like member 30 Thin plate made of FRP 31 Plate material (unidirectional material / UD material)
32 Double bias mat material (DBM material)

Claims (2)

増速機と発電機との間を連結して軸トルクの伝達をする風力発電装置の軸カップリング構造であって、
繊維強化プラスチック製の薄板を積層してなるリンク部材を介してトルク伝達を行うことを特徴とする風力発電装置のカップリング構造。
A shaft coupling structure of a wind turbine generator that transmits shaft torque by connecting a speed increaser and a generator,
A coupling structure of a wind power generator, wherein torque transmission is performed through a link member formed by laminating thin plates made of fiber reinforced plastic.
前記リンク部材は、繊維材を同一方向に配列した一方向材と、該一方向材の両端連結部に貼り付けたダブルバイアスマット材とにより構成されていることを特徴とする請求項1に記載の風力発電装置のカップリング構造。   The said link member is comprised by the unidirectional material which arranged the fiber material in the same direction, and the double bias mat material affixed on the both-ends connection part of this unidirectional material, It is characterized by the above-mentioned. Wind power generator coupling structure.
JP2005067563A 2005-03-10 2005-03-10 Wind power generator shaft coupling structure Expired - Fee Related JP4738027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005067563A JP4738027B2 (en) 2005-03-10 2005-03-10 Wind power generator shaft coupling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005067563A JP4738027B2 (en) 2005-03-10 2005-03-10 Wind power generator shaft coupling structure

Publications (2)

Publication Number Publication Date
JP2006250034A true JP2006250034A (en) 2006-09-21
JP4738027B2 JP4738027B2 (en) 2011-08-03

Family

ID=37090789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005067563A Expired - Fee Related JP4738027B2 (en) 2005-03-10 2005-03-10 Wind power generator shaft coupling structure

Country Status (1)

Country Link
JP (1) JP4738027B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241980A (en) * 2012-05-18 2013-12-05 Tsubaki Emerson Co Disk type shaft coupling and disk unit
WO2013182175A1 (en) * 2012-06-08 2013-12-12 Centa-Antriebe Kirschey Gmbh Wind turbine
WO2014141941A1 (en) 2013-03-12 2014-09-18 株式会社ジェイテクト One-way clutch for wind power generation device, and wind power generation device
WO2014141940A1 (en) 2013-03-12 2014-09-18 株式会社ジェイテクト Wind power generation device
WO2014141943A1 (en) 2013-03-12 2014-09-18 株式会社ジェイテクト Clutch unit assembly method
WO2014141942A1 (en) 2013-03-12 2014-09-18 株式会社ジェイテクト Clutch unit and wind power generation device
WO2014141946A1 (en) 2013-03-12 2014-09-18 株式会社ジェイテクト Shaft coupling device and wind power generation device
WO2015030114A1 (en) 2013-08-29 2015-03-05 株式会社ジェイテクト Joint structure and wind power generation device
US9035476B2 (en) 2011-09-12 2015-05-19 Jtekt Corporation Power generating device
US9054560B2 (en) 2012-04-19 2015-06-09 Jtekt Corporation Power generating apparatus
US9097295B2 (en) 2012-10-03 2015-08-04 Jtekt Corporation Power generation device
CN105179502A (en) * 2015-09-15 2015-12-23 宁波龙旋机械制造有限公司 Insulation coupler and replacement method thereof
CN105757141A (en) * 2015-12-31 2016-07-13 浙江大学 Elastic wind power coupler with stepless speed change and on-off functions
US20160265515A1 (en) 2013-10-28 2016-09-15 Jtekt Corporation Joint structure and wind power generation device
US9845835B2 (en) 2013-12-25 2017-12-19 Jtekt Corporation Split type cage, one-way clutch and joint for power-generation device
US10132362B2 (en) 2014-03-07 2018-11-20 Jtekt Corporation Power generation device and shaft coupling device with elastic member used therein

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735025A (en) * 1993-07-13 1995-02-03 Mitsubishi Heavy Ind Ltd Supporter for windmill speed-increaser
GB2322428A (en) * 1997-02-22 1998-08-26 Gkn Automotive Ag Joint disc made of a fibre composite material
JP2002526726A (en) * 1998-10-02 2002-08-20 ジー・ケー・エヌ・オートモーティヴ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Flexible annular coupling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735025A (en) * 1993-07-13 1995-02-03 Mitsubishi Heavy Ind Ltd Supporter for windmill speed-increaser
GB2322428A (en) * 1997-02-22 1998-08-26 Gkn Automotive Ag Joint disc made of a fibre composite material
JP2002526726A (en) * 1998-10-02 2002-08-20 ジー・ケー・エヌ・オートモーティヴ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Flexible annular coupling

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9035476B2 (en) 2011-09-12 2015-05-19 Jtekt Corporation Power generating device
US9322395B2 (en) 2011-09-12 2016-04-26 Jtekt Corporation Power generating device
US9054560B2 (en) 2012-04-19 2015-06-09 Jtekt Corporation Power generating apparatus
JP2013241980A (en) * 2012-05-18 2013-12-05 Tsubaki Emerson Co Disk type shaft coupling and disk unit
WO2013182175A1 (en) * 2012-06-08 2013-12-12 Centa-Antriebe Kirschey Gmbh Wind turbine
US9097295B2 (en) 2012-10-03 2015-08-04 Jtekt Corporation Power generation device
WO2014141940A1 (en) 2013-03-12 2014-09-18 株式会社ジェイテクト Wind power generation device
US10428801B2 (en) 2013-03-12 2019-10-01 Jtekt Corporation Wind power generation device
WO2014141946A1 (en) 2013-03-12 2014-09-18 株式会社ジェイテクト Shaft coupling device and wind power generation device
WO2014141942A1 (en) 2013-03-12 2014-09-18 株式会社ジェイテクト Clutch unit and wind power generation device
WO2014141943A1 (en) 2013-03-12 2014-09-18 株式会社ジェイテクト Clutch unit assembly method
US9869352B2 (en) 2013-03-12 2018-01-16 Jtekt Corporation Clutch unit and wind power generation device
WO2014141941A1 (en) 2013-03-12 2014-09-18 株式会社ジェイテクト One-way clutch for wind power generation device, and wind power generation device
CN105492763A (en) * 2013-08-29 2016-04-13 株式会社捷太格特 Joint structure and wind power generation device
US9995280B2 (en) 2013-08-29 2018-06-12 Jtekt Corporation Joint structure and wind power generation device
WO2015030114A1 (en) 2013-08-29 2015-03-05 株式会社ジェイテクト Joint structure and wind power generation device
US10451042B2 (en) 2013-08-29 2019-10-22 Jtekt Corporation Joint structure and wind power generation device
US20160265515A1 (en) 2013-10-28 2016-09-15 Jtekt Corporation Joint structure and wind power generation device
US10495066B2 (en) 2013-10-28 2019-12-03 Jtekt Corporation Joint structure and wind power generation device
US9845835B2 (en) 2013-12-25 2017-12-19 Jtekt Corporation Split type cage, one-way clutch and joint for power-generation device
US10132362B2 (en) 2014-03-07 2018-11-20 Jtekt Corporation Power generation device and shaft coupling device with elastic member used therein
CN105179502A (en) * 2015-09-15 2015-12-23 宁波龙旋机械制造有限公司 Insulation coupler and replacement method thereof
CN105757141A (en) * 2015-12-31 2016-07-13 浙江大学 Elastic wind power coupler with stepless speed change and on-off functions
CN105757141B (en) * 2015-12-31 2020-05-22 浙江大学 Elastic wind power coupling with stepless speed change and clutch functions

Also Published As

Publication number Publication date
JP4738027B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4738027B2 (en) Wind power generator shaft coupling structure
JP5081309B2 (en) Modular rotor blade for power generation turbine and method of assembling a power generation turbine with modular rotor blade
EP1956235B1 (en) Blade for a wind turbine
JP5249684B2 (en) Windmill wing
KR101775373B1 (en) Flexible Shaft Wind Turbine
EP2242925B1 (en) A drive train for a wind turbine
US8262360B2 (en) Wind turbine rotor
US20130302169A1 (en) Rotor assembly for an axial turbine
EP2847459B1 (en) Plated transition piece
EP3707373B1 (en) Wind turbine blade joints with floating connectors
WO2011078327A1 (en) Rotary blade of windmill and method of manufacturing rotary blade of windmill
US8870540B2 (en) Water turbine
JP4220547B2 (en) Rotor blade joint
EP1880070A2 (en) Structural tower
KR20110100192A (en) Wind turbine blade and wind turbine generator using the same
JP2013524087A (en) Wind turbine rotor and wind turbine
US20120328443A1 (en) Systems and methods for assembling a wind turbine with a pitch assembly
JP2005147086A (en) Blade of horizontal axis wind mill
TWI756985B (en) Root assembly of a wind turbine blade for a wind turbine, wind turbine blade and wind turbine
EP2505824B1 (en) Methods of manufacturing wind turbine blades
CN102135067A (en) Circumferential inhaul cable structure of vertical axis wind turbine
CN111502908B (en) Hub for a wind turbine, wind turbine and method for upgrading a hub of a wind turbine
KR20080101338A (en) Horizontal drum type wind power generator
JP6345093B2 (en) Wind power generation equipment
JP2001295750A (en) Wind power generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

R151 Written notification of patent or utility model registration

Ref document number: 4738027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees