JP2006249474A - Corrosion protection controller, corrosion protection control method and storage medium stored with the treatment program thereby - Google Patents

Corrosion protection controller, corrosion protection control method and storage medium stored with the treatment program thereby Download PDF

Info

Publication number
JP2006249474A
JP2006249474A JP2005065186A JP2005065186A JP2006249474A JP 2006249474 A JP2006249474 A JP 2006249474A JP 2005065186 A JP2005065186 A JP 2005065186A JP 2005065186 A JP2005065186 A JP 2005065186A JP 2006249474 A JP2006249474 A JP 2006249474A
Authority
JP
Japan
Prior art keywords
ground potential
tube
measurement point
measured
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005065186A
Other languages
Japanese (ja)
Other versions
JP4562553B2 (en
Inventor
Masahiko Tange
昌彦 丹下
Shozo Hatanaka
省三 畠中
Kenichi Haraga
健一 原賀
Morio Sumiyama
守男 炭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
JFE Koken Co Ltd
Toho Gas Co Ltd
Original Assignee
JFE Engineering Corp
JFE Koken Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp, JFE Koken Co Ltd, Toho Gas Co Ltd filed Critical JFE Engineering Corp
Priority to JP2005065186A priority Critical patent/JP4562553B2/en
Publication of JP2006249474A publication Critical patent/JP2006249474A/en
Application granted granted Critical
Publication of JP4562553B2 publication Critical patent/JP4562553B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely evaluate the state of electrolytic protection in a short time by continuously estimating pipe-to-ground potential at each measuring position in a covered steel pipe buried in the ground without visiting each measuring position. <P>SOLUTION: The pipe-to-ground potential each measuring point Pi set in a space from a measuring point P1 closest to an external corrosion protection power source 4 to a measuring point Pn farthest therefrom is measured for a fixed time, so as to be stored, the pipe-to-ground potential Vpn measured at the measuring point Pn and the pipe-to-ground potential Vpi each measuring point Pi simultaneously measured therewith are subjected to regression analysis, and each regression function of the pipe-to-ground potential Vpi based on the measured pipe-to-ground potential Vpn is created. The operation expression of the pipe-to-ground potential Vspi at each measuring point Pi is created from the created each regression function, the initial pipe-to-ground potential Vp1 in the measuring point P1 and the pipe-to-ground potential Vsp1, Vspn measured at the measuring points P1, Pn, and the pipe-to-ground potential Vspi each measuring point Pi is estimated from the pipe-to-ground potential Vsp1, Vspn measured at the measuring points P1, Pn every fixed period. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、地中に埋設された被覆鋼管の電気防食を管理する防食管理装置と防食管理方法及びその処理プログラムを記憶した記憶媒体、特に管対地電位の検出の容易化に関するものである。   The present invention relates to an anticorrosion management device and an anticorrosion management method for managing the anticorrosion of a coated steel pipe buried in the ground, and to a storage medium storing the processing program, particularly to facilitating detection of a pipe-to-ground potential.

地中に埋設された被覆鋼管の腐食を防止するため、外部防食電源の負側を被覆鋼管の管本体に接続し、外部防食電源の正側を地中に埋設した防食電極に接続し、防食電極から電流を送って管本体の電位を下げる電気防食法が採用されている。この電気防食状況を評価するため、例えば特許文献1に示すように、管本体の大地に設置した照合電極間の電位差である管対地電位を測定する電位判定法が広く採用されている。   In order to prevent corrosion of the coated steel pipe buried in the ground, connect the negative side of the external anticorrosive power supply to the tube body of the coated steel pipe, and connect the positive side of the external anticorrosive power supply to the anticorrosive electrode buried in the ground. An anticorrosion method is employed in which current is sent from the electrode to lower the potential of the tube body. In order to evaluate this cathodic protection situation, as shown in Patent Document 1, for example, a potential determination method for measuring a tube-to-ground potential, which is a potential difference between reference electrodes installed on the ground of a tube body, is widely adopted.

特許文献1に示された防食管理方法は、地中に埋設された被覆鋼管に間隔を置いて、地表面で開閉可能な防食電位測定用のターミナルボックスを埋め込んで設置し、被覆鋼管の管本体に接続した電線と被覆鋼管近傍に埋め込まれた照合電極に接続した電線を各ターミナルボックス内に立ち上げて管対地電位の計測に使用している。
そして管対地電位を測定するとき、あらかじめ各ターミナルボックスの設置場所を特定した端末装置の地図情報を参考にして、電圧測定器と端末装置を各ターミナルボックスの設置位置に移動し、ターミナルボックス毎に電圧測定器で管対地電位を測定し、測定したデータを端末装置に取り込み、端末装置から通信網を介して管理者のサーバーに転送して、サーバーにデータベースとして保存している。
特開2003−147558号公報
In the anticorrosion management method disclosed in Patent Document 1, a terminal box for measuring anticorrosion potential that can be opened and closed on the ground surface is embedded in a grounded steel pipe embedded in the ground, and the pipe body of the steel pipe is covered. The wire connected to the wire and the wire connected to the reference electrode embedded in the vicinity of the coated steel tube are set up in each terminal box and used to measure the pipe-to-ground potential.
And when measuring the tube-to-ground potential, move the voltage measuring device and the terminal device to the installation location of each terminal box with reference to the map information of the terminal device that specified the installation location of each terminal box in advance. The voltage measurement device measures the tube-to-ground potential, takes the measured data into the terminal device, transfers it from the terminal device to the administrator's server via the communication network, and stores it as a database on the server.
JP 2003-147558 A

特許文献1に示された防食管理方法は、各ターミナルボックスの設置位置に電圧測定器と端末装置を移動し、ターミナルボックス毎に管対地電位を測定しているため、測定時間が限定され、例えば24時間の電気防食状況を把握することは困難であった。
また、各ターミナルボックスの設置位置に電圧測定器と端末装置を移動して管対地電位の測定を繰り返すため、管対地電位の測定の多くの時間を要する。
さらに、交通量の多い道路に各ターミナルボックスが設置されている場合、ターミナルボックスのマンホールを開放することができず、管対地電位の測定ができなくなってしまうという短所もある。
In the anticorrosion management method shown in Patent Document 1, the voltage measuring device and the terminal device are moved to the installation position of each terminal box, and the tube-to-ground potential is measured for each terminal box. It was difficult to grasp the 24-hour cathodic protection situation.
In addition, since the voltage measuring device and the terminal device are moved to the installation position of each terminal box and the measurement of the tube-to-ground potential is repeated, much time for measuring the tube-to-ground potential is required.
In addition, when each terminal box is installed on a road with heavy traffic, the manhole of the terminal box cannot be opened, and the measurement of the tube-to-ground potential cannot be performed.

この発明は、このような短所を解消し、地中に埋設された被覆鋼管の各測定位置における管対地電位を、各測定位置に行かずに連続的に推定することができる防食管理装置と防食管理方法及びその処理プログラムを記憶した記憶媒体を提供することを目的とするものである。   The present invention eliminates such disadvantages and provides an anticorrosion management device and anticorrosion capable of continuously estimating the pipe-to-ground potential at each measurement position of a coated steel pipe buried in the ground without going to each measurement position. It is an object of the present invention to provide a storage medium storing a management method and its processing program.

この発明の防食管理装置は、管対地電位推定装置と、外部防食電源に対して最近接の測定点P1と最遠方の測定点Pnで管対地電位を測定する電位検出手段及び記録装置とを有し、記録装置は、外部防食電源に対して最近接の測定点P1から最遠方にある測定点Pnの間に設定された測定点Pi{i=2〜(n−1)}毎の管対地電位をあらかじめ定めた一定時間測定して記憶し、管対地電位推定装置は、外部防食電源に対して最近接の測定点P1と最遠方の測定点Pnで測定した管対地電位により、各測定点Piの管対地電位を推定するものであり、装置全体の処理を制御するデータ入力部とデータ記憶部と回帰分析部と演算式作成部と演算式記憶部及び管対地電位演算部を有し、データ入力部は、記録装置に記憶した測定点Pi毎の管対地電位Vpiを入力するとともに、電位検出部で測定した外部防食電源に対して最近接の測定点P1と最遠方の測定点Pnにおける管対地電位を入力し、データ記憶部は入力した管対地電位を測定点毎に記憶するとともに各種データを記憶し、回帰分析部は最遠方の測定点Pnで測定した管対地電位Vpnと同時に記録装置で測定した測定点Pi毎の管対地電位Vpiとの回帰分析を行い、測定した管対地電位Vpnを基準にした管対地電位Vpiの回帰式を作成し、演算式作成部は回帰分析部で作成した各回帰式と、測定点P1における基準電位である管対地電位Vp1と、測定点P1と測定点Pnで測定する管対地電位Vsp1、Vspnにより各測定点Piの管対地電位Vspiの演算式を作成し、演算式記憶部は作成した測定点Pi毎の管対地電位Vspiの演算式を記憶し、管対地電位演算部は記憶した管対地電位Vspiの演算式と、電気防食状況を評価するときに、測定点P1と測定点Pnで測定した管対地電位Vsp1、Vspnにより、測定点Pi毎の管対地電位Vspiを演算することを特徴とする。   The anticorrosion management device according to the present invention comprises a tube-to-ground potential estimating device, a potential detecting means for measuring the tube-to-ground potential at the nearest measurement point P1 and the farthest measurement point Pn with respect to the external anticorrosion power source, and a recording device. In addition, the recording apparatus performs the pipe ground to the measurement points Pi {i = 2 to (n−1)} set between the measurement points Pn farthest from the measurement point P1 closest to the external anticorrosion power source. The potential is measured and stored for a predetermined period of time, and the tube-to-ground potential estimation device uses the tube-to-ground potential measured at the nearest measurement point P1 and the farthest measurement point Pn with respect to the external anticorrosion power source. Pi tube-to-ground potential is estimated, and includes a data input unit, a data storage unit, a regression analysis unit, an arithmetic expression creation unit, an arithmetic expression storage unit, and a pipe-to-ground potential calculation unit that control processing of the entire apparatus The data input unit is a pipe pair for each measurement point Pi stored in the recording device In addition to inputting the potential Vpi, the tube ground potential at the nearest measurement point P1 and the farthest measurement point Pn is input to the external anticorrosion power source measured by the potential detection unit, and the data storage unit inputs the input tube ground potential. The data is stored for each measurement point and various data are stored. The regression analysis unit performs regression analysis with the tube-to-ground potential Vpi for each measurement point Pi measured by the recording device at the same time as the tube-to-ground potential Vpn measured at the farthest measurement point Pn. And a regression equation of the tube-to-ground potential Vpi based on the measured tube-to-ground potential Vpn is created, and the calculation formula creation unit creates each regression equation created by the regression analysis unit and the tube-to-ground that is the reference potential at the measurement point P1 An arithmetic expression of the pipe-to-ground potential Vspi at each measurement point Pi is created from the potential Vp1, the pipe-to-ground potential Vsp1, Vspn measured at the measurement point P1 and the measurement point Pn, and the arithmetic expression storage unit creates the created measurement point Pi. The tube-to-ground potential Vspi is stored, and the tube-to-ground potential calculation unit calculates the stored tube-to-ground potential Vspi and the tube-to-ground measured at the measurement points P1 and Pn when evaluating the anticorrosion situation. A tube-to-ground potential Vspi for each measurement point Pi is calculated from the potentials Vsp1 and Vspn.

この発明の防食管理方法は、外部防食電源に対して最近接の測定点P1から最遠方にある測定点Pnの間に設定された測定点Pi{i=2〜(n−1)}毎の管対地電位をあらかじめ定めた一定時間測定して記憶する工程と、最遠方の測定点Pnで測定した管対地電位Vpnと同時に測定した測定点Pi毎の管対地電位Vpiとの回帰分析を行い、測定した管対地電位Vpnを基準にした管対地電位Vpiの回帰式を作成する工程と、作成した各回帰式と、測定点P1における基準電位である管対地電位Vp1と、測定点P1と測定点Pnで測定する管対地電位Vsp1、Vspnとにより各測定点Piの管対地電位Vspiの演算式を作成する工程と、作成した管対地電位Vspiの演算式と、電気防食状況を評価するときに、測定点P1と測定点Pnで測定した管対地電位Vsp1、Vspnにより、測定点Pi毎の管対地電位Vspiを演算する工程とを有することを特徴とする。   The anticorrosion management method of the present invention is based on the measurement points Pi {i = 2 to (n−1)} set between the measurement points Pn farthest from the closest measurement point P1 with respect to the external anticorrosion power source. A step of measuring and storing the tube-to-ground potential for a predetermined time, and performing a regression analysis with the tube-to-ground potential Vpi for each measurement point Pi measured simultaneously with the tube-to-ground potential Vpn measured at the farthest measurement point Pn; A step of creating a regression equation of the tube-to-ground potential Vpi based on the measured tube-to-ground potential Vpn, each created regression equation, the tube-to-ground potential Vp1 that is the reference potential at the measurement point P1, the measurement point P1, and the measurement point When evaluating the tube ground potential Vspi at each measurement point Pi based on the tube ground potential Vsp1 and Vspn measured by Pn, evaluating the created tube ground potential Vspi, and the anticorrosion situation, Measurement point P1 The tube ground potential Vsp1, Vspn measured at the measuring point Pn, characterized in that a step of calculating a tube voltage to ground Vspi of each measurement point Pi.

この発明の記憶媒体は、コンピュータで読み取り可能であり、前記防食管理方法の処理プログラムを格納したことを特徴とする。   The storage medium of the present invention is readable by a computer and stores a processing program of the anticorrosion management method.

この発明は、外部防食電源に対して最近接の測定点P1から最遠方にある測定点Pnの間に設定された測定点Pi{i=2〜(n−1)}毎の管対地電位をあらかじめ定めた一定時間測定して記憶し、最遠方の測定点Pnで測定した管対地電位Vpnと同時に測定した測定点Pi毎の管対地電位Vpiとの回帰分析を行い、測定した管対地電位Vpnを基準にした管対地電位Vpiの回帰式を作成し、作成した各回帰式と、測定点P1における初期管対地電位Vp1と、測定点P1と測定点Pnで測定する管対地電位Vsp1、Vspnとにより各測定点Piの管対地電位Vspiの演算式を作成し、作成した管対地電位Vspiの演算式と、一定期間毎に測定点P1と測定点Pnで測定した管対地電位Vsp1、Vspnにより、測定点Pi毎の管対地電位Vspiを演算するから、地中に埋設した被覆鋼管の電気防食状況を評価するときに、外部防食電源に対して最近接の測定点P1と最遠方にある測定点Pnの管対地電位を測定するだけで外部防食電源に対して最近接の測定点P1と最遠方にある測定点Pnの間にある複数の計測点における管対地電位を推定することができ、電気防食の状態を短時間で確実に評価することができる。   In the present invention, the tube-to-ground potential is measured for each measurement point Pi {i = 2 to (n−1)} set between the measurement points Pn farthest from the closest measurement point P1 with respect to the external anticorrosion power source. Measured and stored for a predetermined period of time, and regression analysis with the tube-to-ground potential Vpi for each measurement point Pi measured at the same time as the tube-to-ground potential Vpn measured at the farthest measurement point Pn, and the measured tube-to-ground potential Vpn The regression equation of the tube ground potential Vpi based on the above is created, and the created regression equations, the initial tube ground potential Vp1 at the measurement point P1, the tube ground potentials Vsp1 and Vspn measured at the measurement point P1 and the measurement point Pn, and The tube-to-ground potential Vspi at each measurement point Pi is calculated, and the calculated tube-to-ground potential Vspi and the tube-to-ground potentials Vsp1 and Vspn measured at the measurement points P1 and Pn at regular intervals are Measurement point P Since the tube-to-ground potential Vspi is calculated for each tube, when evaluating the anticorrosion situation of the coated steel pipe buried in the ground, the tube at the measurement point Pn farthest from the nearest measurement point P1 with respect to the external anticorrosion power supply It is possible to estimate the tube ground potential at a plurality of measurement points between the closest measurement point P1 and the farthest measurement point Pn with respect to the external anticorrosion power source by simply measuring the ground potential, and the state of the anticorrosion Can be reliably evaluated in a short time.

図1はこの発明の防食管理装置の構成を示すブロック図である。防食管理装置1は、地中2に埋設された被覆鋼管3の腐食を防止するため、外部防食電源4の負側を被覆鋼管3の管本体に接続し、外部防食電源4の正側を地中2に埋設した防食電極5に接続し、外部防食電源4から防食電極5を介して電流を送って管本体の電位を下げる電気防食の状況を評価するものである。この電気防食の状況を評価するため、地中2に埋設された被覆鋼管3の配管ラインの外部防食電源4に対して最近接の位置P1と最遠方の位置Pnに測定点が設けられ、最近接の測定点P1と最遠方の測定点Pnの間に間隔を置いて複数の測定点P2〜測定点P(n−1)が設けられている。   FIG. 1 is a block diagram showing the configuration of the anticorrosion management apparatus of the present invention. The anticorrosion management device 1 connects the negative side of the external anticorrosion power supply 4 to the tube body of the coated steel pipe 3 and prevents the corrosion resistance of the coated steel pipe 3 embedded in the ground 2 and connects the positive side of the external anticorrosion power supply 4 to the ground. It is connected to the anticorrosion electrode 5 embedded in the middle 2 and sends an electric current from the external anticorrosion power source 4 through the anticorrosion electrode 5 to evaluate the state of electrocorrosion that lowers the potential of the tube body. In order to evaluate the state of this anticorrosion, measurement points are provided at the nearest position P1 and the farthest position Pn with respect to the external anticorrosion power supply 4 of the piping line of the coated steel pipe 3 embedded in the underground 2, A plurality of measurement points P2 to P (n-1) are provided at intervals between the closest measurement point P1 and the farthest measurement point Pn.

この防食管理装置1の構成を説明するにあたり、まず、外部防食電源4に対して最近接の測定点P1と最遠方の測定点Pnで測定した管対地電位により測定点P2〜測定点P(n−1)の管対地電位を推定する動作原理を説明する。   In describing the configuration of the anticorrosion management device 1, first, the measurement point P2 to the measurement point P (n) are measured by the tube-to-ground potential measured at the nearest measurement point P1 and the farthest measurement point Pn with respect to the external anticorrosion power source 4. The operation principle for estimating the tube-to-ground potential of -1) will be described.

外部防食電源4の出力が変化しない場合、外部防食電源4に対して最近接の測定点P1における管対地電位Vp1は一定であるが、外部防食電源4に対して最遠方の測定点Pnにおける管対地電位Vpnは最も大きく変動する。この最遠方の測定点Pnにおける管対地電位Vpnと測定点P(n−1)の管対地電位Vp(n−1)を同時に測定し、測定した管対地電位Vpnと管対地電位Vp(n−1)の分散図は、例えば図3に示すように相関がある。そこで外部防食電源4に対して最遠方の測定点Pnの管対地電位Vpnと各測定点Pi{i=2〜(n−1)}における管対地電位Vpiを同時に測定し、測定した管対地電位Vpnを基準にした管対地電位Vpiの回帰式を下記(1)式とする。
Vpi=Ai×Vpn+Bi (1)
ここでAiは回帰直線の傾き、Biは回帰直線の切片である。
When the output of the external anticorrosion power supply 4 does not change, the tube ground potential Vp1 at the measurement point P1 closest to the external anticorrosion power supply 4 is constant, but the tube at the measurement point Pn farthest from the external anticorrosion power supply 4 The ground potential Vpn varies most greatly. The tube-to-ground potential Vpn at the farthest measurement point Pn and the tube-to-ground potential Vp (n-1) at the measurement point P (n-1) are simultaneously measured, and the measured tube-to-ground potential Vpn and tube-to-ground potential Vp (n- The dispersion diagram 1) has a correlation as shown in FIG. 3, for example. Therefore, the tube-to-ground potential Vpn at the farthest measurement point Pn with respect to the external anticorrosion power supply 4 and the tube-to-ground potential Vpi at each measurement point Pi {i = 2 to (n-1)} are simultaneously measured, and the measured tube-to-ground potential is measured. The regression equation of the tube-to-ground potential Vpi with reference to Vpn is defined as the following equation (1).
Vpi = Ai × Vpn + Bi (1)
Here, Ai is the slope of the regression line, and Bi is the intercept of the regression line.

外部防食電源4の出力が変化して、外部防食電源4に対して最近接の測定点P1における管対地電位Vp1がΔVだけ変化してVsp1になったとき、外部防食電源4に対して最遠方の測定点Pnの管対地電位VpnがVspnとなり、各測定点Piの管対地電位VpiがVspi、回帰直線の傾きがAsi、回帰直線の切片がBsiになったとしたときの回帰式を下記(2)式とする。
Vspi=Asi×Vspn+Bsi (2)
ここで回帰直線の傾きは変わらず、測定点Pnと測定点Piにおける管対地電位も測定点1と同様にΔVだけシフトしたとすると、回帰式(2)は下記(3)式で表せる。
{Vpi+ΔV}=Ai×(Vpn+ΔV)+Bsi (3)
この(3)式と(1)式から下記(4)式が得られる。
{Ai×Vpn+Bi+ΔV}=Ai×(Vpn+ΔV)+Bsi (4)
(4)式より、測定点P1における管対地電位Vp1がΔVだけ変化したときの回帰直線の切片Baiは下記(5)式で表せる。
Bsi=Bi+ΔV(1−Ai)
=Bi+(Vsp1−Vp1)(1−Ai) (5)
そこで最近接の測定点P1における管対地電位Vp1がVsp1に変化したときの各測定点Piの管対地電位Vspiは下記(6)式で表せる。
Vspi=Ai×Vspn+Bi+(Vsp1−Vp1)(1−Ai) (6)
When the output of the external anticorrosion power source 4 changes and the tube-to-ground potential Vp1 at the closest measurement point P1 with respect to the external anticorrosion power source 4 changes by ΔV to Vsp1, the farthest from the external anticorrosion power source 4 The tube-to-ground potential Vpn at each measurement point Pn is Vspn, the tube-to-ground potential Vpi at each measurement point Pi is Vspi, the slope of the regression line is Asi, and the regression line intercept is Bsi. ).
Vspi = Asi × Vspn + Bsi (2)
Here, if the slope of the regression line does not change and the tube-to-ground potential at the measurement point Pn and the measurement point Pi is also shifted by ΔV like the measurement point 1, the regression equation (2) can be expressed by the following equation (3).
{Vpi + ΔV} = Ai × (Vpn + ΔV) + Bsi (3)
From the equations (3) and (1), the following equation (4) is obtained.
{Ai × Vpn + Bi + ΔV} = Ai × (Vpn + ΔV) + Bsi (4)
From equation (4), the intercept Bai of the regression line when the tube-to-ground potential Vp1 at the measurement point P1 changes by ΔV can be expressed by the following equation (5).
Bsi = Bi + ΔV (1−Ai)
= Bi + (Vsp1-Vp1) (1-Ai) (5)
Accordingly, the tube-to-ground potential Vspi at each measurement point Pi when the tube-to-ground potential Vp1 at the nearest measurement point P1 changes to Vsp1 can be expressed by the following equation (6).
Vspi = Ai × Vspn + Bi + (Vsp1−Vp1) (1−Ai) (6)

したがって測定点P1における管対地電位Vp1が所定の基準電位であるとき、外部防食電源4に対して最遠方の測定点Pnの管対地電位Vpnと各測定点Piにおける管対地電位Vpiを同時に測定し、測定点Pnの管対地電位Vpnを基準にして測定点Pi毎に回帰式を求め、各回帰式の傾きAiと切片Biと測定点P1における管対地電位Vp1をあらかじめ記憶しておくことにより測定点P1と測定点Pnで管対地電位Vsp1、Vspnを測定して測定点P2〜測定点P(n−1)の管対地電位Vspiを推定することができる。   Therefore, when the tube ground potential Vp1 at the measurement point P1 is a predetermined reference potential, the tube ground potential Vpn at the farthest measurement point Pn with respect to the external anticorrosion power supply 4 and the tube ground potential Vpi at each measurement point Pi are measured simultaneously. Measurement is performed by obtaining a regression equation for each measurement point Pi based on the tube-to-ground potential Vpn at the measurement point Pn, and storing in advance the slope Ai and intercept Bi of each regression equation and the tube-to-ground potential Vp1 at the measurement point P1. By measuring the tube ground potential Vsp1 and Vspn at the point P1 and the measurement point Pn, the tube ground potential Vspi from the measurement point P2 to the measurement point P (n-1) can be estimated.

この防食管理装置1は、管対地電位推定装置6と、外部防食電源4に対して最近接の測定点P1で被覆鋼管3の管本体と地中2に埋設した照合電極7に接続され、測定点P1の管対地電位を測定する電位検出部8aと、外部防食電源4に対して最遠方の測定点Pnで管本体と地中2に埋設した照合電極7に接続され、測定点Pnの管対地電位を測定する電位検出部8bと、各電位検出部8a,8bで測定した管対地電位を管対地電位推定装置6に転送する送信部9a,9bと、電位検出部10と例えばパソコン等の端末装置11からなる記録装置12を有する。   This anticorrosion management device 1 is connected to a tube-to-ground potential estimation device 6 and a reference electrode 7 embedded in the tube main body of the coated steel tube 3 and the underground 2 at a measurement point P1 closest to the external anticorrosion power source 4. A potential detector 8a for measuring the tube-to-ground potential at the point P1 and a reference electrode 7 embedded in the tube body and the ground 2 at the farthest measurement point Pn with respect to the external anticorrosion power source 4, and the tube at the measurement point Pn A potential detector 8b for measuring ground potential, transmitters 9a and 9b for transferring the tube ground potential measured by the potential detectors 8a and 8b to the tube ground potential estimation device 6, a potential detector 10 and a personal computer, for example. A recording device 12 including a terminal device 11 is included.

記録装置12は、外部防食電源4に対して最近接の測定点P1から最遠方にある測定点Pnの間の路面等に設定され、管対地電位を常時測定する計測装置を設置するのに困難な測定点Pi{i=2〜(n−1)}毎の管対地電位をあらかじめ定めた一定時間、例えば10分間測定し、測定した管対地電位を記憶する。   The recording device 12 is set on the road surface or the like between the measurement point Pn farthest from the closest measurement point P1 with respect to the external anticorrosion power supply 4, and it is difficult to install a measurement device that constantly measures the tube-to-ground potential. The tube ground potential at each measurement point Pi {i = 2 to (n-1)} is measured for a predetermined time, for example, 10 minutes, and the measured tube ground potential is stored.

管対地電位推定装置6は、外部防食電源4に対して最近接の測定点P1と最遠方の測定点Pnで測定した管対地電位により、各測定点Piの管対地電位を推定するものであり、図2のブロック図に示すように、装置全体の処理を制御する中央処理装置13と操作表示部14とデータ入力部15とデータ記憶部16と回帰分析部17と演算式作成部18と演算式記憶部19と管対地電位演算部20及び出力部21を有する。データ入力部15は、記録装置12に記憶した測定点Pi毎の管対地電位Vpiを入力するとともに、各電位検出部8a,8bで測定して送信部9a,9bから送られる外部防食電源4に対して最近接の測定点P1と最遠方の測定点Pnにおける管対地電位を入力する。データ記憶部16は入力した管対地電位を測定点毎に記憶するとともに各種データを記憶する。回帰分析部17は、最遠方の測定点Pnで測定した管対地電位Vpnと同時に記録装置12で測定した測定点Pi毎の管対地電位Vpiとの回帰分析を行い、測定した管対地電位Vpnを基準にした管対地電位Vpiの式(1)に示す回帰式を作成する。演算式作成部18は、回帰分析部17で作成した各回帰式の傾きAiと切片Biと、測定点P1における基準電位である管対地電位Vp1と、測定点P1と測定点Pnで測定する管対地電位Vsp1、Vspnにより各測定点Piの管対地電位Vspiを演算する式(6)を作成する。演算式記憶部19は、演算式作成部18で作成した測定点Pi毎の管対地電位Vspiの演算式を記憶する。管対地電位演算部20は、演算式記憶部19に記憶した管対地電位Vspiの演算式と、測定点P1と測定点Pnで測定した管対地電位Vsp1、Vspnにより、測定点Pi毎の管対地電位Vspiを演算する。中央処理装置13は、測定点P1と測定点Pnで測定した管対地電位Vsp1、Vspnと演算した測定点Pi毎の管対地電位Vspiを操作表示部14に表示し、出力部21から印字出力する。   The tube-to-ground potential estimation device 6 estimates the tube-to-ground potential at each measurement point Pi based on the tube-to-ground potential measured at the nearest measurement point P1 and the farthest measurement point Pn with respect to the external anticorrosion power source 4. 2, the central processing unit 13 that controls the processing of the entire apparatus, the operation display unit 14, the data input unit 15, the data storage unit 16, the regression analysis unit 17, the arithmetic expression creation unit 18, and the calculation An expression storage unit 19, a tube-to-ground potential calculation unit 20, and an output unit 21 are included. The data input unit 15 inputs the tube-to-ground potential Vpi for each measurement point Pi stored in the recording device 12, and measures the potential detection units 8a and 8b to the external anticorrosion power source 4 sent from the transmission units 9a and 9b. On the other hand, the tube-to-ground potential at the nearest measurement point P1 and the farthest measurement point Pn is input. The data storage unit 16 stores the input tube-to-ground potential for each measurement point and stores various data. The regression analysis unit 17 performs a regression analysis with the tube-to-ground potential Vpi for each measurement point Pi measured by the recording device 12 simultaneously with the tube-to-ground potential Vpn measured at the farthest measurement point Pn, and the measured tube-to-ground potential Vpn is determined. The regression equation shown in Equation (1) of the tube-to-ground potential Vpi as a reference is created. The calculation formula creation unit 18 includes the slope Ai and intercept Bi of each regression formula created by the regression analysis unit 17, the pipe-to-ground potential Vp1, which is the reference potential at the measurement point P1, and the tubes measured at the measurement point P1 and the measurement point Pn. Formula (6) for calculating the tube ground potential Vspi at each measurement point Pi based on the ground potentials Vsp1 and Vspn is created. The arithmetic expression storage unit 19 stores the arithmetic expression of the tube-to-ground potential Vspi for each measurement point Pi created by the arithmetic expression creating unit 18. The tube-to-ground potential calculation unit 20 uses the calculation formula of the tube-to-ground potential Vspi stored in the calculation-expression storage unit 19 and the tube-to-ground potentials Vsp1 and Vspn measured at the measurement point P1 and the measurement point Pn for each tube-to-measurement point Pi. The potential Vspi is calculated. The central processing unit 13 displays the tube-to-ground potential Vspi for each measurement point Pi calculated from the tube-to-ground potentials Vsp1 and Vspn measured at the measurement point P1 and the measurement point Pn on the operation display unit 14 and prints them out from the output unit 21. .

この防食管理装置1で外部防食電源4に対して最近接の測定点P1と最遠方の測定点Pnにおける管対地電位Vsp1、Vspnを測定し、測定した管対地電位Vsp1、Vspnにより、路面等に設定され、管対地電位を常時測定する計測装置を設置するのに困難な測定点Pi{i=2〜(n−1)}毎の管対地電位Vspiを推定するときの処理を図4と図5のフローチャートを参照して説明する。   The anticorrosion management device 1 measures the tube ground potentials Vsp1 and Vspn at the nearest measurement point P1 and the farthest measurement point Pn with respect to the external anticorrosion power source 4, and the measured surface potentials Vsp1 and Vspn are used to measure the road surface or the like. FIG. 4 and FIG. 4 show the processing when estimating the tube-to-ground potential Vspi for each measurement point Pi {i = 2 to (n−1)}, which is difficult to set up a measurement device that is set and always measures the tube-to-ground potential. This will be described with reference to the flowchart of FIG.

防食管理装置1の管対地電位推定装置6を初期設定するとき、図4のフローチャートに示すように、まず、外部防食電源4に対して最近接の測定点P1における管対地電位を電位検出部8aで一定時間連続的に測定し、送信部9aを介して管対地電位推定装置6に送るとともに、外部防食電源4に対して最遠方の測定点Pnにおける管対地電位Vpnを電位検出部8bで連続的に測定し、送信部9bを介して管対地電位推定装置6に送る(ステップS1)。管対地電位推定装置6の中央処理装置13は送られた測定点P1の管対地電位が基準電位に安定しているときの電位を測定点P1の初期管対地電位Vp1としてデータ記憶部16に記憶させ、変動する測定点Pnの管対地電位Vpnを、測定時間を基準としてデータ記憶部16に記憶させる(ステップS2)。この測定点P1と測定点Pnの管対地電位を測定しているとき、記録装置12で最近接の測定点P1と最遠方の測定点Pnの間に間隔を置いて複数の測定点Pi毎の管対地電位を一定時間、例えば10分間ずつ測定して各測定点Piと測定時間毎に記録する(ステップS3)。この測定点P1と測定点Pn及び各測定点Piの管対地電位の測定が終了した後、記録装置12に記憶した各測定点Piの管対地電位と測定時間を管対地電位推定装置6に入力してデータ記憶部16に記憶させる(ステップS4)。   When the tube ground potential estimation device 6 of the corrosion prevention management device 1 is initially set, as shown in the flowchart of FIG. 4, first, the tube ground potential at the closest measurement point P1 with respect to the external corrosion protection power source 4 is determined as the potential detection unit 8a. Is continuously measured for a certain period of time and sent to the tube-to-ground potential estimation device 6 via the transmitter 9a, and the tube-to-ground potential Vpn at the farthest measurement point Pn with respect to the external anticorrosion power supply 4 is continuously detected by the potential detector 8b. Is measured and sent to the tube-to-ground potential estimation device 6 via the transmitter 9b (step S1). The central processing unit 13 of the tube-to-ground potential estimation device 6 stores the potential when the tube-to-ground potential at the measurement point P1 sent to the reference potential is stable in the data storage unit 16 as the initial tube-to-ground potential Vp1 at the measurement point P1. Then, the tube-to-ground potential Vpn at the changing measurement point Pn is stored in the data storage unit 16 with reference to the measurement time (step S2). When measuring the tube-to-ground potential at the measurement point P1 and the measurement point Pn, the recording device 12 sets the interval between the closest measurement point P1 and the farthest measurement point Pn, and sets the interval between the plurality of measurement points Pi. The tube-to-ground potential is measured for a predetermined time, for example, 10 minutes, and recorded at each measurement point Pi and every measurement time (step S3). After the measurement of the tube-to-ground potential at each of the measurement points P1, Pn, and each measurement point Pi is completed, the tube-to-ground potential and measurement time at each measurement point Pi stored in the recording device 12 are input to the tube-to-ground potential estimation device 6. And stored in the data storage unit 16 (step S4).

この状態で管対地電位推定装置6の中央処理装置13は、回帰分析部17の処理を開始させる。回帰分析部17は、測定点Pi毎の管対地電位と、各管対地電位の測定時間に対応した測定点Pnにおける管対地電位Vpnをデータ記憶部16から読み出し、例えば図3に示すように、測定点Pnの管対地電位Vpnと各測定点Piの管対地電位Vpiの分散図を作成し(ステップS5)、作成した分散図から、(1)式に示す測定点Pnの管対地電位Vpnを基準にした各測定点Piの管対地電位Vpiの回帰式を作成する(ステップS6)。この各測定点Piの回帰式が作成されると、演算式作成部18は、作成した回帰式から、式(6)に示す外部防食電源4の出力が変動したときの各測定点Piにおける管対地電位Vspiの演算式を作成し、測定点Pi毎に演算式記憶部19に記憶させる(ステップS7)。この処理が終了すると、管対地電位推定装置6の初期設定が終了する。   In this state, the central processing unit 13 of the tube-to-ground potential estimation device 6 starts the process of the regression analysis unit 17. The regression analysis unit 17 reads the tube-to-ground potential for each measurement point Pi and the tube-to-ground potential Vpn at the measurement point Pn corresponding to the measurement time of each tube-to-ground potential from the data storage unit 16, for example, as shown in FIG. A dispersion diagram of the tube-to-ground potential Vpn at the measurement point Pn and the tube-to-ground potential Vpi at each measurement point Pi is created (step S5). From the created dispersion diagram, the tube-to-ground potential Vpn at the measurement point Pn shown in the equation (1) is obtained. A regression equation of the tube-to-ground potential Vpi at each measurement point Pi as a reference is created (step S6). When the regression equation of each measurement point Pi is created, the calculation formula creation unit 18 creates a tube at each measurement point Pi when the output of the external anticorrosion power source 4 shown in Formula (6) fluctuates from the created regression equation. An arithmetic expression for the ground potential Vspi is created and stored in the arithmetic expression storage unit 19 for each measurement point Pi (step S7). When this process ends, the initial setting of the tube-to-ground potential estimation device 6 ends.

管対地電位推定装置6の初期設定が終了すると、地中2に埋設された被覆鋼管3の電気防食を評価するとき、各測定点P1〜Pnの管対地電位を検出する。この各測定点P1〜Pnの管対地電位を検出するとき、図5のフローチャートに示すように、そのときの測定点P1における管対地電位Vsp1と測定点Pnの管対地電位Vspnを電位検出部8a,8bでそれぞれ測定し、管対地電位推定装置6のデータ記憶部16に記憶する(ステップS11)。この状態で管対地電位推定装置6の中央処理装置13は管対地電位演算部20の処理を開始させる。管対地電位演算部20は測定した管対地電位Vsp1と管対地電位Vspnとデータ記憶部16に記憶した測定点P1の初期管対地電位Vp1及び演算式記憶部19に記憶した各計測点Piの演算式により、各測定点Piにおけるそのときの管対地電位Vspiを順次演算してデータ記憶部16に記憶する(ステップS12)。この処理を各測定点Piの全てに対して行い(ステップS13,S12)、全ての測定点Piにおける演算処理が終了すると(ステップS13)、中央処理装置13は測定点P1と測定点Pn及び各測定点Piの管対地電位を操作表示部14に表示し、出力部21から記録紙等に出力する(ステップS14)。防食管理装置1の管理者はこの表示を確認することにより、地中2に埋設された被覆鋼管3の各測定点の管対地電位が適切な範囲にあるかどうかを判定して、地中2に埋設された被覆鋼管3の防食状態を管理する。   When the initial setting of the pipe-to-ground potential estimation device 6 is completed, the pipe-to-ground potential at each of the measurement points P1 to Pn is detected when evaluating the anticorrosion of the coated steel pipe 3 embedded in the underground 2. When detecting the tube-to-ground potential at each of the measurement points P1 to Pn, as shown in the flowchart of FIG. 5, the tube-to-ground potential Vsp1 at the measurement point P1 and the tube-to-ground potential Vspn at the measurement point Pn are detected as the potential detector 8a. , 8b, and stores them in the data storage unit 16 of the tube-to-ground potential estimation device 6 (step S11). In this state, the central processing unit 13 of the tube-to-ground potential estimation device 6 starts the processing of the tube-to-ground potential calculation unit 20. The tube-to-ground potential calculation unit 20 calculates the measured tube-to-ground potential Vsp1, the tube-to-ground potential Vspn, the initial tube-to-ground potential Vp1 of the measurement point P1 stored in the data storage unit 16, and the respective measurement points Pi stored in the calculation formula storage unit 19. The tube-to-ground potential Vspi at that time at each measurement point Pi is sequentially calculated according to the equation and stored in the data storage unit 16 (step S12). This process is performed for all the measurement points Pi (steps S13 and S12), and when the arithmetic processing at all the measurement points Pi is completed (step S13), the central processing unit 13 determines the measurement points P1, the measurement points Pn, and each of the measurement points Pi. The tube-to-ground potential at the measurement point Pi is displayed on the operation display unit 14, and is output from the output unit 21 to a recording sheet or the like (step S14). The administrator of the anticorrosion management device 1 confirms this display to determine whether the pipe-to-ground potential at each measurement point of the coated steel pipe 3 embedded in the underground 2 is within an appropriate range. The anticorrosion state of the coated steel pipe 3 embedded in is managed.

前記説明では管対地電位推定装置6で測定点P1の管対地電位Vsp1と測定点Pnの管対地電位Vspnから測定点Piの管対地電位Vspiを推定する場合について説明したが、図6のブロック図に示すように、コンピュータで読み取り可能な外部記憶媒体30に、図4と図5のフローチャートに示す処理プログラムをあらかじめ記憶させておいても良い。この外部記憶媒体30を、入力装置32とCPU33とROM34とRAM35と表示装置36及び外部インタフェース37を有するコンピュータ31に接続し、外部記憶媒体30に記憶した処理プログラムをインストールすることにより、他の設備を導入することなしに、測定点Piの管対地電位Vspiを推定することができる。   In the above description, the case where the tube-to-ground potential Vspi at the measurement point Pi is estimated from the tube-to-ground potential Vsp1 at the measurement point P1 and the tube-to-ground potential Vspn at the measurement point Pn by the tube-to-ground potential estimation device 6 has been described. As shown in FIG. 4, the processing program shown in the flowcharts of FIGS. 4 and 5 may be stored in advance in a computer-readable external storage medium 30. By connecting the external storage medium 30 to a computer 31 having an input device 32, a CPU 33, a ROM 34, a RAM 35, a display device 36 and an external interface 37, and installing a processing program stored in the external storage medium 30, other equipment can be installed. The pipe-to-ground potential Vspi at the measurement point Pi can be estimated without introducing.

この発明の防食管理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the anticorrosion management apparatus of this invention. 管対地電位推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of a tube-to-ground potential estimation apparatus. 測定点Pnの管対地電位Vpnと測定点P(n−1)の管対地電位Vp(n−1)の分散図である。It is a dispersion | distribution figure of the tube-to-ground potential Vpn of the measurement point Pn, and the tube-to-ground potential Vp (n-1) of the measurement point P (n-1). 管対地電位推定装置の初期設定処理を示すフローチャートである。It is a flowchart which shows the initial setting process of a tube-to-ground potential estimation apparatus. 管対地電位の推定処理を示すフローチャートである。It is a flowchart which shows the estimation process of a tube ground potential. 他の管対地電位推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of another pipe-to-ground potential estimation apparatus.

符号の説明Explanation of symbols

1;防食管理装置、2;地中、3;被覆鋼管、4;外部防食電源、5;防食電極、
6;管対地電位推定装置、7;照合電極、8;電位検出部、9;送信部、
10;電位検出部、11;端末装置、12;記録装置、13;中央処理装置、
14;操作表示部、15;データ入力部、16;データ記憶部、17;回帰分析部、
18;演算式作成部、19;演算式記憶部、20;管対地電位演算部、
21;出力部、30;外部記憶媒体、31;コンピュータ、32;入力装置、
33;CPU、34;ROM、35;RAM、36;表示装置、
37;外部インタフェース、P1〜Pn;測定点。
1; anticorrosion management device, 2; underground, 3; coated steel pipe, 4; external anticorrosion power supply, 5; anticorrosion electrode,
6; Tube-to-ground potential estimation device, 7; Reference electrode, 8; Potential detector, 9; Transmitter,
10; Potential detection unit, 11; Terminal device, 12; Recording device, 13; Central processing unit,
14; operation display unit, 15; data input unit, 16; data storage unit, 17; regression analysis unit,
18; calculation formula creation unit, 19; calculation formula storage unit, 20; tube-to-ground potential calculation unit,
21; output unit, 30; external storage medium, 31; computer, 32; input device,
33; CPU, 34; ROM, 35; RAM, 36; Display device,
37; external interface, P1 to Pn; measurement points.

Claims (3)

管対地電位推定装置と、外部防食電源に対して最近接の測定点P1と最遠方の測定点Pnで管対地電位を測定する電位検出手段及び記録装置とを有し、
前記記録装置は、外部防食電源に対して最近接の測定点P1から最遠方にある測定点Pnの間に設定された測定点Pi{i=2〜(n−1)}毎の管対地電位をあらかじめ定めた一定時間測定して記憶し、
前記管対地電位推定装置は、外部防食電源に対して最近接の測定点P1と最遠方の測定点Pnで測定した管対地電位により、各測定点Piの管対地電位を推定するものであり、装置全体の処理を制御するデータ入力部とデータ記憶部と回帰分析部と演算式作成部と演算式記憶部及び管対地電位演算部を有し、
データ入力部は、記録装置に記憶した測定点Pi毎の管対地電位Vpiを入力するとともに、電位検出部で測定した外部防食電源に対して最近接の測定点P1と最遠方の測定点Pnにおける管対地電位を入力し、
データ記憶部は入力した管対地電位を測定点毎に記憶するとともに各種データを記憶し、
回帰分析部は、最遠方の測定点Pnで測定した管対地電位Vpnと同時に記録装置で測定した測定点Pi毎の管対地電位Vpiとの回帰分析を行い、測定した管対地電位Vpnを基準にした管対地電位Vpiの回帰式を作成し、
演算式作成部は、回帰分析部で作成した各回帰式と、測定点P1における基準電位である管対地電位Vp1と、測定点P1と測定点Pnで測定する管対地電位Vsp1、Vspnにより各測定点Piの管対地電位Vspiの演算式を作成し、
演算式記憶部は、作成した測定点Pi毎の管対地電位Vspiの演算式を記憶し、
管対地電位演算部は、記憶した管対地電位Vspiの演算式と、電気防食状況を評価するときに、測定点P1と測定点Pnで測定した管対地電位Vsp1、Vspnにより、測定点Pi毎の管対地電位Vspiを演算することを特徴とする防食管理装置。
A tube-to-ground potential estimating device, and a potential detecting means and a recording device for measuring the tube-to-ground potential at the closest measurement point P1 and the farthest measurement point Pn with respect to the external anticorrosion power source,
The recording device has a tube-to-ground potential for each measurement point Pi {i = 2 to (n−1)} set between measurement points Pn farthest from the closest measurement point P1 with respect to the external anticorrosion power source. Is measured and memorized for a predetermined time,
The tube-to-ground potential estimation device estimates the tube-to-ground potential at each measurement point Pi based on the tube-to-ground potential measured at the nearest measurement point P1 and the farthest measurement point Pn with respect to the external anticorrosion power source. A data input unit, a data storage unit, a regression analysis unit, a calculation formula creation unit, a calculation formula storage unit, and a pipe-to-ground potential calculation unit that control the processing of the entire apparatus,
The data input unit inputs the tube-to-ground potential Vpi for each measurement point Pi stored in the recording device, and at the closest measurement point P1 and the farthest measurement point Pn with respect to the external anticorrosion power source measured by the potential detection unit. Enter the tube-to-ground potential,
The data storage unit stores the input tube-to-ground potential for each measurement point and stores various data,
The regression analysis unit performs a regression analysis with the tube-to-ground potential Vpi for each measurement point Pi measured by the recording device at the same time as the tube-to-ground potential Vpn measured at the farthest measurement point Pn, and uses the measured tube-to-ground potential Vpn as a reference. A regression equation of the pipe-to-ground potential Vpi
The calculation formula creation unit measures each of the regression formulas created by the regression analysis unit, the tube-to-ground potential Vp1 that is the reference potential at the measurement point P1, and the tube-to-ground potentials Vsp1 and Vspn measured at the measurement point P1 and the measurement point Pn. Create an equation for the tube-to-ground potential Vspi at the point Pi,
The arithmetic expression storage unit stores the arithmetic expression of the tube-to-ground potential Vspi for each created measurement point Pi,
The pipe-to-ground potential calculating unit calculates the stored pipe-to-ground potential Vspi and the tube-to-ground potentials Vsp1 and Vspn measured at the measurement point P1 and the measurement point Pn when evaluating the corrosion protection situation. An anticorrosion management device characterized by calculating a tube-to-ground potential Vspi.
外部防食電源に対して最近接の測定点P1から最遠方にある測定点Pnの間に設定された測定点Pi{i=2〜(n−1)}毎の管対地電位をあらかじめ定めた一定時間測定して記憶する工程と、
最遠方の測定点Pnで測定した管対地電位Vpnと同時に測定した測定点Pi毎の管対地電位Vpiとの回帰分析を行い、測定した管対地電位Vpnを基準にした管対地電位Vpiの回帰式を作成する工程と、
作成した各回帰式と、測定点P1における基準電位である管対地電位Vp1と、測定点P1と測定点Pnで測定する管対地電位Vsp1、Vspnにより各測定点Piの管対地電位Vspiの演算式を作成する工程と、
作成した管対地電位Vspiの演算式と、電気防食状況を評価するときに、測定点P1と測定点Pnで測定した管対地電位Vsp1、Vspnにより、測定点Pi毎の管対地電位Vspiを演算する工程とを有することを特徴とする防食管理方法。
A constant predetermined pipe-to-ground potential for each measurement point Pi {i = 2 to (n-1)} set between the measurement points Pn farthest from the closest measurement point P1 with respect to the external anticorrosion power source. Measuring and storing time;
Regression analysis of the tube-to-ground potential Vpi for each measurement point Pi measured at the same time as the tube-to-ground potential Vpn measured at the farthest measurement point Pn, and the regression equation of the tube-to-ground potential Vpi based on the measured tube-to-ground potential Vpn And the process of creating
Calculation formula of tube-to-ground potential Vspi at each measurement point Pi based on each created regression equation, tube-to-ground potential Vp1, which is the reference potential at measurement point P1, and tube-to-ground potential Vsp1, Vspn measured at measurement point P1 and measurement point Pn. And the process of creating
When evaluating the created calculation formula of tube ground potential Vspi and the electrical protection status, the tube ground potential Vspi for each measurement point Pi is calculated from the tube ground potential Vsp1 and Vspn measured at the measurement point P1 and the measurement point Pn. And a process for controlling corrosion prevention.
請求項2に記載の防食管理方法の処理プログラムを格納したコンピュータで読み取り可能な記憶媒体。   A computer-readable storage medium storing a processing program of the anticorrosion management method according to claim 2.
JP2005065186A 2005-03-09 2005-03-09 Anticorrosion management device, anticorrosion management method, and storage medium storing the processing program Expired - Fee Related JP4562553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005065186A JP4562553B2 (en) 2005-03-09 2005-03-09 Anticorrosion management device, anticorrosion management method, and storage medium storing the processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005065186A JP4562553B2 (en) 2005-03-09 2005-03-09 Anticorrosion management device, anticorrosion management method, and storage medium storing the processing program

Publications (2)

Publication Number Publication Date
JP2006249474A true JP2006249474A (en) 2006-09-21
JP4562553B2 JP4562553B2 (en) 2010-10-13

Family

ID=37090270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005065186A Expired - Fee Related JP4562553B2 (en) 2005-03-09 2005-03-09 Anticorrosion management device, anticorrosion management method, and storage medium storing the processing program

Country Status (1)

Country Link
JP (1) JP4562553B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234188A (en) * 1999-02-15 2000-08-29 Toho Gas Co Ltd Electric protection method of pipe line, and external power supply device for electric protection
JP2002256469A (en) * 2001-02-28 2002-09-11 Toho Gas Co Ltd Monitoring system of electrolytic protection facility

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234188A (en) * 1999-02-15 2000-08-29 Toho Gas Co Ltd Electric protection method of pipe line, and external power supply device for electric protection
JP2002256469A (en) * 2001-02-28 2002-09-11 Toho Gas Co Ltd Monitoring system of electrolytic protection facility

Also Published As

Publication number Publication date
JP4562553B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
CN108827867A (en) A kind of extracting method of the metro stray current corrosion characteristic information based on data mining technology
JP5060052B2 (en) Anticorrosion management method, anticorrosion management device, anticorrosion management program, information recording medium of buried metal body cathodically protected
JP4589206B2 (en) Pipeline soundness evaluation device, soundness remote evaluation system, soundness evaluation method, soundness evaluation program
CN113433057B (en) Buried metal pipeline stray current corrosion rate prediction device and method
KR100380113B1 (en) A Corrosion Prediction System of Underground Metallic Structures and it&#39;s Analysis Method
JP2008267992A (en) Leak detection system
CN110750880B (en) Underground pipeline subway stray current corrosion protection method
CN104651854A (en) Method and system for measuring switch-off potential of cathode protection system
JP2021056224A5 (en)
JP2010266342A (en) Metal corrosion diagnostic method
KR20100030340A (en) Apparatus and method for measuring boundary of fresh water and salt water in undergroun water
KR101604344B1 (en) Protection potential measurement system of underground pipeline of high-speed mobile Based on low-power
JP4797001B2 (en) Pipeline cathodic protection system and cathodic protection management method
WO2019225727A1 (en) Corrosion rate estimating device and method
JP4854653B2 (en) Measurement and evaluation method and measurement evaluation system for cathodic protection
JP4562553B2 (en) Anticorrosion management device, anticorrosion management method, and storage medium storing the processing program
EP2655690A2 (en) Impressed current cathodic protection
JP4322617B2 (en) Pipeline renewal plan support device
Orlikowski et al. Research on causes of corrosion in the municipal water supply system
JP2011191288A (en) Method and device for estimating current density of damaged coating portion of underground pipe, and method and device for controlling electric protection
CN108982594B (en) ERT pollution detection system with detection period set in self-adaptive mode and setting method
JP2010127851A (en) Apparatus and method for measuring earth resistivity for use in power distribution using three electrodes
JP6871497B2 (en) Electrical corrosion protection status grasping system and status grasping method
JP2010053423A (en) Cathodic corrosion prevention method for pipeline
CN114318347B (en) Cathode protection evaluation method, apparatus, computer device and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070731

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees