JP2006249066A - Method for enhancing efficiency of gas-liquid reaction - Google Patents

Method for enhancing efficiency of gas-liquid reaction Download PDF

Info

Publication number
JP2006249066A
JP2006249066A JP2005225911A JP2005225911A JP2006249066A JP 2006249066 A JP2006249066 A JP 2006249066A JP 2005225911 A JP2005225911 A JP 2005225911A JP 2005225911 A JP2005225911 A JP 2005225911A JP 2006249066 A JP2006249066 A JP 2006249066A
Authority
JP
Japan
Prior art keywords
reaction
fatty acid
gas
acid ester
useful products
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005225911A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Bando
芳行 坂東
Shoichi Ito
昭一 伊東
Katsuhiko Tomashino
勝彦 笘篠
Kiyoshi Kosakata
潔 小坂田
Masao Kamioka
正男 神岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ICS Co Ltd
Original Assignee
ICS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ICS Co Ltd filed Critical ICS Co Ltd
Priority to JP2005225911A priority Critical patent/JP2006249066A/en
Publication of JP2006249066A publication Critical patent/JP2006249066A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low cost method for enhancing reaction efficiency having no problem in operation in a gas-liquid reaction, especially in a transesterification reaction of an oil and fat with an alcohol. <P>SOLUTION: The method for producing a useful product is, in a process in which a gas is blown into a liquid material in a reaction vessel and a useful product is prepared by the reaction between the liquid material and the gas, to generate the objective reaction or a part of the objective reaction mostly when bubbles of the gas are generated, destroyed, brought to be minute or disappeared. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液相物質中に気相物質を吹き込んで、両者の間の反応により有用生成物を得る工程において、該反応の効率を向上させる方法に関するものである。The present invention relates to a method for improving the efficiency of a reaction in a step of blowing a gas phase substance into a liquid phase substance and obtaining a useful product by a reaction between the two.

化学反応により有用生成物を得る工程においては、反応効率は生産性に直結するものであるため、その向上については常に関係者の留意するところであり、反応の形態に応じて、種種の方策が適用される。液相物質中に気相物質を吹き込んで、両者の間の反応により所期の生成物を得る工程においては、反応効率を向上させるための方法として一般的なものは、(a)反応温度の上昇 (b)気液接触面積の増大 (c)触媒の使用であり、工業的にも殆どの場合これらの方法が単独で若しくは組み合わされた形で使用されている。また最近では、特殊な場合には、(d)物質の臨界状態における活性の増大を利用する方法も試みられている(例えば特許文献1〜5)。In the process of obtaining useful products by chemical reaction, the reaction efficiency is directly linked to productivity, so the improvement is always the attention of the concerned parties, and various measures are applied depending on the form of reaction. Is done. In the process of obtaining a desired product by the reaction between the two by injecting a gas phase substance into the liquid phase substance, a general method for improving the reaction efficiency is as follows. (B) Increase in gas-liquid contact area (c) Use of catalyst, and industrially, in most cases, these methods are used alone or in combination. Recently, in special cases, a method using (d) an increase in activity of a substance in a critical state has been attempted (for example, Patent Documents 1 to 5).

しかしながら、(a)反応温度の上昇はエネルギーコストの増大に加えて、有害な副反応を伴うことも多く、(c)触媒の使用は、触媒の交換・再生のためのコスト増に加えて、混入触媒の分離、廃棄触媒の処理等の問題についての配慮が必要である。また、(d)臨界状態を利用する方法では、高圧・高温を必要とするため、設備コストの増大とともに、安全性に対する慎重な配慮が不可欠である。However, (a) an increase in the reaction temperature often involves a harmful side reaction in addition to an increase in energy cost, and (c) the use of a catalyst in addition to an increase in cost for catalyst replacement / regeneration, Consideration should be given to problems such as separation of mixed catalyst and disposal of waste catalyst. In addition, (d) a method using a critical state requires high pressure and high temperature, so that careful consideration for safety is indispensable as equipment costs increase.

(b)気液接触面積の増大は、比較的コスト増も少なく、反応生成物に悪影響を及ぼすこともないので、殆ど全ての場合に用いられ、一般に気泡の微小化による気液接触面積の増大、攪拌、攪拌効果の増大と気液接触の経路長を増加させるための構造物の設置等が一般化している。本発明者らは、油脂類とアルコールとのエステル交換反応について検討を進め、これらに加えて、液相を泡沫状として更に気液接触効率を高めると同時に、必要に応じて気相物質の量を液状物質に対して容易に過剰ならしめる方法を提案した。(特許文献6)(B) Since the increase in the gas-liquid contact area is relatively small in cost and does not adversely affect the reaction product, it is used in almost all cases, and generally increases in the gas-liquid contact area due to the miniaturization of bubbles. In addition, the installation of a structure for increasing the stirring, the stirring effect, and the gas-liquid contact path length has become common. The present inventors proceeded with the study on the transesterification reaction between fats and oils and alcohol. In addition to these, the liquid phase was made into a foam to further improve the gas-liquid contact efficiency, and at the same time, the amount of the gas phase substance as required A method was proposed to make the excess easily in excess of liquid substances. (Patent Document 6)

しかしながら、気泡状態の気体と外部液状物との反応においては,界面に反応成生物が蓄積して反応を阻害し、場合によっては該反応成生物の拡散が反応の律速段階となり、単に気液接触面積の増大を図るのみでは目的を達し得ず、また、反応成生物が界面に強く吸着される時には、攪拌による反応成生物の拡散効果にも限界がある。
特開2000−143586 特開2000−109883 特開2000−204392 特開2001−302584 特開2002−308825 特願2004−231676
However, in the reaction between a gas in a bubble state and an external liquid, reaction product accumulates at the interface and inhibits the reaction. In some cases, diffusion of the reaction product becomes a rate-determining step of the reaction. The purpose cannot be achieved only by increasing the area, and when the reaction product is strongly adsorbed on the interface, the diffusion effect of the reaction product by stirring is limited.
JP2000-143586 JP2000-109883 JP 2000-204392 A JP 2001-302584 A JP2002-308825 Japanese Patent Application No. 2004-231676

本発明者らは、主として油脂類とアルコールとのエステル交換反応について、更に生産性を向上させるため、上記の問題点を解決し、コスト増を伴わぬ汎用性の高い反応効率の向上を可能とする製造方法を開発しようとする。In order to further improve the productivity of the transesterification reaction mainly between fats and fats and alcohols, the present inventors can solve the above problems and improve the reaction efficiency with high versatility without increasing costs. Try to develop a manufacturing method.

本発明者らは、油脂類とアルコールとのエステル交換反応について検討を行う過程において、油脂類中ないし油脂類表面のアルコール気泡の挙動と反応効率との関係の観察を続けた結果、機械的な方法によりアルコール気泡の生成・消滅数を増加させることが反応効率の増大を齎すことを見出し、これに基づいて以下の発明を行った。
(1)反応容器内の液状物質中に気体を吹き込み、該液状物質と該気体との間の反応によって有用生成物を得る工程において、主として該気体の気泡の生成・破壊若しくは微小化・消滅時において目的とする反応若しくは目的とする反応の一部を生起させることを特徴とする、有用生成物の製造方法。
(2)反応容器内の液体状の油脂類中に過熱状態の気化アルコールを吹き込み、微小気泡状態のアルコールと油脂類との間でエステル交換反応を行い、生成物を過剰の過熱気化アルコールと共に気相状態で取得する脂肪酸エステルの製造方法において、主としてアルコール気泡の生成・破壊若しくは微小化・消滅時において該エステル交換反応若しくは該エステル交換反応の一部を生起させることを特徴とする、脂肪酸エステルの製造方法。
(3)(1)若しくは(2)記載の製造方法において、該気泡の表面張力若しくは表面張力と外部からの圧力との和による該気泡内の気体圧力が該気体の臨界圧若しくは臨界圧以上であり、且つ該気泡内の気体温度が該気体の臨界温度若しくは臨界温度以上であることを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。
(4)(1)〜(3)記載の何れかの製造方法において、一定若しくは可変周波数の超音波の照射により微小気泡の破壊若しくは微小化・消滅を行うことを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。
(5)(1)〜(3)記載の何れかの製造方法において、反応容器内に微小気泡の生成・破壊若しくは微小化・消滅のための構造物を設置することを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。
(6)(5)記載の製造方法において、該構造物が多孔板であることを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。
(7)(5)記載の製造方法において、該構造物が、網状物であるか、薄板によって構成される格子状・ハニカム状その他の細隙の集合体若しくはリングその他の形状の充填物であることを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。
(8)(6)若しくは(7)記載の製造方法において、該構造物が同一構造のもの又は同種の構造において多孔板の孔径或いは網状物の網目精細度或いは細隙の集合体の細隙精細度を変化させたものが複数個直列に設置されたものであることを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。
(9)(6)若しくは(7)記載の製造方法において、該構造物が異種構造のもの又は該異種構造において多孔板の孔径或いは網状物の網目精細度或いは細隙の集合体の細隙精細度を変化させたものを含んで複数個直列に設置されたものであることを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。
(10)(8)若しくは(9)記載の製造方法において、該構造物の多孔板の孔径或いは網状物の網目精細度或いは細隙の集合体の細隙精細度を変化させたものを複数個直列に設置する場合、液状物質及び気泡が順次孔径の大きなものから小さなものを通過するか、或いは網目精細度若しくは細隙精細度の粗いものから精細なものを通過するように設定することを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。
(11)複数個の多孔板を直列に設置する場合、複数個の邪魔板を併用して、液状物及び気泡の通過経路を延長することを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。
(12)(5)〜(11)記載の何れかの製造方法において、該構造物に機械的振動を与えることを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。
(13)(5)〜(12)記載の何れかの製造方法において、該構造物の材質が該液状物質と該気体との間の反応特にアルコールと油脂類との間のエステル交換反応に対し触媒作用を有するものであることを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。
(14)(5)〜(13)記載の何れかの製造方法において、該構造物にドラフトチューブを設置することを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。
(15)(5)〜(14)記載の何れかの製造方法において、微小気泡の生成・破壊若しくは微小化・消滅のための構造物若しくは該構造物とそれに付随するドラフトチューブ等の機構(以下総称して反応ユニットと言う)を反応容器中に複数個並列に設置することを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。
(16)(15)記載の製造方法において、反応ユニットの周囲に1若しくは複数のジャケットを設置し、ジャケット内に熱媒を循環させて反応ユニット内の温度を制御することを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。
(17)(5)〜(16)記載の何れかの製造方法において、気体の吹き込みを、金属製若しくはセラミックス製の多孔焼結体を介して行うことを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。
(18)(5)〜(17)記載の何れかの製造方法を反復使用するか、若しくは該製造方法のうちの1又は複数と該製造方法以外の気液反応装置とを組み合わせて多段階の反応工程を構築することを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。
In the process of studying the transesterification reaction between oils and fats and alcohols, the present inventors have continued to observe the relationship between the behavior of alcohol bubbles in the oils and the surface of the oils and the reaction efficiency. It was found that increasing the number of alcohol bubbles generated and extinguished by the method would increase the reaction efficiency, and based on this, the following invention was made.
(1) In the process of blowing a gas into a liquid substance in a reaction vessel and obtaining a useful product by a reaction between the liquid substance and the gas, mainly at the time of generation / destruction or miniaturization / extinction of bubbles of the gas A method for producing a useful product, characterized by causing a target reaction or a part of a target reaction to occur in the method.
(2) The superheated vaporized alcohol is blown into the liquid fats and oils in the reaction vessel, a transesterification reaction is performed between the fine bubbled alcohol and the fats and oils, and the product is vaporized together with the excess superheated vaporized alcohol. A method for producing a fatty acid ester obtained in a phase state, characterized in that the transesterification reaction or a part of the transesterification reaction is caused mainly at the time of formation, destruction, or miniaturization / extinction of alcohol bubbles. Production method.
(3) In the manufacturing method according to (1) or (2), the gas pressure in the bubble by the sum of the surface tension or surface tension of the bubble and an external pressure is equal to or higher than the critical pressure or critical pressure of the gas. And a method for producing a fatty acid ester, particularly among useful products or useful products, characterized in that the gas temperature in the bubbles is a critical temperature of the gas or higher than the critical temperature.
(4) In the production method according to any one of (1) to (3), a useful product or a microbubble is destroyed or miniaturized / erased by irradiation with ultrasonic waves having a constant or variable frequency. Among the useful products, in particular, a method for producing a fatty acid ester.
(5) In the production method according to any one of (1) to (3), a useful production characterized in that a structure for producing / destroying or miniaturizing / extinguishing microbubbles is installed in the reaction vessel. Method of producing fatty acid ester among products or useful products.
(6) The method for producing a fatty acid ester, particularly among useful products or useful products, wherein the structure is a perforated plate.
(7) In the manufacturing method according to (5), the structure is a net-like material, or a lattice-like / honeycomb-like aggregate of slits or a ring-like filling formed of thin plates. A method for producing a fatty acid ester, particularly among useful products or useful products.
(8) In the production method according to (6) or (7), the pore size of the perforated plate or the fineness of the mesh of the perforated plate or the fineness of the aggregate of slits in the structure having the same structure or the same kind of structure A method for producing a fatty acid ester, particularly among useful products or useful products, wherein a plurality of products having different degrees are installed in series.
(9) In the production method according to (6) or (7), the structure is of a different structure, or the pore diameter of the perforated plate or the mesh fineness of the mesh or the fineness of the aggregate of the slits in the different structure. A method for producing a fatty acid ester, particularly among useful products or useful products, characterized in that a plurality of them are installed in series, including those of varying degrees.
(10) In the manufacturing method according to (8) or (9), a plurality of products having a change in the pore diameter of the perforated plate of the structure, the mesh fineness of the mesh, or the slit fineness of the aggregate of slits When installed in series, the liquid substance and bubbles are set so that the liquid particles and bubbles sequentially pass from the one having the larger pore size to the one having the smaller pore size, or the one having the fineness from the fineness of the mesh or the fineness of the slit passage. A useful product or a method for producing a fatty acid ester among useful products.
(11) When a plurality of perforated plates are installed in series, a plurality of baffle plates are used in combination to extend the passage of liquids and bubbles, among useful products or useful products Especially the manufacturing method of fatty acid ester.
(12) In the production method according to any one of (5) to (11), a mechanical vibration is imparted to the structure, and in particular, a production method of a fatty acid ester among useful products or useful products.
(13) In the production method according to any one of (5) to (12), the material of the structure is used for a reaction between the liquid substance and the gas, particularly for a transesterification reaction between an alcohol and an oil. A useful product or a method for producing a fatty acid ester among useful products, characterized by having a catalytic action.
(14) In the production method according to any one of (5) to (13), a draft tube is installed in the structure, and particularly a production method of a fatty acid ester among useful products or useful products.
(15) In the manufacturing method according to any one of (5) to (14), a structure for generating / destructing or miniaturizing / disappearing microbubbles or a mechanism of the structure and its accompanying draft tube (hereinafter referred to as a structure) A method for producing a fatty acid ester, particularly among useful products or useful products, characterized in that a plurality of reaction units (collectively referred to as reaction units) are installed in parallel in a reaction vessel.
(16) In the production method according to (15), one or a plurality of jackets are installed around the reaction unit, and the temperature in the reaction unit is controlled by circulating a heat medium in the jacket. Among the products or useful products, particularly a method for producing a fatty acid ester.
(17) In the production method according to any one of (5) to (16), a useful product or a useful product is characterized in that gas is blown through a porous sintered body made of metal or ceramics. Especially the manufacturing method of fatty acid ester among things.
(18) Any one of the production methods described in (5) to (17) is repeatedly used, or one or more of the production methods are combined with a gas-liquid reaction apparatus other than the production method to produce a multistage process A method for producing a fatty acid ester, particularly among useful products or useful products, characterized by constructing a reaction step.

本発明により、特に大きなコスト増を伴うことなく気液反応特に油脂類とアルコールとのエステル交換反応の反応効率が向上し、生産性が増大する。According to the present invention, the reaction efficiency of the gas-liquid reaction, in particular the transesterification reaction between fats and oils and alcohol, is improved and the productivity is increased without particularly increasing the cost.

第1の実施形態:第1の実施形態は、(1)及び(2)に述べた如く、一般に液体中に気体を気泡として存在させる形の反応に対して、気泡の生成・破壊若しくは微小化・消滅を促進して反応効率を向上させるものである。本発明者らが見出した、気泡の生成・破壊若しくは微小化・消滅による反応効率の向上の理由については、先に述べた反応生成物の蓄積の解消に加えて、気泡の崩壊に伴う界面エネルギーの放出の作用が考えられ、気泡径がミクロン以下の場合には崩壊に伴い局部的に極めて高いエネルギーが発現するとされている。また、界面張力による気泡内の圧力は気泡径の減少と共に急激に増大し、ために気泡内の気体の液中への溶解度が上昇して気泡内の気体が減少し、これが更に気泡径の減少を齎すため、微細化が或る限度を越えると気泡は急激に縮小・消滅するとされ(泡技術p.40:柘植他、工業調査会、2004年)、この際の気体溶解度の増加も反応効率の向上に資するものと考えられる。従って、本発明における、気泡の破壊若しくは微小化・消滅時に反応を生起させる方法は、エステル交換反応の検討中に見出された事実に基づくものではあるが、より広い範囲への適用が可能である。ただし、反応機構の細部には未明の要素も多く、詳細については現時点ではいかなる理論にも拘束されることを好むものではない。First Embodiment: As described in (1) and (2), the first embodiment generally generates / breaks or miniaturizes bubbles in response to a reaction in which a gas generally exists as a bubble in a liquid. -It promotes extinction and improves reaction efficiency. The reason for the improvement of the reaction efficiency by the generation, destruction, miniaturization, and disappearance of the bubbles found by the present inventors is not only the elimination of the accumulation of the reaction products described above, but also the interfacial energy associated with the collapse of the bubbles. In the case where the bubble diameter is less than a micron, it is said that extremely high energy is expressed locally with collapse. In addition, the pressure inside the bubble due to the interfacial tension increases rapidly as the bubble diameter decreases, so the solubility of the gas in the bubble increases and the gas inside the bubble decreases, which further reduces the bubble diameter. Therefore, if the refinement exceeds a certain limit, the bubbles rapidly shrink and disappear (Bubble Technology p.40: Tsuge et al., Industrial Research Council, 2004). It is thought that it contributes to improvement. Therefore, the method of causing a reaction at the time of destruction or miniaturization / disappearance of bubbles in the present invention is based on the facts found during the study of the transesterification reaction, but can be applied to a wider range. is there. However, there are many unclear elements in the details of the reaction mechanism, and the details are not preferred to be bound by any theory at present.

第2の実施形態:第2の実施形態は、(3)に述べた如く、微小気泡の破壊・消滅時若しくは破壊・消滅に先立つ近傍の時点において、該微小気泡内の気体圧力を該気体の臨界圧若しくは臨界圧以上とし、且つ該微小気泡内の気体温度を該気体の臨界温度若しくは臨界温度以上とすることで、超臨界状態での反応を実現するものである。上述の如く、気泡内の圧力は気泡径の減少と共に急激に上昇し、通常の反応要素となる気体、例えば過熱アルコール等では臨界圧を越える。このとき、該気体の温度が臨界温度以上であれば、該気体は超臨界の状態となり、著しく反応活性が増大し、反応効率を向上させる。超臨界状態を利用した反応は、その特異な反応性により近来多大の注目を集めているが、従来の方法は反応容器内の反応要素全体を高温・高圧として超臨界状態に導くため、多くのエネルギーと高耐圧の装置を必要とし、且つ操業上の危険性も大である。これに対し、本発明は、常圧ないし臨界圧よりもはるかに低い圧力の気体であっても、温度を臨界温度以上に保持して微小気泡とし、該微小気泡の破壊若しくは微小化・消滅の過程において、反応局所に限定して超臨界状態を作り出すものであって、従来の方法に対し、エネルギー消費・装置コストが小さく、安全性も高い。また、従来の方法においては、高圧のため、気液の均一な混合状態を得るために技術的な困難があったが、本発明においては、常圧ないし臨界圧よりもはるかに低い圧力の気体を微小気泡として分散させるので、均一化の操作は容易なものになる。Second Embodiment: As described in (3), in the second embodiment, the gas pressure in the microbubbles is reduced at the time of destruction / extinction of the microbubbles or in the vicinity before the destruction / extinction. The reaction in the supercritical state is realized by setting the critical pressure or the critical pressure or higher and setting the gas temperature in the microbubbles to the critical temperature or the critical temperature of the gas or higher. As described above, the pressure in the bubbles rapidly increases with a decrease in the bubble diameter, and exceeds the critical pressure in a gas that is a normal reaction element, such as superheated alcohol. At this time, if the temperature of the gas is equal to or higher than the critical temperature, the gas becomes a supercritical state, the reaction activity is remarkably increased, and the reaction efficiency is improved. The reaction using the supercritical state has attracted a great deal of attention recently due to its unique reactivity, but the conventional method leads the entire reaction element in the reaction vessel to the supercritical state at high temperature and high pressure, so many It requires energy and a high pressure resistant device, and has a large operational risk. On the other hand, the present invention maintains the temperature above the critical temperature to form microbubbles even when the gas is at a pressure much lower than normal pressure or critical pressure, and the microbubbles are destroyed or miniaturized / erased. In the process, a supercritical state is created by limiting to the reaction local area. Compared with the conventional method, the energy consumption / device cost is small and the safety is high. In addition, in the conventional method, because of the high pressure, there was a technical difficulty in obtaining a uniform mixed state of gas and liquid, but in the present invention, a gas having a pressure much lower than normal pressure or critical pressure is present. Is dispersed as microbubbles, so that the homogenization operation is easy.

第3の実施の形態:第3の実施の形態は、(4)に述べた如く、有用生成物を得るための気泡の破壊に超音波を使用するもので、反応容器内若しくは反応容器壁に超音波振動発生素子を設置し、気泡を含む液中に超音波を放射する。液中の気泡については、一般の醸造工業等で消泡に使用される場合と異なり、気泡径に応じた共振周波数が必要であるとも言われており、気泡径に相当の分布が見られる場合には周波数可変の設備が望ましい。超音波による破壊作用は強力ではあるが、設備のためのコスト増は避けがたく、反応効率の向上効果との比較考量が必要である。Third Embodiment: As described in (4), the third embodiment uses ultrasonic waves to break bubbles to obtain useful products, and is used in the reaction vessel or on the reaction vessel wall. An ultrasonic vibration generating element is installed to radiate ultrasonic waves into a liquid containing bubbles. For bubbles in the liquid, it is said that a resonance frequency corresponding to the bubble diameter is required, unlike the case where it is used for defoaming in general brewing industries, etc., when a considerable distribution is seen in the bubble diameter For this, a variable frequency facility is desirable. Although the destructive action by ultrasonic waves is strong, it is unavoidable to increase the cost for the equipment, and it is necessary to compare with the effect of improving the reaction efficiency.

第4の実施の形態:第4の実施の形態は、(5)〜(11)に述べた如く、反応容器内に固定構造物を設置し、気泡を含む液体を該構造物に導き、気泡の構造物の通過或は気泡と構造物との衝突等により気泡の生成・破壊若しくは微小化・消滅の過程を作り出すものである。該構造物の形態は、多孔板、網状物、薄板によって構成される格子状・ハニカム状等の細隙集合体或いはリングその他の形状の充填物のうちの1若しくは複数個が使用されるが、目的に合致するものであれば、特に形態は限定されない。複数個が使用される場合には、必要に応じ同一構造物若しくは同種構造物の多孔板の孔径・孔数又は網状物の網目精細度又は細隙の集合体の細隙精細度を変化させたものを直列に配置するか、異種構造物若しくは該異種構造物の多孔板の孔径又は網状物の網目精細度又は細隙の集合体の細隙精細度を変化させたものを含む複数個を直列に配置する。孔径又は網目精細度又は細隙精細度を変化させたものを複数個使用する場合、必要に応じ微小気泡が順次孔径の大きなものから小さいものを、又は精細度の低いものから高いものを通過するように配置する。Fourth Embodiment: In the fourth embodiment, as described in (5) to (11), a stationary structure is installed in a reaction vessel, and a liquid containing bubbles is guided to the structure. The process of creating / breaking or miniaturizing / disappearing bubbles is created by passing through the structure of the above or by colliding the bubbles with the structure. As the form of the structure, one or a plurality of slit aggregates such as a lattice shape and a honeycomb shape constituted by a perforated plate, a net-like material, and a thin plate, or a ring or other shape filler is used. The form is not particularly limited as long as it meets the purpose. When multiple units are used, the pore diameter / number of holes of the same structure or the same type of porous plate or the fineness of the mesh of the mesh or the fineness of the aggregate of slits are changed as necessary. Arrangement of a plurality of materials including those in which the structure is arranged in series, or the pore diameter of the perforated plate of the dissimilar structure or the perforated plate of the dissimilar structure, or the mesh fineness of the mesh or the slit fineness of the aggregate of slits is changed. To place. When using a plurality of pore diameters, mesh finenesses or slit finenesses that are changed, microbubbles sequentially pass from the ones with the smallest pore size to the ones with the smallest pore size, or those with the smallest fineness to the ones with high definition. Arrange as follows.

メタノールと植物油とのエステル交換反応について言えば、構造物の種類は、対象とする油脂類・アルコールの種類と操業条件(反応温度、気化アルコールの流量、攪拌条件等)に応じて適宜選択されるが、最も簡便には多孔板を複数段反応容器中に設置することにより、反応効率の向上が可能である。設置個所、多孔板の孔径・孔数は油脂類・アルコールの種類と操業条件によって定められる。多孔板の設置例を、図1a、1b,2a及び2bに示す。図1aは多孔板5を反応容器1の壁に設置した支持梁6で保持するもの、図1bは多孔板5を中心支持軸7及び支持梁6で保持するもの、図2は多孔板5と邪魔板14とを併用して気液の通過経路の延長を図ったもの、図2bは多孔板5の孔径・孔数を変化させたものである。気液の通過経路の延長を図る方法としては、多孔板によりラセン状経路を形成することも可能である。下方からノズル8又は適宜の気泡微細化装置を介して供給される過熱気化アルコールの気泡は各段の多孔板ごとに細孔を通過して孔径に制御された大きさの気泡を新しく生成し、他方、多孔板との衝突・気泡間の相互作用により微細化若しくは融合を繰り返し、融合した気泡は次の多孔板の細孔を通過して新しい気泡を生成し、全体として上昇につれ微細化・消滅の方向に向かう。本各例では、該気泡は反応容器上部から油脂類供給ノズル9を介して供給される油脂類4と反応し、生じた反応生成物2は過剰の過熱気化アルコールと共に気相として上方から採取される。油脂類の供給は必ずしも本各例のように過熱気化アルコールとカウンターフローの関係を持つとは限らず、下方からパラレルフローとして行うことも可能であり、操業条件によって適宜の方法が取られる。(以下、各製造方法について同様)。Speaking of the transesterification reaction between methanol and vegetable oil, the type of structure is appropriately selected according to the type of target fats and alcohols and the operating conditions (reaction temperature, flow rate of vaporized alcohol, stirring conditions, etc.). However, the reaction efficiency can be improved by installing the perforated plate in a multistage reaction vessel most simply. The installation location and the hole diameter and the number of holes of the perforated plate are determined by the type of oils and alcohols and the operating conditions. Examples of installation of perforated plates are shown in FIGS. 1a, 1b, 2a and 2b. FIG. 1a shows a case where the porous plate 5 is held by a support beam 6 installed on the wall of the reaction vessel 1, FIG. 1b shows a case where the porous plate 5 is held by a central support shaft 7 and a support beam 6, and FIG. The gas / liquid passage route is extended in combination with the baffle plate 14, and FIG. 2 b is a diagram in which the hole diameter and the number of holes of the porous plate 5 are changed. As a method for extending the gas-liquid passage route, it is also possible to form a helical route with a perforated plate. The superheated alcohol bubbles supplied from below through the nozzle 8 or a suitable bubble refiner pass through the pores of each stage of the perforated plate to newly generate bubbles having a size controlled by the pore diameter, On the other hand, repeated miniaturization or fusion by collision with the perforated plate and interaction between bubbles, the fused bubbles pass through the pores of the next perforated plate to generate new bubbles, and as the whole rises, it becomes finer and disappears Head in the direction of In each of these examples, the bubbles react with the fats and oils 4 supplied from the upper part of the reaction vessel through the fats and oils supply nozzle 9, and the resulting reaction product 2 is collected from above as a gas phase together with excess superheated vaporized alcohol. The The supply of fats and oils does not necessarily have a relationship between the superheated vaporized alcohol and the counter flow as in each example, and can be performed as a parallel flow from below, and an appropriate method is taken depending on the operating conditions. (Hereafter, the same applies to each manufacturing method).

通常、反応促進のために気液反応装置に使用される構造物としては、例えばスルザー型に代表されるスタチックミキサーがあるが、本発明にかかる多孔板による構造物はこれらに比べ構造が簡易であり、保守も容易である。Usually, as a structure used in a gas-liquid reactor for promoting the reaction, for example, there is a static mixer typified by a sulzer type, but the structure using a perforated plate according to the present invention has a simpler structure than these. And maintenance is easy.

第5の実施形態:第5の実施形態は、(12)に述べた如く、(5)〜(11)記載の構造物に機械的振動を付与し、気泡の生成・破壊若しくは微小化・消滅の効果を更に高めるものである。多孔板については、例えば図1bに示したような中心支持軸7を持つ構造であれば、該中心軸を適宜の装置により加振し、上下振動を行わせることが出来る。Fifth Embodiment: In the fifth embodiment, as described in (12), mechanical vibration is applied to the structure described in (5) to (11), and bubbles are generated / destroyed or miniaturized / disappeared. The effect of this is further enhanced. If the perforated plate has a structure having a center support shaft 7 as shown in FIG. 1B, for example, the center shaft can be vibrated by an appropriate device to cause vertical vibration.

第6の実施形態:第6の実施形態は、(13)に述べた如く、(5)〜(12)記載の構造物に触媒作用を付与し、更に気体と液体との反応速度の向上を図るものである。油脂類とアルコールとのエステル交換反応においては、最も簡単には、多孔板を鉛、錫或いは亜鉛製若しくは該金属類によって被覆されたものとすることによって実施することが出来る。Sixth Embodiment: As described in (13), the sixth embodiment imparts catalytic action to the structure described in (5) to (12), and further improves the reaction rate between gas and liquid. It is intended. The transesterification reaction between fats and oils and alcohol can be most simply carried out by making the porous plate made of lead, tin or zinc or coated with the metals.

第5又は第6の実施形態は、何れも反応効率の向上に寄与するが、コスト増の要因ともなるので、反応効率の向上効果との比較考量が必要である。Each of the fifth and sixth embodiments contributes to the improvement of the reaction efficiency, but it also causes an increase in cost, so that it is necessary to consider the effect of improving the reaction efficiency.

第7の実施形態:第7の実施形態は、(14)に述べた如く、(5)〜(13)記載の構造物とドラフトチューブとを併用するもので、図3aに多孔板を例にして示したように、多孔板外部にドラフトチューブを設置し、該構造物を通過して上昇した液状物若しくは流速によっては気泡を随伴した該液状物がドラフトチューブ外部を下降して再度ドラフトチューブ内部に入り、気泡と液状物との接触機会を増加させる流れをスムーズに行わせるものである。気泡が液状物に随伴される場合、気泡の上昇速度は気泡径が小さくなるにつれて減少するため、下降する気液混合物中の気泡は、新しく上昇する気液混合物中の気泡よりも微小なものが多く、微小気泡による大型気泡の破壊効果(特願2003−3139636)をも期待することが出来る。ドラフトチューブを細孔板で形成することにより、下降する気液混合物と新しく上昇する気液混合物との混合効率をより高めることも可能である。反応容器中には、時間の経過と共に原料劣化物が蓄積し、反応効率を阻害する場合があるが、ドラフトチューブによるスムーズな循環流は、原料油脂類よりも比重の大きい劣化物の下方への分離を容易にする効果も期待される。図3bはドラフトチューブを多孔板の中央部に設置し、多孔板の有効面積の増大を図ったものである。本形式では、該構造物を通過して上昇した液状物若しくは流速によっては気泡を随伴した該液状物はドラフトチューブ内部を下降する。Seventh Embodiment: In the seventh embodiment, as described in (14), the structure described in (5) to (13) and a draft tube are used together. As shown in the figure, a draft tube is installed outside the perforated plate, and the liquid material rising through the structure or the liquid material accompanied by bubbles depending on the flow velocity descends outside the draft tube and is again inside the draft tube. The flow that increases the chance of contact between the bubbles and the liquid material is smoothly performed. When bubbles are accompanied by a liquid material, the rising speed of the bubbles decreases as the bubble size decreases, so the bubbles in the descending gas-liquid mixture are smaller than those in the newly rising gas-liquid mixture. Many of them can also be expected to have a large bubble destruction effect (Japanese Patent Application No. 2003-3139636) due to microbubbles. By forming the draft tube with a pore plate, it is possible to further increase the mixing efficiency of the descending gas-liquid mixture and the newly rising gas-liquid mixture. In the reaction vessel, deteriorated raw materials may accumulate over time, which may hinder the reaction efficiency, but the smooth circulation flow by the draft tube is directed downward of the deteriorated products having a higher specific gravity than the raw oils and fats. The effect of facilitating separation is also expected. FIG. 3b shows a case where a draft tube is installed at the center of the perforated plate to increase the effective area of the perforated plate. In this form, the liquid substance that has risen through the structure or the liquid substance accompanied by bubbles depending on the flow velocity descends inside the draft tube.

第8の実施形態:第8の実施形態は、(15)に述べた如く、1個の反応容器中に複数の反応ユニットを並列に設置し、生産効率を向上させるものである。図4aにドラフトチューブ10と多孔板5を有する反応ユニットを、図4bに中心支持軸7を持つ田孔板の反応ユニットを使用したもの一例の模式図を示す。Eighth Embodiment: In the eighth embodiment, as described in (15), a plurality of reaction units are installed in parallel in one reaction vessel to improve production efficiency. FIG. 4a shows a schematic diagram of an example in which a reaction unit having a draft tube 10 and a perforated plate 5 is used, and FIG.

第9の実施形態:第9の実施形態は、(16)に述べた如く、反応ユニットの周囲にジャケットを設置し、反応ユニットの温度制御を容易にするものである。必要に応じ、ジャケットを上下に複数部分に分割し、それぞれに適した温度分布を作る。図5aに中央に気液の共通循環孔13、該孔周辺に反応ユニット設置孔12をもつジャケット11aの例、図5bに該ジャケット11aと反応ユニットとして多孔板5を設置した反応容器例の模式図を示す。本例では気液の循環におけるダウンフローは、中央の共通循環孔を通じて一括して行われる。図6aに共通循環孔を持たず、断面全体に反応ユニット設置孔12を設けたジャケット11bの例、図6bに該ジャケット11bと反応ユニットとしてドラフトチューブ10と多孔板5とを設置した反応容器の例の模式図を示す。図6bの例では、気液循環は反応ユニットごとに独立して行われる。Ninth Embodiment: In the ninth embodiment, as described in (16), a jacket is installed around the reaction unit to facilitate temperature control of the reaction unit. If necessary, divide the jacket into multiple parts, creating a temperature distribution suitable for each. FIG. 5a shows an example of a jacket 11a having a gas-liquid common circulation hole 13 in the center and a reaction unit installation hole 12 around the hole, and FIG. 5b shows a schematic example of a reaction vessel in which the jacket 11a and a porous plate 5 are installed as a reaction unit. The figure is shown. In this example, the downflow in the gas-liquid circulation is performed collectively through the central common circulation hole. FIG. 6a shows an example of a jacket 11b having no common circulation hole and a reaction unit installation hole 12 in the entire cross section. FIG. 6b shows a reaction vessel in which the jacket 11b and a draft tube 10 and a porous plate 5 are installed as a reaction unit. A schematic diagram of an example is shown. In the example of FIG. 6b, gas-liquid circulation is performed independently for each reaction unit.

第10の実施例:第10の実施例は、(17)に述べた如く、本発明における製造方法において、気体吹き込みを例えば孔径0.5mmの金属製またはセラミックス製の多孔焼結体を介して行うものである。本発明においては、単に孔径5mm程度のパイプから気体吹き込みを行っても反応効率の向上が見られるが、油脂の種類、反応ユニットの形式によっては当初から微小化した気泡を送り込むことにより、更に良い結果が得られる。Tenth Embodiment: As described in (17), in the tenth embodiment, in the manufacturing method of the present invention, gas blowing is performed through a porous sintered body made of metal or ceramic having a hole diameter of 0.5 mm, for example. Is what you do. In the present invention, the reaction efficiency can be improved by simply injecting gas from a pipe having a hole diameter of about 5 mm. However, depending on the type of oil and fat and the type of the reaction unit, it is better to send fine bubbles from the beginning. Results are obtained.

第11の実施例:第11の実施例は、(18)に述べた如く、本発明における同一若しくは異種の製造方法を複数直列に連結して、多段階の反応工程を構築するものである。図7に、ドラフトチューブ10を持つ多孔板5の反応ユニットを使用した2段階工程の例の模式図を示す。通常、第2段階の反応容器の容量は第1段階よりも小さく設定される。油脂類とアルコールとのエステル交換反応について言えば、左側の第1段階の反応容器では、上部から原料油脂類4が油脂類供給ノズル9を介して供給され、下部からノズル8を介して吹き込まれる過熱気化アルコール3と反応して生成した反応生成物2(エステルとグリセリン)は、過剰の過熱気化アルコールとともに気相として上方から採取される。この際、通常過剰の過熱気化アルコールのみでは反応生成物の全てを随伴して気相中に取り込むことが出来ず、1段階のみの反応工程では残留反応生成物は反応容器内に残って蓄積されるが、本例の如き2段階工程では、残留反応生成物は未反応油脂類と共に下方から右側の第2段階の反応容器上部に供給される。第2段階では、反応容器下部から供給される過熱気化アルコール3と未反応油脂類とによって生ずる反応生成物と、第1段階で生じた残留反応生成物とが、共に反応生成物2として共に過剰過熱気化アルコールによって気相として上方から採取される。この方法によって、第1、第2段階に配分する過熱気化アルコールの量を適宜に設定することにより、全体として過熱気化アルコールからのエステル採取効率を向上させることが出来る。また、反応容器内に油脂類の劣化物が蓄積すると、反応効率が減少する恐れがあるが、この方法では第1段階の反応容器中には劣化物が蓄積せず、反応効率は初期の値が保たれ、第2段階において少量づつ劣化物を抜き取ることによって、装置効率の減少を抑制することが容易になる。Eleventh Example: In the eleventh example, as described in (18), a plurality of reaction processes are constructed by connecting a plurality of the same or different production methods in the present invention in series. FIG. 7 shows a schematic diagram of an example of a two-stage process using a reaction unit of a perforated plate 5 having a draft tube 10. Usually, the capacity of the reaction vessel in the second stage is set smaller than that in the first stage. Speaking of the transesterification reaction between fats and alcohols, in the first-stage reaction vessel on the left side, the raw fats and oils 4 are supplied from the top through the fats and oils supply nozzle 9 and blown from the bottom through the nozzle 8. The reaction product 2 (ester and glycerin) produced by reacting with the superheated vaporized alcohol 3 is collected from above as a gas phase together with excess superheated vaporized alcohol. At this time, usually only an excessive amount of superheated vaporized alcohol cannot entrain all of the reaction product into the gas phase, and in a single-step reaction process, the residual reaction product remains in the reaction vessel and accumulates. However, in the two-stage process as in this example, the residual reaction product is supplied together with unreacted oils and fats from below to the upper part of the second-stage reaction vessel on the right side. In the second stage, the reaction product produced by the superheated vaporized alcohol 3 and the unreacted oils and fats supplied from the lower part of the reaction vessel and the residual reaction product produced in the first stage are both excessive as the reaction product 2. It is collected from above as a gas phase with superheated alcohol. By this method, by appropriately setting the amount of superheated vapor to be distributed to the first and second stages, it is possible to improve the ester collecting efficiency from the superheated vapor as a whole. In addition, when the degradation product of fats and oils accumulates in the reaction vessel, the reaction efficiency may decrease. However, in this method, the degradation product does not accumulate in the first-stage reaction vessel, and the reaction efficiency is the initial value. Therefore, it is easy to suppress a decrease in apparatus efficiency by extracting the deteriorated products little by little in the second stage.

直径50mmのステンレス製円筒容器に、高さ215mmまで菜種油(純度92%)を満たし、底部から直径5mmのステンレス管を用いて温度290℃の過熱メタノール(純度99.7%)を吹き込み、上部から過剰メタノールと共に反応生成物(脂肪酸メチルエステル)を採取する実験において、細孔板(直径46mm、細孔直径3.6mm、細孔数37)10枚を15mmの間隔で直列に菜種油に設置した場合のエステル取得量(l)/メタノール吹込量(l)を、多孔板無しの場合と比較した結果を図8に示す。折れ線グラフ15、16(16は同一条件での繰り返し実験5回目)は多孔板を使用した場合(メタノール供給速度0.7ml/min)、3は多孔板無しの場合(メタノール供給速度2.4ml/min)であって、実験開始後2〜4時間で反応が略安定状態に達した時点で、細孔板無しの場合のエステル取得比が0.3程度であるのに対し、多孔板を使用した場合0.6〜0.7と顕著な反応効率の増大を示している。Fill a 50 mm diameter stainless steel cylindrical container with rapeseed oil (purity 92%) up to a height of 215 mm, and inject superheated methanol (purity 99.7%) at a temperature of 290 ° C. using a stainless steel tube 5 mm in diameter from the bottom. In the experiment of collecting the reaction product (fatty acid methyl ester) together with excess methanol, when 10 pore plates (46 mm in diameter, 3.6 mm in pore diameter, 37 pores) are placed in rapeseed oil in series at 15 mm intervals FIG. 8 shows the result of comparison of the ester acquisition amount (l) / methanol blowing amount (l) with the case of no porous plate. Line graphs 15 and 16 (16 is the fifth repeated experiment under the same conditions) when a porous plate is used (methanol supply rate 0.7 ml / min), 3 is a case without a porous plate (methanol supply rate 2.4 ml / min) min), and when the reaction reaches a substantially stable state 2 to 4 hours after the start of the experiment, the ester acquisition ratio without the pore plate is about 0.3, whereas the porous plate is used. In this case, the reaction efficiency is remarkably increased from 0.6 to 0.7.

本発明は、大きなコストの増加の必要なしに、且つ副反応等の悪影響を与えることなく反応効率の向上を図ることを可能とするもので、気液反応特にバイオジーゼル製造の分野における広範囲な実用が期待される。The present invention makes it possible to improve the reaction efficiency without the need for a large increase in cost and without adverse effects such as side reactions, and has a wide range of practical applications in the field of gas-liquid reaction, especially biodiesel production. There is expected.

多孔板の配置例の模式図である。It is a schematic diagram of the example of arrangement | positioning of a perforated plate. 多孔板の配置例の模式図である。It is a schematic diagram of the example of arrangement | positioning of a perforated plate. 多孔板と邪魔板を併用した例の模式図である。It is a schematic diagram of the example which used the perforated plate and the baffle plate together. 多孔板の孔径/孔数を変化させた配置例の模式図である。It is a schematic diagram of the example of arrangement | positioning which changed the hole diameter / hole number of the perforated plate. ドラフトチューブを多孔板外部に設置した例の模式図である。It is a schematic diagram of the example which installed the draft tube outside the perforated panel. ドラフトチューブを多孔板内部(中央部)に設置した例の模式図である。It is a schematic diagram of the example which installed the draft tube inside the perforated panel (central part). 1個の反応容器中にドラフトチューブを持つ複数の反応ユニットを配置する例の模式図である。It is a schematic diagram of the example which arrange | positions the several reaction unit with a draft tube in one reaction container. 1個の反応容器中にドラフトチューブを持たぬ複数の反応ユニットを配置する例の模式図である。It is a schematic diagram of the example which arrange | positions the several reaction unit which does not have a draft tube in one reaction container. 中央に気液の共通循環路を持つジャケットの例の模式図である。It is a schematic diagram of the example of the jacket which has the common circulation path of gas-liquid in the center. 図5aのジャケットを反応容器内に設置した例の模式図である。It is the schematic diagram of the example which installed the jacket of FIG. 5a in reaction container. 気液の共通循環路を持たぬジャケットの例の模式図である。It is a schematic diagram of the example of the jacket which does not have a common circulation path of gas-liquid. 図6aのジャケットを反応容器内に設置した例の模式図である。It is the schematic diagram of the example which installed the jacket of FIG. 6a in reaction container. 多孔板を用いた2段階反応工程を示す模式図である。It is a schematic diagram which shows the two-step reaction process using a perforated plate. エステル生成量(容積)/メタノール吹込量(容積)に対する細孔板の効果を示す実験結果である。It is an experimental result which shows the effect of the pore board with respect to ester production amount (volume) / methanol blowing amount (volume).

記号の説明Explanation of symbols

1 反応容器
2 反応生成物
3 メタノール
4 油脂類
5 多孔板
6 支持梁
7 中心支持軸
8 過熱気化メタノール吹き込みノズル
9 油脂類供給ノズル
10 ドラフトチューブ
11a ジャケット
11b ジャケット
12 反応ユニット設置孔
13 共通気液循環(流下)孔
14 邪魔板
15 多孔板使用時のエステル生成量/メタノール吹込量の経時変化を示すグラフ
16 多孔板使用時のエステル生成量/メタノール吹込量の経時変化を示すグラフ
17 多孔板無使用時のエステル生成量/メタノール吹込量の経時変化を示すグラフ
DESCRIPTION OF SYMBOLS 1 Reaction container 2 Reaction product 3 Methanol 4 Oils and fats 5 Perforated plate 6 Support beam 7 Center support shaft 8 Superheated vaporization methanol blowing nozzle 9 Oils and fats supply nozzle 10 Draft tube 11a Jacket 11b Jacket 12 Reaction unit installation hole 13 Common gas-liquid circulation (Downstream) Hole 14 Baffle plate 15 Graph showing change over time in ester production amount / methanol blowing amount when using porous plate Graph 17 showing change over time in ester production amount / methanol blowing amount when using porous plate No porous plate used Graph showing the change over time in the amount of ester produced and the amount of methanol blown

Claims (18)

反応容器内の液状物質中に気体を吹き込み、該液状物質と該気体との間の反応によって有用生成物を得る工程において、主として該気体の気泡の生成・破壊若しくは微小化・消滅時において目的とする反応若しくは目的とする反応の一部を生起させることを特徴とする、有用生成物の製造方法。In the process of obtaining a useful product by injecting gas into the liquid substance in the reaction vessel and reacting between the liquid substance and the gas, the purpose is mainly at the time of generation / destruction or miniaturization / extinction of bubbles of the gas. Or a part of the target reaction. 反応容器内の液体状の油脂類中に過熱状態の気化アルコールを吹き込み、微小気泡状態のアルコールと油脂類との間でエステル交換反応を行い、生成物を過剰の過熱気化アルコールと共に気相状態で取得する脂肪酸エステルの製造方法において、主としてアルコール気泡の生成・破壊若しくは微小化・消滅時において該エステル交換反応若しくは該エステル交換反応の一部を生起させることを特徴とする、脂肪酸エステルの製造方法。Blowing superheated vaporized alcohol into the liquid fats and oils in the reaction vessel, transesterifying the microbubbles of alcohol and fats and oils, and the product in the gas phase with excess superheated vaporized alcohol A method for producing a fatty acid ester, characterized in that, in the method for producing a fatty acid ester to be obtained, the transesterification reaction or a part of the transesterification reaction is caused mainly when alcohol bubbles are generated / destroyed or miniaturized / disappeared. 請求項1若しくは請求項2記載の製造方法において、該気泡の表面張力若しくは表面張力と外部からの圧力との和による該気泡内の気体圧力が該気体の臨界圧若しくは臨界圧以上であり、且つ該気泡内の気体温度が該気体の臨界温度若しくは臨界温度以上であることを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。The manufacturing method according to claim 1 or 2, wherein a gas pressure in the bubble by a sum of a surface tension or a surface tension of the bubble and an external pressure is a critical pressure of the gas or a critical pressure or more, and A useful product or a method for producing a fatty acid ester among useful products, characterized in that the gas temperature in the bubbles is the critical temperature of the gas or higher than the critical temperature. 請求項1〜請求項3記載の何れかの製造方法において、一定若しくは可変周波数の超音波の照射により微小気泡の破壊若しくは微小化・消滅を行うことを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。4. A useful product or a useful product according to any one of claims 1 to 3, wherein microbubbles are destroyed or micronized / erased by irradiation with ultrasonic waves of constant or variable frequency. Among them, a method for producing a fatty acid ester in particular. 請求項1〜請求項3記載の何れかの製造方法において、反応容器内に微小気泡の生成・破壊若しくは微小化・消滅のための構造物を設置することを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。The production method according to any one of claims 1 to 3, wherein a structure for generating / breaking or micronizing / disappearing microbubbles is installed in the reaction vessel. Among the products, in particular, a method for producing a fatty acid ester. 請求項5記載の製造方法において、該構造物が多孔板であることを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。6. The production method according to claim 5, wherein the structure is a perforated plate, and in particular, the production method of a fatty acid ester among useful products or useful products. 請求項5記載の製造方法において、該構造物が、網状物であるか、薄板によって構成される格子状・ハニカム状その他の細隙の集合体であるか、若しくはリングその他の形状の充填物であることを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。6. The manufacturing method according to claim 5, wherein the structure is a net-like material, a lattice-like, honeycomb-like or other aggregate of slits constituted by thin plates, or a ring-like filling. A useful product or a method for producing a fatty acid ester among useful products. 請求項6若しくは請求項7記載の製造方法において、該構造物が同一構造のもの又は同種の構造において多孔板の孔径或いは網状物の網目精細度或いは細隙の集合体の細隙精細度を変化させたものが複数個直列に設置されたものであることを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。The manufacturing method according to claim 6 or 7, wherein the structure has the same structure or the same kind of structure, and the pore diameter of the perforated plate, the mesh fineness of the mesh, or the slit fineness of the aggregate of slits is changed. A method for producing a fatty acid ester, particularly among useful products or useful products, characterized in that a plurality of such products are installed in series. 請求項6若しくは請求項7記載の製造方法において、該構造物が異種構造のもの又は該異種構造において多孔板の孔径或いは網状物の網目精細度或いは細隙の集合体の細隙精細度を変化させたものを含んで複数個直列に設置されたものであることを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。8. The manufacturing method according to claim 6 or 7, wherein the structure is of a different structure, or the pore diameter of the perforated plate or the mesh fineness of the mesh or the slit fineness of the aggregate of slits is changed in the different structure. A method for producing a fatty acid ester, particularly among useful products or useful products, characterized in that a plurality of them are installed in series. 請求項8若しくは請求項9記載の製造方法において、該構造物の多孔板の孔径或いは網状物の網目精細度或いは細隙の集合体の細隙精細度を変化させたものを複数個直列に設置する場合、液状物質及び気泡が順次孔径の大きなものから小さなものを通過するか、或いは網目精細度若しくは細隙精細度の粗いものから精細なものを通過するように設定することを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。10. The manufacturing method according to claim 8 or 9, wherein a plurality of the pores of the perforated plate of the structure, the mesh fineness of the mesh, or the slit fineness of the aggregate of slits are changed in series. In this case, it is characterized in that the liquid substance and the bubbles are set so as to pass through those having a large pore diameter in order from the one having a large pore diameter, or those having a fineness from one having a fine mesh definition or a coarse slit definition. A useful product or a method for producing a fatty acid ester among useful products. 複数個の多孔板を直列に設置する場合、複数個の邪魔板を併用して、液状物及び気泡の通過経路を延長することを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。When a plurality of perforated plates are installed in series, a plurality of baffle plates are used in combination to extend the passage of liquids and bubbles, particularly among useful products or useful products, fatty acid esters Manufacturing method. 請求項5〜請求項11記載の何れかの製造方法において、該構造物に機械的振動を与えることを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。12. The production method according to claim 5, wherein mechanical vibration is imparted to the structure, and in particular, a fatty acid ester production method among useful products or useful products. 請求項5〜請求項12記載の何れかの製造方法において、該構造物の材質が該液状物質と該気体との間の反応特にアルコールと油脂類との間のエステル交換反応に対し触媒作用を有するものであることを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。The manufacturing method according to any one of claims 5 to 12, wherein the material of the structure catalyzes a reaction between the liquid substance and the gas, particularly a transesterification reaction between an alcohol and an oil. A useful product or a method for producing a fatty acid ester among useful products. 請求項5〜請求項13記載の何れかの製造方法において、該構造物にドラフトチューブを設置することを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。14. The production method according to claim 5, wherein a draft tube is installed in the structure, and particularly a useful product or a production method of a fatty acid ester among useful products. 請求項5〜請求項14記載の何れかの製造方法において、微小気泡の生成・破壊若しくは微小化・消滅のための構造物若しくは該構造物とそれに付随するドラフトチューブ等の機構(以下総称して反応ユニットと言う)を反応容器中に複数個並列に設置することを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。15. The manufacturing method according to claim 5, wherein a structure for generating / destructing or miniaturizing / disappearing microbubbles or a mechanism such as a draft tube associated with the structure (hereinafter collectively referred to as a structure) A method for producing a fatty acid ester, particularly among useful products or useful products, characterized in that a plurality of reaction units are provided in parallel in a reaction vessel. 請求項15記載の製造方法において、反応ユニットの周囲に1若しくは複数のジャケットを設置し、ジャケット内に熱媒を循環させて反応ユニット内の温度を制御することを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。16. The production method according to claim 15, wherein one or more jackets are provided around the reaction unit, and a heat medium is circulated in the jacket to control the temperature in the reaction unit. Among the useful products, in particular, a method for producing a fatty acid ester. 請求項5〜請求項16記載の何れかの製造方法において、気体の吹き込みを、金属製若しくはセラミックス製の多孔焼結体を介して行うことを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。The production method according to any one of claims 5 to 16, wherein the gas is blown through a porous sintered body made of metal or ceramics. Especially the manufacturing method of fatty acid ester. 請求項5〜請求項17記載の何れかの製造方法を反復使用するか、若しくは該製造方法のうちの1又は複数と該製造方法以外の気液反応装置とを組み合わせて多段階の反応工程を構築することを特徴とする、有用生成物若しくは有用生成物のうち特に脂肪酸エステルの製造方法。The production method according to any one of claims 5 to 17 is repeatedly used, or one or more of the production methods are combined with a gas-liquid reaction apparatus other than the production method to perform a multistage reaction process. A useful product or a method for producing a fatty acid ester among useful products, characterized in that it is constructed.
JP2005225911A 2005-02-14 2005-07-07 Method for enhancing efficiency of gas-liquid reaction Pending JP2006249066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225911A JP2006249066A (en) 2005-02-14 2005-07-07 Method for enhancing efficiency of gas-liquid reaction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005068018 2005-02-14
JP2005225911A JP2006249066A (en) 2005-02-14 2005-07-07 Method for enhancing efficiency of gas-liquid reaction

Publications (1)

Publication Number Publication Date
JP2006249066A true JP2006249066A (en) 2006-09-21

Family

ID=37089928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225911A Pending JP2006249066A (en) 2005-02-14 2005-07-07 Method for enhancing efficiency of gas-liquid reaction

Country Status (1)

Country Link
JP (1) JP2006249066A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423457B (en) * 2008-10-29 2011-07-27 湖南省生物柴油工程技术研究中心 Glycerol subsidence coupling ester exchange continuous reaction apparatus
JP2012508282A (en) * 2008-11-07 2012-04-05 エスケー ケミカルズ カンパニー リミテッド Method and apparatus for producing fatty acid alkyl ester using fatty acid
CN106914198A (en) * 2015-12-24 2017-07-04 天津海德浩天科技发展有限公司 A kind of bubbling reactor
CN106914193A (en) * 2015-12-24 2017-07-04 天津海德浩天科技发展有限公司 A kind of temp auto-controlled bubbling reactor
JP2017521242A (en) * 2014-06-19 2017-08-03 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Improved homogeneous catalytic reactor system
WO2020054679A1 (en) * 2018-09-11 2020-03-19 株式会社キャタラー Reaction device and reaction method using fine bubbles
CN111905668A (en) * 2020-09-04 2020-11-10 南京工业大学 Reaction device and application thereof in continuous preparation of vegetable oil polyalcohol

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611640A (en) * 1984-06-07 1986-01-07 ヘキスト・アクチエンゲゼルシヤフト Manufacture of fatty acid ester of short chain alcohol
JP2000109883A (en) * 1998-10-06 2000-04-18 Ronfoodo:Kk Production of fatty acid alkyl ester from oil or fat
JP2000143586A (en) * 1998-09-09 2000-05-23 Sumitomo Chem Co Ltd Production of fatty acid ester and fuel comprising the same
JP2000204392A (en) * 1999-01-13 2000-07-25 Asahi Chem Ind Co Ltd Ester composition and its production
JP2001302584A (en) * 2000-02-17 2001-10-31 Sumitomo Chem Co Ltd Method for producing fatty acid ester and fuel containing the same
JP2001524553A (en) * 1997-11-24 2001-12-04 エネルゲア・ウムヴェルトテヒノロギー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for producing fatty acid methyl ester and apparatus for realizing the method
JP2004156022A (en) * 2002-10-15 2004-06-03 Cosmo Engineering Co Ltd Method for producing fatty acid alcohol ester
JP2006342328A (en) * 2005-05-13 2006-12-21 Toray Ind Inc Method for producing fatty acid ester and method for producing glycerol

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611640A (en) * 1984-06-07 1986-01-07 ヘキスト・アクチエンゲゼルシヤフト Manufacture of fatty acid ester of short chain alcohol
JP2001524553A (en) * 1997-11-24 2001-12-04 エネルゲア・ウムヴェルトテヒノロギー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for producing fatty acid methyl ester and apparatus for realizing the method
JP2000143586A (en) * 1998-09-09 2000-05-23 Sumitomo Chem Co Ltd Production of fatty acid ester and fuel comprising the same
JP2000109883A (en) * 1998-10-06 2000-04-18 Ronfoodo:Kk Production of fatty acid alkyl ester from oil or fat
JP2000204392A (en) * 1999-01-13 2000-07-25 Asahi Chem Ind Co Ltd Ester composition and its production
JP2001302584A (en) * 2000-02-17 2001-10-31 Sumitomo Chem Co Ltd Method for producing fatty acid ester and fuel containing the same
JP2004156022A (en) * 2002-10-15 2004-06-03 Cosmo Engineering Co Ltd Method for producing fatty acid alcohol ester
JP2006342328A (en) * 2005-05-13 2006-12-21 Toray Ind Inc Method for producing fatty acid ester and method for producing glycerol

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423457B (en) * 2008-10-29 2011-07-27 湖南省生物柴油工程技术研究中心 Glycerol subsidence coupling ester exchange continuous reaction apparatus
JP2012508282A (en) * 2008-11-07 2012-04-05 エスケー ケミカルズ カンパニー リミテッド Method and apparatus for producing fatty acid alkyl ester using fatty acid
JP2014015623A (en) * 2008-11-07 2014-01-30 Sk Chemicals Co Ltd Method and device for manufacturing a fatty acid alkyl ester using fatty acids
JP2017521242A (en) * 2014-06-19 2017-08-03 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Improved homogeneous catalytic reactor system
CN106914198A (en) * 2015-12-24 2017-07-04 天津海德浩天科技发展有限公司 A kind of bubbling reactor
CN106914193A (en) * 2015-12-24 2017-07-04 天津海德浩天科技发展有限公司 A kind of temp auto-controlled bubbling reactor
WO2020054679A1 (en) * 2018-09-11 2020-03-19 株式会社キャタラー Reaction device and reaction method using fine bubbles
CN111905668A (en) * 2020-09-04 2020-11-10 南京工业大学 Reaction device and application thereof in continuous preparation of vegetable oil polyalcohol

Similar Documents

Publication Publication Date Title
JP2006249066A (en) Method for enhancing efficiency of gas-liquid reaction
Gogate et al. Cavitation: a technology on the horizon
Gogate Cavitational reactors for process intensification of chemical processing applications: a critical review
Wood et al. A parametric review of sonochemistry: Control and augmentation of sonochemical activity in aqueous solutions
KR20110017866A (en) Method of designing hydrodynamic cavitation reactors for process intensification
JP2011218308A (en) Gas-dissolved liquid generating apparatus and method for generation
JP5528021B2 (en) A treatment or hydrotreatment reactor comprising a granular bed and an essentially liquid phase and an essentially gaseous phase flowing through the granular bed
JP2017213519A (en) Gas-liquid reaction device having micronanobubble generator and gas-liquid reaction method using the gas-liquid reaction device
Ghasemi et al. Transesterification of waste cooking oil to biodiesel using KOH/γ-Al2O3 catalyst in a new two-impinging-jets reactor
JPH07300303A (en) Production of hydrogen peroxide and reactor that is used forsaid production
Stamatiou et al. Determination of mass transfer resistances of fast reactions in three‐phase mechanically agitated slurry reactors
EP2018218B1 (en) Mixing apparatus for mixing at least two fluids, and its use
EP1586369A1 (en) Apparatus for generating fine bubbles of gas in a liquid
JP5159271B2 (en) Water treatment equipment
WO2015016060A1 (en) Reator for hydrocarbon synthesis
US20100010269A1 (en) Apparatus and process for use in three-phase catalytic reactions
CN108348882B (en) System for contacting gas and liquid
JP2012115750A (en) Ultraviolet ray chemical reaction apparatus
JP2007269655A (en) Reaction method and reaction apparatus
Wang et al. Microdispersion of gas or water in an anthraquinone working solution for the H2O2 synthesis process intensification
US10603643B2 (en) Process and device for dispersing gas in a liquid
US4786414A (en) Gas dispersed packed extraction column
Duan et al. Investigation of external mass transfer in a micropacked bed reactor with a Pd/Al2O3/nickel foam
RU2442644C2 (en) The method of continuous execution of the electrochemical reaction in the subcritical and supercritical fluids and the device for its implementation
RU2369432C2 (en) Reactor for solid/fluid/gaseous substances

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A977 Report on retrieval

Effective date: 20110706

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110809

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111206

Free format text: JAPANESE INTERMEDIATE CODE: A02