JP2006249057A - Dna synthase inhibitor - Google Patents

Dna synthase inhibitor Download PDF

Info

Publication number
JP2006249057A
JP2006249057A JP2005106688A JP2005106688A JP2006249057A JP 2006249057 A JP2006249057 A JP 2006249057A JP 2005106688 A JP2005106688 A JP 2005106688A JP 2005106688 A JP2005106688 A JP 2005106688A JP 2006249057 A JP2006249057 A JP 2006249057A
Authority
JP
Japan
Prior art keywords
dna synthase
acylated
dna
group
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005106688A
Other languages
Japanese (ja)
Inventor
Noriyuki Nakajima
範行 中島
Yoshiyuki Mizushina
善之 水品
Akiko Saito
安貴子 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Norin Co Ltd
Original Assignee
Mitsui Norin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Norin Co Ltd filed Critical Mitsui Norin Co Ltd
Priority to JP2005106688A priority Critical patent/JP2006249057A/en
Publication of JP2006249057A publication Critical patent/JP2006249057A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pyrane Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DNA synthase inhibitor by using 3-acylated flavan-3-ols. <P>SOLUTION: The 3-acylated flavan-3-ols having the DNA synthase inhibitory effects inhibit the DNA synthase derived from mammalian animals selectively, and have the more potent activity by having the longer carbon chain length of the acyl group (except for galloyl group). Therefore the 3-acylated flavan-3-ols are able to be utilizable for foods, medicines, etc., as the DNA synthase inhibitor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、DNA合成酵素阻害作用を有する化合物の利用に関する。  The present invention relates to the use of a compound having a DNA synthase inhibitory action.

真核生物のDNA合成酵素(DNAポリメラーゼ)は、これまでα、β、γ、δ、ε、ζ、η、θ、ι、κ、λ、μ及びσの13種類のDNA合成酵素が知られている。これらのDNA合成酵素群は、細胞の増殖、分裂、分化などに関与しているが、α型はDNA複製、β型は修復と組換え、λ型は修復、δ型及びε型は複製と修復の双方を担うといった具合にタイプによって異なる機能を有することが知られている。  As for eukaryotic DNA synthase (DNA polymerase), 13 kinds of DNA synthases of α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ and σ are known so far. ing. These DNA synthase groups are involved in cell growth, division, differentiation, etc., but α-type is DNA replication, β-type is repair and recombination, λ-type is repair, δ-type and ε-type are replication. It is known to have different functions depending on the type, such as being responsible for both repairs.

このようにDNA合成酵素は細胞の増殖等に関与することから、その酵素活性を阻害するDNA合成酵素阻害剤は、例えば、1)癌に対しては、癌細胞の増殖抑制作用を示し、2)エイズに対しては、HIV由来逆転写酵素に対する阻害作用を示し、3)免疫疾患に対しては、抗原に対する特異的抗体産生を抑制する免疫抑制作用を示すことが考えられる。このため、DNA合成酵素阻害剤を用いた癌、エイズ等のウイルス疾患、免疫疾患の予防・治療に効果のある医薬品の開発が期待されている。  Thus, since DNA synthase is involved in cell growth and the like, a DNA synthase inhibitor that inhibits the enzyme activity, for example, 1) shows cancer cell growth inhibitory action against cancer, 2 It is considered that it exhibits an inhibitory action against HIV-derived reverse transcriptase against AIDS and 3) an immunosuppressive action against immune diseases that suppresses specific antibody production against antigens. For this reason, development of pharmaceuticals effective for prevention and treatment of cancer diseases, viral diseases such as AIDS, and immune diseases using a DNA synthase inhibitor is expected.

現在、DNA合成酵素阻害剤として、ジデオキシTTP(ddTTP)、N−メチルマレイミド、ブチルフェニル−dGTPなどが知られている(下記の非特許文献1を参照)。また植物由来の糖脂質であるスルホキノボシルアシルグリセリドにもDNA合成酵素阻害作用が見出されている(下記の特許文献1を参照)。  Currently, dideoxy TTP (ddTTP), N-methylmaleimide, butylphenyl-dGTP, and the like are known as DNA synthetase inhibitors (see Non-Patent Document 1 below). In addition, sulfosynovosyl acylglycerides, which are plant-derived glycolipids, have been found to have a DNA synthase inhibitory effect (see Patent Document 1 below).

また、茶等に含まれるフラバン−3−オール類に関しては、3位が没食子酸で修飾された(2R,3R)−3’,4’,5,7−テトラヒドロキシフラバン−3−ガレート{(−)−エピカテキンガレート、ECg}や(2R,3R)−3’,4’,5’,5,7−ペンタヒドロキシフラバン−3−ガレート{(−)−エピガロカテキンガレート、EGCg}等がDNA合成酵素α、β、γの阻害活性を有することが知られている。それに対し、3位に没食子酸が結合していない化合物、(2R,3R)−3’、4’、5,7−テトラヒドロキシフラバン−3−オール{(−)−エピカテキン、EC}や(2R,3R)−3’,4’,5’,5,7−ペンタヒドロキシフラバン−3−オール{(−)−エピガロカテキン、EGC}には阻害活性が無いことより、3位の没食子酸の有無が活性に大きく寄与している事が示唆されている(下記の非特許文献2を参照)。  As for flavan-3-ols contained in tea, etc., (2R, 3R) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-gallate {(3R) modified with gallic acid {( -)-Epicatechin gallate, ECg}, (2R, 3R) -3 ′, 4 ′, 5 ′, 5,7-pentahydroxyflavan-3-gallate {(−)-epigallocatechin gallate, EGCg}, etc. It is known to have an inhibitory activity on DNA synthetases α, β, and γ. In contrast, a compound in which gallic acid is not bonded to the 3-position, (2R, 3R) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-ol {(−)-epicatechin, EC} and ( Since 2R, 3R) -3 ′, 4 ′, 5 ′, 5,7-pentahydroxyflavan-3-ol {(−)-epigallocatechin, EGC} has no inhibitory activity, gallic acid at position 3 It has been suggested that the presence or absence of is greatly contributing to the activity (see Non-Patent Document 2 below).

このように、これまでに報告されているDNA合成酵素阻害作用をもつフラバン−3−オール類(エピガロカテキンガレート)は、もともと茶に含まれている天然由来の成分であり、安全性が高いという利点はあるものの、DNA合成酵素活性阻害剤の効果としては未だ十分ではない。  Thus, flavan-3-ols (epigallocatechin gallate) having a DNA synthase inhibitory activity reported so far are naturally-derived components originally contained in tea, and are highly safe. However, the effect of the DNA synthase activity inhibitor is still not sufficient.

Annual Review of Biochemistry,1991,60,513−552頁Annual Review of Biochemistry, 1991, 60, 513-552. 特開2000−143516号公報  JP 2000-143516 A Food Phytochemicals for Cancer Prevention II,Teas,Spices,and Herbs,56−64頁。(ACS Symposium Series No.547)Food Phytochemicals for Cancer Prevention II, Teas, Spices, and Herbs, pages 56-64. (ACS Symposium Series No. 547)

そこで本発明の目的は、安全性が高く、かつ、DNA合成酵素活性阻害作用において従来よりも優れている物質を見出し、新規なDNA合成酵素活性阻害剤を提供することにある。  Accordingly, an object of the present invention is to provide a novel DNA synthase activity inhibitor by finding a substance that is highly safe and superior in DNA synthase activity inhibitory activity compared to conventional ones.

本発明者らは従来よりも優れた効力をもつ成分を探索するため、天然由来の茶成分を原料として用い鋭意検討を重ねたところ、フラバン−3−オール類の3位にアシル基(ガロイル基を除く)を導入した3−アシル化フラバン−3−オール類が強いDNA合成酵素活性阻害作用を有すること、さらに該アシル基の炭素鎖長が長い程その活性が強くなることを初めて見出し、本発明を完成するに至った。  In order to search for a component having a potency superior to that of the prior art, the present inventors conducted extensive studies using a naturally derived tea component as a raw material. As a result, an acyl group (galloyl group) was located at the 3-position of the flavan-3-ols. For the first time that 3-acylated flavan-3-ols introduced with the above-mentioned compounds have a strong inhibitory action on DNA synthase activity and that the longer the carbon chain length of the acyl group, the stronger the activity. The invention has been completed.

即ち、請求項1記載の本発明は、下記の式(1)により表される化合物を有効成分とするDNA合成酵素活性阻害剤である。

Figure 2006249057
(式中、R、R、R、R、Rはそれぞれ独立して水素原子、もしくは、水酸基であることを表し、Rは、直鎖もしくは分岐状のアルキル基であることを表し(3位のアシル基のうちガロイル基は除く)、ベンゾピラン環の2位と3位の立体配置はそれぞれR配置またはS配置のいずれであってもよい。)で表される3−アシル化フラバン−3−オール類。
請求項2記載の本発明は、下記の式(2)により表される化合物を有効成分とするDNA合成酵素活性阻害剤である。
Figure 2006249057
(式中、R、R、Rはそれぞれ独立して水素原子、もしくは、水酸基であることを表し、Rは、直鎖もしくは分岐状のアルキル基で表し(3位のアシル基のうちガロイル基は除く)、ベンゾピラン環の2位と3位の立体配置はそれぞれR配置またはS配置のいずれであってもよい)で表される3−アシル化フラバン−3−オール類。
請求項3記載の本発明は、下記の式(3)により表される化合物を有効成分とするDNA合成酵素活性阻害剤である。
Figure 2006249057
(式中、R、R、Rはそれぞれ独立して水素原子、もしくは、水酸基であることを表し、ベンゾピラン環の2位と3位の立体配置はそれぞれR配置またはS配置のいずれであってもよい。)で表される3−アシル化フラバン−3−オール類。
請求項4記載の本発明は、DNA合成酵素が哺乳類由来のDNA合成酵素γである請求項1乃至3記載のDNA合成酵素阻害剤である。That is, the present invention described in claim 1 is a DNA synthase activity inhibitor comprising a compound represented by the following formula (1) as an active ingredient.
Figure 2006249057
(In the formula, R 1 , R 2 , R 3 , R 5 and R 6 each independently represent a hydrogen atom or a hydroxyl group, and R 4 is a linear or branched alkyl group. (Excluding the galloyl group among the acyl groups at the 3-position), and the steric configurations at the 2-position and the 3-position of the benzopyran ring may be either R-configuration or S-configuration, respectively. Flavan-3-ols.
The present invention according to claim 2 is a DNA synthase activity inhibitor comprising a compound represented by the following formula (2) as an active ingredient.
Figure 2006249057
(In the formula, R 1 , R 2 and R 3 each independently represents a hydrogen atom or a hydroxyl group, and R 4 represents a linear or branched alkyl group (the acyl group at the 3-position) Among them, the steric configurations at the 2-position and 3-position of the benzopyran ring may be either the R configuration or the S configuration), and 3-acylated flavan-3-ols.
The present invention according to claim 3 is a DNA synthase activity inhibitor comprising a compound represented by the following formula (3) as an active ingredient.
Figure 2006249057
(In the formula, R 1 , R 2 and R 3 each independently represent a hydrogen atom or a hydroxyl group, and the steric configurations at the 2- and 3-positions of the benzopyran ring are either R configuration or S configuration, respectively. 3-acylated flavan-3-ols represented by:
The present invention according to claim 4 is the DNA synthase inhibitor according to claims 1 to 3, wherein the DNA synthase is a mammal-derived DNA synthase γ.

本発明のDNA合成酵素阻害剤は、特に哺乳類由来のDNA合成酵素を強く阻害し、癌、エイズ等のウイルス疾患、免疫疾患の予防・治療に好適に利用することができる。また、本発明のDNA合成酵素活性阻害剤は安全性においても問題が無いため、医薬品としての使用はもとより、食品、化粧品などに添加するなど、多様な利用が可能である。  The DNA synthase inhibitor of the present invention strongly inhibits a DNA synthase derived from a mammal in particular, and can be suitably used for the prevention / treatment of viral diseases such as cancer and AIDS and immune diseases. In addition, since the DNA synthase activity inhibitor of the present invention has no problem in safety, it can be used in various ways such as adding to foods, cosmetics, etc. as well as its use as pharmaceuticals.

以下、本発明の具体的態様、技術的範囲等について詳しく説明する。
本発明は、3−アシル化フラバン−3−オール類がDNA合成酵素の活性を阻害しうることに基づくものであり、特にヒト等の哺乳類由来のDNA合成酵素に対して好適に効果を奏する。
Hereinafter, specific embodiments and technical scope of the present invention will be described in detail.
The present invention is based on the fact that 3-acylated flavan-3-ols can inhibit the activity of DNA synthase, and is particularly effective for DNA synthases derived from mammals such as humans.

フラバン−3−オール類とは、一般的に式(4)で表される化合物の総称である。

Figure 2006249057
Flavan-3-ols are a general term for compounds generally represented by the formula (4).
Figure 2006249057

本発明のDNA合成酵素活性阻害剤の有効成分である3−アシル化フラバン−3−オール類は、該フラバン−3−オール類の3位の水酸基をアシル化した化合物であり、下記の式(1)に示した化学構造を有するものである。

Figure 2006249057
(式中、R、R、R、R、Rはそれぞれ独立して水素原子、もしくは、水酸基であることを表し、Rは、直鎖もしくは分岐状のアルキル基であることを表し(3位のアシル基のうちガロイル基は除く)、ベンゾピラン環の2位と3位の立体配置はそれぞれR配置またはS配置のいずれであってもよい。)で表される3−アシル化フラバン−3−オール類。The 3-acylated flavan-3-ols, which are active ingredients of the DNA synthase activity inhibitor of the present invention, are compounds in which the hydroxyl group at the 3-position of the flavan-3-ols is acylated. It has the chemical structure shown in 1).
Figure 2006249057
(In the formula, R 1 , R 2 , R 3 , R 5 and R 6 each independently represent a hydrogen atom or a hydroxyl group, and R 4 is a linear or branched alkyl group. (Excluding the galloyl group among the acyl groups at the 3-position), and the steric configurations at the 2-position and the 3-position of the benzopyran ring may be either R-configuration or S-configuration, respectively. Flavan-3-ols.

本発明の3−アシル化フラバン−3−オール類の具体例としては、(2R,3S)−5,7−ジヒドロキシフラバン−3−オール{式(5)においてR、R、Rは水素原子を示し、2位および3位の立体配置は2R、3Sを表す。}の3位の水酸基をアシル化した3−アシル化−5,7−ジヒドロキシフラバン−3−オール、(2S,3R)−5,7−ジヒドロキシフラバン−3−オール{式(5)においてR、R、Rは水素原子を示し、2位および3位の立体配置は2S、3Rを表す。}の3位の水酸基をアシル化した3−アシル化−5,7−ジヒドロキシフラバン−3−オール、(2S,3S)−5,7−ジヒドロキシフラバン−3−オール{式(5)においてR、R、Rは水素原子を示し、2位および3位の立体配置は2S、3Sを表す。}の3位の水酸基をアシル化した3−アシル化−5,7−ジヒドロキシフラバン−3−オール、(2R,3R)−5,7−ジヒドロキシフラバン−3−オール{式(5)においてR、R、Rは水素原子を示し、2位および3位の立体配置は2R、3Rを表す。}の3位の水酸基をアシル化した3−アシル化−5,7−ジヒドロキシフラバン−3−オール、(2R,3S)−4’,5,7−トリヒドロキシフラバン−3−オール{(+)−アフゼレキン:式(5)においてR、Rは水素原子を示し、Rは水酸基を示し、2位および3位の立体配置は2R、3Sを表す。}の3位の水酸基をアシル化した3−アシル化アフゼレキン、(2S,3R)−4’,5,7−トリヒドロキシフラバン−3−オール{(−)−アフゼレキン:式(5)においてR、Rは水素原子を示し、Rは水酸基を示し、2位および3位の立体配置は2S、3Rを表す。}の3位の水酸基をアシル化した3−アシル化アフゼレキン、(2S,3S)−4’,5,7−トリヒドロキシフラバン−3−オール{(+)−エピアフゼレキン:式(5)においてR、Rは水素原子を示し、Rは水酸基を示し、2位および3位の立体配置は2S、3Sを表す。}の3位の水酸基をアシル化した3−アシル化エピアフゼレキン、(2R,3R)−4’,5,7−トリヒドロキシフラバン−3−オール{(−)−エピアフゼレキン:式(5)においてR、Rは水素原子を示し、Rは水酸基を示し、2位および3位の立体配置は2R、3Rを表す。}の3位の水酸基をアシル化した3−アシル化エピアフゼレキン、(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−オール{(+)−カテキン:式(5)において、Rは水素原子を示し、R、Rは水酸基を示し、2位および3位の立体配置は2R、3Sを表す。}の3位の水酸基をアシル化した3−アシル化カテキン、(2S,3R)−3’,4’,5,7−テトラヒドロキシフラバン−3−オール{(−)−カテキン:式(5)においてRは水素原子を示し、R、Rは水酸基を示し、2位および3位の立体配置は2S、3Rを表す。}の3位の水酸基をアシル化した3−アシル化カテキン、(2S,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−オール{(+)−エピカテキン:式(5)においてRは水素原子を示し、R、Rは水酸基を示し、2位および3位の立体配置は2S、3Sを表す。}の3位の水酸基をアシル化した3−アシル化エピカテキン、(2R,3R)−3’,4’,5,7−テトラヒドロキシフラバン−3−オール{(−)−エピカテキン:式(5)においてRは水素原子を示し、R、Rは水酸基を示し、2位および3位の立体配置は2R、3Rを表す。}の3位の水酸基をアシル化した3−アシル化エピカテキン、(2R,3S)−3’,4’,5’,5,7−ペンタヒドロキシフラバン−3−オール{(+)−ガロカテキン:式(5)においてR、R、R、は水酸基を示し、2位および3位の立体配置は2R、3Sを表す。}の3位の水酸基をアシル化した3−アシル化ガロカテキン、(2S,3R)−3’,4’,5’,5,7−ペンタヒドロキシフラバン−3−オール{(−)−ガロカテキン:式(5)においてR、R、R、は水酸基を示し、2位および3位の立体配置は2S、3Rを表す。}の3位の水酸基をアシル化した3−アシル化ガロカテキン、(2S,3S)−3’,4’,5’,5,7−ペンタヒドロキシフラバン−3−オール{(+)−エピガロカテキン:式(5)においてR、R、Rは水酸基を示し、2位および3位の立体配置は2S、3Sを表す。}の3位の水酸基をアシル化した3−アシル化エピガロカテキン、(2R,3R)−3’,4’,5’,5,7−ペンタヒドロキシフラバン−3−オール{(−)−エピガロカテキン:式(5)においてR、R、Rは水酸基を示し、2位および3位の立体配置は2R、3Rを表す。}の3位の水酸基をアシル化した3−アシル化エピガロカテキン、等を挙げることができる。
本発明においては、これら成分を単独で用いてもよいし、2種以上を所望とする混合比で組み合わせて用いてもよい。

Figure 2006249057
Specific examples of 3-acylated flavan-3-ols of the present invention include (2R, 3S) -5,7-dihydroxyflavan-3-ol {in the formula (5), R 1 , R 2 , R 3 are A hydrogen atom is shown, and the configuration at the 2nd and 3rd positions represents 2R and 3S. } 3-Acylated-5,7-dihydroxyflavan-3-ol, acylated at the 3-position hydroxyl group of (2S, 3R) -5,7-dihydroxyflavan-3-ol {R 1 in formula (5) , R 2 and R 3 represent a hydrogen atom, and the configuration at the 2nd and 3rd positions represents 2S and 3R. } 3-Acylated-5,7-dihydroxyflavan-3-ol, (2S, 3S) -5,7-dihydroxyflavan-3-ol {R 1 in formula (5) , R 2 and R 3 represent a hydrogen atom, and the configuration at the 2nd and 3rd positions represents 2S and 3S. } 3-Acylated-5,7-dihydroxyflavan-3-ol, (2R, 3R) -5,7-dihydroxyflavan-3-ol {R 1 in formula (5) , R 2 and R 3 represent a hydrogen atom, and the configuration at the 2nd and 3rd positions represents 2R and 3R. } 3-Acylated-5,7-dihydroxyflavan-3-ol, acylated at the 3-position hydroxyl group of (2R, 3S) -4 ′, 5,7-trihydroxyflavan-3-ol {(+) -Aphzelekin: In formula (5), R 1 and R 3 represent a hydrogen atom, R 2 represents a hydroxyl group, and the configuration at the 2nd and 3rd positions represents 2R and 3S. } 3-acylated aphzelequinyl acylated at the 3-position hydroxyl group of (2S, 3R) -4 ′, 5,7-trihydroxyflavan-3-ol {(−)-afzelekin: R 1 in formula (5) , R 3 represents a hydrogen atom, R 2 represents a hydroxyl group, and the configuration at the 2nd and 3rd positions represents 2S and 3R. } 3-acylated aphzelequinyl acylated at the 3-position hydroxyl group of (2S, 3S) -4 ′, 5,7-trihydroxyflavan-3-ol {(+)-epiafuzelekin: R 1 in formula (5) , R 3 represents a hydrogen atom, R 2 represents a hydroxyl group, and the configuration at the 2nd and 3rd positions represents 2S and 3S. } 3-Acylated Epiafzelekine acylated at the 3-position hydroxyl group of (2R, 3R) -4 ′, 5,7-trihydroxyflavan-3-ol {(−)-Epiafzerequin: R 1 in Formula (5) , R 3 represents a hydrogen atom, R 2 represents a hydroxyl group, and the configuration at the 2nd and 3rd positions represents 2R and 3R. } 3-Acylated Epiafzelequine acylated at the 3-position hydroxyl group of (2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-ol {(+)-catechin: Formula (5) In the formula, R 3 represents a hydrogen atom, R 1 and R 2 represent a hydroxyl group, and the configuration at the 2nd and 3rd positions represents 2R and 3S. } 3-acylated catechin acylated at the 3-position hydroxyl group of (2S, 3R) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-ol {(−)-catechin: Formula (5) R 3 represents a hydrogen atom, R 1 and R 2 represent a hydroxyl group, and the configuration at the 2nd and 3rd positions represents 2S and 3R. } 3-Acylated catechin acylated at the 3-position hydroxyl group of (2S, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-ol {(+)-epicatechin: Formula (5) ), R 3 represents a hydrogen atom, R 1 and R 2 represent a hydroxyl group, and the configuration at the 2nd and 3rd positions represents 2S and 3S. } 3-Acylated epicatechin acylated at the 3-position hydroxyl group of (2R, 3R) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-ol {(−)-epicatechin: In 5), R 3 represents a hydrogen atom, R 1 and R 2 represent a hydroxyl group, and the configuration at the 2nd and 3rd positions represents 2R and 3R. } 3-Acylated epicatechin acylated at the 3-position hydroxyl group of (2R, 3S) -3 ′, 4 ′, 5 ′, 5,7-pentahydroxyflavan-3-ol {(+)-gallocatechin: In the formula (5), R 1 , R 2 and R 3 represent a hydroxyl group, and the configuration at the 2nd and 3rd positions represents 2R and 3S. } 3-Acylated gallocatechin acylated at the 3-position hydroxyl group of (2S, 3R) -3 ′, 4 ′, 5 ′, 5,7-pentahydroxyflavan-3-ol {(−)-gallocatechin: formula In (5), R 1 , R 2 and R 3 represent a hydroxyl group, and the configuration at the 2nd and 3rd positions represents 2S and 3R. } 3-acylated gallocatechin acylated at the 3-position hydroxyl group of (2S, 3S) -3 ′, 4 ′, 5 ′, 5,7-pentahydroxyflavan-3-ol {(+)-epigallocatechin In formula (5), R 1 , R 2 and R 3 represent a hydroxyl group, and the configuration at the 2nd and 3rd positions represents 2S and 3S. } 3-Acylated epigallocatechin obtained by acylating the hydroxyl group at position 3, (2R, 3R) -3 ′, 4 ′, 5 ′, 5,7-pentahydroxyflavan-3-ol {(−)-epi Gallocatechin: In formula (5), R 1 , R 2 and R 3 represent a hydroxyl group, and the configuration at the 2nd and 3rd positions represents 2R and 3R. } 3-acylated epigallocatechin obtained by acylating the hydroxyl group at the 3-position.
In the present invention, these components may be used alone or in combination of two or more at a desired mixing ratio.
Figure 2006249057

なお、前記の具体例には、式(5)中の5位と7位が水酸基を示す化合物群しか挙げていないが、本発明はこれに限定されるものではなく、例えば、式(6)のように、5位が水素原子、7位が水酸基を示す化合物群や、式(7)のように、7位が水素原子、5位が水酸基を示す化合物群や、式(8)のR、Rが水素原子を示す化合物群等も含むことができる。

Figure 2006249057
Figure 2006249057
Figure 2006249057
In addition, although only the compound group in which the 5th position and 7th position in Formula (5) show a hydroxyl group is mentioned in the said specific example, this invention is not limited to this, For example, Formula (6) As shown, a compound group in which the 5-position represents a hydrogen atom and a 7-position represents a hydroxyl group, and a compound group in which the 7-position represents a hydrogen atom and the 5-position represents a hydroxyl group, as represented by formula (7), or R in formula (8) 5 and the compound group etc. in which R 6 represents a hydrogen atom can also be included.
Figure 2006249057
Figure 2006249057
Figure 2006249057

本発明で有効成分として用いる3−アシル化フラバン−3−オール類は、好ましくは3−アシル化アフゼレキン、3−アシル化エピアフゼレキン、3−アシル化カテキン、3−アシル化エピカテキン、3−アシル化ガロカテキン、3−アシル化エピガロカテキン、さらに好ましくは、3−アシル化カテキン、3−アシル化エピカテキンである。  The 3-acylated flavan-3-ols used as an active ingredient in the present invention are preferably 3-acylated aphzelechin, 3-acylated epiafzerekin, 3-acylated catechin, 3-acylated epicatechin, 3-acylated Gallocatechin and 3-acylated epigallocatechin, more preferably 3-acylated catechin and 3-acylated epicatechin.

本発明における3−アシル化フラバン−3−オール類のアシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、バレリル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、デカノイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基などが挙げられ、ガロイル基は除く。これらアシル基は直鎖状であっても分岐状であってもどちらでもよい。本発明のDNA合成酵素活性阻害剤はアシル基の炭素鎖長が長くなるほど強くなるため、炭素数が6〜18(式(3)のn=4〜16)であるヘキサノイル基、ヘプタノイル基、オクタノイル基、デカノイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基を用いることが好ましく、炭素数が12〜18(式(3)のn=10〜16)であるラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基を用いることがさらに好ましい。

Figure 2006249057
(式中、R、R、Rはそれぞれ独立して水素原子、もしくは、水酸基であることを表し、ベンゾピラン環の2位と3位の立体配置はそれぞれR配置またはS配置のいずれであってもよい。)で表される3−アシル化フラバン−3−オール類。Examples of the acyl group of 3-acylated flavan-3-ols in the present invention include, for example, an acetyl group, a propionyl group, a butyryl group, a valeryl group, a hexanoyl group, a heptanoyl group, an octanoyl group, a decanoyl group, a lauroyl group, and a myristoyl group. , Palmitoyl group, stearoyl group and the like, and galloyl group is excluded. These acyl groups may be linear or branched. Since the DNA synthase activity inhibitor of the present invention becomes stronger as the carbon chain length of the acyl group becomes longer, the hexanoyl group, heptanoyl group, octanoyl having 6 to 18 carbon atoms (n = 4 to 16 in the formula (3)). Group, decanoyl group, lauroyl group, myristoyl group, palmitoyl group, stearoyl group, preferably lauroyl group, myristoyl group, palmitoyl group having 12 to 18 carbon atoms (n = 10 to 16 in formula (3)) More preferably, a stearoyl group is used.
Figure 2006249057
(In the formula, R 1 , R 2 and R 3 each independently represent a hydrogen atom or a hydroxyl group, and the steric configurations at the 2- and 3-positions of the benzopyran ring are either R configuration or S configuration, respectively. 3-acylated flavan-3-ols represented by:

次に、本発明のDNA合成酵素阻害剤の製造方法について説明する。  Next, a method for producing the DNA synthase inhibitor of the present invention will be described.

まず、原料となるフラバン−3−オール類について、その代表的な化合物であるカテキン類は、主にツバキ科に属する茶樹(Camellia sinensis)から得られる葉、茎、木部、樹皮、根、実、種子のいずれか、あるいはこれらの2種類以上の混合物もしくはそれらの粉砕物から水、熱水、有機溶媒、含水有機溶媒あるいはこれらの混合物などにより抽出することにより得られる。特に、茶生葉あるいはその乾燥物から水、熱水、有機溶媒、含水有機溶媒、これらの混合物などを用いて抽出することにより得られる抽出物自体、或いは必要に応じて精製して得られる精製物として得ることが好ましい。カテキン類の精製物に関しては、特公平1−44232号公報、同2−12474号公報、同2−22755号公報、特開平4−20589号公報、同5−260907号公報、同8−09178号公報などに記載された方法により製造することができ、例えば茶葉を上記の溶媒で抽出して得られた抽出物を、有機溶媒分画や吸着樹脂などを用いて所望の程度に精製することができる。茶以外の植物から抽出する場合も、茶の場合と同様の方法により実施すればよい。また、本発明で使用するカテキン類は市販品を用いてもよく、このような市販品としては、例えば三井農林(株)製「ポリフェノン」、太陽化学(株)製「サンフェノン」、(株)伊藤園製「テアフラン」などを例示することができる。  First, catechins, which are representative compounds of flavan-3-ols that are raw materials, are mainly leaves, stems, xylem, bark, roots, and fruits obtained from tea tree (Camellia sinensis) belonging to Camellia family. It is obtained by extracting from one of seeds, a mixture of two or more of these, or a pulverized product thereof with water, hot water, an organic solvent, a water-containing organic solvent, or a mixture thereof. In particular, the extract itself obtained by extracting from fresh tea leaves or dried products thereof with water, hot water, organic solvent, hydrous organic solvent, a mixture thereof, or the like, or a purified product obtained by purification as necessary. It is preferable to obtain as. Regarding purified products of catechins, JP-B-1-44232, JP-A-2-12474, JP-A-2-22755, JP-A-4-20589, JP-A-5-260907, and JP-A-8-09178. For example, an extract obtained by extracting tea leaves with the above-mentioned solvent can be purified to a desired level using an organic solvent fraction or an adsorption resin. it can. Extraction from plants other than tea may be carried out by the same method as that for tea. The catechins used in the present invention may be commercially available products. Examples of such commercially available products include “Polyphenone” manufactured by Mitsui Norin Co., Ltd., “Sunphenon” manufactured by Taiyo Kagaku Co., Ltd. An example is ITO EN's “Theafranc”.

このようにして得られたフラバン−3−オール類をアシル化させる方法は、特に限定されるものではなく、一般的によく知られている方法を用いればよい。例えば、式(10)に示す容易に入手可能な(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−オール{(+)−カテキン}及び、(2R,3R)−3’,4’,5,7−テトラヒドロキシフラバン−3−オール{(−)−エピカテキン}を原料として用い、表1に示す3−アシル化カテキン類及び3−アシル化カテキン類を式(9)のようにして合成することができる。  The method for acylating the thus obtained flavan-3-ols is not particularly limited, and a generally well-known method may be used. For example, the readily available (2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-ol {(+)-catechin} and (2R, 3R) shown in formula (10) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-ol {(−)-epicatechin} is used as a raw material, and 3-acylated catechins and 3-acylated catechins shown in Table 1 are represented by the formula It can be synthesized as in (9).

Figure 2006249057
(式(10)において、RがOH、RがHである化合物が、(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−オール{(+)−カテキン}、RがH、RがOHである化合物が(2R,3R)−3’,4’,5,7−テトラヒドロキシフラバン−3−オール{(−)−エピカテキン}である。)
Figure 2006249057
(In the formula (10), the compound in which R 1 is OH and R 2 is H is (2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-ol {(+)-catechin }, The compound in which R 1 is H and R 2 is OH is (2R, 3R) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-ol {(−)-epicatechin}.

Figure 2006249057
[第一行程]
Figure 2006249057
ジル−フラバン−3−オール(木材学会誌、1991,37,488−493頁)の3位の水酸基にアシル基を導入し、一般式[II]表される3−アシル化3’,4’,
Figure 2006249057
ピリジンやトリエチルアミンなど、通常のアシル化反応に用いることができる塩基であれば如何なる塩基も使用できる。また、この行程に用いられる溶媒としては、反応に関与しないものであれば如何なるものも使用できるが、好適には塩素系溶媒、特にジクロロメタンが用いられる。
[第二行程]
Figure 2006249057
−ベンジル−フラバンの保護基であるベンジル基を脱保護して、一般式[III]で表される3−アシル化3’,4’,5,7−テトラヒドロキシフラバン−3−オールを製造するものである。水素雰囲気化、パラジウムなどの触媒を加えベンジル基を脱保護するが、この行程に用いられる触媒としては、ベンジル基以外の部位に影響を及ぼさないものであれば、如何なる触媒でも使用できるが、公知の方法(J.Am.Chem.Soc.,1999,121,12073−12081頁)、Pd(OH)/Cを用いる方法が良い。また、この行程に用いられる溶媒としては、反応に関与しないものであれば如何なるものも使用できるが、公知の方法(文献)であるPd(OH)/Cとの組み合わせで用いられるテトラヒドロフラン−メタノール−水の混合溶媒が良い。
Figure 2006249057
[First step]
Figure 2006249057
An acyl group is introduced into the hydroxyl group at the 3-position of zil-flavan-3-ol (Journal of the Wood Society, pages 991, 37, 488-493), and 3-acylated 3 ′, 4 ′ represented by the general formula [II] ,
Figure 2006249057
Any base such as pyridine or triethylamine can be used as long as it can be used in a usual acylation reaction. As the solvent used in this step, any solvent can be used as long as it does not participate in the reaction, but a chlorinated solvent, particularly dichloromethane, is preferably used.
[Second step]
Figure 2006249057
-The benzyl group which is a protecting group of benzyl-flavan is deprotected to produce 3-acylated 3 ', 4', 5,7-tetrahydroxyflavan-3-ol represented by the general formula [III] Is. Benzyl group is deprotected by adding a catalyst such as hydrogen atmosphere and palladium. As the catalyst used in this process, any catalyst can be used as long as it does not affect sites other than benzyl group. (J. Am. Chem. Soc., 1999, 121, 12073-12081) and a method using Pd (OH) 2 / C are preferable. As the solvent used in this step, any solvent can be used as long as it does not participate in the reaction. Tetrahydrofuran-methanol used in combination with Pd (OH) 2 / C which is a known method (document) -A mixed solvent of water is good.

この他にも、例えば、ホウ素化合物を用いたカテキン誘導体の合成法(特開昭57−118580号公報、特開昭57−120584号公報)、トリフルオロ酢酸と酸塩化物を用いる方法(Bioorganic & Medicinal Chemistry Letters,2000,10,1673−1675頁)、リパーゼを用いる方法(Journal of Molecular Catalysis B:Enzymatic,2000,10,577−582頁)等の方法を用いることができる。  In addition, for example, a method for synthesizing a catechin derivative using a boron compound (Japanese Patent Laid-Open Nos. 57-118580 and 57-12058), a method using trifluoroacetic acid and an acid chloride (Bioorganic & Medicinal Chemistry Letters, 2000, 10, pp. 1673-1675), a method using lipase (Journal of Molecular Catalysis B: Enzymatic, 2000, 10, pp. 577-582) and the like.

本発明のDNA合成酵素阻害剤は、ヒト、ラット、子牛等の哺乳類由来のDNA合成酵素、植物由来のDNA合成酵素及び原核生物由来のDNA合成酵素等いずれのDNA合成酵素に対しても活性阻害作用を十分発揮することができる。特に本発明のDNA合成酵素阻害剤は、哺乳類由来のDNA合成酵素を対象とするのが好ましく、中でもヒト等の高等動物に由来するDNA合成酵素に対して好適に効果を発揮する。  The DNA synthase inhibitor of the present invention is active against any DNA synthase such as a DNA synthase derived from mammals such as humans, rats and calves, a plant-derived DNA synthase and a prokaryotic DNA synthase. The inhibitory action can be sufficiently exerted. In particular, the DNA synthase inhibitor of the present invention is preferably directed to a DNA synthase derived from a mammal, and particularly exhibits an effect on a DNA synthase derived from a higher animal such as a human.

また、本発明のDNA合成酵素阻害剤は、これまでに知られているα、β、γ、δ、ε、ζ、η、θ、ι、κ、λ、μ型及びσ型のいずれの型のDNA合成酵素に対しても阻害作用を発揮することができるが、中でもα、β、δ、ε型およびλ型のDNA合成酵素が好ましく、特にλ型のDNA合成酵素が最も好ましい。
DNA合成酵素には、α、β、γ、δ、ε、ζ、η、θ、ι、κ、λ、μ型及びσ型の13種類の分子種が存在することが知られており、それぞれが少しずつ異なる働きをしていると考えられている。たとえば、DNA合成酵素αは複製型のDNA合成酵素であるため、癌細胞のような細胞分裂が盛んな細胞や組織に対してのみ本酵素活性が高い。一方、DNA合成酵素βは、免疫反応のDNA再構成において抗原特異的に反応する抗体あるいはレセプター分子を作り出す根源に関与するとともに、変異による抗体の多様性に一定の役割を果たしているともいわれ、免疫反応に密接に関与している。これらのことから、DNA合成酵素αを抑制する事は、癌細胞の増殖抑制につながり、抗ガン剤としての作用、また、DNA合成酵素βを抑制することは、免疫反応の抑制につながり、免疫抑制剤としての作用が期待される。DNA合成酵素λは、修復型のDNA合成酵素であり、DNA塩基の変異や異常を除去したのち、修復のDNA合成を行う。日常生活においても、紫外線やX線によるDNAの損傷・DNAへの修飾が生じたとき、修復型のDNA合成酵素が働き、正常な状態に戻す役割を担っている。それは、癌細胞においても同様であり、癌の放射線治療において、X線やγ線の照射の後、修復型のDNA合成酵素が活発に働き、損傷したDNAを元に戻そうとする。放射線照射による癌細胞DNAへのダメージが十分であれば、修復型のDNA合成酵素による修復が間に合わず、癌細胞は自己細胞死(アポトーシス)する。しかし、ダメージが不十分でアポトーシスまで到達しない場合、DNA合成酵素による不完全な修復が起こり、さらなる癌化の引き金となる危険が生じる。そこで、放射線治療の際に、修復型のDNA合成酵素阻害活性を有するアシル化フラバン−3−オール類を併用させることで、癌細胞の修復型DNA合成酵素の働きを止め、全ての癌細胞をアポトーシスへ導く事が出来ると考えられる。
Moreover, the DNA synthase inhibitor of the present invention is any of α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, and σ types known so far. An inhibitory action can also be exerted on these DNA synthases, among which α, β, δ, ε type and λ type DNA synthases are preferred, and λ type DNA synthase is most preferred.
It is known that there are 13 kinds of molecular species of DNA synthase, α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, and σ types, Are thought to work slightly differently. For example, since the DNA synthase α is a replication-type DNA synthase, the enzyme activity is high only for cells and tissues such as cancer cells where cell division is active. On the other hand, DNA synthase β is said to play a role in the diversity of antibodies due to mutations, as well as being involved in the origin of antibodies or receptor molecules that react antigen-specifically in the DNA reconstitution of immune reactions. It is closely involved in the reaction. Therefore, suppressing DNA synthase α leads to suppression of cancer cell growth, and acts as an anticancer agent, and suppressing DNA synthase β leads to suppression of immune reaction, immunity Expected to act as an inhibitor. The DNA synthase λ is a repair-type DNA synthase, which removes DNA base mutations and abnormalities and then performs repair DNA synthesis. Even in daily life, when DNA damage or modification to DNA occurs due to ultraviolet rays or X-rays, a repair-type DNA synthase acts to restore the normal state. The same applies to cancer cells, and in the radiotherapy of cancer, after irradiation with X-rays or γ-rays, repair-type DNA synthase works actively and tries to restore damaged DNA. If the damage to the cancer cell DNA due to irradiation is sufficient, the repair by the repair-type DNA synthase is not in time, and the cancer cells die by self-cell death (apoptosis). However, if the damage is insufficient and does not reach apoptosis, incomplete repair by the DNA synthase occurs, causing a risk of further canceration. Therefore, in combination with acylated flavan-3-ols having a repair type DNA synthase inhibitory activity during radiotherapy, the function of the repair type DNA synthase of cancer cells is stopped, and all cancer cells are removed. It is thought that it can lead to apoptosis.

本発明のDNA合成酵素阻害剤の用途としては、飲食品、医薬品、医薬部外品及び化粧品等として使用することができる。  As a use of the DNA synthetase inhibitor of this invention, it can be used as food-drinks, a pharmaceutical, a quasi-drug, cosmetics, etc.

本発明のDNA合成酵素阻害剤は、飲食品や医薬品等へ配合した形態で摂取してもよいが、そのまま単独で摂取することもできる。その摂取量は、摂取形態、年齢、体重などにより異なり、特に制限されるものではないが、体重1kgあたり0.1mg〜100mg/回の摂取が好ましく、0.5mg〜50mg/回の摂取がより好ましい。このとき、1日当たりの摂取回数は1回若しくは数回とする。例えば、注射用製剤の場合、成人で本発明の化合物の重量として1日あたり1〜60mgの静注、点滴静注、皮下注射、筋肉注射が適当である。  The DNA synthase inhibitor of the present invention may be ingested in a form blended with foods and drinks or pharmaceuticals, but can also be ingested as it is. The intake varies depending on the intake form, age, weight, etc., and is not particularly limited, but is preferably 0.1 mg to 100 mg / kg of body weight per 1 kg of body weight, more preferably 0.5 mg to 50 mg / dose. preferable. At this time, the number of intakes per day is once or several times. For example, in the case of an injectable preparation, in adults, 1 to 60 mg per day as a weight of the compound of the present invention, intravenous drip, subcutaneous injection and intramuscular injection are suitable.

本発明のDNA合成酵素阻害剤の投与方法は特に限定されるものではなく種々の方法で投与することができる。  The administration method of the DNA synthase inhibitor of the present invention is not particularly limited, and can be administered by various methods.

本発明のDNA合成酵素阻害剤を単独で製剤化する場合における製剤形態は、有効成分として前述の3−アシル化フラバン−3−オール類を含んでなるものであればどのような形態であってもよく、例えば粉末状、顆粒状、錠剤などの固形状であってもよいし、液状や半固形状などであってもよい。  In the case where the DNA synthase inhibitor of the present invention is formulated alone, the formulation form is any form as long as it comprises the aforementioned 3-acylated flavan-3-ols as an active ingredient. For example, it may be solid such as powder, granule, tablet, etc., and may be liquid or semi-solid.

また、本発明のDNA合成酵素阻害剤は、他のDNA合成酵素阻害剤と併用して用いても何ら問題は生じない。他のDNA合成酵素阻害剤と併用した場合には、より優れたDNA合成酵素の阻害効果を期待することができる。  Further, the DNA synthase inhibitor of the present invention does not cause any problems even when used in combination with other DNA synthase inhibitors. When used in combination with other DNA synthase inhibitors, a more excellent inhibitory effect of DNA synthase can be expected.

本発明のDNA合成酵素阻害剤を単独で製剤化する場合、あるいは飲食品や医薬品等に配合して利用する場合には、必要に応じて、各種添加剤と適宜組み合わせて用いてもよい。例えば、結合剤、崩壊剤、増量剤、酸化防止剤、着色剤、香料、矯味剤、界面活性剤、滑沢剤、流動性促進剤、溶解補助剤、保存剤、糖類、甘味料、酸味料、ビタミン類などの公知の各種添加剤等を適宜に組み合わせて使用することができる。ここに、結合剤としてデンプン、デキストリン、アラビアゴム末、ゼラチン、ヒドロキシプロピルスターチ、メチルセルロースナトリウム、ヒドロキシプロピルセルロース、結晶セルロース、エチルセルロース、ポリビニルピロリドン、マクロゴール等を例示できる。崩壊剤としてはデンプン、ヒドロキシプロピルスターチ、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースカルシウム、カルボキシメチルセルロース、低置換ヒドロキシプロピルセルロース等を例として挙げることができる。界面活性剤の例としてラウリル硫酸ナトリウム、大豆レシチン、蔗糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等を挙げることができる。滑沢剤では、タルク、ロウ類、水素添加植物油、蔗糖脂肪酸エステル、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸アルミニウム、ポリエチレングリコール等を例示できる。流動性促進剤では、軽質無水ケイ酸、乾燥水酸化アルミニウムゲル、合成ケイ酸アルミニウム、ケイ酸マグネシウム等を例として挙げることができる。また、注射用製剤として利用する場合は、希釈剤として一般に注射用蒸留水、生理食塩水、ブドウ糖水溶液、注射用植物油、ゴマ油、ラッカセイ油、大豆油、トウモロコシ油、プロピレングリコール等を用いることができる。さらに必要に応じて、殺菌剤、防腐剤、安定剤を加えてもよい。また、安定性の点から、バイアル等に充填後冷凍し、通常の凍結乾燥処理により水分を除き、使用直前に凍結乾燥物から液剤を再調製することもできる。さらに必要に応じて、等張化剤、安定剤、防腐剤、無痛化剤を加えてもよい。  When the DNA synthase inhibitor of the present invention is formulated alone, or used by blending in foods and drinks, pharmaceuticals, etc., it may be used in combination with various additives as necessary. For example, binders, disintegrants, extenders, antioxidants, colorants, fragrances, flavoring agents, surfactants, lubricants, fluidity promoters, solubilizers, preservatives, sugars, sweeteners, acidulants Various known additives such as vitamins can be used in appropriate combination. Examples of the binder include starch, dextrin, gum arabic powder, gelatin, hydroxypropyl starch, sodium methylcellulose, hydroxypropylcellulose, crystalline cellulose, ethylcellulose, polyvinylpyrrolidone, macrogol and the like. Examples of the disintegrant include starch, hydroxypropyl starch, carboxymethylcellulose sodium, carboxymethylcellulose calcium, carboxymethylcellulose, and low-substituted hydroxypropylcellulose. Examples of the surfactant include sodium lauryl sulfate, soybean lecithin, sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester and the like. Examples of lubricants include talc, waxes, hydrogenated vegetable oils, sucrose fatty acid esters, magnesium stearate, calcium stearate, aluminum stearate, polyethylene glycol and the like. Examples of the fluidity promoter include light anhydrous silicic acid, dry aluminum hydroxide gel, synthetic aluminum silicate, magnesium silicate and the like. In addition, when used as an injectable preparation, generally used are distilled water for injection, physiological saline, aqueous glucose solution, vegetable oil for injection, sesame oil, peanut oil, soybean oil, corn oil, propylene glycol and the like as diluents. . Furthermore, you may add a disinfectant, antiseptic | preservative, and a stabilizer as needed. In addition, from the viewpoint of stability, it can be frozen after filling into a vial or the like, the water can be removed by ordinary freeze-drying treatment, and the liquid preparation can be re-prepared from the freeze-dried product immediately before use. Furthermore, you may add an isotonic agent, a stabilizer, an antiseptic | preservative, and a soothing agent as needed.

本発明のDNA合成酵素阻害剤の配合対象物である飲食品や医薬品等は、DNA合成酵素阻害剤の有効成分である3−アシル化フラバン−3−オール類を配合することができるものであれば、どのような形態であってもよく、例えば水溶液や混濁物や乳化物などの液状形態であっても、ゲル状やペースト状の半固形状形態であっても、粉末や顆粒やカプセルやタブレットなどの固形状形態であってもよい。  The food / beverage products and pharmaceuticals, etc., which are the subject of blending of the DNA synthase inhibitor of the present invention, can be blended with 3-acylated flavan-3-ols which are active ingredients of DNA synthase inhibitors. For example, any form may be used, for example, a liquid form such as an aqueous solution, a turbid substance, an emulsion, a semi-solid form such as a gel or a paste, a powder, a granule, a capsule, It may be a solid form such as a tablet.

飲食品としては、例えば、即席食品類(即席めん、カップめん、レトルト・調理食品、調理缶詰め、電子レンジ食品、即席味噌汁・吸い物、スープ缶詰め、フリーズドライ食品など)、炭酸飲料、柑橘類(グレープフルーツ、オレンジ、レモンなど)の果汁や果汁飲料や果汁入り清涼飲料、柑橘類の果肉飲料や果粒入り果実飲料、トマト、ピーマン、セロリ、ウリ、ニンジン、ジャガイモ、アスパラガスなどの野菜を含む野菜系飲料、豆乳・豆乳飲料、コーヒー飲料、お茶飲料、粉末飲料、濃縮飲料、スポーツ飲料、栄養飲料、アルコール飲料やタバコなどの嗜好飲料・嗜好品類、パン、マカロニ・スパゲッティ、麺類、ケーキミックス、唐揚げ粉、パン粉、ギョーザの皮などの小麦粉製品、キャラメル・キャンディー、チューイングガム、チョコレート、クッキー・ビスケット、ケーキ・パイ、スナック・クラッカー、和菓子・米菓子・豆菓子、デザート菓子などの菓子類、しょうゆ、みそ、ソース類、トマト加工調味料、みりん類、食酢類、甘味料などの基礎調味料、風味調味料、調理ミックス、カレーの素類、たれ類、ドレッシング類、めんつゆ類、スパイス類などの複合調味料・食品類、バター、マーガリン類、マヨネーズ類、植物油などの油脂類、牛乳・加工乳、乳飲料、ヨーグルト類、乳酸菌飲料、チーズ、アイスクリーム類、調製粉乳類、クリームなどの乳・乳製品、素材冷凍食品、半調理冷凍食品、調理済み冷凍食品などの冷凍食品、水産缶詰め、果実缶詰め・ペースト類、魚肉ハム・ソーセージ、水産練り製品、水産珍味類、水産乾物類、佃煮類などの水産加工品、畜産缶詰め・ペースト類、畜肉缶詰め、果実缶詰め、ジャム・マーマレード類、漬物・煮豆類、農産乾物類、シリアル(穀物加工品)などの農産加工品、ベビーフード、ふりかけ・お茶漬けのりなどの市販食品などが挙げられる。また、家畜用配合飼料(養牛用飼料、養豚用飼料、養鶏用飼料など)やペットフードなどの動物用飼料であってもよい。  Examples of foods and drinks include instant foods (immediate noodles, cup noodles, retort / cooked food, canned food, microwave food, instant miso soup, soup, freeze-dried food, etc.), carbonated drinks, citrus fruits (grapefruit, orange , Lemon, etc.) fruit juices, fruit juice drinks, soft drinks with fruit juices, fruit drinks with citrus fruits and fruit drinks, vegetable drinks containing vegetables such as tomatoes, peppers, celery, cucumbers, carrots, potatoes, asparagus, soy milk・ Soy milk beverages, coffee beverages, tea beverages, powdered beverages, concentrated beverages, sports beverages, nutritional beverages, alcoholic beverages and other favorite beverages such as tobacco, bread, macaroni and spaghetti, noodles, cake mix, deep-fried flour, bread crumbs , Flour products such as gyoza peel, caramel candy, chewing gum, Chocolate, cookies / biscuits, cakes / pies, snacks / crackers, sweets such as Japanese confectionery / rice confectionery / bean confectionery, dessert confectionery, soy sauce, miso, sauces, tomato processing seasonings, mirins, vinegars, sweeteners, etc. Basic seasonings, flavor seasonings, cooking mixes, curry ingredients, sauces, dressings, noodle soups, spices and other complex seasonings and foods, butter, margarines, mayonnaise, vegetable oils and other fats and oils , Milk and processed milk, milk drinks, yogurts, lactic acid bacteria drinks, cheese, ice cream, prepared milk powder, milk and other dairy products such as cream, frozen foods, semi-cooked frozen foods, frozen frozen foods such as cooked frozen foods Fish processing such as canned fish, canned fruits and pastes, fish ham and sausage, fish paste products, fish delicacy, dried fish and boiled fish , Livestock canning / pastes, canned meat, fruit canning, jams / marmalades, pickles / boiled beans, dried agricultural products, cereals (cereal processed products), and other processed foods, baby foods, sprinkles, and green tea paste Etc. Further, it may be animal feed such as livestock blended feed (cattle feed, pig feed, poultry feed, etc.) and pet food.

医薬用組成物の形態としては、例えば、錠剤、丸剤、飲用液剤、懸濁剤、乳剤、カプセル剤、顆粒剤、細粒剤、散剤等の経口剤や、注射剤、外用液剤、貼付剤、軟膏剤、クリーム剤、直腸内投与のための坐剤、吸入剤、点鼻剤、スプレー剤等の非経口剤が挙げられる。  Examples of the form of the pharmaceutical composition include oral preparations such as tablets, pills, drinking liquids, suspensions, emulsions, capsules, granules, fine granules, powders, injections, liquids for external use, patches. And parenterals such as ointments, creams, suppositories for rectal administration, inhalants, nasal drops, sprays and the like.

飲食品や医薬品等への本発明のDNA合成酵素阻害剤の配合方法は特に制限されるものではなく、飲食品や医薬品等の調製段階において、この分野で通常知られた慣用的な方法を用いて配合することができる。また、飲食品や医薬品などに対する本発明のDNA合成酵素阻害剤の配合量については特に制限されないが、配合対象となる物品により配合量を適宜設定することが好ましい。一般的には、最終製品中で0.0001〜50重量%であればよいが、0.001〜20重量%であることが好ましく、さらに0.01〜10重量%がより好ましい。飲食品の場合は、最終製品中で0.0001〜5重量%であればよいが、0.001〜1重量%であることが好ましく、さらに0.01〜0.5重量%がより好ましく、特に好ましくは0.05〜0.5重量%である。  The method of blending the DNA synthase inhibitor of the present invention into foods and beverages and pharmaceuticals is not particularly limited, and conventional methods commonly known in this field are used in the preparation stage of foods and beverages and pharmaceuticals. Can be blended. Further, the amount of the DNA synthase inhibitor of the present invention for foods and drinks and pharmaceuticals is not particularly limited, but it is preferable to appropriately set the amount depending on the article to be blended. Generally, it may be 0.0001 to 50% by weight in the final product, but is preferably 0.001 to 20% by weight, and more preferably 0.01 to 10% by weight. In the case of food and drink, it may be 0.0001 to 5% by weight in the final product, but is preferably 0.001 to 1% by weight, more preferably 0.01 to 0.5% by weight, Particularly preferred is 0.05 to 0.5% by weight.

以下に製造例、試験例を挙げ、本発明をさらに詳しく説明する。ただし、本発明はこれに限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to production examples and test examples. However, the present invention is not limited to this.

Figure 2006249057
−3−オールの製造方法
(+)−カテキン{(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−オール}(20.0g,0.069mol)を蒸留して脱水したDMF500mLに溶かし、氷冷しながら炭酸カリウム(52.4g,0.38mol)を少しずつ加えた。10分間0度で攪拌した後、ベンジルブロミド(58.9g、0.34mol)を滴下し、48時間室温で攪拌した。反応終了後、反応液を氷水に注ぎ、生じた沈殿を濾過して祖生成物を得た。この組成生物を酢酸エチルに溶解させ、水、及び、飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで有機層を乾燥した。濾過・濃縮後、シリカゲルカラムクロマトグラフィーで精製し、白色粉末
Figure 2006249057
ール(23.8g,0.037mol,53%収率)を得た。
Figure 2006249057
-3-Ole Production Method (+)-Catechin {(2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-ol} (20.0 g, 0.069 mol) was distilled. Dissolved in 500 mL of dehydrated DMF, potassium carbonate (52.4 g, 0.38 mol) was added little by little while cooling with ice. After stirring at 0 degree for 10 minutes, benzyl bromide (58.9 g, 0.34 mol) was added dropwise, and the mixture was stirred at room temperature for 48 hours. After completion of the reaction, the reaction solution was poured into ice water, and the resulting precipitate was filtered to obtain a parent product. This composition organism was dissolved in ethyl acetate, washed with water and a saturated aqueous sodium chloride solution, and the organic layer was dried over anhydrous sodium sulfate. After filtration and concentration, purify by silica gel column chromatography to obtain white powder
Figure 2006249057
(23.8 g, 0.037 mol, 53% yield) was obtained.

H−NMR(400MHz,CDCl)7.45−7.29(20H,m),7.03(1H,s),6.95(2H,s),6.27(1H,d,J=2.2Hz),6.20(1H,d,J=2.2Hz),5.20−5.13(2H,m),5.18(2H,s),5.03(2H,s),4.99(2H,s),4.64(1H,d,J=8.3Hz),4.06−3.98(1H,m),3.11(1H,dd,J=5.6,16.3Hz),2.65(1H,dd,J=9.0,16.3Hz),1.61(1H,d,J=3.9Hz);
13C−NMR(100MHz,CDCl)158.8,157.8,155.3,149.3,149.1,137.1,137.0,136.9,136.8,130.8,128.6,120.51(x2),128.48,128.44,128.0,127.9,127.8(x2),127.52,127.47,127.2,127.1,120.6,115.0,113.8,102.3,94.3,93.8,81.6,71.3,71.2,71.1,69.9,69.2,27.6;
1 H-NMR (400 MHz, CDCl 3 ) 7.45-7.29 (20H, m), 7.03 (1H, s), 6.95 (2H, s), 6.27 (1H, d, J = 2.2 Hz), 6.20 (1H, d, J = 2.2 Hz), 5.20-5.13 (2H, m), 5.18 (2H, s), 5.03 (2H, s) ), 4.99 (2H, s), 4.64 (1H, d, J = 8.3 Hz), 4.06-3.98 (1H, m), 3.11 (1H, dd, J = 5) .6, 16.3 Hz), 2.65 (1H, dd, J = 9.0, 16.3 Hz), 1.61 (1H, d, J = 3.9 Hz);
13 C-NMR (100 MHz, CDCl 3 ) 158.8, 157.8, 155.3, 149.3, 149.1, 137.1, 137.0, 136.9, 136.8, 130.8, 128.6, 120.51 (x2), 128.48, 128.44, 128.0, 127.9, 127.8 (x2), 127.52, 127.47, 127.2, 127.1, 120.6, 115.0, 113.8, 102.3, 94.3, 93.8, 81.6, 71.3, 71.2, 71.1, 69.9, 69.2, 27. 6;

Figure 2006249057
3−オールの製造方法
(−)−エピカテキン{(2R,3R)−3’,4’,5,7−テトラヒドロキシフラバン−3−オール}(10.0g,0.035mol)を蒸留して脱水したDMF500mLに溶かし、氷冷しながら炭酸カリウム(26.2g,0.19mol)を少しずつ加えた。10分間0度で攪拌した後、ベンジルブロミド(29.5g、0.17mol)を滴下し、48時間室温で攪拌した。反応終了後、反応液を氷水に注ぎ、生じた沈殿を濾過して祖生成物を得た。この組成生物を酢酸エチルに溶解させ、水、及び、飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで有機層を乾燥した。濾過・濃縮後、シリカゲルカラムクロマトグラフィーで精製し、白
Figure 2006249057
−オール(10.2g,0.016mol,45%収率)を得た。
Figure 2006249057
Method for producing 3-ol (-)-epicatechin {(2R, 3R) -3 ', 4', 5,7-tetrahydroxyflavan-3-ol} (10.0 g, 0.035 mol) was distilled. It was dissolved in 500 mL of dehydrated DMF, and potassium carbonate (26.2 g, 0.19 mol) was added little by little while cooling with ice. After stirring at 0 ° C. for 10 minutes, benzyl bromide (29.5 g, 0.17 mol) was added dropwise and stirred at room temperature for 48 hours. After completion of the reaction, the reaction solution was poured into ice water, and the resulting precipitate was filtered to obtain a parent product. This composition organism was dissolved in ethyl acetate, washed with water and a saturated aqueous sodium chloride solution, and the organic layer was dried over anhydrous sodium sulfate. After filtration and concentration, purify by silica gel column chromatography.
Figure 2006249057
-All (10.2 g, 0.016 mol, 45% yield) was obtained.

H−NMR(400MHz,CDCl)7.46−7.26(20H,m),7.14(1H,d,J=1.7Hz),6.99(1H,dd,J=1.7,8.3Hz),6.95(1H,d,J=8.3Hz),6.27(1H,d,J=2.2Hz),6.26(1H,d,J=2.2Hz),5.18(2H,s),5.16(2H,s),5.13−4.98(2H,m),5.00(2H,s),4.89(1H,br s),4.24−4.23(1H,m),2.99(1H,dd,J=2.0,17.4Hz),2.91(1H,dd,J=4.4,17.4Hz),1.68(1H,d,J=5.6Hz);
13C−NMR(100MHz,CDCl)158.8,158.3,155.2,149.0,148.8,137.2,137.1,137.0,136.9,131.4,128.6,128.50,128.47,128.45,128.0,127.9,127.83,127.79,127.52,127.48,127.24,127.19,119.5,115.1,113.5,100.9,94.7,94.0,78.3,71.4,71.3,70.1,69.9,66.3,28.2;
1 H-NMR (400 MHz, CDCl 3 ) 7.46-7.26 (20 H, m), 7.14 (1 H, d, J = 1.7 Hz), 6.99 (1 H, dd, J = 1. 7, 8.3 Hz), 6.95 (1 H, d, J = 8.3 Hz), 6.27 (1 H, d, J = 2.2 Hz), 6.26 (1 H, d, J = 2.2 Hz) ), 5.18 (2H, s), 5.16 (2H, s), 5.13-4.98 (2H, m), 5.00 (2H, s), 4.89 (1H, br s) ), 4.24-4.23 (1H, m), 2.99 (1H, dd, J = 2.0, 17.4 Hz), 2.91 (1H, dd, J = 4.4, 17. 4 Hz), 1.68 (1H, d, J = 5.6 Hz);
13 C-NMR (100 MHz, CDCl 3 ) 158.8, 158.3, 155.2, 149.0, 148.8, 137.2, 137.1, 137.0, 136.9, 131.4, 128.6, 128.50, 128.47, 128.45, 128.0, 127.9, 127.83, 127.79, 127.52, 127.48, 127.24, 127.19, 119. 5, 115.1, 113.5, 100.9, 94.7, 94.0, 78.3, 71.4, 71.3, 70.1, 69.9, 66.3, 28.2;

製造例3:化合物1{(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−オクタノエート}の製造方法

Figure 2006249057
フラバン−3−オール(500mg,0.77mmol)を蒸留して脱水したジクロロメタン30mlに溶かし、氷冷しながらトリエチルアミン(0.32mL,2.31mmol)、オクタノイルクロライド(0.20mL,1.16mmol)、及び、N,N−ジメチルアミノピリジン(5mg)を加え、12時間室温で攪拌した。水で反応を止め、クロロホルムで抽出し、有機層を水及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。濾過・濃縮後、シリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル 8:1)で精製し、淡黄色油状物の(2R,3S)
Figure 2006249057
88mg、0.50mmol,65%収率)を得た。Production Example 3: Production Method of Compound 1 {(2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-octanoate}
Figure 2006249057
Flavan-3-ol (500 mg, 0.77 mmol) was dissolved in 30 ml of dehydrated dichloromethane, and triethylamine (0.32 mL, 2.31 mmol) and octanoyl chloride (0.20 mL, 1.16 mmol) were cooled with ice. And N, N-dimethylaminopyridine (5 mg) was added, and the mixture was stirred at room temperature for 12 hours. The reaction was quenched with water, extracted with chloroform, and the organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. After filtration and concentration, purification by silica gel column chromatography (n-hexane: ethyl acetate 8: 1) gave (2R, 3S) as a pale yellow oil.
Figure 2006249057
88 mg, 0.50 mmol, 65% yield).

[α] 24=+8.0(c1.64,CHCl);
H−NMR(400MHz,CDCl)7.43−7.28(20H,m),6.98(1H,br s),6.88(2H,br s),6.26(1H,d,J=2.2Hz),6.23(1H,d,J=2.2Hz),5.20−5.35(1H,m),5.13(2H,s),5.10(2H,s),5.00(4H,s),5,00−4.90(1H,m),2.89(1H,dd,J=5.2,16.9Hz),2.70(1H,dd,J=6.6,16.9Hz),2.26(2H,m),1.48−1.41(2H,m),1.28−1.14(8H,m),0.88(3H,t,J=6.8Hz);
H−NMR(400MHz,CDCl)7.43−7.28(20H,m),6.98(1H,br s),6.88(2H,br s),6.26(1H,d,J=2.2Hz),6.23(1H,d,J=2.2Hz),5.20−5.35(1H,m),5.13(2H,s),5.10(2H,s),5.00(4H,s),5,00−4.90(1H,m),2.89(1H,dd,J=5.2,16.9Hz),2.70(1H,dd,J=6.6,16.9Hz),2.26(2H,m),1.48−1.41(2H,m),1.28−1.14(8H,m),0.88(3H,t,J=6.8Hz);
13C−NMR(100MHz,CDCl)127.9,158.9,157.6,154.9,148.9,148.8,137.2,137.1,136.8,131.1,128.6,128.52,128.45,128.42(x2),128.0,127.9,127.8(x2),127.6,127.4,127.22,127.19,119.9,114.8,113.4,101.4,94.3,93.7,78.3,71.23,71.18,70.1,69.9,68.7,34.3,31.6,28.7(x2),24.8,24.0,22.6,14.0;IR(neat,cm−1)3065(w),3032(m),2928(s),2859(m),1734(s),1618(s),1593(s),1516(s),1377(s),1265(s),1145(s),1028(s),910(w),852(w),812(w),754(s);
FAB−MS(m/z)800(3.1),799([M+Na],6.1),778(15),777([M+H],27),776(6.0),633(72),632(100),631(17);
FAB−HRMS 計算値 C5153[M+H],777.3791;実測値:777.3787.
[Α] D 24 = + 8.0 (c1.64, CHCl 3 );
1 H-NMR (400 MHz, CDCl 3 ) 7.43-7.28 (20 H, m), 6.98 (1 H, br s), 6.88 (2 H, br s), 6.26 (1 H, d , J = 2.2 Hz), 6.23 (1H, d, J = 2.2 Hz), 5.20-5.35 (1H, m), 5.13 (2H, s), 5.10 (2H , S), 5.00 (4H, s), 5.00-4.90 (1H, m), 2.89 (1H, dd, J = 5.2, 16.9 Hz), 2.70 (1H , Dd, J = 6.6, 16.9 Hz), 2.26 (2H, m), 1.48-1.41 (2H, m), 1.28-1.14 (8H, m), 0 .88 (3H, t, J = 6.8 Hz);
1 H-NMR (400 MHz, CDCl 3 ) 7.43-7.28 (20 H, m), 6.98 (1 H, br s), 6.88 (2 H, br s), 6.26 (1 H, d , J = 2.2 Hz), 6.23 (1H, d, J = 2.2 Hz), 5.20-5.35 (1H, m), 5.13 (2H, s), 5.10 (2H , S), 5.00 (4H, s), 5.00-4.90 (1H, m), 2.89 (1H, dd, J = 5.2, 16.9 Hz), 2.70 (1H , Dd, J = 6.6, 16.9 Hz), 2.26 (2H, m), 1.48-1.41 (2H, m), 1.28-1.14 (8H, m), 0 .88 (3H, t, J = 6.8 Hz);
13 C-NMR (100 MHz, CDCl 3 ) 127.9, 158.9, 157.6, 154.9, 148.9, 148.8, 137.2, 137.1, 136.8, 131.1, 128.6, 128.52, 128.45, 128.42 (x2), 128.0, 127.9, 127.8 (x2), 127.6, 127.4, 127.22, 127.19, 119.9, 114.8, 113.4, 101.4, 94.3, 93.7, 78.3, 71.23, 71.18, 70.1, 69.9, 68.7, 34. 3, 31.6, 28.7 (x2), 24.8, 24.0, 22.6, 14.0; IR (neat, cm −1 ) 3065 (w), 3032 (m), 2928 (s ), 2859 (m), 1734 (s), 1618 (s), 1593 ( ), 1516 (s), 1377 (s), 1265 (s), 1145 (s), 1028 (s), 910 (w), 852 (w), 812 (w), 754 (s);
FAB-MS (m / z) 800 (3.1), 799 ([M + Na] + , 6.1), 778 (15), 777 ([M + H] + , 27), 776 (6.0), 633 (72), 632 (100), 631 (17);
FAB-HRMS calcd C 51 H 53 O 7 [M + H] +, 777.3791; Found: 777.3787.

Figure 2006249057
オクタノエート(218mg,0.28mmol)のテトラヒドロフラン−メタノール−水(20:1:1,22mL)に溶解し、触媒として20%Pd(OH)/C(5mg)を加え、水素雰囲気下12時間攪拌しベンジル基を脱保護した。触媒を濾過して除き、濾液を濃縮し、Cosmosil 75C−18OPNカラムクロマトグラフィー(メタノール−水)で精製し、無色油状物の化合物1{(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−オクタノエート}(111mg,0.27mmol,96%収率)を得た。
Figure 2006249057
Dissolve octanoate (218 mg, 0.28 mmol) in tetrahydrofuran-methanol-water (20: 1: 1, 22 mL), add 20% Pd (OH) 2 / C (5 mg) as a catalyst, and stir for 12 hours in a hydrogen atmosphere. The benzyl group was deprotected. The catalyst was removed by filtration, the filtrate was concentrated and purified by Cosmosil 75C-18OPN column chromatography (methanol-water) to give a colorless oily compound 1 {(2R, 3S) -3 ′, 4 ′, 5,7 -Tetrahydroxyflavan-3-octanoate} (111 mg, 0.27 mmol, 96% yield).

[α] 25=+7.9(c0.34,CHCO CH);
H−NMR(400MHz,CDCO CD−DO,10:1)6.83(1H,d,J=1.7Hz),6.76(1H,d,J=8.3Hz),6.65(1H,dd,J=1.7,8.3Hz),6.01(1H,d,J=2.2Hz),5.89(1H,d,J=2.2Hz),5.19(1H,ddd,J=5.4,6.6,6.8Hz),4.87(1H,d,J=6.6Hz),2.77(1H,dd,J=5.4,16.4Hz),2.56(1H,dd,J=6.8,16.4Hz),2.20−2.12(2H,m),1.45−1.38(2H,m),1.30−1.10(8H,m),0.82(3H,t,J=6.8Hz);
13C−NMR(100MHz,CDCO CD−DO,10:1)173.5,158.0,157.2,156.1,145.9,145.8,130.7,119.0,115.8,114.5,98.9,96.3,95.2,78.8,70.1,34.8,32.3,30.6−29.4(Cx2),25.6,24.7,23.2,14.3;
FAB−MS(m/z)440(10),439([M+Na],28),438(6.7),418(11),417([M+H],31),275(14),274(57),273(100),272(27);
FAB−HRMS 計算値 C2328[M+Na],439.1733;実測値:439.1747
[Α] D 25 = + 7.9 (c 0.34, CH 3 CO CH 3 );
1 H-NMR (400 MHz, CD 3 CO CD 3 -D 2 O, 10: 1) 6.83 (1H, d, J = 1.7 Hz), 6.76 (1H, d, J = 8.3 Hz) 6.65 (1H, dd, J = 1.7, 8.3 Hz), 6.01 (1H, d, J = 2.2 Hz), 5.89 (1H, d, J = 2.2 Hz), 5.19 (1H, ddd, J = 5.4, 6.6, 6.8 Hz), 4.87 (1H, d, J = 6.6 Hz), 2.77 (1H, dd, J = 5. 4, 16.4 Hz), 2.56 (1 H, dd, J = 6.8, 16.4 Hz), 2.20-2.12 (2 H, m), 1.45-1.38 (2 H, m ), 1.30-1.10 (8H, m), 0.82 (3H, t, J = 6.8 Hz);
13 C-NMR (100 MHz, CD 3 CO CD 3 -D 2 O, 10: 1) 173.5, 158.0, 157.2, 156.1, 145.9, 145.8, 130.7, 119 0.0, 115.8, 114.5, 98.9, 96.3, 95.2, 78.8, 70.1, 34.8, 32.3, 30.6-29.4 (Cx2), 25.6, 24.7, 23.2, 14.3;
FAB-MS (m / z) 440 (10), 439 ([M + Na] + , 28), 438 (6.7), 418 (11), 417 ([M + H] + , 31), 275 (14), 274 (57), 273 (100), 272 (27);
FAB-HRMS calcd C 23 H 28 O 7 [M + Na] +, 439.1733; Found: 439.1747

製造例4:化合物2{(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−ドデカノエート}の製造方法
製造例3に記載の化合物1の合成と同様にして、製造例1で得られた(2R,3S

Figure 2006249057
.77mmol)のジクロロメタン溶液(30mL)に、氷冷しながらトリエチルアミン(0.32mL,2.31mmol)、ドデカノイルクロライド(0.24mL,1.16mmol)、及び、N,N−ジメチルアミノピリジン(5mg)を加え反応させ、後処理した後、シリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル 8:1)で精製し、淡黄色油状物の(2R,3S)−3’,4’,5
Figure 2006249057
mol,76%収率)を得た。Production Example 4: Production Method of Compound 2 {(2R, 3S) -3 ′, 4 ′, 5,7-Tetrahydroxyflavan-3-dodecanoate} Production in the same manner as the synthesis of Compound 1 described in Production Example 3. Obtained in Example 1 (2R, 3S
Figure 2006249057
. 77 mmol) in dichloromethane (30 mL), ice-cooled triethylamine (0.32 mL, 2.31 mmol), dodecanoyl chloride (0.24 mL, 1.16 mmol), and N, N-dimethylaminopyridine (5 mg) The reaction was followed by post-treatment, and purified by silica gel column chromatography (n-hexane: ethyl acetate 8: 1) to give (2R, 3S) -3 ′, 4 ′, 5 as a pale yellow oil.
Figure 2006249057
mol, 76% yield).

[α] 23=+8.5(C1.32,CHCl);
H−NMR(400MHz,CDCl)7.43−7.25(20H,m),6.98(1H,br s),6.88(2H,br s),6.26(1H,d,J=2.2Hz),6.24(1H,d,J=2.2Hz),5.32(1H,ddd,J=5.3,6.6,9.5Hz),5.13(2H,s),5.10(2H,s),4.99(4H,s),4.98(1H,d,J=9.5Hz),2.90(1H,dd,J=5.3,16.8Hz),2.70(1H,dd,J=6.6,16.8Hz),2.22−2.09(2H,m),11.48−1.41(2H,m),1.28−1.10(12H,m),0.86(3H,t,J=6.8Hz);
13C−NMR(100MHz,CDCl)172.9,158.9,157.6,154.8,148.9,148.8,137.2,137.0,136.8,131.0,128.6,128.49,128.43,128.40(x2),128.0,127.9,127.7,127.5,127.4,127.19(x2),127.17,119.9,114.7,113.3,101.4,94.3,93.7,78.3,71.21,71.15,70.1,69.9,68.7,34.3,31.8,29.3,29.24,29.21,28.9,24.8,24.0,22.6,14.1;
IR(neat,cm−1)3065(w),3032(w),2926(s),2855(s),1950(w),1871(w),1811(w),1734(s),1620(s),1593(s),1498(s),1379(s),1265(s),1180(s),1147(s),1028(s),910(w),850(w),812(m),754(m);
FAB−MS(m/z)828(5.6),827([M+Na],7.7),807(5.5),806(17),805([M+H],29),804(6.9),634(22),633(69),632(100),631(22);
FAB−HRMS 計算値 C5357[M+H],805.4104;実測値:805.4135.
[Α] D 23 = + 8.5 (C1.32, CHCl 3 );
1 H-NMR (400 MHz, CDCl 3 ) 7.43-7.25 (20 H, m), 6.98 (1 H, br s), 6.88 (2 H, br s), 6.26 (1 H, d , J = 2.2 Hz), 6.24 (1H, d, J = 2.2 Hz), 5.32 (1H, ddd, J = 5.3, 6.6, 9.5 Hz), 5.13 ( 2H, s), 5.10 (2H, s), 4.99 (4H, s), 4.98 (1H, d, J = 9.5 Hz), 2.90 (1H, dd, J = 5. 3, 16.8 Hz), 2.70 (1H, dd, J = 6.6, 16.8 Hz), 2.22-2.09 (2H, m), 11.48-1.41 (2H, m ), 1.28-1.10 (12H, m), 0.86 (3H, t, J = 6.8 Hz);
13 C-NMR (100 MHz, CDCl 3 ) 172.9, 158.9, 157.6, 154.8, 148.9, 148.8, 137.2, 137.0, 136.8, 131.0, 128.6, 128.49, 128.43, 128.40 (x2), 128.0, 127.9, 127.7, 127.5, 127.4, 127.19 (x2), 127.17, 119.9, 114.7, 113.3, 101.4, 94.3, 93.7, 78.3, 71.21, 71.15, 70.1, 69.9, 68.7, 34. 3, 31.8, 29.3, 29.24, 29.21, 28.9, 24.8, 24.0, 22.6, 14.1;
IR (neat, cm −1 ) 3065 (w), 3032 (w), 2926 (s), 2855 (s), 1950 (w), 1871 (w), 1811 (w), 1734 (s), 1620 ( s), 1593 (s), 1498 (s), 1379 (s), 1265 (s), 1180 (s), 1147 (s), 1028 (s), 910 (w), 850 (w), 812 ( m), 754 (m);
FAB-MS (m / z) 828 (5.6), 827 ([M + Na] + , 7.7), 807 (5.5), 806 (17), 805 ([M + H] + , 29), 804 (6.9), 634 (22), 633 (69), 632 (100), 631 (22);
FAB-HRMS calcd C 53 H 57 O 7 [M + H] +, 805.4104; Found: 805.4135.

Figure 2006249057
ラバン−3−ドデカノエート(400mg,0.50mmol)のテトラヒドロフラン−メタノール−水(20:1:1,22mL)溶液に、20%Pd(OH)/C(5mg)を加え、水素雰囲気下12時間攪拌しベンジル基を脱保護した。後処理後、Cosmosil 75C−18OPNカラムクロマトグラフィー(メタノール−水)で精製し、無色油状物の化合物2{(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−ドデカノエート}(190mg,0.43mmol,86%収率)を得た。
Figure 2006249057
20% Pd (OH) 2 / C (5 mg) was added to a solution of Laban-3-dodecanoate (400 mg, 0.50 mmol) in tetrahydrofuran-methanol-water (20: 1: 1, 22 mL), and the mixture was added under a hydrogen atmosphere for 12 hours. Stir to deprotect the benzyl group. After the workup, the product was purified by Cosmosil 75C-18OPN column chromatography (methanol-water), and colorless oily compound 2 {(2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-dodecanoate } (190 mg, 0.43 mmol, 86% yield).

[α] 25=+6.5(C0.34,CHCO CH);
H−NMR(400MHz,CDCO CD−DO,10:1)6.83(1H,d,J=1.7Hz),6.76(1H,d,J=8.3Hz),6.66(1H,dd,J=1.7,8.3Hz),6.01(1H,d,J=2.2Hz),5.89(1H,d,J=2.2Hz),5.19(1H,ddd,J=5.3,6.8,6.8Hz),4.87(1H,d,J=6.8Hz),2.77(1H,dd,J=5.3,16.3Hz),2.56(1H,dd,J=6.8,16.3Hz),2.18−2.14(2H,m),1.45−1.35(2H,m),1.25−1.10(12H,m),0.82(3H,t,J=6.8Hz);
13C−NMR(100MHz,CDCO CD−DO,10:1)173.3,157.8,157.1,155.9,145.71,145.66,130.56,118.8,115.6,114.3,98.8,96.1,95.0,78.7,69.9,34.6,32.3,30.4−29.2(Cx4),25.4,24.5,23.1,14.2;
FAB−MS(m/z)468(11),467([M+Na],29),466(6.7),446(8.8),445([M+H],21),275(16),274(59),273(100),272(30);
FAB−HRMS 計算値 C2533[M+H],445.2226;実測値:445.2213.
[Α] D 25 = + 6.5 (C0.34, CH 3 CO CH 3 );
1 H-NMR (400 MHz, CD 3 CO CD 3 -D 2 O, 10: 1) 6.83 (1H, d, J = 1.7 Hz), 6.76 (1H, d, J = 8.3 Hz) 6.66 (1H, dd, J = 1.7, 8.3 Hz), 6.01 (1H, d, J = 2.2 Hz), 5.89 (1H, d, J = 2.2 Hz), 5.19 (1H, ddd, J = 5.3, 6.8, 6.8 Hz), 4.87 (1H, d, J = 6.8 Hz), 2.77 (1H, dd, J = 5. 3, 16.3 Hz), 2.56 (1H, dd, J = 6.8, 16.3 Hz), 2.18-2.14 (2H, m), 1.45-1.35 (2H, m ), 1.25-1.10 (12H, m), 0.82 (3H, t, J = 6.8 Hz);
13 C-NMR (100 MHz, CD 3 CO CD 3 -D 2 O, 10: 1) 173.3, 157.8, 157.1, 155.9, 145.71, 145.66, 130.56, 118 , 115.6, 114.3, 98.8, 96.1, 95.0, 78.7, 69.9, 34.6, 32.3, 30.4-29.2 (Cx4), 25.4, 24.5, 23.1, 14.2;
FAB-MS (m / z) 468 (11), 467 ([M + Na] + , 29), 466 (6.7), 446 (8.8), 445 ([M + H] + , 21), 275 (16 ), 274 (59), 273 (100), 272 (30);
FAB-HRMS calcd C 25 H 33 O 7 [M + H] +, 445.2226; Found: 445.2213.

製造例5:化合物3{(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−ラウロエート}の製造方法
製造例3に記載の化合物1の合成と同様にして、製造例1で得られた(2R,3S

Figure 2006249057
.14mmol)のジクロロメタン溶液(50mL)に、氷冷しながらトリエチルアミン(0.32mL,2.28mmol)、ラウロイルクロライド(0.39mL,1.70mmol)、及び、N,N−ジメチルアミノピリジン(5mg)を加え反応させ、後処理した後、シリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル 6:1)で精製し、白色粉末の(2R,3S)−3’,4’,5,7−テ
Figure 2006249057
76%収率)を得た。Production Example 5: Production method of Compound 3 {(2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-lauroate} Production in the same manner as the synthesis of Compound 1 described in Production Example 3. Obtained in Example 1 (2R, 3S
Figure 2006249057
. 14 mmol) in dichloromethane (50 mL) with ice cooling, triethylamine (0.32 mL, 2.28 mmol), lauroyl chloride (0.39 mL, 1.70 mmol), and N, N-dimethylaminopyridine (5 mg). After addition, reaction, and post-treatment, the product was purified by silica gel column chromatography (n-hexane: ethyl acetate 6: 1) to give (2R, 3S) -3 ′, 4 ′, 5,7-te of white powder.
Figure 2006249057
76% yield).

[α] 25=+8.7(c2.78,CHCl);
H−NMR(400MHz,CDCl)7.42−7.24(20H,m),6.98(1H,s),6.87(2H,s),6.25(1H,br s),6.24(1H,br s),5.32(1H,dt,J=5.1,6.8Hz),5.12(2H,s),5.09(2H,s),4.98(4H,s),4.97(1H,d,J=6.8Hz),2.90(1H,dd,J=5.1,16.9Hz),2.70(1H,dd,J=6.8,16.9Hz),2.21−2.10(2H,m),1.47−1.10(21H,m);13C−NMR(100MHz,CDCl)172.9,158.9,157.7,154.9,148.93,148.88,137.2,137.1,136.7,131.1,128.6,128.53,128.49,128.46,128.0,127.9,127.8(x2),127.6,127.4,127.23,127.22,120.0,114.8,113.4,101.5,94.4,93.7,78.3,71.24,71.18,70.1,69.9,68.7,60.4,34.3,31.9,29.7,29.6,29.5,29.4,29.3,29.0,24.8,22.7,14.2,14.1;
IR(neat,cm−1)3065(w),3032(m),2926(s),2855(s),2361(w),1950(w),1869(w),1809(w),1736(s),1680(s),1593(s),1514(s),1454(s),1377(s),1263(s),1219(s),1180(s),1147(s),1028(s),910(w),851(w),810(m),735(s);
FAB−MS(m/z)856(4.6),855([M+Na],6.0),835(6,5),834(17),833([M+H],29),832(7.1),831(8.8),634(24),633(69),632(100),631(21);
FAB−HRMS 計算値 C5561[M+H],実測値;found:833.4401.
[Α] D 25 = + 8.7 (c 2.78, CHCl 3 );
1 H-NMR (400 MHz, CDCl 3 ) 7.42-7.24 (20H, m), 6.98 (1H, s), 6.87 (2H, s), 6.25 (1H, br s) , 6.24 (1H, br s), 5.32 (1H, dt, J = 5.1, 6.8 Hz), 5.12 (2H, s), 5.09 (2H, s), 4. 98 (4H, s), 4.97 (1H, d, J = 6.8 Hz), 2.90 (1H, dd, J = 5.1, 16.9 Hz), 2.70 (1H, dd, J = 6.8, 16.9 Hz), 2.21-2.10 (2H, m), 1.47-1.10 (21 H, m); 13 C-NMR (100 MHz, CDCl 3 ) 172.9, 158.9, 157.7, 154.9, 148.93, 148.88, 137.2, 137.1, 136.7, 131.1, 128 6, 128.53, 128.49, 128.46, 128.0, 127.9, 127.8 (x2), 127.6, 127.4, 127.23, 127.22, 120.0, 114 8, 113.4, 101.5, 94.4, 93.7, 78.3, 71.24, 71.18, 70.1, 69.9, 68.7, 60.4, 34.3 31.9, 29.7, 29.6, 29.5, 29.4, 29.3, 29.0, 24.8, 22.7, 14.2, 14.1;
IR (neat, cm −1 ) 3065 (w), 3032 (m), 2926 (s), 2855 (s), 2361 (w), 1950 (w), 1869 (w), 1809 (w), 1736 ( s), 1680 (s), 1593 (s), 1514 (s), 1454 (s), 1377 (s), 1263 (s), 1219 (s), 1180 (s), 1147 (s), 1028 ( s), 910 (w), 851 (w), 810 (m), 735 (s);
FAB-MS (m / z) 856 (4.6), 855 ([M + Na] + , 6.0), 835 (6, 5), 834 (17), 833 ([M + H] + , 29), 832 (7.1), 831 (8.8), 634 (24), 633 (69), 632 (100), 631 (21);
FAB-HRMS calculated C 55 H 61 O 7 [M + H] + , found; found: 833.4401.

Figure 2006249057
ラバン−3−ラウロエート(91mg,0.11mmol)のテトラヒドロフラン−メタノール−水(20:1:1,11mL)溶液に、20%Pd(OH)/C(5mg)を加え、水素雰囲気下12時間攪拌しベンジル基を脱保護した。後処理後、Cosmosil 75C−18OPNカラムクロマトグラフィー(メタノール−水)で精製し、無色アモルファスの化合物3{(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−ラウロエート}(34mg,0.072mmol,65%収率)を得た。
Figure 2006249057
20% Pd (OH) 2 / C (5 mg) was added to a solution of Laban-3-lauroate (91 mg, 0.11 mmol) in tetrahydrofuran-methanol-water (20: 1: 1, 11 mL), and the mixture was added under a hydrogen atmosphere for 12 hours. Stir to deprotect the benzyl group. After the post-treatment, the product was purified by Cosmosil 75C-18OPN column chromatography (methanol-water) and colorless amorphous compound 3 {(2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-lauroate} (34 mg, 0.072 mmol, 65% yield) was obtained.

[α] 23=+3.5(c0.68, EtOH);
H−NMR(400MHz,CDOD)6.78(1H,d,J=2.0Hz),6.72(1H,d,J=8.3Hz),6.67(1H,dd,J=2.0,8.3Hz),5.94(1H,d,J=2.4Hz),5.88(1H,d,J=2,4Hz),5.19(1H,ddd,J=5.4,6.8,7.1Hz),4.85(1H,d,J=6.8Hz),2.80(1H,dd,J=5.4,16.4Hz),2.59(1H,dd,J=7.1,16.4Hz),2.19(2H,m),1.48−1.39(2H,m),1.35−1.13(6H,m),0.88(3H,t,J=7.1Hz);
13C−NMR(100MHz,CDCl)174.7,158.1,157.6,156.6,146.4,146.3,131.1,119.5,116.1,114.8,96.7,96.5,95.5,79.6,70.9,35.2,33.1,30.7(x2),30.51,30.48,30.3,30.0,26.0,25.1,23.7,14.5;
FAB−MS(m/z)496(3.4),495([M+Na],9.9),474(3.8),473([M+H],11),392(7.9),391(27),330(27),329(100);
FAB−HRMS 計算値 C2737[M+H],473.2539;実測値:473.2571.
[Α] D 23 = + 3.5 (c 0.68, EtOH);
1 H-NMR (400 MHz, CD 3 OD) 6.78 (1H, d, J = 2.0 Hz), 6.72 (1H, d, J = 8.3 Hz), 6.67 (1H, dd, J = 2.0, 8.3 Hz), 5.94 (1H, d, J = 2.4 Hz), 5.88 (1H, d, J = 2, 4 Hz), 5.19 (1H, ddd, J = 5.4, 6.8, 7.1 Hz), 4.85 (1H, d, J = 6.8 Hz), 2.80 (1H, dd, J = 5.4, 16.4 Hz), 2.59 (1H, dd, J = 7.1, 16.4 Hz), 2.19 (2H, m), 1.48-1.39 (2H, m), 1.35-1.13 (6H, m) , 0.88 (3H, t, J = 7.1 Hz);
13 C-NMR (100 MHz, CDCl 3 ) 174.7, 158.1, 157.6, 156.6, 146.4, 146.3, 131.1, 119.5, 116.1, 114.8, 96.7, 96.5, 95.5, 79.6, 70.9, 35.2, 33.1, 30.7 (x2), 30.51, 30.48, 30.3, 30.0 , 26.0, 25.1, 23.7, 14.5;
FAB-MS (m / z) 496 (3.4), 495 ([M + Na] + , 9.9), 474 (3.8), 473 ([M + H] + , 11), 392 (7.9) , 391 (27), 330 (27), 329 (100);
FAB-HRMS calcd C 27 H 37 O 7 [M + H] +, 473.2539; Found: 473.2571.

製造例6:化合物4{(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−ミリストエート}の製造方法
製造例3に記載の化合物1の合成と同様にして、製造例1で得られた(2R,3S

Figure 2006249057
.36mmol)のジクロロメタン溶液(50mL)に、氷冷しながらトリエチルアミン(0.57mL,4.08mmol)、ミリストイルクロライド(0.56mL,2.04mmol)、及び、N,N−ジメチルアミノピリジン(5mg)を加え反応させ、後処理した後、シリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル 8:1)で精製し、白色粉末の(2R,3S)−3’,4’,5,7−
Figure 2006249057
l,72%収率)を得た。Production Example 6: Production method of compound 4 {(2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-myristate} Production in the same manner as the synthesis of compound 1 described in Production Example 3. Obtained in Example 1 (2R, 3S
Figure 2006249057
. 36 mmol) in dichloromethane (50 mL) with ice cooling, triethylamine (0.57 mL, 4.08 mmol), myristoyl chloride (0.56 mL, 2.04 mmol), and N, N-dimethylaminopyridine (5 mg). After addition, reaction, and post-treatment, the product was purified by silica gel column chromatography (n-hexane: ethyl acetate 8: 1) to give (2R, 3S) -3 ′, 4 ′, 5,7-
Figure 2006249057
l, 72% yield).

[α] 23=+8.6(c0.72,CHCl);
H−NMR(400MHz,CDCl)7.43−7.24(20H,m),6.97(1H,br s),6.88(1H,br s),6.25(1H,d,J=2.2Hz),6.23(1H,d,J=2.2Hz),5.31(1H,ddd,J=5.3,6.6,6.8Hz),5.13(2H,s),5.10(2H,s),5,00(4H,s),4.97(1H,d,J=6.6Hz),2.89(1H,dd,J=5.3,16.8Hz),2.70(1H,dd,J=6.8,16.8Hz),2.22−2.09(2H,m),1.47−1.42(2H,m),1.35−1.10(20H,m),0.87(3H,t,J=6.8Hz);13C−NMR(100MHz,CDCl)172.9,158.9,157.6,154.8,148.9,148.8,137.2,137.0,136.8,131.0,128.6,128.5,128.44,128.40,128.0,127.9,127.7(x2),127.5,127.4(x2),127.20,127.17,119.9,114.7,113.4,101.4,94.3,93.7,78.3,71.22,71.15,70.1,69.9,68.7,34.3,31.9(x2),29.7,29.6(x2),29.4,29.3,29.2,28.9,24.8,24.0,22.7,14.1;
IR(neat,cm−1)3065(w),3032(w),2926(s),2855(s),1736(s),1620(s),1593(s),1376(m),1265(m),1146(s),1028(m),910(w),850(w),810(w),735(m);
FAB−MS(m/z)884([M+Na],8.1),883(13.1),862(16),861([M+H],28),860(7.6),634(25),633(69),632(100),631(20);
FAB−HRMS 計算値 C5765[M+H],861.4730;実測値:861.4737.
[Α] D 23 = + 8.6 (c 0.72, CHCl 3 );
1 H-NMR (400 MHz, CDCl 3 ) 7.43-7.24 (20 H, m), 6.97 (1 H, br s), 6.88 (1 H, br s), 6.25 (1 H, d , J = 2.2 Hz), 6.23 (1H, d, J = 2.2 Hz), 5.31 (1H, ddd, J = 5.3, 6.6, 6.8 Hz), 5.13 ( 2H, s), 5.10 (2H, s), 5.00 (4H, s), 4.97 (1H, d, J = 6.6 Hz), 2.89 (1H, dd, J = 5. 3, 16.8 Hz), 2.70 (1H, dd, J = 6.8, 16.8 Hz), 2.22-2.09 (2H, m), 1.47-1.42 (2H, m ), 1.35-1.10 (20H, m) , 0.87 (3H, t, J = 6.8Hz); 13 C-NMR (100MHz, CDCl 3) 172.9,158 9, 157.6, 154.8, 148.9, 148.8, 137.2, 137.0, 136.8, 131.0, 128.6, 128.5, 128.44, 128.40, 128.0, 127.9, 127.7 (x2), 127.5, 127.4 (x2), 127.20, 127.17, 119.9, 114.7, 113.4, 101.4, 94.3, 93.7, 78.3, 71.22, 71.15, 70.1, 69.9, 68.7, 34.3, 31.9 (x2), 29.7, 29.6 (X2), 29.4, 29.3, 29.2, 28.9, 24.8, 24.0, 22.7, 14.1;
IR (neat, cm −1 ) 3065 (w), 3032 (w), 2926 (s), 2855 (s), 1736 (s), 1620 (s), 1593 (s), 1376 (m), 1265 ( m), 1146 (s), 1028 (m), 910 (w), 850 (w), 810 (w), 735 (m);
FAB-MS (m / z) 884 ([M + Na] + , 8.1), 883 (13.1), 862 (16), 861 ([M + H] + , 28), 860 (7.6), 634 (25), 633 (69), 632 (100), 631 (20);
FAB-HRMS calcd C 57 H 65 O 7 [M + H] +, 861.4730; Found: 861.4737.

Figure 2006249057
ラバン−3−ミリストエート(500mg,0.58mmol)のテトラヒドロフラン−メタノール−水(20:1:1,22mL)溶液に、20%Pd(OH)/C(5mg)を加え、水素雰囲気下12時間攪拌しベンジル基を脱保護した。後処理後、Cosmosil 75C−18OPNカラムクロマトグラフィー(メタノール−水)で精製し、無色アモルファスの化合物4{(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−ミリストエート}(212mg,0.42mmol,72%収率)を得た。
Figure 2006249057
20% Pd (OH) 2 / C (5 mg) was added to a solution of Laban-3-myristate (500 mg, 0.58 mmol) in tetrahydrofuran-methanol-water (20: 1: 1, 22 mL), and the mixture was added under a hydrogen atmosphere for 12 hours. Stir to deprotect the benzyl group. After the post-treatment, the product was purified by Cosmosil 75C-18OPN column chromatography (methanol-water) and colorless amorphous compound 4 {(2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-myristate} (212 mg, 0.42 mmol, 72% yield) was obtained.

[α] 25=+6.3(c1.46,CHCO CH);
H−NMR(400MHz,CDCO CD−DO,10:1)6.80(1H,d,J=1.7Hz),6.74(1H,d,J=8.3Hz),6.63(1H,dd,J=1.7,8.3Hz),5.99(1H,d,J=2.2Hz),5.87(1H,d,J=2.2Hz),5.18(1H,ddd,J=5.4,6.4,6.6Hz),4.86(1H,d,J=6.4Hz),2.73(1H,dd,J=5.4,16.4Hz),2.54(1H,dd,J=6.6,16.4Hz),2.19−2.12(2H,m),1.43−1.37(2H,m),1.25−1.15(20H,m),0.79(3H,t,J=6.8Hz);
13C−NMR(100MHz,CDCO CD−DO,10:1)173.5,157.4,156.8,155.7,145.5,130.4,118.7,115.6,114.2,98.7,96.0,95.0,78.4,69.7,34.5,32.2,30.4−29.2(Cx9),25.2,24.2,22.9,14.1;
FAB−MS(m/z)524(17),523([M+Na],34),522(7.4),502(8.7),501([M+H],18),275(21),274(72),273(100).171(29);
FAB−HRMS 計算値 C2941[M+H],501.2852;f実測値:501.2879.
[Α] D 25 = + 6.3 (c1.46, CH 3 CO CH 3 );
1 H-NMR (400 MHz, CD 3 CO CD 3 -D 2 O, 10: 1) 6.80 (1H, d, J = 1.7 Hz), 6.74 (1H, d, J = 8.3 Hz) , 6.63 (1H, dd, J = 1.7, 8.3 Hz), 5.99 (1H, d, J = 2.2 Hz), 5.87 (1H, d, J = 2.2 Hz), 5.18 (1H, ddd, J = 5.4, 6.4, 6.6 Hz), 4.86 (1H, d, J = 6.4 Hz), 2.73 (1H, dd, J = 5. 4, 16.4 Hz), 2.54 (1H, dd, J = 6.6, 16.4 Hz), 2.19-2.12 (2H, m), 1.43-1.37 (2H, m ), 1.25-1.15 (20H, m), 0.79 (3H, t, J = 6.8 Hz);
13 C-NMR (100 MHz, CD 3 CO CD 3 -D 2 O, 10: 1) 173.5, 157.4, 156.8, 155.7, 145.5, 130.4, 118.7, 115 6, 114.2, 98.7, 96.0, 95.0, 78.4, 69.7, 34.5, 32.2, 30.4-29.2 (Cx9), 25.2. 24.2, 22.9, 14.1;
FAB-MS (m / z) 524 (17), 523 ([M + Na] + , 34), 522 (7.4), 502 (8.7), 501 ([M + H] + , 18), 275 (21 ), 274 (72), 273 (100). 171 (29);
FAB-HRMS calculated C 29 H 41 O 7 [M + H] + , 501.2852; f found: 501.2879.

製造例7:化合物5{(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−パルミトエート}の製造方法
製造例3に記載の化合物1の合成と同様にして、製造例1で得られた(2R,3S

Figure 2006249057
.07mmol)のジクロロメタン溶液(50mL)に、氷冷しながらトリエチルアミン(0.45mL,3.21mmol)、パルミトイルクロライド(0.49mL,1.60mmol)、及び、N,N−ジメチルアミノピリジン(5mg)を加え反応させ、後処理した後、シリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル 8:1)で精製し、白色粉末の(2R,3S)−3’,4’,5,7−
Figure 2006249057
l,72%収率)を得た。Production Example 7: Production method of Compound 5 {(2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-palmitoate} Production in the same manner as the synthesis of Compound 1 described in Production Example 3. Obtained in Example 1 (2R, 3S
Figure 2006249057
. 07 mmol) in dichloromethane (50 mL) with ice cooling, triethylamine (0.45 mL, 3.21 mmol), palmitoyl chloride (0.49 mL, 1.60 mmol) and N, N-dimethylaminopyridine (5 mg). After addition, reaction, and post-treatment, the product was purified by silica gel column chromatography (n-hexane: ethyl acetate 8: 1) to give (2R, 3S) -3 ′, 4 ′, 5,7-
Figure 2006249057
l, 72% yield).

[α] 24=+7.4(c0.74,CHCl);
H−NMR(400MHz,CDCl)7.51−7.25(20H,m),6.97(1H,br s),6.88(2H,br s),6.26(1H,d,J=1H,d,J=2.2Hz),6.23(1H,d,J=2.2Hz),5.32(1H,dt,J=5.4,6.8Hz),5.13(2H,s),5.10(2H,s),5.00(4H,s),4.98(1H,d,J=6.8Hz),2.89(1H,dd,J=5.4,16.8Hz),2.70(1H,dd,J=6.8,16.8Hz),2.22−2.09(2H,m),1.48−1.42(2H,m),1.35−1.10(24H,m),0.88(3H,t,J=6.8Hz);
13C−NMR(100MHz,CDCl)172.9,158.9,157.6,154.8,148.9,148.8,137.2,137.0,136.8,131.0,128.6,128.5,128.42,128.40,128.0,127.9,127.7(x2),127.5,127.4(x2),127.20,127.18,119.9,114.7,113.3,101.4,94.3,93.7,78.3,71.21,71.15,70.1,69.9,68.7,34.3,31.9,29.3(x3),29.6(x3),29.4,29.3,29.2,28.9,24.8,24.0,22.7,14.1;
IR(neat,cm−1)3065(w),3032(w),2924(s),2853(s),1736(m),1618(m),1593(m),1514(m FAB−MS(m/z)912(7.9),911([M+Na],11),891(12),890([M+H],19),634(18),633(58),632(75),631(23),321(27),319(100);),1377(m),1265(m),1146(s),1028(m),910(w),850(w),810(w),735(m);
FAB−HRMS 計算値 C5969[M+H],889.5043;実測値:889.5082.
[Α] D 24 = + 7.4 (c0.74, CHCl 3 );
1 H-NMR (400 MHz, CDCl 3 ) 7.51-7.25 (20H, m), 6.97 (1H, brs), 6.88 (2H, brs), 6.26 (1H, d , J = 1H, d, J = 2.2 Hz), 6.23 (1H, d, J = 2.2 Hz), 5.32 (1H, dt, J = 5.4, 6.8 Hz), 5. 13 (2H, s), 5.10 (2H, s), 5.00 (4H, s), 4.98 (1H, d, J = 6.8 Hz), 2.89 (1H, dd, J = 5.4, 16.8 Hz), 2.70 (1H, dd, J = 6.8, 16.8 Hz), 2.22-2.09 (2H, m), 1.48-1.42 (2H , M), 1.35-1.10 (24H, m), 0.88 (3H, t, J = 6.8Hz);
13 C-NMR (100 MHz, CDCl 3 ) 172.9, 158.9, 157.6, 154.8, 148.9, 148.8, 137.2, 137.0, 136.8, 131.0, 128.6, 128.5, 128.42, 128.40, 128.0, 127.9, 127.7 (x2), 127.5, 127.4 (x2), 127.20, 127.18, 119.9, 114.7, 113.3, 101.4, 94.3, 93.7, 78.3, 71.21, 71.15, 70.1, 69.9, 68.7, 34. 3, 31.9, 29.3 (x3), 29.6 (x3), 29.4, 29.3, 29.2, 28.9, 24.8, 24.0, 22.7, 14. 1;
IR (neat, cm −1 ) 3065 (w), 3032 (w), 2924 (s), 2853 (s), 1736 (m), 1618 (m), 1593 (m), 1514 (m FAB-MS ( m / z) 912 (7.9), 911 ([M + Na] + , 11), 891 (12), 890 ([M + H] + , 19), 634 (18), 633 (58), 632 (75) , 631 (23), 321 (27), 319 (100);), 1377 (m), 1265 (m), 1146 (s), 1028 (m), 910 (w), 850 (w), 810 ( w), 735 (m);
FAB-HRMS calculated C 59 H 69 O 7 [M + H] + , 889.55043; found: 889.5082.

Figure 2006249057
ラバン−3−パルミトエート(400mg,0.45mmol)のテトラヒドロフラン−メタノール−水(20:1:1,22mL)溶液に、20%Pd(OH)/C(5mg)を加え、水素雰囲気下12時間攪拌しベンジル基を脱保護した。後処理後、Cosmosil 75C−18OPNカラムクロマトグラフィー(メタノール−水)で精製し、白色粉末の化合物5{(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−パルミトエート}(188mg,0.36mmol,79%収率)を得た。
Figure 2006249057
20% Pd (OH) 2 / C (5 mg) was added to a solution of Laban-3-palmitoate (400 mg, 0.45 mmol) in tetrahydrofuran-methanol-water (20: 1: 1, 22 mL), and the mixture was added under a hydrogen atmosphere for 12 hours. Stir to deprotect the benzyl group. After the post-treatment, the product was purified by Cosmosil 75C-18OPN column chromatography (methanol-water) and white powdered compound 5 {(2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-palmiate} (188 mg, 0.36 mmol, 79% yield) was obtained.

[α] 25=+6.1(c1.14,CHCO CH);
H−NMR(400MHz,CDCO CD−DO,10:1)6.81(1H,d,J=1.7Hz),6.74(1H,d,J=8.3Hz),6.64(1H,dd,J=1.7,8.3Hz),6.00(1H,d,J=2.2Hz),5.88(1H,d,J=2.2Hz),5.18(1H,ddd,J=5.4,6.5,6.6Hz),4.86(1H,d,J=6.6Hz),2.75(1H,dd,J=5.4,16.4Hz),2.55(1H,dd,J=6.5,16.4Hz),2.21−2.13(2H,m),1.44−1.37(2H,m),1.30−1.10(24H,m),0.81(3H,t,J=6.8Hz);
13C−NMR(100MHz,CDCO CD−DO,10:1)173.4,157.5,156.9,155.7,145.6,145.5,130.4,118.7,115.6,114.2,98.7,96.1,95.0,78.5,69.8,34.5,32.3,30.4−29.2(Cx10),25.3,24.3,23.0,14.1;
FAB−MS(m/z)552(10),551([M+Na],30),550(6.3),530(3.8),529([M+H],11),275(12),274(62),273(100);
FAB−HRMS 計算値 C3145[M+H],529.3165;実測値:529.3143.
[Α] D 25 = + 6.1 (c1.14, CH 3 CO CH 3 );
1 H-NMR (400 MHz, CD 3 CO CD 3 -D 2 O, 10: 1) 6.81 (1H, d, J = 1.7 Hz), 6.74 (1H, d, J = 8.3 Hz) 6.64 (1H, dd, J = 1.7, 8.3 Hz), 6.00 (1H, d, J = 2.2 Hz), 5.88 (1H, d, J = 2.2 Hz), 5.18 (1H, ddd, J = 5.4, 6.5, 6.6 Hz), 4.86 (1H, d, J = 6.6 Hz), 2.75 (1H, dd, J = 5. 4, 16.4 Hz), 2.55 (1 H, dd, J = 6.5, 16.4 Hz), 2.21-2.13 (2 H, m), 1.44-1.37 (2 H, m ), 1.30-1.10 (24H, m), 0.81 (3H, t, J = 6.8 Hz);
13 C-NMR (100 MHz, CD 3 CO CD 3 -D 2 O, 10: 1) 173.4, 157.5, 156.9, 155.7, 145.6, 145.5, 130.4, 118 7, 115.6, 114.2, 98.7, 96.1, 95.0, 78.5, 69.8, 34.5, 32.3, 30.4-29.2 (Cx10), 25.3, 24.3, 23.0, 14.1;
FAB-MS (m / z) 552 (10), 551 ([M + Na] + , 30), 550 (6.3), 530 (3.8), 529 ([M + H] + , 11), 275 (12 ), 274 (62), 273 (100);
FAB-HRMS calculated C 31 H 45 O 7 [M + H] + , 59.3165; found: 529.3143.

製造例8:化合物6{(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−ステアロエート}の製造方法
製造例3に記載の化合物1の合成と同様にして、製造例1で得られた(2R,3S

Figure 2006249057
.77mmol)のジクロロメタン溶液(50mL)に、氷冷しながらトリエチルアミン(0.32mL,2.31mmol)、ステアロイルクロライド(0.39mL,1.16mmol)、及び、N,N−ジメチルアミノピリジン(5mg)を加え反応させ、後処理した後、シリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル 7:1)で精製し、白色粉末の(2R,3S)−3’,4’,5,7−
Figure 2006249057
l,100%収率)を得た。Production Example 8: Production method of compound 6 {(2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-stearate} Production in the same manner as the synthesis of compound 1 described in Production Example 3. Obtained in Example 1 (2R, 3S
Figure 2006249057
. 77 mmol) in dichloromethane (50 mL) with ice cooling, triethylamine (0.32 mL, 2.31 mmol), stearoyl chloride (0.39 mL, 1.16 mmol) and N, N-dimethylaminopyridine (5 mg). After addition, reaction, and post-treatment, the product was purified by silica gel column chromatography (n-hexane: ethyl acetate 7: 1) to give (2R, 3S) -3 ′, 4 ′, 5,7-
Figure 2006249057
l, 100% yield).

[α] 25=+6.7(c2.70,CHCl);
H−NMR(400MHz,CDCl)7.43−7.25(20H,m),6.97(1H,br s),6.88(2H,br s),6.26(1H,d,J=2.2Hz),6.23(1H,d,J=2.2Hz),5.32(1H,ddd,J=5.4,6.6,6.8Hz),5.13(2H,s),5.10(2H,s),5.00(4H,s),4.98(1H,d,J=6.6Hz),2.89(1H,dd,J=5.4,16.9Hz),2.70(1H,dd,J=6.8,16.9Hz),2.22−2.09(2H,m),1.48−1.42(2H,m),1.30−1.10(28H,m),0.88(3H,t,J=6.8Hz);13C−NMR(100MHz,CDCl)172.9,158.9,158.6,154.8,148.9,148.8,137.2,137.0,136.8,130.0,128.54,128.48,128.41,128.40(x2),127.94,127.85,127.7(x2),127.5,127.4,127.2(x2),119.9,114.7,113.3,101.3,94.3,93.7,78.3,71.2,71.1,70.0,69.9,68.7,34.2,31.9,29.7(x8),29.4,29.3,29.2,28.9,24.8,24.0,22.7,14.1;
IR(neat,cm−1)3065(w),3032(w),2924(s),2853(s),2363(w),1736(m),1618(m),1593(m),1500(m),1379(m),1265(m),1145(s),1028(m),910(w),850(w),810(w),735(m);
FAB−MS(m/z)941(1.2),940([M+Na],1.5),919(4.4),918([M+H],7.0),634(22),633(51),632(50),631(23),543(19),542(32),541(62),540(18),321(24),320(100);
FAB−HRMS 計算値 C6173[M+H],917.5356;実測値:917.5388.
[Α] D 25 = + 6.7 (c2.70, CHCl 3 );
1 H-NMR (400 MHz, CDCl 3 ) 7.43-7.25 (20H, m), 6.97 (1H, br s), 6.88 (2H, br s), 6.26 (1H, d , J = 2.2 Hz), 6.23 (1H, d, J = 2.2 Hz), 5.32 (1H, ddd, J = 5.4, 6.6, 6.8 Hz), 5.13 ( 2H, s), 5.10 (2H, s), 5.00 (4H, s), 4.98 (1H, d, J = 6.6 Hz), 2.89 (1H, dd, J = 5. 4, 16.9 Hz), 2.70 (1H, dd, J = 6.8, 16.9 Hz), 2.22-2.09 (2H, m), 1.48-1.42 (2H, m ), 1.30-1.10 (28H, m) , 0.88 (3H, t, J = 6.8Hz); 13 C-NMR (100MHz, CDCl 3) 172.9,158 9, 158.6, 154.8, 148.9, 148.8, 137.2, 137.0, 136.8, 130.0, 128.54, 128.48, 128.41, 128.40 ( x2), 127.94, 127.85, 127.7 (x2), 127.5, 127.4, 127.2 (x2), 119.9, 114.7, 113.3, 101.3, 94 3, 93.7, 78.3, 71.2, 71.1, 70.0, 69.9, 68.7, 34.2, 31.9, 29.7 (x8), 29.4 29.3, 29.2, 28.9, 24.8, 24.0, 22.7, 14.1;
IR (neat, cm −1 ) 3065 (w), 3032 (w), 2924 (s), 2853 (s), 2363 (w), 1736 (m), 1618 (m), 1593 (m), 1500 ( m), 1379 (m), 1265 (m), 1145 (s), 1028 (m), 910 (w), 850 (w), 810 (w), 735 (m);
FAB-MS (m / z) 941 (1.2), 940 ([M + Na] + , 1.5), 919 (4.4), 918 ([M + H] + , 7.0), 634 (22) 633 (51), 632 (50), 631 (23), 543 (19), 542 (32), 541 (62), 540 (18), 321 (24), 320 (100);
FAB-HRMS calcd C 61 H 73 O 7 [M + H] +, 917.5356; Found: 917.5388.

Figure 2006249057
ラバン−3−ステアロエート(385mg,0.42mmol)のテトラヒドロフラン−メタノール−水(20:1:1,22mL)溶液に、20%Pd(OH)/C(5mg)を加え、水素雰囲気下12時間攪拌しベンジル基を脱保護した。後処理後、Cosmosil 75C−18OPNカラムクロマトグラフィー(メタノール−水)で精製し、白色粉末の化合物6{(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−ステアロエート}(214mg,0.38mmol,90%収率)を得た。
Figure 2006249057
20% Pd (OH) 2 / C (5 mg) was added to a solution of Laban-3-stearoate (385 mg, 0.42 mmol) in tetrahydrofuran-methanol-water (20: 1: 1, 22 mL), and the mixture was added under a hydrogen atmosphere for 12 hours. Stir to deprotect the benzyl group. After the post-treatment, the product was purified by Cosmosil 75C-18OPN column chromatography (methanol-water) and white powdered compound 6 {(2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-stearoate} (214 mg, 0.38 mmol, 90% yield) was obtained.

[α] 24=+4.0(c1.18,CHCO CH);
H−NMR(400MHz,CDCO CD−DO,10:1)6.82(1H,d,J=1.7Hz),6.75(1H,d,J=8.3Hz),6.65(1H,dd,J=1.7,8.3Hz),6.01(1H,d,J=2.2Hz),5.89(1H,d,J=2.2Hz),5.19(1H,ddd,J=5.3,6.5,6.8Hz),4.87(1H,d,J=6.8Hz),2.76(1H,dd,J=5.3,16.3Hz),2.56(1H,dd,J=6.5,16.3Hz),2.21−2.13(2H,m),1.45−1.38(2H,m),1.30−1.10(28H,m),0.82(3H,t,J=6.8Hz);
13C−NMR(100MHz,CDCO CD−DO,10:1)173.3,157.7,157.0,155.8,145.65,145.61,130.5,118.8,115.6,114.3,98.8,96.1,95.0,78.6,69.8,34.6,32.3,30.4−29.2(Cx12),25.3,24.4,23.1,14.2;
FAB−MS(m/z)580(15),579([M+Na],36),578(8.4),558(4.3),557([M+H],11),275(15),274(66),273(100),272(41);
FAB−HRMS 計算値 C3349[M+H],557.3478;実測値:557.3441.
[Α] D 24 = + 4.0 (c1.18, CH 3 CO CH 3 );
1 H-NMR (400 MHz, CD 3 CO CD 3 -D 2 O, 10: 1) 6.82 (1H, d, J = 1.7 Hz), 6.75 (1H, d, J = 8.3 Hz) 6.65 (1H, dd, J = 1.7, 8.3 Hz), 6.01 (1H, d, J = 2.2 Hz), 5.89 (1H, d, J = 2.2 Hz), 5.19 (1H, ddd, J = 5.3, 6.5, 6.8 Hz), 4.87 (1H, d, J = 6.8 Hz), 2.76 (1H, dd, J = 5. 3, 16.3 Hz), 2.56 (1H, dd, J = 6.5, 16.3 Hz), 2.21-2.13 (2H, m), 1.45-1.38 (2H, m ), 1.30-1.10 (28H, m), 0.82 (3H, t, J = 6.8 Hz);
13 C-NMR (100 MHz, CD 3 CO CD 3 -D 2 O, 10: 1) 173.3, 157.7, 157.0, 155.8, 145.65, 145.61, 130.5, 118 8, 115.6, 114.3, 98.8, 96.1, 95.0, 78.6, 69.8, 34.6, 32.3, 30.4-29.2 (Cx12), 25.3, 24.4, 23.1, 14.2;
FAB-MS (m / z) 580 (15), 579 ([M + Na] + , 36), 578 (8.4), 558 (4.3), 557 ([M + H] + , 11), 275 (15 ), 274 (66), 273 (100), 272 (41);
FAB-HRMS calcd C 33 H 49 O 7 [M + H] +, 557.3478; Found: 557.3441.

製造例9:化合物7{(2R,3R)−3’,4’,5,7−テトラヒドロキシフラバン−3−ラウロエート}の製造方法
製造例3に記載の化合物1の合成と同様にして、製造例2で得られた(2R,3R

Figure 2006249057
.06mmol)のジクロロメタン溶液(50mL)に、氷冷しながらトリエチルアミン(0.30mL,2.12mmol)、ラウロイルクロライド(0.37mL,1.60mmol)、及び、N,N−ジメチルアミノピリジン(5mg)を加え反応させ、後処理した後、シリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル6:1)で精製し、白色粉末の(2R,3R)−3’,4’,5,
Figure 2006249057
l,76%収率)を得た。Production Example 9: Production method of Compound 7 {(2R, 3R) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-lauroate} Production in the same manner as the synthesis of Compound 1 described in Production Example 3. Obtained in Example 2 (2R, 3R
Figure 2006249057
. (06 mmol) in dichloromethane (50 mL) with ice cooling, triethylamine (0.30 mL, 2.12 mmol), lauroyl chloride (0.37 mL, 1.60 mmol), and N, N-dimethylaminopyridine (5 mg). After addition, reaction, and post-treatment, the product was purified by silica gel column chromatography (n-hexane: ethyl acetate 6: 1) to give (2R, 3R) -3 ′, 4 ′, 5,
Figure 2006249057
1, 76% yield).

[α] 23=−19.5(c0.94,CHCl);
H−NMR(400MHz,CDCl)7.47−7.28(20H,m),7.11(1H,d,J=1.7Hz),6.96(1H,dd,J=1.7,8.3Hz),6.92(1H,d,J=8.3Hz),6.28(1H,d,J=2.2Hz),6.27(1H,d,J=2.2Hz),5.45−5.41(1H,m),5.17(1H,d,J=12.0Hz),5.15(2H,s),5.14(1H,d,J=12.0Hz),5.02(4H,s),4.99(1H,br s),3.02(1H,dd,J=4.6,18.1Hz),2.95(1H,dd,J=2.0,18.1Hz),2.19−2.07(2H,m),1.45−1.37(2H,m),1.32−1.10(16H,m),0.86(3H,t,J=5.6Hz);
13C−NMR(100MHz,CDCl)173.1,158.7,157.9,155.5,148.9,148.7,137.2,136.9,131.1,128.6−127.1(Cx14),119.7,114.7,113.6,100.8,94.6,93.8,77.2,71,4,71.3,70.1,69.9,67.5,34.2,31.9,29.62,29.60,29.4,29.3,29.26,28.98,26.0,24.8,22.7,14.1;
IR(neat,cm−1)3065(m),3034(m),2924(s),2855(s),2361(w),2338(w),1950(w),1871(w),1819(w),1782(s),1618(s),1593(s),1518(s),1454(s),1379(s),1269(s),1217(s),1184(s),1152(s),1115(s),1020(s),945(w),810(m),735(s);
FAB−MS(m/z)856(11),855([M+Na],17),834(3.6),833([M+H],7.5),633(21),632(28),610(54),609(100);
FAB−HRMS 計算値 C5561[M+H],833.4417;実測値:833.4448.
[Α] D 23 = −19.5 (c0.94, CHCl 3 );
1 H-NMR (400 MHz, CDCl 3 ) 7.47-7.28 (20H, m), 7.11 (1H, d, J = 1.7 Hz), 6.96 (1H, dd, J = 1. 7, 8.3 Hz), 6.92 (1 H, d, J = 8.3 Hz), 6.28 (1 H, d, J = 2.2 Hz), 6.27 (1 H, d, J = 2.2 Hz) ), 5.45-5.41 (1H, m), 5.17 (1H, d, J = 12.0 Hz), 5.15 (2H, s), 5.14 (1H, d, J = 12) .0Hz), 5.02 (4H, s), 4.99 (1H, br s), 3.02 (1H, dd, J = 4.6, 18.1 Hz), 2.95 (1H, dd, J = 2.0, 18.1 Hz), 2.19-2.07 (2H, m), 1.45-1.37 (2H, m), 1.32-1.10 (16H, m), 0.86 ( 3H, t, J = 5.6 Hz);
13 C-NMR (100 MHz, CDCl 3 ) 173.1, 158.7, 157.9, 155.5, 148.9, 148.7, 137.2, 136.9, 131.1, 128.6 127.1 (Cx14), 119.7, 114.7, 113.6, 100.8, 94.6, 93.8, 77.2, 71, 4, 71.3, 70.1, 69.9 67.5, 34.2, 31.9, 29.62, 29.60, 29.4, 29.3, 29.26, 28.98, 26.0, 24.8, 22.7, 14 .1;
IR (neat, cm −1 ) 3065 (m), 3034 (m), 2924 (s), 2855 (s), 2361 (w), 2338 (w), 1950 (w), 1871 (w), 1819 ( w), 1782 (s), 1618 (s), 1593 (s), 1518 (s), 1454 (s), 1379 (s), 1269 (s), 1217 (s), 1184 (s), 1152 ( s), 1115 (s), 1020 (s), 945 (w), 810 (m), 735 (s);
FAB-MS (m / z) 856 (11), 855 ([M + Na] + , 17), 834 (3.6), 833 ([M + H] + , 7.5), 633 (21), 632 (28 ), 610 (54), 609 (100);
FAB-HRMS calcd C 55 H 61 O 7 [M + H] +, 833.4417; Found: 833.4448.

Figure 2006249057
ラバン−3−ラウロエート(120mg,0.14mmol)のテトラヒドロフラン−メタノール−水(20:1:1,11mL)溶液に、20%Pd(OH)/C(5mg)を加え、水素雰囲気下12時間攪拌しベンジル基を脱保護した。後処理後、Cosmosil 75C−18OPNカラムクロマトグラフィー(メタノール−水)で精製し、無色アモルファスの化合物7{(2R,3R)−3’,4’,5,7−テトラヒドロキシフラバン−3−ラウロエート}(41mg,0.087mmol,62%収率)を得た。
Figure 2006249057
20% Pd (OH) 2 / C (5 mg) was added to a solution of Laban-3-lauroate (120 mg, 0.14 mmol) in tetrahydrofuran-methanol-water (20: 1: 1, 11 mL), and the mixture was added under a hydrogen atmosphere for 12 hours. Stir to deprotect the benzyl group. After the post-treatment, the product was purified by Cosmosil 75C-18OPN column chromatography (methanol-water) and colorless amorphous compound 7 {(2R, 3R) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-lauroate} (41 mg, 0.087 mmol, 62% yield) was obtained.

[α] 24=−54.0(c0.58,EtOH);
H−NMR(400MHz,CDCl)6.91(1H,br s),6.73(2H,br s),5.94(1H,d,J=2.4Hz),5.91(1H,d,J=2.4Hz),5.33−5.32(1H,m),4.93(1H,br s),2.90(1H,dd,J=4.7,17.6Hz),2.78(1H,d,J=17.6Hz),2.19−2.14(2H,m),1.44−1.39(2H,m),1.30−1.09(16H,m),0.88(3H,t,J=6.6Hz);13C−NMR(100MHz,CDCl)175.0,157.83,157.79,157.1,145.99,145.96,131.3,119.0,115.9,114.9,99.1,96.5,95.8,78.2,69.9,35.2,33.1,30.72,30.70,30.51,30.47,30.3,29.9,26.6,26.0,23.7,14.4;
FAB−MS(m/z)496(5.5),495([M+Na],17),494(5.8),474(6.3),473([M+H],20),275(13),274(55),273(100),272(22);
FAB−HRMS 計算値 C2737[M+H],473.2539;実測値:473.2542.
[Α] D 24 = −54.0 (c0.58, EtOH);
1 H-NMR (400 MHz, CDCl 3 ) 6.91 (1H, br s), 6.73 (2H, br s), 5.94 (1H, d, J = 2.4 Hz), 5.91 (1H , D, J = 2.4 Hz), 5.33-5.32 (1H, m), 4.93 (1H, brs), 2.90 (1H, dd, J = 4.7, 17.6 Hz). ), 2.78 (1H, d, J = 17.6 Hz), 2.19-2.14 (2H, m), 1.44-1.39 (2H, m), 1.30-1.09. (16H, m), 0.88 (3H, t, J = 6.6 Hz); 13 C-NMR (100 MHz, CDCl 3 ) 175.0, 157.83, 157.79, 157.1, 145.99 , 145.96, 131.3, 119.0, 115.9, 114.9, 99.1, 96.5, 95.8, 78.2. 69.9, 35.2, 33.1, 30.72, 30.70, 30.51, 30.47, 30.3, 29.9, 26.6, 26.0, 23.7, 14 .4;
FAB-MS (m / z) 496 (5.5), 495 ([M + Na] + , 17), 494 (5.8), 474 (6.3), 473 ([M + H] + , 20), 275 (13), 274 (55), 273 (100), 272 (22);
FAB-HRMS calculated C 27 H 37 O 7 [M + H] + , 473.2539; found: 473.2542.

製造例10:化合物8{(2R,3R)−3’,4’,5,7−テトラヒドロキシフラバン−3−ミリストエート}の製造方法
製造例3に記載の化合物1の合成と同様にして、製造例2で得られた(2R,3R

Figure 2006249057
.77mmol)のジクロロメタン溶液(40mL)に、氷冷しながらトリエチルアミン(0.32mL,2.31mmol)、ミリストイルクロライド(0.31mL,1.16mmol)、及び、N,N−ジメチルアミノピリジン(5mg)を加え反応させ、後処理した後、シリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル 7:1)で精製し、白色粉末の(2R,3R)−3’,4’,5,7−
Figure 2006249057
l,54%収率)を得た。Production Example 10: Production method of compound 8 {(2R, 3R) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-myristoate} Obtained in Example 2 (2R, 3R
Figure 2006249057
. 77 mmol) in dichloromethane (40 mL) with ice cooling, triethylamine (0.32 mL, 2.31 mmol), myristoyl chloride (0.31 mL, 1.16 mmol) and N, N-dimethylaminopyridine (5 mg). After addition, reaction, and post-treatment, the product was purified by silica gel column chromatography (n-hexane: ethyl acetate 7: 1) to give (2R, 3R) -3 ′, 4 ′, 5,7-
Figure 2006249057
l, 54% yield).

[α] 23=−20.4(c0.72,CHCl);
H−NMR(400MHz,CDCl)7.47−7.30(20H,m),7.11(1H,d,J=1.7Hz),6.96(1H,dd,J=1.7,8.3Hz),6.92(1H,d,J=8.3Hz),5.46−5.41(1H,m),5.17(1H,d,J=11.9Hz),5.15(2H,s),5.13(1H,d,J=11.9Hz),5.12(4H,s),4.99(1H,br s),3.02(1H,dd,J=4.6,16.1Hz),2.94(1H,d,J=16.1Hz),2.19−2.05(2H,m),1.42−1.38(2H,m),1.29−1.10(20H,m),0.88(3H,t,J=6.8Hz);
13C−NMR(100MHz,CDCl)173.1,158.7,157.9,155.4,148.8,148.7,137.2(x2),136.9,136.8,131.1,128.6,128.5,128.4(x2),128.0,127.9,127.8,127.7,127.5,127.4,127.2,127.1,119.7,114.7,113.6,100.8,94.6,93.8,77.2,71.4,71.2,70.1,69.9,67.5,34.2,31.9,29.7,29.63,29.61(x2),29.4,29.3,29.2,29.0,25.9,24.8,22.7,14.1;
IR(neat,cm−1)2924(s),2853(s),1732(s),1653(s),1558(s),1456(s),1385(s),1339(m),1151(s),1115(s),1078(m),1028(m),902(w),810(w),733(m);
FAB−MS(m/z)885(9.4),884(24),883([M+Na],36),862(14),861([M+H],29),860(7.9),695(12),694(44),693(100);
FAB−HRMS 計算値 C5765[M+H],861.4730;実測値:861.4730.
[Α] D 23 = −20.4 (c 0.72, CHCl 3 );
1 H-NMR (400 MHz, CDCl 3 ) 7.47-7.30 (20H, m), 7.11 (1H, d, J = 1.7 Hz), 6.96 (1H, dd, J = 1. 7, 8.3 Hz), 6.92 (1 H, d, J = 8.3 Hz), 5.46-5.41 (1 H, m), 5.17 (1 H, d, J = 11.9 Hz), 5.15 (2H, s), 5.13 (1H, d, J = 11.9 Hz), 5.12 (4H, s), 4.99 (1H, br s), 3.02 (1H, dd) , J = 4.6, 16.1 Hz), 2.94 (1H, d, J = 16.1 Hz), 2.19-2.05 (2H, m), 1.42-1.38 (2H, m), 1.29-1.10 (20H, m), 0.88 (3H, t, J = 6.8 Hz);
13 C-NMR (100 MHz, CDCl 3 ) 173.1, 158.7, 157.9, 155.4, 148.8, 148.7, 137.2 (x2), 136.9, 136.8, 131 1,128.6,128.5,128.4 (x2), 128.0,127.9,127.8,127.7,127.5,127.4,127.2,127.1 119.7, 114.7, 113.6, 100.8, 94.6, 93.8, 77.2, 71.4, 71.2, 70.1, 69.9, 67.5, 34. 2, 31.9, 29.7, 29.63, 29.61 (x2), 29.4, 29.3, 29.2, 29.0, 25.9, 24.8, 22.7, 14 .1;
IR (neat, cm −1 ) 2924 (s), 2853 (s), 1732 (s), 1653 (s), 1558 (s), 1456 (s), 1385 (s), 1339 (m), 1151 ( s), 1115 (s), 1078 (m), 1028 (m), 902 (w), 810 (w), 733 (m);
FAB-MS (m / z) 885 (9.4), 884 (24), 883 ([M + Na] + , 36), 862 (14), 861 ([M + H] + , 29), 860 (7.9) ), 695 (12), 694 (44), 693 (100);
FAB-HRMS calcd C 57 H 65 O 7 [M + H] +, 861.4730; Found: 861.4730.

Figure 2006249057
ラバン−3−ミリストエート(312mg,0.36mmol)のテトラヒドロフラン−メタノール−水(20:1:1,22mL)溶液に、20%Pd(OH)/C(5mg)を加え、水素雰囲気下12時間攪拌しベンジル基を脱保護した。後処理後、Cosmosil 75C−18OPNカラムクロマトグラフィー(メタノール−水)で精製し、無色アモルファスの化合物8{(2R,3R)−3’,4’,5,7−テトラヒドロキシフラバン−3−ミリストエート}(153mg,0.31mmol,85%収率)を得た。
Figure 2006249057
20% Pd (OH) 2 / C (5 mg) was added to a solution of Laban-3-myristoate (312 mg, 0.36 mmol) in tetrahydrofuran-methanol-water (20: 1: 1, 22 mL), and the mixture was charged with hydrogen for 12 hours. Stir to deprotect the benzyl group. After the post-treatment, the product was purified by Cosmosil 75C-18OPN column chromatography (methanol-water) and colorless amorphous compound 8 {(2R, 3R) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-myristate} (153 mg, 0.31 mmol, 85% yield) was obtained.

[α] 25=−38.3(c0.38,CHCO CH);
H−NMR(400MHz,CDCO CD−DO,10:1)6.94(1H,br s),6.76(2H,br s),6.02(1H,d,J=2.2Hz),5.91(1H,d,J=2.2Hz),5.33(1H,br s),4.96(1H,br s),2.92(1H,dd,J=4.3,17.3Hz),2.73(1H,d,J=17.3Hz),2.13−2.10(2H,m),1.40−1.36(2H,m),1.25−1.08(20H,m),0.82(3H,t,J=6.8Hz);13C−NMR(100MHz,CDCO CD−DO,10:1)173.5,157.4,157.3,156.5,145.3(x2),130.7,118.6,115.3,114.5,98.4,96.2,95.3,77.5,68.9,34.5,32.3,30.4−29.1(Cx8),26.2,25.3,23.0,14.2;
FAB−MS(m/z)524(15),523([M+Na],30),522(6.8),502(6.0),501([M+H],14),275(28),274(90),273(100),272(43);
FAB−HRMS 計算値 C2941[M+H],501.2852;実測値:501.2861.
[Α] D 25 = −38.3 (c 0.38, CH 3 CO CH 3 );
1 H-NMR (400 MHz, CD 3 CO CD 3 -D 2 O, 10: 1) 6.94 (1H, brs), 6.76 (2H, brs), 6.02 (1H, d, J = 2.2 Hz), 5.91 (1 H, d, J = 2.2 Hz), 5.33 (1 H, br s), 4.96 (1 H, br s), 2.92 (1 H, dd, J = 4.3, 17.3 Hz), 2.73 (1H, d, J = 17.3 Hz), 2.13-2.10 (2H, m), 1.40-1.36 (2H, m) , 1.25-1.08 (20H, m), 0.82 (3H, t, J = 6.8 Hz); 13 C-NMR (100 MHz, CD 3 CO CD 3 -D 2 O, 10: 1) 173.5, 157.4, 157.3, 156.5, 145.3 (x2), 130.7, 118.6, 115.3, 114.5, 8.4, 96.2, 95.3, 77.5, 68.9, 34.5, 32.3, 30.4-29.1 (Cx8), 26.2, 25.3, 23.0 , 14.2;
FAB-MS (m / z) 524 (15), 523 ([M + Na] + , 30), 522 (6.8), 502 (6.0), 501 ([M + H] + , 14), 275 (28 ), 274 (90), 273 (100), 272 (43);
FAB-HRMS calculated C 29 H 41 O 7 [M + H] + , 501.2852; found: 501.2861.

製造例11:化合物9{(2R,3R)−3’、4’、5,7−テトラヒドロキシフラバン−3−パルミトエート}の製造方法
製造例3に記載の化合物1の合成と同様にして、製造例2で得られた(2R,3R

Figure 2006249057
.77mmol)のジクロロメタン溶液(40mL)に、氷冷しながらトリエチルアミン(0.32mL,2.31mmol)、パルミトイルクロライド(0.35mL,1.16mmol)、及び、N,7−ジメチルアミノピリジン(5mg)を加え反応させ、後処理した後、シリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル 6:1)で精製し、白色粉末の(2R,3R)−3’,4’,5,7−
Figure 2006249057
l,71%収率)を得た。Production Example 11 Production Method of Compound 9 {(2R, 3R) -3 ′, 4 ′, 5,7-Tetrahydroxyflavan-3-palmitoate} Production in the same manner as the synthesis of Compound 1 described in Production Example 3. Obtained in Example 2 (2R, 3R
Figure 2006249057
. 77 mmol) in dichloromethane (40 mL) with ice cooling, triethylamine (0.32 mL, 2.31 mmol), palmitoyl chloride (0.35 mL, 1.16 mmol), and N, 7-dimethylaminopyridine (5 mg). After addition, reaction, and post-treatment, the product was purified by silica gel column chromatography (n-hexane: ethyl acetate 6: 1) to give (2R, 3R) -3 ′, 4 ′, 5,7-
Figure 2006249057
l, 71% yield).

[α] 25=−16.1(c1.34,CHCl);
H−NMR(400MHz,CDCl)7.46−7.27(20H,m),7.12(1H,d,J=1.7Hz),6.95(1H,dd,J=1.7,8.3Hz),6.91(1H,d,J=8.3Hz),6.29(1H,d,J=2.2Hz),6.27(1H,d,J=2.2Hz),5.48−5.41(1H,m),5.17(1H,d,J=12.2Hz),5.14(2H,s),5.13(1H,d,J=12.2Hz),5.01(4H,s),4.98(1H,br s),3.01(1H,dd,J=4.4,17.8Hz),2.95(1H,dd,J=2.2,17.8Hz),2.19−2.06(2H,m),1.45−1.37(2H,m),1.35−1.05(24H,m),0.88(3H,t,J=6.8Hz);
13C−NMR(100MHz,CDCl)171.1,158.7,157.9,155.4,148.8,148.7,137.2,136.84,136.82,131.1,128.54(x2),128.48,128.39(x2),127.9,127.8,127.74,127.70,127.5,127.3,127.2,127.1,119.6,114.6,113.5,100.8,94.6,93.8,77.1,71.4,71.2,70.0,69.8,67.5,34.2,31.9,29.64(x2),29.60(x2),29.6,29.4,29.3,29.2,28.9,25.9,24.8,22.7,21.0,14.1;
IR(neat,cm−1)3063(w),3034(w),2923(s),2853(s),1948(w),1809(w),1782(s),1618(s),1593(s),1520(s),1379(s),1184(s),1151(s),1028(s),943(w),810(m),733(m);
FAB−MS(m/z)912(12),911([M+Na],19),891(15),890([M+H],21),889(7.2),634(19),633(59),632(78),631(19),320(22),319(100);
FAB−HRMS 計算値 C5969[M+H],889.5043;実測値:889.5089.
[Α] D 25 = −16.1 (c1.34, CHCl 3 );
1 H-NMR (400 MHz, CDCl 3 ) 7.46-7.27 (20 H, m), 7.12 (1 H, d, J = 1.7 Hz), 6.95 (1 H, dd, J = 1. 7, 8.3 Hz), 6.91 (1 H, d, J = 8.3 Hz), 6.29 (1 H, d, J = 2.2 Hz), 6.27 (1 H, d, J = 2.2 Hz) ), 5.48-5.41 (1H, m), 5.17 (1H, d, J = 12.2 Hz), 5.14 (2H, s), 5.13 (1H, d, J = 12) .2 Hz), 5.01 (4 H, s), 4.98 (1 H, br s), 3.01 (1 H, dd, J = 4.4, 17.8 Hz), 2.95 (1 H, dd, J = 2.2, 17.8 Hz), 2.19-2.06 (2H, m), 1.45-1.37 (2H, m), 1.35-1.05 (24H, m), 0.88 ( 3H, t, J = 6.8 Hz);
13 C-NMR (100 MHz, CDCl 3 ) 171.1, 158.7, 157.9, 155.4, 148.8, 148.7, 137.2, 136.84, 136.82, 131.1, 128.54 (x2), 128.48, 128.39 (x2), 127.9, 127.8, 127.74, 127.70, 127.5, 127.3, 127.2, 127.1, 119.6, 114.6, 113.5, 100.8, 94.6, 93.8, 77.1, 71.4, 71.2, 70.0, 69.8, 67.5, 34. 2, 31.9, 29.64 (x2), 29.60 (x2), 29.6, 29.4, 29.3, 29.2, 28.9, 25.9, 24.8, 22. 7, 21.0, 14.1;
IR (neat, cm −1 ) 3063 (w), 3034 (w), 2923 (s), 2853 (s), 1948 (w), 1809 (w), 1782 (s), 1618 (s), 1593 ( s), 1520 (s), 1379 (s), 1184 (s), 1151 (s), 1028 (s), 943 (w), 810 (m), 733 (m);
FAB-MS (m / z) 912 (12), 911 ([M + Na] + , 19), 891 (15), 890 ([M + H] + , 21), 889 (7.2), 634 (19), 633 (59), 632 (78), 631 (19), 320 (22), 319 (100);
FAB-HRMS calcd C 59 H 69 O 7 [M + H] +, 889.5043; Found: 889.5089.

Figure 2006249057
ラバン−3−パルミトエート(420mg,0.47mmol)のテトラヒドロフラン−メタノール−水(20:1:1,22mL)溶液に、20%Pd(OH)/C(5mg)を加え、水素雰囲気下12時間攪拌しベンジル基を脱保護した。後処理
Figure 2006249057
ー水)で精製し、無色アモルファスの化合物9{(2R,3R)−3’、4’、5,7−テトラヒドロキシフラバン−3−パルミトエート}(165mg,0.31mmol,66%収率)を得た。
Figure 2006249057
20% Pd (OH) 2 / C (5 mg) was added to a solution of Laban-3-palmitoate (420 mg, 0.47 mmol) in tetrahydrofuran-methanol-water (20: 1: 1, 22 mL), and the mixture was added under a hydrogen atmosphere for 12 hours. Stir to deprotect the benzyl group. Post-processing
Figure 2006249057
-Water) to give colorless amorphous compound 9 {(2R, 3R) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-palmitoate} (165 mg, 0.31 mmol, 66% yield). Obtained.

[α] 25=−42.0(c1.22,CHCO CH);
H−NMR(400MHz,CDCO CD−DO,10:1)6.94(1H,br s),6.76(2H,br s),6.01(1H,d,J=2.2Hz),5.91(1H,d,J=2.2Hz),5.32−5.31(1H,m),4.95(1H,br s),2.91(1H,dd,J=4.9,17.5Hz),2.72(1H,dd,J=2.0,17.5Hz),2.16−2.10(2H,m),1.41−1.34(2H,m),1.26−1.10(24H,m),0.82(3H,t,J=6.8Hz);
13C−NMR(100MHz,CDCO CD−DO,10:1)173.4,157.4,157.2,156.5,145.3(x2),130.7,118.6,115.3,114.5,98.4,96.2,95.3,77.5,68.9,34.5,32.3,30.4−29.2(Cx10),26.2,25.3,23.0,14.2;
FAB−MS(m/z)552(11),551([M+Na],29),550(6.1),530(4.4),529([M+H],11),275(15),274(77),273(100),272(44);
FAB−HRMS 計算値 C3145[M+H],529.3165;実測値:529.3167.
[Α] D 25 = −42.0 (c1.22, CH 3 CO CH 3 );
1 H-NMR (400 MHz, CD 3 CO CD 3 -D 2 O, 10: 1) 6.94 (1H, brs), 6.76 (2H, brs), 6.01 (1H, d, J = 2.2 Hz), 5.91 (1H, d, J = 2.2 Hz), 5.32-5.31 (1H, m), 4.95 (1H, br s), 2.91 (1H, dd, J = 4.9, 17.5 Hz), 2.72 (1H, dd, J = 2.0, 17.5 Hz), 2.16-2.10 (2H, m), 1.41-1 .34 (2H, m), 1.26-1.10 (24H, m), 0.82 (3H, t, J = 6.8 Hz);
13 C-NMR (100 MHz, CD 3 CO CD 3 -D 2 O, 10: 1) 173.4, 157.4, 157.2, 156.5, 145.3 (x2), 130.7, 118. 6, 115.3, 114.5, 98.4, 96.2, 95.3, 77.5, 68.9, 34.5, 32.3, 30.4-29.2 (Cx10), 26. .2, 25.3, 23.0, 14.2;
FAB-MS (m / z) 552 (11), 551 ([M + Na] + , 29), 550 (6.1), 530 (4.4), 529 ([M + H] + , 11), 275 (15 ), 274 (77), 273 (100), 272 (44);
FAB-HRMS calculated C 31 H 45 O 7 [M + H] + , 59.3165; found: 539.3167.

製造例12:化合物10{(2R,3R)−3’,4’,5,7−テトラヒドロキシフラバン−3−ステアロエート}の製造方法
製造例3に記載の化合物1の合成と同様にして、製造例2で得られた(2R,3R

Figure 2006249057
.77mmol)のジクロロメタン溶液(40mL)に、氷冷しながらトリエチルアミン(0.32mL,2.31mmol)、ステアロイルクロライド(0.39mL,1.16mmol)、及び、N,N−ジメチルアミノピリジン(5mg)を加え反応させ、後処理した後、シリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル 6:1)で精製し、白色粉末の(2R,3R)−3’,4’,5,7−
Figure 2006249057
l,80%収率)を得た。Production Example 12: Production method of compound 10 {(2R, 3R) -3 ', 4', 5,7-tetrahydroxyflavan-3-stearate} Production in the same manner as the synthesis of compound 1 described in Production Example 3. Obtained in Example 2 (2R, 3R
Figure 2006249057
. (77 mmol) in dichloromethane (40 mL) with ice cooling, triethylamine (0.32 mL, 2.31 mmol), stearoyl chloride (0.39 mL, 1.16 mmol), and N, N-dimethylaminopyridine (5 mg). After addition, reaction, and post-treatment, the product was purified by silica gel column chromatography (n-hexane: ethyl acetate 6: 1) to give (2R, 3R) -3 ′, 4 ′, 5,7-
Figure 2006249057
l, 80% yield).

[α] 24=−19.8(C1.76,CHCl);
H−NMR(400MHz,CDCl)7.46−7.29(20H,m),7.11(1H,d,J=1.7Hz),6.95(1H,dd,J=1.7,8.3Hz),6.91(1H,d,J=8.3Hz),6.28(1H,d,J=2.2Hz),6.27(1H,d,J=2.2Hz),5.45−5.41(1H,m),5.17(1H,d,J=11.9Hz),5.14(2H,s),5.12(1H,d,J=11.9Hz),5.00(4H,s),4.98(1H,br s),3.01(1H,dd,J=4.4,17.3Hz),2.94(1H,d,J=4.4,17.3Hz),2.17−2.04(2H,m),1.42−1.39(2H,m),1.35−1.10(28H,m),0.88(3H,t,J=6.8Hz);
13C−NMR(100MHz,CDCl)173.1,158.7,157.9,155.4,148.8,148.7,137.2,136.9,136.8,131.1,128.6,128.5,128.4(x3),128.0,127.9,127.8,127.7,127.5,127.4,127.2,127.1,119.6,114.7,113.6,100.8,94.6,93.8,77.1,71.4,71.2,70.1,69.9,67.5,34.2,31.9,29.7−29.6(Cx8),29.4,29.3,29.2,29.0,25.9,24.8,22.7,14.1;
IR(neat,cm−1)3090(w),3065(w),3034(w),2923(s),2853(m),1950(w),1732(s),1620(s),1593(s),1500(s),1379(s),1271(m),1151(s),1115(s),1028(m),947(w),903(w),810(m);
FAB−MS(m/z)941(3.2),940([M+Na],5.3),919(12),918([M+H],17),917(7.8),633(85),632(100):
FAB−HRMS 計算値 C6173[M+H],917.5356;実測値:917.5403.
[Α] D 24 = −19.8 (C1.76, CHCl 3 );
1 H-NMR (400 MHz, CDCl 3 ) 7.46-7.29 (20H, m), 7.11 (1H, d, J = 1.7 Hz), 6.95 (1H, dd, J = 1. 7, 8.3 Hz), 6.91 (1 H, d, J = 8.3 Hz), 6.28 (1 H, d, J = 2.2 Hz), 6.27 (1 H, d, J = 2.2 Hz) ), 5.45-5.41 (1H, m), 5.17 (1H, d, J = 11.9 Hz), 5.14 (2H, s), 5.12 (1H, d, J = 11) .9 Hz), 5.00 (4 H, s), 4.98 (1 H, br s), 3.01 (1 H, dd, J = 4.4, 17.3 Hz), 2.94 (1 H, d, J = 4.4, 17.3 Hz), 2.17-2.04 (2H, m), 1.42-1.39 (2H, m), 1.35-1.10 (28H, m), 0.88 (3 H, t, J = 6.8 Hz);
13 C-NMR (100 MHz, CDCl 3 ) 173.1, 158.7, 157.9, 155.4, 148.8, 148.7, 137.2, 136.9, 136.8, 131.1, 128.6, 128.5, 128.4 (x3), 128.0, 127.9, 127.8, 127.7, 127.5, 127.4, 127.2, 127.1, 119.6 114.7,113.6,100.8,94.6,93.8,77.1,71.4,71.2,70.1,69.9,67.5,34.2,31 .9, 29.7-29.6 (Cx8), 29.4, 29.3, 29.2, 29.0, 25.9, 24.8, 22.7, 14.1;
IR (neat, cm −1 ) 3090 (w), 3065 (w), 3034 (w), 2923 (s), 2853 (m), 1950 (w), 1732 (s), 1620 (s), 1593 ( s), 1500 (s), 1379 (s), 1271 (m), 1151 (s), 1115 (s), 1028 (m), 947 (w), 903 (w), 810 (m);
FAB-MS (m / z) 941 (3.2), 940 ([M + Na] + , 5.3), 919 (12), 918 ([M + H] + , 17), 917 (7.8), 633 (85), 632 (100):
FAB-HRMS calcd C 61 H 73 O 7 [M + H] +, 917.5356; Found: 917.5403.

Figure 2006249057
ラバン−3−ステアロエート(130mg,0.14mmol)のテトラヒドロフラン−メタノール−水(20:1:1,11mL)溶液に、20%Pd(OH)/C(5mg)を加え、水素雰囲気下12時間攪拌しベンジル基を脱保護した。後処理後、Cosmosil 75C−18OPNカラムクロマトグラフィー(メタノール−水)で精製し、白色粉末の化合物10{(2R,3R)−3’,4’,5,7−テトラヒドロキシフラバン−3−ステアロエート}(50mg,0.090mmol,64%収率)を得た。
Figure 2006249057
20% Pd (OH) 2 / C (5 mg) was added to a solution of Laban-3-stearoate (130 mg, 0.14 mmol) in tetrahydrofuran-methanol-water (20: 1: 1, 11 mL), and the mixture was added under a hydrogen atmosphere for 12 hours. Stir to deprotect the benzyl group. After the post-treatment, the product was purified by Cosmosil 75C-18OPN column chromatography (methanol-water) and white powdered compound 10 {(2R, 3R) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-stearate} (50 mg, 0.090 mmol, 64% yield) was obtained.

[α] 25=−xx(c1.22,CHCO CH);
H−NMR(400MHz,CDOD)6.92(1H,s),6.74(2H,s),5.94(1H,d,J=2.2Hz),5.91(1H,d,J=2.2Hz),5.33(1H,dd,J=2.0,4.6Hz),4.83(1H,br s),2.91(1H,dd,J=4.6,17.5Hz),2.78(1H,dd,J=2.0,17.5Hz),2.19−2.16(2H,m),1.45−1.38(2H,m),1.33−1.10(28H,m),0.89(3H,t,J=6.8Hz);13C−NMR(100MHz,CDOD)175.1,157.9,157.8,157.1,146.02,145.99,131.4,119.0,115.9,114.9,99.1,96.5,95.8,78.2,69.9,35.2,33.1,30.8−30.74(Cx7),30.72,30.52,30.46,30.3,29.9,26.6,26.0,23.7,14.4;
FAB−MS(m/z)580(38),579([M+Na],100),578(23),558(12),557([M+H],29);
FAB−HRMS 計算値 C3349[M+H],557.3478;実測値:557.3445.
[Α] D 25 = −xx (c1.22, CH 3 CO CH 3 );
1 H-NMR (400 MHz, CD 3 OD) 6.92 (1H, s), 6.74 (2H, s), 5.94 (1H, d, J = 2.2 Hz), 5.91 (1H, d, J = 2.2 Hz), 5.33 (1H, dd, J = 2.0, 4.6 Hz), 4.83 (1H, br s), 2.91 (1H, dd, J = 4. 6,17.5 Hz), 2.78 (1H, dd, J = 2.0, 17.5 Hz), 2.19-2.16 (2H, m), 1.45-1.38 (2H, m ), 1.33-1.10 (28H, m), 0.89 (3H, t, J = 6.8 Hz); 13 C-NMR (100 MHz, CD 3 OD) 175.1, 157.9, 157 8, 157.1, 146.02, 145.99, 131.4, 119.0, 115.9, 114.9, 99.1, 96.5, 95 8, 78.2, 69.9, 35.2, 33.1, 30.8-30.74 (Cx7), 30.72, 30.52, 30.46, 30.3, 29.9, 26 .6, 26.0, 23.7, 14.4;
FAB-MS (m / z) 580 (38), 579 ([M + Na] + , 100), 578 (23), 558 (12), 557 ([M + H] + , 29);
FAB-HRMS calcd C 33 H 49 O 7 [M + H] +, 557.3478; Found: 557.3445.

Figure 2006249057
Figure 2006249057

試験例1: 3−アシル化カテキン類、及び、3−アシル化エピカテキン類によるDNA合成酵素阻害活性試験
製造例3〜12で得られた化合物1〜10、及び、対照化合物として、式(11)に示した3’,4’,5,7位のフェノール性水酸基をアセチル化した化合物11、12(表2参照)を用い、化合物1〜12のDNA合成酵素活性阻害効果を次の方法を用いて評価した。

Figure 2006249057
Figure 2006249057
Test Example 1: DNA synthetase inhibitory activity test with 3-acylated catechins and 3-acylated epicatechins As compounds 1 to 10 obtained in Production Examples 3 to 12 and a control compound (11) The compounds 11 and 12 (see Table 2) obtained by acetylating the 3 ′, 4 ′, 5 and 7 position phenolic hydroxyl groups shown in FIG. Evaluated.
Figure 2006249057
Figure 2006249057

(試験方法)
化合物1〜12のDNA合成酵素群に対する活性を以下の方法で測定した。DNA合成酵素として哺乳類由来のDNA合成酵素α、βおよびλについて試験を行った。DNA合成酵素αは、牛胸腺から常法により抽出精製した標品を、DNA合成酵素βは、ラット由来の該当遺伝子を、DNA合成酵素λは、ヒト由来の該当遺伝子を、通常の遺伝子組み換え法により大腸菌に組み込み、生産させた標品を用いた。
これらのDNA合成酵素に対する化合物1〜12の阻害作用の測定には、一般的なDNA合成酵素反応系(日本生化学会編、新生化学実験講座2、核酸IV、東京化学同人、63頁〜66頁)を用いた。すなわち、放射性同位元素で標識した[H]−TTPを含む系においてDNA合成反応を行い、放射比活性を生成物(合成DNA鎖)量の指標とするものである。
(Test method)
The activity of the compounds 1 to 12 on the DNA synthase group was measured by the following method. Tests were conducted on mammalian DNA synthases α, β and λ as DNA synthases. DNA synthase α is a sample extracted and purified from bovine thymus by a conventional method, DNA synthase β is a rat-derived gene, DNA synthase λ is a human-derived gene, and a conventional gene recombination method is used. The preparations incorporated into Escherichia coli and produced were used.
For the measurement of the inhibitory action of compounds 1 to 12 on these DNA synthases, a general DNA synthase reaction system (edited by the Japanese Biochemical Society, Shinsei Chemistry Laboratory 2, Nucleic Acid IV, Tokyo Kagaku Dojin, pages 63-66) ) Was used. That is, a DNA synthesis reaction is carried out in a system containing [ 3 H] -TTP labeled with a radioisotope, and the radioactivity is used as an index of the amount of product (synthetic DNA chain).

阻害率は、(a)コントロールでの合成DNA量、(b)被検物質存在下での合成DNA量について、
(a−b)/a×100=阻害率(%)
として評価した。得られた結果は50%阻害濃度(μM)として表3に示した。
The inhibition rate is as follows: (a) amount of synthetic DNA in the control, (b) amount of synthetic DNA in the presence of the test substance.
(Ab) / a × 100 = inhibition rate (%)
As evaluated. The results obtained are shown in Table 3 as 50% inhibitory concentration (μM).

Figure 2006249057
(結果)
表3に示したように、化合物1〜12が哺乳類由来のDNA合成酵素α、βおよびλを阻害し、その中でも、λを最も強く阻害した。また、その阻害活性は、脂肪酸の炭素鎖が長くなるほど強くなり、その傾向は、3−アシル化カテキン類でも、3−アシル化エピカテキン類でも同様であった。化合物1〜12のうち、アシル基の炭素鎖が18である化合物6が最も活性が強かった。一方、アセチル基で水酸基を保護した化合物11,12は、DNA合成酵素を阻害しなかったことから、フェノール性水酸基はDNA合成酵素阻害活性に必須であることが確認された。また、(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバンー3−オール{(+)−カテキン}及び、(2R,3R)−3’,4’,5,7−テトラヒドロキシフラバン−3−オール{(−)−エピカテキン}には阻害活性が見られないことから(データ示さず)、3位に導入した脂肪酸も阻害活性に必須であることがわかる。
Figure 2006249057
(result)
As shown in Table 3, compounds 1 to 12 inhibited mammal-derived DNA synthases α, β and λ, and among them, λ was most strongly inhibited. Moreover, the inhibitory activity became stronger as the carbon chain of the fatty acid became longer, and the tendency was the same for 3-acylated catechins and 3-acylated epicatechins. Among the compounds 1 to 12, the compound 6 in which the carbon chain of the acyl group was 18 had the strongest activity. On the other hand, since the compounds 11 and 12 in which the hydroxyl group was protected with an acetyl group did not inhibit the DNA synthase, it was confirmed that the phenolic hydroxyl group is essential for the DNA synthase inhibitory activity. In addition, (2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-ol {(+)-catechin} and (2R, 3R) -3 ′, 4 ′, 5,7- Since tetrahydroxyflavan-3-ol {(−)-epicatechin} has no inhibitory activity (data not shown), it is understood that the fatty acid introduced at the 3-position is also essential for the inhibitory activity.

試験例2: 化合物6{(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−ステアロエート}によるDNA合成酵素阻害活性試験
(試験方法)
炭素鎖長18のアシル基を導入した化合物6について、図1に示す6種類のDNA合成酵素(子牛DNA合成酵素α、ラットDNA合成酵素β、ヒトDNA合成酵素δ、ヒトDNA合成酵素ε、ヒトDNA合成酵素λ(全長)及びヒトDNA合成酵素λ(β様−コア))の活性を試験例1と同様の方法により測定した。
図1に、化合物6のDNA合成酵素6種類に対する阻害活性を示した。
Test Example 2: DNA synthetase inhibitory activity test with compound 6 {(2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-stearate} (test method)
For the compound 6 into which an acyl group having a carbon chain length of 18 was introduced, the six types of DNA synthases (calf DNA synthase α, rat DNA synthase β, human DNA synthase δ, human DNA synthase ε, The activities of human DNA synthase λ (full length) and human DNA synthase λ (β-like core) were measured by the same method as in Test Example 1.
FIG. 1 shows the inhibitory activity of compound 6 on six types of DNA synthase.

(結果)
図1に示すように、化合物6は、6種類のDNA合成酵素(子牛DNA合成酵素α、ラットDNA合成酵素β、ヒトDNA合成酵素δ、ヒトDNA合成酵素ε、ヒトDNA合成酵素λ(全長)及びヒトDNA合成酵素λ(β様−コア))のいずれに対しても優れた阻害活性を有し、特にヒト由来のλ型に対し最も強い阻害を示した。
(result)
As shown in FIG. 1, compound 6 comprises six types of DNA synthases (calf DNA synthase α, rat DNA synthase β, human DNA synthase δ, human DNA synthase ε, human DNA synthase λ (full length ) And human DNA synthase λ (β-like core)), and showed the strongest inhibition particularly on human-derived λ type.

試験例3: 化合物6{(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−ステアロエート}によるDNA合成酵素阻害活性試験
(試験方法)
試験例1の試験方法において、炭素鎖長18のアシル基を導入した化合物6を0μM、0.2μM、0.4μM、0.6μM、0.8μM及び1μM添加して、化合物6のDNA合成酵素λ(全長)に対する濃度依存的な阻害作用を調べた。
結果を図2に示す。
Test Example 3: DNA Synthetase Inhibitory Activity Test with Compound 6 {(2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-stearate} (Test Method)
In the test method of Test Example 1, 0 μM, 0.2 μM, 0.4 μM, 0.6 μM, 0.8 μM, and 1 μM of Compound 6 into which an acyl group having a carbon chain length of 18 was introduced were added. The concentration-dependent inhibitory effect on λ (full length) was examined.
The results are shown in FIG.

(結果)
これらの結果より、炭素鎖長18のアシル基を導入した化合物6{(2R,3S)−3’,4’,5,7−テトラヒドロキシフラバン−3−ステアロエート}はDNA合成酵素λを濃度依存的に阻害することがわかった。
(result)
From these results, compound 6 {(2R, 3S) -3 ′, 4 ′, 5,7-tetrahydroxyflavan-3-stearate} into which an acyl group having a carbon chain length of 18 was introduced was dependent on the concentration of DNA synthase λ. It was found to inhibit.

化合物6の哺乳類DNA合成酵素に対する阻害作用を調べた結果を示す図である。  It is a figure which shows the result of having investigated the inhibitory effect with respect to the mammalian DNA synthetase of the compound 6. FIG. 化合物6のDNA合成酵素λ(全長)に対する濃度依存的な阻害作用を調べた結果を示すグラフである。  It is a graph which shows the result of having investigated the concentration-dependent inhibitory action with respect to DNA synthetase (lambda) (full length) of the compound 6. FIG.

Claims (4)

下記の式(1)により表される化合物を有効成分とするDNA合成酵素阻害剤。
Figure 2006249057
(式中、R、R、R、R、Rはそれぞれ独立して水素原子、もしくは、水酸基であることを表し、Rは、直鎖もしくは分岐状のアルキル基であることを表し(3位のアシル基のうちガロイル基は除く)、ベンゾピラン環の2位と3位の立体配置はそれぞれR配置またはS配置のいずれであってもよい。)で表される3−アシル化フラバン−3−オール類。
A DNA synthase inhibitor comprising a compound represented by the following formula (1) as an active ingredient.
Figure 2006249057
(In the formula, R 1 , R 2 , R 3 , R 5 and R 6 each independently represent a hydrogen atom or a hydroxyl group, and R 4 is a linear or branched alkyl group. (Excluding the galloyl group among the acyl groups at the 3-position), and the steric configurations at the 2-position and the 3-position of the benzopyran ring may be either R-configuration or S-configuration, respectively. Flavan-3-ols.
下記の式(2)により表される化合物を有効成分とするDNA合成酵素阻害剤。
Figure 2006249057
(式中、R、R、Rはそれぞれ独立して水素原子、もしくは、水酸基であることを表し、Rは、直鎖もしくは分岐状のアルキル基で表し(3位のアシル基のうちガロイル基は除く)、ベンゾピラン環の2位と3位の立体配置はそれぞれR配置またはS配置のいずれであってもよい)で表される3−アシル化フラバン−3−オール類。
A DNA synthase inhibitor comprising a compound represented by the following formula (2) as an active ingredient.
Figure 2006249057
(In the formula, R 1 , R 2 and R 3 each independently represents a hydrogen atom or a hydroxyl group, and R 4 represents a linear or branched alkyl group (the acyl group at the 3-position) Among them, the steric configurations at the 2-position and 3-position of the benzopyran ring may be either the R configuration or the S configuration), and 3-acylated flavan-3-ols.
下記の式(3)により表される化合物を有効成分とするDNA合成酵素阻害剤。
Figure 2006249057
(式中、R、R、Rはそれぞれ独立して水素原子、もしくは、水酸基であることを表し、ベンゾピラン環の2位と3位の立体配置はそれぞれR配置またはS配置のいずれであってもよい。)で表される3−アシル化フラバン−3−オール類。
A DNA synthase inhibitor comprising a compound represented by the following formula (3) as an active ingredient.
Figure 2006249057
(In the formula, R 1 , R 2 and R 3 each independently represent a hydrogen atom or a hydroxyl group, and the steric configurations at the 2- and 3-positions of the benzopyran ring are either R configuration or S configuration, respectively. 3-acylated flavan-3-ols represented by:
DNA合成酵素が哺乳類由来のDNA合成酵素γである請求項1乃至3記載のDNA合成酵素阻害剤。  4. The DNA synthase inhibitor according to claim 1, wherein the DNA synthase is a mammal-derived DNA synthase γ.
JP2005106688A 2005-03-07 2005-03-07 Dna synthase inhibitor Pending JP2006249057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106688A JP2006249057A (en) 2005-03-07 2005-03-07 Dna synthase inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106688A JP2006249057A (en) 2005-03-07 2005-03-07 Dna synthase inhibitor

Publications (1)

Publication Number Publication Date
JP2006249057A true JP2006249057A (en) 2006-09-21

Family

ID=37089920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106688A Pending JP2006249057A (en) 2005-03-07 2005-03-07 Dna synthase inhibitor

Country Status (1)

Country Link
JP (1) JP2006249057A (en)

Similar Documents

Publication Publication Date Title
JP6222626B2 (en) Fructose absorption inhibitor
CA2854281C (en) A muscle atrophy inhibitor
EP2438923B1 (en) Composition for preventing or treating obesity-related diseases mediated by the activation of ampk and including 2,5-bis-aryl-3,4-dimethyltetrahydrofuran lignans as active ingredients
JP4852683B2 (en) A composition having an angiogenesis-inhibiting action, comprising as an active ingredient barley fermented
JP6021166B2 (en) Antihypertensive
JP2006249056A (en) Uterine cancer inhibitor
JPWO2010038842A1 (en) New polyphenol compounds
JP5175442B2 (en) Yacon-derived anticancer agent
JPWO2006082743A1 (en) Therapeutic agent
AU2013367872B2 (en) Igf-1 production-promoting agent
JP5000214B2 (en) Novel compounds and osteoclast differentiation / proliferation inhibitors
JP6044944B2 (en) Process for producing new processed ume products and functional composition, food composition, and pharmaceutical composition using the same
JP6131828B2 (en) Reaction product of quercetin and p-coumaric acid
JP2006249057A (en) Dna synthase inhibitor
JP4360807B2 (en) Liver function protecting or improving agent
JP5744507B2 (en) α-Amylase inhibitor
JP4873605B2 (en) A composition having an angiogenesis-inhibiting action comprising a cereal-derived ingredient as an active ingredient
JP2008115079A (en) Anti-inflammatory agent
JP2004256403A (en) Tnf-alpha production inhibitor
JP2004002544A (en) Antioxidant
JP6654316B2 (en) Precursor of sulfated vitexin 2 ″ or sulfated isovitexin 2 ″, melanin production inhibitor, and food and drink containing them
JP2012184208A (en) Sucrase inhibitor
JP2006160667A (en) Low density lipoprotein (ldl) oxidation-inhibiting method