JP2006248919A - Method for vapor-phase oxidation reaction - Google Patents

Method for vapor-phase oxidation reaction Download PDF

Info

Publication number
JP2006248919A
JP2006248919A JP2005064017A JP2005064017A JP2006248919A JP 2006248919 A JP2006248919 A JP 2006248919A JP 2005064017 A JP2005064017 A JP 2005064017A JP 2005064017 A JP2005064017 A JP 2005064017A JP 2006248919 A JP2006248919 A JP 2006248919A
Authority
JP
Japan
Prior art keywords
gas phase
oxide catalyst
catalyst
oxidation reaction
phase oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005064017A
Other languages
Japanese (ja)
Inventor
Hiroshi Kameo
広志 亀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dianitrix Co Ltd
Original Assignee
Dianitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dianitrix Co Ltd filed Critical Dianitrix Co Ltd
Priority to JP2005064017A priority Critical patent/JP2006248919A/en
Publication of JP2006248919A publication Critical patent/JP2006248919A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress sticking of a substance derived from a catalyst to an inner surface of a vapor-phase reactor or an apparatus surface of the interior in a method for a vapor-phase oxidation reaction in which an oxide catalyst is used and a component liberated from the oxide catalyst may deposit on the inner surface of the vapor-phase reactor or apparatus surface of the interior. <P>SOLUTION: The method for the vapor-phase oxidation reaction is characterized as follows. Catalyst particles having ≤20 μm particle diameter in the oxide catalyst account for ≤2 wt% ratio. The oxide catalyst comprises molybdenum. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、気相酸化反応方法に関し、特に気相酸化反応に用いる装置の汚れの防止に関する。   The present invention relates to a gas phase oxidation reaction method, and more particularly to prevention of contamination of an apparatus used for a gas phase oxidation reaction.

気相反応装置中で、モリブデンを含む金属酸化物触媒を用いてアンモ酸化反応等の気相酸化反応を行うと、この気相反応装置を構成する除熱コイルや熱交換器などの冷却装置の冷却効果が徐々に低下していく現象が知られている。   When a gas phase oxidation reaction such as an ammoxidation reaction is performed using a metal oxide catalyst containing molybdenum in a gas phase reaction apparatus, a cooling device such as a heat removal coil or a heat exchanger constituting the gas phase reaction apparatus is used. It is known that the cooling effect gradually decreases.

この、冷却効果が低下した除熱コイル表面の顕微鏡写真を図4に示す。針状結晶は、上記の金属酸化物触媒から遊離したモリブデン化合物が、気相反応装置の表面にモリブデン酸化物の針状結晶として析出したものと考えられ、さらに、針状結晶の間に上記金属酸化物触媒の粒子が取り込まれることで、冷却装置の表面を広く覆ってしまっている。   FIG. 4 shows a photomicrograph of the surface of the heat removal coil with a reduced cooling effect. The acicular crystals are thought to be that molybdenum compounds released from the above metal oxide catalyst were precipitated as molybdenum oxide acicular crystals on the surface of the gas phase reactor. Since the oxide catalyst particles are taken in, the surface of the cooling device is widely covered.

ところで、一般に流動床による反応に用いる触媒粒子は、Geldartの粒子分類によるA粒子が適当とされ、すなわち、平均粒径が50〜100μmの範囲にあるとよいとされる。また、非特許文献1には、粒径が25μm以下、特に17.8μm以下の粒子を添加することにより流動化開始速度が低下する、すなわち流動性が向上することが示されている。   By the way, generally, the catalyst particles used for the reaction in the fluidized bed are suitably A particles according to Geldart's particle classification, that is, the average particle size is preferably in the range of 50 to 100 μm. Non-Patent Document 1 shows that the addition of particles having a particle size of 25 μm or less, particularly 17.8 μm or less, reduces the fluidization start speed, that is, improves the fluidity.

AIchE SYMPOSIUM SERIES No.313,Volume92,1996,81−85AIchE SYMPOSIUM SERIES No. 313, Volume 92, 1996, 81-85

しかしながら、非特許文献1に記載の粒子を添加すると反応そのものの効率はよくなるが、モリブデンを含む金属酸化物触媒を用いた気相反応系等の結晶が析出する反応系においては、単に粒径が小さい粒子だけを添加するだけでは、その小さい粒子が図4のように、析出した針状結晶の間に取り込まれて表面を覆ってしまうため、反応以外の冷却や移送などにおいて効率が悪くなってしまう。   However, when the particles described in Non-Patent Document 1 are added, the efficiency of the reaction itself is improved, but in a reaction system in which crystals precipitate, such as a gas phase reaction system using a metal oxide catalyst containing molybdenum, the particle size is simply If only small particles are added, the small particles are taken in between the deposited needle crystals and cover the surface as shown in FIG. End up.

そこでこの発明は、酸化物触媒を使用する気相酸化反応において、その酸化物触媒から遊離した成分の上記表面への付着を抑制することを目的とする。   Accordingly, an object of the present invention is to suppress adhesion of components released from the oxide catalyst to the surface in the gas phase oxidation reaction using the oxide catalyst.

この発明は、気相反応装置中で酸化物触媒を使用して行う気相酸化反応において、上記酸化物触媒は、上記気相反応装置中でその酸化物触媒から遊離する成分が、上記気相反応装置の内表面、上記気相反応装置内部の装置の表面、又はそれらの両方に析出しうるものであって、上記酸化物触媒のうち、粒径が20μm以下である触媒粒子が占める割合を2重量%以下とすることによって上記の課題を解決したのである。   The present invention relates to a gas phase oxidation reaction performed using an oxide catalyst in a gas phase reactor, wherein the oxide catalyst has a component released from the oxide catalyst in the gas phase reactor. The ratio of the catalyst particles having a particle size of 20 μm or less to the oxide catalyst can be deposited on the inner surface of the reactor, the surface of the device inside the gas phase reactor, or both. The above problems have been solved by setting the content to 2% by weight or less.

粒径20μm以下である触媒粒子の割合を2重量%以下とすることで、気相反応装置内部の配管などの表面に析出する針状結晶の間に入り込める大きさの触媒粒子が少なくなるため、触媒粒子が針状結晶に絡まって固まることが少なくなり、除熱コイルの伝熱係数の低下を抑制することができる。また同様の効果により、製品を抜き出す配管の閉塞を防いだり、気相反応装置の内表面が触媒粒子に覆われることを防いだりすることができる。   By setting the ratio of the catalyst particles having a particle size of 20 μm or less to 2% by weight or less, the number of catalyst particles that can enter between the acicular crystals deposited on the surface of the piping inside the gas phase reactor is reduced. The catalyst particles are less likely to get entangled with the needle-like crystals and harden, and the decrease in the heat transfer coefficient of the heat removal coil can be suppressed. Moreover, the same effect can prevent the piping from which the product is extracted from being blocked, and can prevent the inner surface of the gas phase reactor from being covered with the catalyst particles.

以下、この発明について詳細に説明する。
この発明は、気相反応装置中で酸化物触媒を使用して行う気相酸化反応において、上記酸化物触媒は、上記気相反応装置中でその酸化物触媒から遊離する成分が、上記気相反応装置の内表面、上記気相反応装置内部の装置の表面、又はそれらの両方に析出しうるものであって、上記酸化物触媒のうち、粒径が20μm以下である触媒粒子が占める割合が2重量%以下であることを特徴とする、気相酸化反応方法である。
Hereinafter, the present invention will be described in detail.
The present invention relates to a gas phase oxidation reaction performed using an oxide catalyst in a gas phase reactor, wherein the oxide catalyst has a component released from the oxide catalyst in the gas phase reactor. A ratio of catalyst particles having a particle size of 20 μm or less in the oxide catalyst can be deposited on the inner surface of the reactor, the surface of the device inside the gas phase reactor, or both. It is a gas phase oxidation reaction method characterized by being 2% by weight or less.

上記の気相酸化反応とは、粉体状の触媒粒子による流動床で、供給される気体原料と酸素とを反応させる反応であり、例えば、モリブデンを含む酸化物触媒を用いたアンモ酸化反応によるアクリロニトリルの製造やプロピレンの気相酸化によるアクリル酸の製造などが挙げられる。   The gas phase oxidation reaction is a reaction in which a gaseous material to be supplied and oxygen are reacted in a fluidized bed of powdered catalyst particles, for example, by an ammoxidation reaction using an oxide catalyst containing molybdenum. Examples include acrylonitrile production and acrylic acid production by propylene gas phase oxidation.

この発明で用いる上記酸化物触媒は、反応中の上記気相反応装置内の環境において、その成分の一部又は全部が気相に遊離した後、上記気相反応装置の内表面や、気相と接触する除熱コイルなどの装置の表面に析出しうるものである。このように析出した結晶は、上記気相反応装置内のこれらの表面において、上記酸化物触媒の触媒粒子と絡んで、この触媒粒子を表面に固めてしまうことがあるが、この発明はその現象の進行を抑制するものである。この現象が起こり得る上記酸化物触媒としては、例えば、モリブデン−ビスマス酸化物触媒や、モリブデン−バナジウム酸化触媒などのモリブデンを含む酸化物触媒が挙げられる。これらのモリブデンを含む酸化物触媒は、環境中に水が存在すると、モリブデンの酸化物がモリブデンの水酸化物として固相から気相に遊離する性質がある。アンモ酸化反応では副生成物として水が生成するため、この水によりモリブデンが気相に遊離する。この遊離した成分であるモリブデン水酸化物が、上記気相反応装置内部の表面に、酸化モリブデンの結晶として析出する。   The oxide catalyst used in the present invention is the environment inside the gas phase reactor during the reaction, after some or all of its components are released into the gas phase, the inner surface of the gas phase reactor, the gas phase It can be deposited on the surface of a device such as a heat removal coil that comes into contact with the device. The crystals thus precipitated may become entangled with the catalyst particles of the oxide catalyst on these surfaces in the gas phase reactor, and the catalyst particles may be solidified on the surface. It suppresses the progress of Examples of the oxide catalyst in which this phenomenon can occur include oxide catalysts containing molybdenum such as a molybdenum-bismuth oxide catalyst and a molybdenum-vanadium oxidation catalyst. These oxide catalysts containing molybdenum have the property that, when water is present in the environment, the molybdenum oxide is liberated from the solid phase to the gas phase as molybdenum hydroxide. In the ammoxidation reaction, water is generated as a by-product, and molybdenum is liberated into the gas phase by this water. Molybdenum hydroxide, which is a free component, is precipitated as molybdenum oxide crystals on the surface inside the gas phase reactor.

上記の気相反応装置は、内部に原料や製品を供給したり排出したりするための配管や、冷却用のコイルなどの装置を備えたものであり、このような気相反応装置としては、例えば、図1に示すアクリロニトリル製造装置が挙げられる。この気相反応装置は、本体11に、下方の空気導入管12から空気aを導入して、吹き出し口13から吹き出させることで触媒14を浮遊させ流動床として反応を行うものである。この環境中に、原料導入管15から上記の反応物質としてプロピレンとアンモニアとの混合気体bを導入して、これらを空気中の酸素により酸化させて、1当量のアクリロニトリルと、3当量の水を得る。ただし、この反応に適切な温度に保つために、冷媒dを通した除熱コイル16で本体11内部の上記の混合気体を冷却しつつ上記の反応を行う。生成したアクリロニトリルはサイクロン19で触媒を分離され、反応ガスcとして抜き出される。この反応ガスを熱交換器18で冷却した後アンモニア分離、アクリロニトリル精製系に送られる。   The above gas phase reaction apparatus is provided with devices such as piping for supplying and discharging raw materials and products, and a coil for cooling, and as such a gas phase reaction apparatus, For example, the acrylonitrile manufacturing apparatus shown in FIG. 1 is mentioned. In this gas phase reaction apparatus, air a is introduced into a main body 11 from a lower air introduction pipe 12 and blown out from a blow-out port 13, whereby the catalyst 14 is floated and reacted as a fluidized bed. In this environment, a mixed gas b of propylene and ammonia is introduced from the raw material introduction pipe 15 as the above-mentioned reactant, and these are oxidized by oxygen in the air, so that 1 equivalent of acrylonitrile and 3 equivalents of water are obtained. obtain. However, in order to maintain a temperature suitable for this reaction, the above reaction is performed while cooling the mixed gas inside the main body 11 by the heat removal coil 16 through which the refrigerant d has passed. The produced acrylonitrile is separated from the catalyst by a cyclone 19 and extracted as a reaction gas c. The reaction gas is cooled by a heat exchanger 18 and then sent to an ammonia separation and acrylonitrile purification system.

この気相反応装置の上記遊離した成分が析出しうる表面としては、特に、気相と接触して冷却を行う除熱コイル16の表面や、圧力が急激に変化する製品排出管17の入り口付近の表面、熱交換器18の冷却チューブ表面が挙げられ、これらの表面では上記の結晶の析出が起こりやすい。なお、冷媒dとしては、本体11の内部より低温である高圧の熱水や水蒸気が挙げられ、本体11の熱をこの冷媒dに移して外に取り除いている。   The surface of the gas phase reactor on which the liberated components can be deposited is particularly the surface of the heat removal coil 16 that cools in contact with the gas phase, or the vicinity of the inlet of the product discharge pipe 17 where the pressure changes rapidly. And the surface of the cooling tube of the heat exchanger 18, and the precipitation of the crystals is likely to occur on these surfaces. In addition, as the refrigerant | coolant d, the high pressure hot water and water vapor | steam which are low temperature from the inside of the main body 11 are mentioned, The heat | fever of the main body 11 is moved to this refrigerant | coolant d, and is removed outside.

この発明で用いる酸化物触媒は、粒径が20μm以下である触媒粒子が占める割合が2重量%以下であることが必要であり、1.5重量%以下であるとより好ましい。なお、この値は低いほど好ましく、0%が最も好ましい。粒径が20μm以下である触媒粒子は、上記気相反応装置の表面に析出した結晶間に絡むことで捕捉される可能性が高く、この大きさの触媒粒子が2重量%を超えると、上記の結晶間に触媒粒子が絡みやすくなり、さらにそれらの触媒粒子同士の間が析出する結晶で固まることで、上記気相反応装置内部の装置表面や、上記気相反応装置の内表面全体が析出した上記結晶と捕捉された上記触媒粒子とに覆われてしまうおそれが高くなる。   In the oxide catalyst used in the present invention, the proportion of the catalyst particles having a particle size of 20 μm or less needs to be 2% by weight or less, and more preferably 1.5% by weight or less. In addition, this value is so preferable that it is low, and 0% is the most preferable. The catalyst particles having a particle size of 20 μm or less are highly likely to be trapped by being entangled between crystals deposited on the surface of the gas phase reactor, and when the size of the catalyst particles exceeds 2% by weight, The catalyst particles are easily entangled between the crystals, and further solidified with crystals that deposit between the catalyst particles, so that the apparatus surface inside the gas phase reactor and the entire inner surface of the gas phase reactor are precipitated. There is a high possibility that the crystals and the trapped catalyst particles are covered.

一方で、粒径が44μm以下である触媒粒子の割合が、20重量%以上であり50重量%以下であると好ましい。気相酸化反応においては、「化学工学.第34巻.第10号(1970)P1013〜1090」に示されるように、44μm以下の粒子はGood fractionと呼ばれ、それが20〜50重量%の範囲で存在すると適切であることが示されている。20重量%未満では流動改善効果はなく、50重量%を超えるとチャネリングの傾向が現れるためである。   On the other hand, the ratio of catalyst particles having a particle size of 44 μm or less is preferably 20% by weight or more and 50% by weight or less. In the gas phase oxidation reaction, as shown in “Chemical Engineering, Vol. 34, No. 10 (1970) P1013-1090”, particles of 44 μm or less are referred to as Good fraction, which is 20 to 50% by weight. It has been shown to be appropriate to exist in range. This is because if it is less than 20% by weight, there is no flow improvement effect, and if it exceeds 50% by weight, channeling tends to occur.

なお、この発明において用いる粒子の割合の値は、球相当径の体積分布基準による粒度分布で示したものであり、このような値を測定する方法としては、レーザー回折散乱法が挙げられる。   In addition, the value of the ratio of the particles used in the present invention is shown by the particle size distribution based on the volume distribution standard of the equivalent sphere diameter, and a method of measuring such a value includes a laser diffraction scattering method.

また、この発明で用いる酸化物触媒の平均粒径は、30μm以上であると好ましく、40μm以上であるとより好ましい。平均粒径が30μm未満であると、析出した結晶間に取り込まれる小さな触媒粒子が多すぎて、酸化物触媒の触媒粒子が表面を覆いやすくなってしまう。一方で、上記の平均粒径は100μm以下であると好ましい。100μmを超えると、触媒粒子が大きすぎて触媒としての効率が低下してしまうためである。   The average particle size of the oxide catalyst used in the present invention is preferably 30 μm or more, and more preferably 40 μm or more. If the average particle size is less than 30 μm, there are too many small catalyst particles taken in between the precipitated crystals, and the catalyst particles of the oxide catalyst tend to cover the surface. On the other hand, the average particle size is preferably 100 μm or less. If it exceeds 100 μm, the catalyst particles are too large and the efficiency as a catalyst is reduced.

上記のような粒度分布の酸化物触媒を得る方法としては、例えば、分級を行って触媒粒子を選び出して求める粒度分布に調整する方法や、上記酸化物触媒の触媒粒子を製造する際にスプレーのノズル径を調整する方法等が挙げられる。   Examples of the method for obtaining an oxide catalyst having the above particle size distribution include, for example, a method of performing classification to select catalyst particles and adjusting the obtained particle size distribution, and a method of spraying when producing the catalyst particles of the oxide catalyst. For example, a method for adjusting the nozzle diameter may be used.

上記のような粒子の割合の粒度分布である酸化物触媒を用いて気相酸化反応を行うことにより、上記酸化物触媒から遊離した成分が表面に析出した結晶の間に、上記酸化物触媒が捕捉されにくくなるので、表面が酸化物触媒で汚れにくくなり、その表面の伝熱係数の低下を抑制したり、配管の閉塞を抑制したりできる。また、表面に捕捉されにくくなるため、上記酸化物触媒の消費量も抑制できる。   By performing a gas phase oxidation reaction using an oxide catalyst having a particle size distribution as described above, the oxide catalyst is formed between crystals in which components released from the oxide catalyst are deposited on the surface. Since it becomes difficult to be trapped, the surface becomes difficult to be stained with the oxide catalyst, and it is possible to suppress a decrease in the heat transfer coefficient of the surface or to block the piping. Moreover, since it becomes difficult to be trapped on the surface, consumption of the oxide catalyst can also be suppressed.

この発明について、実施例を挙げてより具体的に説明する。   The present invention will be described more specifically with reference to examples.

(実施例1)
図1に示す気相反応装置の内径25cm、容積0.8mである本体11に、分級して得られた平均粒径50μm、20μm以下の触媒粒子の粒度分布が1.2重量%のモリブデンを有する触媒(触媒組成、Mo:Bi:Fe:Ce:Cr:Ni:Mg:Co:K:Rb:O:SiO=12:0.5:2:0.5:0.4:4:1.5:1:0.07:0.06:X:42。なお、Xは残分を示す。)を84kg導入した。なお、この粒度分布の値は、(株)島津製作所製、SALD−2000J(レーザー回折散乱法)により測定した。次いで、原料導入管15より反応気体としてプロピレン7.8kg/h及びアンモニア3.5kg/hを、空気導入管12から吹き出し口13を経由して空気54kg/hを本体11に供給し、440℃でアンモ酸化反応を行い、アクリロニトリルを得た。また、反応と同時に、本体11中のSTPA23製除熱コイル16に冷媒dとして141℃の水蒸気を150kg/hの流量で流通させ、反応熱の除熱を行った。
Example 1
Molybdenum having an average particle size of 50 μm and a catalyst particle size of 20 μm or less obtained by classification on a main body 11 having an inner diameter of 25 cm and a volume of 0.8 m 3 of the gas phase reactor shown in FIG. (Catalyst composition, Mo: Bi: Fe: Ce: Cr: Ni: Mg: Co: K: Rb: O: SiO 2 = 12: 0.5: 2: 0.5: 0.4: 4: 1.5: 1: 0.07: 0.06: X: 42, where X represents the remainder. The particle size distribution was measured by SALD-2000J (Laser Diffraction Scattering Method) manufactured by Shimadzu Corporation. Next, 7.8 kg / h of propylene and 3.5 kg / h of ammonia are supplied as reaction gases from the raw material introduction pipe 15, and 54 kg / h of air is supplied from the air introduction pipe 12 through the outlet 13 to the main body 11. Ammoxidation reaction was carried out to obtain acrylonitrile. Simultaneously with the reaction, 141 ° C. water vapor was circulated at a flow rate of 150 kg / h as refrigerant d through the heat removal coil 16 made of STPA23 in the main body 11 to remove the heat of reaction.

この運転を3ヶ月(約2000時間)連続して行い、除熱コイル16の総括伝熱係数Uの変化を、測定した値から下記式(1)により算出した。なお、式中、Cは流通させた水蒸気の定圧比熱(kcal/kg・℃)、Wは蒸気流量(kg/hr)、Toutは除熱コイル16の出口における水蒸気温度(℃)、Tinは除熱コイル16の入口における水蒸気温度(℃)、Tは反応装置内温度(℃)を示し、Aは除熱コイルの伝熱面積(m)を示す。その結果を図2に示す。総括伝熱係数Uは徐々に低下したが、その変化は緩やかなものとなった。 This operation was performed continuously for 3 months (about 2000 hours), and the change in the overall heat transfer coefficient U of the heat removal coil 16 was calculated from the measured value by the following equation (1). In the formula, C p is the constant-pressure specific heat of the circulated water vapor (kcal / kg · ° C.), W is the steam flow rate (kg / hr), T out is the water vapor temperature (° C.) at the outlet of the heat removal coil 16, T in the steam temperature at the inlet of the heat removal coil 16 (℃), T R denotes a reactor internal temperature (° C.), a represents the heat transfer area of the heat removal coil (m 2). The result is shown in FIG. The overall heat transfer coefficient U gradually decreased, but the change was gradual.

運転停止後に、除熱コイル16に付着した付着物を採取して顕微鏡で撮影した写真を図3に示す。   The photograph which extract | collected the deposit | attachment adhering to the heat removal coil 16 after the operation stop and image | photographed with the microscope is shown in FIG.

(比較例1)
実施例1において、触媒を分級せずに、粒径が20μm以下の触媒粒子の割合が5重量%であるモリブデンを有する触媒(触媒組成は実施例1と同じ。)をそのまま用いた以外は実施例1と同様に3ヶ月間運転してアクリロニトリルを得た。また同様に、除熱コイル16の総括伝熱係数の変化を測定した。その結果を図2に示す。総括伝熱係数は時間経過とともにはっきりと低下していき、3ヶ月で半分以下にまで低下した。
(Comparative Example 1)
Example 1 Example 1 was carried out except that the catalyst was not classified and the catalyst having molybdenum (the catalyst composition is the same as that of Example 1) having a particle size of 20 μm or less was 5% by weight. The acrylonitrile was obtained by operating for 3 months in the same manner as in Example 1. Similarly, the change in the overall heat transfer coefficient of the heat removal coil 16 was measured. The result is shown in FIG. The overall heat transfer coefficient clearly decreased over time and decreased to less than half in 3 months.

運転停止後に、除熱コイル16に付着した付着物を採取して顕微鏡で撮影した写真を図4に示す。図3ではほとんど見られなかった粒径10〜20μm程度の微粒子が厚く付着していた。微粒子が多いことにより、それらがMoOの結晶中に取り込まれる率が高くなって表面への付着量を増大させ、伝熱を悪化させたと考えられる。 FIG. 4 shows a photograph taken after the operation was stopped, and collected with a microscope after collecting the adhering material adhering to the heat removal coil 16. In FIG. 3, fine particles having a particle size of about 10 to 20 μm, which was hardly seen, were attached thickly. It is considered that the large amount of fine particles increased the rate of their incorporation into the MoO 3 crystals, increasing the amount of adhesion to the surface and deteriorating heat transfer.

気相反応装置の概要図Outline diagram of gas phase reactor 実施例及び比較例における総括伝熱係数のグラフGraph of overall heat transfer coefficient in examples and comparative examples 表面の付着を抑えた場合の表面の顕微鏡写真Micrograph of the surface when surface adhesion is suppressed 表面の付着について制限しなかった場合の表面の顕微鏡写真Micrograph of the surface when there is no restriction on surface adhesion

符号の説明Explanation of symbols

11 (気相反応装置の)本体
12 空気導入管
13 吹き出し口
14 触媒
15 原料導入管
16 除熱コイル
17 製品排出管
18 熱交換器
19 サイクロン
a 空気
b 混合気体
c 反応ガス
d 冷媒
11 Main body (of gas phase reactor) 12 Air introduction pipe 13 Outlet 14 Catalyst 15 Raw material introduction pipe 16 Heat removal coil 17 Product discharge pipe 18 Heat exchanger 19 Cyclone a Air b Gas mixture c Reaction gas d Refrigerant

Claims (4)

気相反応装置中で酸化物触媒を使用して行う気相酸化反応において、
上記酸化物触媒は、上記気相反応装置中でその酸化物触媒から遊離する成分が、上記気相反応装置の内表面、上記気相反応装置内部の装置の表面、又はそれらの両方に析出しうるものであって、
上記酸化物触媒のうち、粒径が20μm以下である触媒粒子が占める割合が2重量%以下であることを特徴とする、気相酸化反応方法。
In a gas phase oxidation reaction using an oxide catalyst in a gas phase reactor,
In the oxide catalyst, components liberated from the oxide catalyst in the gas phase reactor are deposited on the inner surface of the gas phase reactor, the surface of the device inside the gas phase reactor, or both. It can be
A gas phase oxidation reaction method characterized in that the proportion of catalyst particles having a particle size of 20 μm or less in the oxide catalyst is 2% by weight or less.
上記酸化物触媒がモリブデンを含むことを特徴とする、請求項1に記載の気相酸化反応方法。   The gas phase oxidation reaction method according to claim 1, wherein the oxide catalyst contains molybdenum. 上記気相酸化反応がアンモ酸化反応である、請求項2に記載の気相酸化反応方法。   The gas phase oxidation reaction method according to claim 2, wherein the gas phase oxidation reaction is an ammoxidation reaction. 上記酸化物触媒が分級により得られたものである、請求項1乃至3のいずれかに記載の気相酸化反応方法。   The gas phase oxidation reaction method according to any one of claims 1 to 3, wherein the oxide catalyst is obtained by classification.
JP2005064017A 2005-03-08 2005-03-08 Method for vapor-phase oxidation reaction Pending JP2006248919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064017A JP2006248919A (en) 2005-03-08 2005-03-08 Method for vapor-phase oxidation reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064017A JP2006248919A (en) 2005-03-08 2005-03-08 Method for vapor-phase oxidation reaction

Publications (1)

Publication Number Publication Date
JP2006248919A true JP2006248919A (en) 2006-09-21

Family

ID=37089788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064017A Pending JP2006248919A (en) 2005-03-08 2005-03-08 Method for vapor-phase oxidation reaction

Country Status (1)

Country Link
JP (1) JP2006248919A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063089A (en) * 2005-09-01 2007-03-15 Mitsubishi Rayon Co Ltd Method and device for producing nitrile compound
WO2009081758A1 (en) 2007-12-26 2009-07-02 Asahi Kasei Chemicals Corporation Process for producing oxide catalyst
JP2010095451A (en) * 2008-10-14 2010-04-30 Asahi Kasei Chemicals Corp Gas-phase exothermic reaction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033863A1 (en) * 1996-03-12 1997-09-18 Asahi Kasei Kogyo Kabushiki Kaisha Process for preparing unsaturated nitrile
WO1999003825A1 (en) * 1997-07-14 1999-01-28 Mitsubishi Chemical Corporation Method for gas phase catalytic oxidation of hydrocarbon
JPH11349545A (en) * 1998-06-02 1999-12-21 Asahi Chem Ind Co Ltd Production of alpha, beta-unsaturated nitrile
JP2001029788A (en) * 1999-07-21 2001-02-06 Mitsubishi Rayon Co Ltd Production of fluidized bed catalyst comprising molybdenum-bismuth-iron-containing metal oxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033863A1 (en) * 1996-03-12 1997-09-18 Asahi Kasei Kogyo Kabushiki Kaisha Process for preparing unsaturated nitrile
WO1999003825A1 (en) * 1997-07-14 1999-01-28 Mitsubishi Chemical Corporation Method for gas phase catalytic oxidation of hydrocarbon
JPH11349545A (en) * 1998-06-02 1999-12-21 Asahi Chem Ind Co Ltd Production of alpha, beta-unsaturated nitrile
JP2001029788A (en) * 1999-07-21 2001-02-06 Mitsubishi Rayon Co Ltd Production of fluidized bed catalyst comprising molybdenum-bismuth-iron-containing metal oxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063089A (en) * 2005-09-01 2007-03-15 Mitsubishi Rayon Co Ltd Method and device for producing nitrile compound
WO2009081758A1 (en) 2007-12-26 2009-07-02 Asahi Kasei Chemicals Corporation Process for producing oxide catalyst
JP5191008B2 (en) * 2007-12-26 2013-04-24 旭化成ケミカルズ株式会社 Method for producing oxide catalyst
US9731285B2 (en) 2007-12-26 2017-08-15 Asahi Kasei Chemicals Corporation Process for producing oxide catalysts
JP2010095451A (en) * 2008-10-14 2010-04-30 Asahi Kasei Chemicals Corp Gas-phase exothermic reaction method

Similar Documents

Publication Publication Date Title
JP5442260B2 (en) Method for producing densified molybdenum metal powder
JP5578784B2 (en) Alpha-aluminum oxide-based nanocrystal sintered body, method for producing the same, and use thereof
JP4175182B2 (en) Carbonaceous fine fiber
TW201016316A (en) Process for producing geometric shaped catalyst bodies
BR0008771B1 (en) processes for the catalytic gas phase oxidation of propene to acrylic acid, and from propene to acrolein and / or acrylic acid.
JPS60106534A (en) Fluidized catalyst for methanol synthesis
TWI634944B (en) Fluid bed ammonia oxidation reaction catalyst and method for producing acrylonitrile
WO2001005500A1 (en) Molybdenum-bismuth-iron containing metal oxide catalyst for fluidized layer, method for preparation thereof, and use thereof
JP2003524069A (en) Rapid conversion of metal-containing compounds to form metals or metal oxides
JP4098185B2 (en) Catalyst for synthesizing acrylonitrile, method for producing the same, and method for producing acrylonitrile
JP2006247452A (en) Vapor phase reaction apparatus
JP2006248919A (en) Method for vapor-phase oxidation reaction
US11406966B2 (en) Heterogeneous catalyst process and nickel catalyst
WO2012121300A1 (en) Conjugated diene production method
JP2006326440A (en) Catalyst for acrylonitrile synthesis
TW201941829A (en) Catalyst, method for manufacturing catalyst, method for manufacturing acrylonitrile
JP2009220052A (en) Manufacturing method of catalyst for acrylonitrile synthesis, and manufacturing method of acrylonitrile
TW201904937A (en) Compound manufacturing method
TWI378074B (en) Method for making a scour medium and use of such medium in a method for producing rutile titanium dioxide
JP2004018290A (en) Granular agglomerate of carbonaceous fine fibrous body
JP2005246372A (en) Catalyst for producing acrylonitrile and method for producing acrylonitrile
CN107073453A (en) Aoxidize molybdenum composite material and preparation method thereof
TW201942104A (en) Method for producing acrylonitrile
JP2006223941A (en) Method for manufacturing compound oxide catalyst for fluidized bed ammoxidation process
JP3744078B2 (en) Operation method of fluidized bed reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308