JP2006247915A - Manufacturing method of three-dimensional structure - Google Patents

Manufacturing method of three-dimensional structure Download PDF

Info

Publication number
JP2006247915A
JP2006247915A JP2005064899A JP2005064899A JP2006247915A JP 2006247915 A JP2006247915 A JP 2006247915A JP 2005064899 A JP2005064899 A JP 2005064899A JP 2005064899 A JP2005064899 A JP 2005064899A JP 2006247915 A JP2006247915 A JP 2006247915A
Authority
JP
Japan
Prior art keywords
dimensional structure
fine particles
substrate
producing
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005064899A
Other languages
Japanese (ja)
Inventor
Toyoki Kunitake
豊喜 国武
Yuanshi Ri
▲ユアン▼志 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2005064899A priority Critical patent/JP2006247915A/en
Publication of JP2006247915A publication Critical patent/JP2006247915A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a three-dimensional structure packed with fine particles almost uniform in particle size in the closest packing state. <P>SOLUTION: The three-dimensional structure is manufactured by forming at least two closest packing layers of fine particles using a process for preparing a liquid containing fine particle comprising polystyrene, silica or the like and almost uniform in particle size within a range of 100-2,000 nm, a process for dropping the liquid on a substrate, a process for emitting ultrasonic waves to the substrate and a process for coating the surface of a fine particle layer with a metal oxide thin film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学的な効果を使用した光学材料等に用いることができる、3次元構造体を製造する方法に関する。   The present invention relates to a method for manufacturing a three-dimensional structure that can be used for an optical material or the like using an optical effect.

従来から、3次元構造体は、光学フィルター、光学スイッチ、導波管および低しきいレーザーアプリケーション等として用いることができるため、大きな関心を引き付けている。   Traditionally, three-dimensional structures have attracted great interest because they can be used as optical filters, optical switches, waveguides, low threshold laser applications, and the like.

そこで、3次元構造体(微粒子性結晶)を得るための技術が種々検討されている。例えば、重力による堆積法(非特許文献1)、垂直堆積法(非特許文献2)、改良された垂直堆積法(非特許文献3)、膜濾過法(非特許文献4)、温加熱下での蒸発自己組織化(非特許文献5)、流動性基板上の結晶化(非特許文献6)等が知られている。しかしながら、堆積法では、適用できる粒子径が限定されてしまい(500nm未満のみ、または、500nm以上のみ)、さらに、複数層の積層が困難である。加えて、これらの方法は、堆積に、高価な設備を必要とするか、または、長い時間(1日〜数週間程度)を要するという問題がある。
このような状況のもと、短時間で、幅広い粒子径を持つ微粒子に適用可能な3次元構造体の製造方法が求められている。
Therefore, various techniques for obtaining a three-dimensional structure (fine crystal) have been studied. For example, gravity deposition method (Non-patent document 1), vertical deposition method (Non-patent document 2), improved vertical deposition method (Non-patent document 3), membrane filtration method (Non-patent document 4), under heating Evaporation self-organization (Non-Patent Document 5), crystallization on a fluid substrate (Non-Patent Document 6), and the like are known. However, in the deposition method, the applicable particle diameter is limited (only less than 500 nm or only 500 nm or more), and it is difficult to stack a plurality of layers. In addition, these methods have a problem that expensive equipment is required for deposition, or a long time (about 1 day to several weeks) is required.
Under such circumstances, there is a demand for a method for producing a three-dimensional structure that can be applied to fine particles having a wide range of particle sizes in a short time.

J.Natute 1997,385,321−324J. Nature 1997, 385, 321-324. J.Natute 2001,414,289−293J. Nature 2001, 414, 289-293 Langmuir 2004,20,1524−1526Langmuir 2004, 20, 1524-1526 Nature 1997,389,447−448Nature 1997, 389, 447-448 J.Am.Chem.Soc.2003,125,15589J. Am. Chem. Soc. 2003, 125, 15589 Chem.Master.2002,14,4023−4025Chem. Master. 2002, 14, 4023-4025

本発明は上記課題を解決することを目的とするものであって、短時間で、幅広い微粒子に適用可能な3次元構造体の製造方法を提供することを目的とする。   The object of the present invention is to provide a method for producing a three-dimensional structure that can be applied to a wide range of fine particles in a short time.

上記課題のもと、発明者が鋭意検討した結果、下記手段により本発明の課題を解決しうることを見出した。   As a result of intensive studies by the inventor under the above problems, it has been found that the problems of the present invention can be solved by the following means.

(1)粒子径が100nm〜2000nmであって、粒子径が略均一の微粒子を含む液体が載せられた基板に超音波を発射する工程を含む3次元構造体の製造方法。
(2)前記3次元構造体は微粒子が最密充填している、(1)に記載の3次元構造体の製造方法。
(3)前記3次元構造体は、2層以上の微粒子層の積層体である、(1)または(2)に記載の3次元構造体の製造方法。
(4)前記微粒子は、ポリスチレンである、(1)〜(3)のいずれかに記載の3次元構造体の製造方法。
(5)前記微粒子は、シリカである、(1)〜(3)のいずれかに記載の3次元構造体の製造方法。
(6)前記3次元構造体は、5層以上の微粒子が積層している、(1)〜(5)のいずれかに記載の3次元構造体の製造方法。
(7)欠陥比率が1%以下である、(1)〜(6)のいずれかに記載の3次元構造体の製造方法。
(8)さらに、積層した微粒子層の表面を金属酸化物薄膜でコーティングする工程を含む、(1)〜(7)のいずれかに記載の3次元構造体の製造方法。
(9)基板の特定の一部にのみ、粒子径が100〜2000nmであって、粒子径が略均一の微粒子を含む液体を載せ、該基板に超音波を発射する工程を含む3次元構造体の製造方法。
(1) A method for producing a three-dimensional structure including a step of emitting ultrasonic waves to a substrate on which a liquid containing fine particles having a particle diameter of 100 nm to 2000 nm and a substantially uniform particle diameter is placed.
(2) The three-dimensional structure manufacturing method according to (1), wherein the three-dimensional structure is closely packed with fine particles.
(3) The method for producing a three-dimensional structure according to (1) or (2), wherein the three-dimensional structure is a laminate of two or more fine particle layers.
(4) The method for producing a three-dimensional structure according to any one of (1) to (3), wherein the fine particles are polystyrene.
(5) The method for producing a three-dimensional structure according to any one of (1) to (3), wherein the fine particles are silica.
(6) The method for producing a three-dimensional structure according to any one of (1) to (5), wherein the three-dimensional structure is formed by stacking five or more fine particles.
(7) The method for producing a three-dimensional structure according to any one of (1) to (6), wherein the defect ratio is 1% or less.
(8) The method for producing a three-dimensional structure according to any one of (1) to (7), further comprising a step of coating the surface of the laminated fine particle layer with a metal oxide thin film.
(9) A three-dimensional structure including a step of placing a liquid containing fine particles having a particle diameter of 100 to 2000 nm and a substantially uniform particle diameter on only a specific part of the substrate and emitting ultrasonic waves to the substrate Manufacturing method.

本発明の製造方法を採用することにより、従来より短時間で3次元構造体を容易に製造することが可能になった。さらに、本発明の製造方法は、幅広い粒子径に適用可能であるという効果を有する。
また、本発明の製造方法は、様々な種類の微粒子に適用可能であり、その大きさも100nm〜2000nmと広い範囲において適用可能である。このため、工業的な利用が期待される。
さらに、本発明の製造方法では、複数層を積層することも可能であり、かかる観点からも利用価値が高い。
By employing the manufacturing method of the present invention, it has become possible to easily manufacture a three-dimensional structure in a shorter time than before. Furthermore, the production method of the present invention has an effect that it can be applied to a wide range of particle sizes.
Further, the production method of the present invention can be applied to various types of fine particles, and the size thereof can be applied in a wide range of 100 nm to 2000 nm. For this reason, industrial use is expected.
Furthermore, in the production method of the present invention, a plurality of layers can be laminated, and the utility value is high from this viewpoint.

以下において、本発明の内容について詳細に説明する。尚、本願明細書において「〜」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。   Hereinafter, the contents of the present invention will be described in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.

本願明細書における3次元構造体とは、基板上に少なくとも、微粒子層が少なくとも1層積以上、規則的に積層したものをいう。特に、2層以上積層したものが、好ましい。   The three-dimensional structure in the present specification refers to a structure in which at least one fine particle layer is regularly stacked on a substrate. In particular, a laminate of two or more layers is preferable.

本発明の3次元構造体の製造方法では、微粒子の粒子径が100nm〜2000nmのものを採用でき、好ましくは100nm〜1500nmである。このように本発明では、100nm以上500nm未満の粒子径のものや、500nm以上2000nm以下のものも製造できるため、適用範囲が広いという利点を有する。
また、本発明の3次元構造体では、微粒子の粒子系が略均一である。ここでいう、略均一とは、微粒子層が規則的に積層できる程度に均一であればよく、完全に同一の粒子径であることを必須の要件とするものではない。
本発明でいう微粒子とは、球状であることが好ましいが、必ずしも完全な球状である必要はなく、本発明の趣旨を逸脱しない範囲内において、略球状とみなせるものを含む趣旨である。略球状の場合の粒子径は、平均粒子径を持って粒子径とすることができる。
In the method for producing a three-dimensional structure according to the present invention, a fine particle having a particle diameter of 100 nm to 2000 nm can be adopted, and preferably 100 nm to 1500 nm. Thus, in the present invention, particles having a particle diameter of 100 nm or more and less than 500 nm or products having a particle diameter of 500 nm or more and 2000 nm or less can be manufactured, and thus there is an advantage that the application range is wide.
Further, in the three-dimensional structure of the present invention, the particle system of the fine particles is substantially uniform. The term “substantially uniform” as used herein may be uniform so that the fine particle layer can be regularly stacked, and does not necessarily require that the particle diameters are completely the same.
The fine particles referred to in the present invention are preferably spherical, but need not be completely spherical, and include those that can be regarded as substantially spherical within the scope of the present invention. The particle diameter in the case of a substantially spherical shape can be the particle diameter having an average particle diameter.

微粒子の種類は特に定めるものではなく、種々の材料(又は素材)からなる微粒子を用いることができ、例えば、無機微粒子、有機微粒子などが挙げられる。
無機微粒子としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等の周期表1族元素;マグネシウム、カルシウム、ストロンチウム、バリウム等の周期表2族元素;スカンジウム、イットリウム、ランタノイド元素(ランタン、セリウムなど)、アクチノイド元素(アクチニウムなど)等の周期表3族元素;チタン、ジルコニウム、ハフニウム等の周期表4族元素;バナジウム、ニオブ、タンタル等の周期表5族元素;クロム、モリブデン、タングステン等の周期表6族元素;マンガン、テクネチウム、レニウム等の周期表7族元素;鉄、ルテニウム、オスミウム等の周期表8族元素;コバルト、ロジウム、イリジウム等の周期表9族元素;ニッケル、パラジウム、白金等の周期表10族元素;銅、銀、金等の周期表11族元素;亜鉛、カドミウム、水銀等の周期表12族元素;ホウ素、アルミニウム、ガリウム、インジウム、タリウム等の周期表13族元素;ケイ素、ゲルマニウム、スズ、鉛等の周期表14族元素;アンチモン、ビスマス等の周期表15族元素などの無機系原子(無機系元素)を含む粒子状の無機化合物が挙げられる。該無機化合物は、1種又は2種以上の無機系原子を含有していてもよい。無機微粒子としては、微粒子状の形態を有する限り、無機系元素単体からなっていてもよく、無機系元素の酸化物(複合酸化物を含む)、水酸化物、ハロゲン化物(塩化物など)、オキソ酸塩(硝酸塩、硫酸塩、リン酸塩、炭酸塩など)などであってもよい。無機微粒子としては、周期表14族元素を含有する微粒子が好ましく、ケイ素原子を含有するケイ素微粒子がより好ましい。
The kind of fine particles is not particularly defined, and fine particles made of various materials (or raw materials) can be used, and examples thereof include inorganic fine particles and organic fine particles.
As inorganic fine particles, periodic table group 1 elements such as lithium, sodium, potassium, rubidium and cesium; periodic table group 2 elements such as magnesium, calcium, strontium and barium; scandium, yttrium and lanthanoid elements (such as lanthanum and cerium), Periodic Table Group 3 elements such as actinoid elements (actinium, etc.); Periodic Table Group 4 elements such as titanium, zirconium, hafnium; Periodic Table Group 5 elements such as vanadium, niobium, tantalum; Periodic Table 6 such as chromium, molybdenum, tungsten, etc. Group elements: Periodic Table 7 elements such as manganese, technetium, rhenium; Periodic Table 8 elements such as iron, ruthenium, osmium; Periodic Table 9 elements such as cobalt, rhodium, iridium; Periods such as nickel, palladium, platinum, etc. Group 10 elements; Group 11 elements of the periodic table such as copper, silver, gold ; Group 12 elements of the periodic table such as zinc, cadmium and mercury; Group 13 elements of the periodic table such as boron, aluminum, gallium, indium and thallium; Group 14 elements of the periodic table such as silicon, germanium, tin and lead; Antimony, bismuth and the like In particular, particulate inorganic compounds containing inorganic atoms (inorganic elements) such as Group 15 elements of the periodic table are included. The inorganic compound may contain one kind or two or more kinds of inorganic atoms. As long as it has the form of fine particles, the inorganic fine particles may be composed of simple inorganic elements, including inorganic element oxides (including complex oxides), hydroxides, halides (chlorides, etc.), Oxo acid salts (nitrate, sulfate, phosphate, carbonate, etc.) may be used. As the inorganic fine particles, fine particles containing a group 14 element of the periodic table are preferable, and silicon fine particles containing a silicon atom are more preferable.

有機微粒子として、例えば、ポリイソプレンやポリブタジエンなどのポリジエン類;ポリイソブチレンなどのポリアルケン類;ポリアクリル酸ブチル、ポリアクリル酸エチルなどのポリアクリル酸エステル類;ポリブトオキシメチレンなどのポリビニルエステル類;ポリウレタン類;ポリシロキサン類;ポリサルファイド類;ポリフォスファゼン類;ポリトリアジン類;ポリカーボラン類;ポリカーボネート(PC);ポリメチルメタクリレート(PMMA)などのメタクリレート系樹脂;ポリエチレンテレフタレート(PET)などのポリエステル系樹脂;ポリエーテルスルホン(PES)(ポリエーテルサルホン);ポリノルボルネン;エポキシ系樹脂;ポリアリール;ポリイミド;ポリエーテルイミド(PEI);ポリアミドイミド;ポリエステルイミド;ポリアミド;ポリスチレン、アクリロニトリル−スチレン共重合体(AS樹脂)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)などのスチレン系樹脂;ポリフェニレンエーテルなどのポリアリーレンエーテル;ポリアリレート;ポリアセタール;ポリフェニレンスルフィド;ポリスルホン(ポリサルホン);ポリエーテルエーテルケトンやポリエーテルケトンケトンなどのポリエーテルケトン類;ポリビニルアルコール;ポリビニルピロリドン;フッ化ビニリデン系樹脂、ヘキサフルオロプロピレン系樹脂、ヘキサフルオロアセトン系樹脂などのフッ素系樹脂などが挙げられる。有機微粒子としては、スチレン系樹脂を含有する微粒子が好ましく、ポリスチレンを含有する微粒子がより好ましい。   Examples of organic fine particles include polydienes such as polyisoprene and polybutadiene; polyalkenes such as polyisobutylene; polyacrylates such as polybutyl acrylate and polyethyl acrylate; polyvinyl esters such as polybutoxymethylene; polyurethane Polysiloxanes; polysulfides; polyphosphazenes; polytriazines; polycarboranes; polycarbonate resins (PC); methacrylate resins such as polymethyl methacrylate (PMMA); polyester resins such as polyethylene terephthalate (PET); Polyethersulfone (PES) (polyethersulfone); Polynorbornene; Epoxy resin; Polyaryl; Polyimide; Polyetherimide (PEI); Polyamideimide; Reesterimide; Polyamide; Polystyrene, polystyrene, acrylonitrile-styrene copolymer (AS resin), styrene resin such as acrylonitrile-butadiene-styrene copolymer (ABS resin); polyarylene ether such as polyphenylene ether; polyarylate; polyacetal; Polysulfone (polysulfone); Polyether ketones such as polyether ether ketone and polyether ketone ketone; Polyvinyl alcohol; Polyvinyl pyrrolidone; Fluorine-based resins such as vinylidene fluoride resin, hexafluoropropylene resin, hexafluoroacetone resin Resin etc. are mentioned. As the organic fine particles, fine particles containing a styrene resin are preferable, and fine particles containing polystyrene are more preferable.

さらに、これらの微粒子の表面に、顔料、染料を塗布した微粒子や、加熱・光等により接着性を発揮させた微粒子も採用できる。   Furthermore, fine particles in which pigments and dyes are applied to the surface of these fine particles, or fine particles whose adhesion is exhibited by heating, light, or the like can be employed.

本発明では微粒子を液体に分散させる。ここで用いる液体としては、特に定めるものではなく、広く溶媒を採用できる。具体的には、水、有機溶媒等が挙げられる。液体は、30μlが18℃で3時間以内に揮発(蒸発)するものが好ましく、2時間以内に揮発するものがより好ましく、30分以内に揮発するものがさらに好ましい。
液中の微粒子の濃度は、積層数および基板の大きさに従って適宜定めることができ、例えば、0.1〜5質量%である。
In the present invention, fine particles are dispersed in a liquid. The liquid used here is not particularly defined, and a wide variety of solvents can be employed. Specifically, water, an organic solvent, etc. are mentioned. The liquid is preferably one in which 30 μl is volatilized (evaporated) at 18 ° C. within 3 hours, more preferably volatilized within 2 hours, and more preferably volatilized within 30 minutes.
The concentration of the fine particles in the liquid can be appropriately determined according to the number of stacked layers and the size of the substrate, and is, for example, 0.1 to 5% by mass.

本発明では、微粒子を含む液体を基板の上に載せて用いる。ここで、基板の上に載せる方法は特に定めるものではないが、スポイド等で滴下することが好ましい。
従って、本発明では、基板の特定の一部にのみスポイド等で微粒子を含む液体を滴下することにより、該基板の特定の一部にのみ、3次元構造体を積層することができる。このような手段を採用することにより、種々の3次元構造体を製造することができる。例えば、基板の領域ごとに異なる微粒子からなる3次元構造体を製造することもできる。
In the present invention, a liquid containing fine particles is used on a substrate. Here, the method of placing the substrate on the substrate is not particularly defined, but it is preferable to drop the substrate with a dropoid or the like.
Therefore, in the present invention, a three-dimensional structure can be laminated only on a specific part of the substrate by dropping a liquid containing fine particles with a spoid or the like only on a specific part of the substrate. By adopting such means, various three-dimensional structures can be manufactured. For example, a three-dimensional structure made of different fine particles for each region of the substrate can be manufactured.

本発明では、超音波を発射させることにより基板上に微粒子を積層させる。超音波条件は、特に定めるものではないが、周波数が10〜50kHzであることが好ましく、20〜40kHzであることがより好ましい。超音波を発射させる時間としては、採用する液体の揮発のしやすさ等を考慮して定めることができるが、例えば、水では、10分〜2時間であることが好ましく、30分〜1時間であることがさらに好ましい。
超音波の発射方法としては、特に定めるものではないが、例えば、トランスデュザーに高周波電圧を加えて発射させることができる。
In the present invention, the fine particles are laminated on the substrate by emitting ultrasonic waves. The ultrasonic conditions are not particularly defined, but the frequency is preferably 10 to 50 kHz, and more preferably 20 to 40 kHz. The time for emitting the ultrasonic wave can be determined in consideration of easiness of volatilization of the liquid to be employed, but for example, for water, it is preferably 10 minutes to 2 hours, and 30 minutes to 1 hour. More preferably.
A method for emitting ultrasonic waves is not particularly defined, but for example, a high-frequency voltage can be applied to a transducer for emission.

本発明の製造方法に用いる基板としては、特に定めるものではなく、3次元構造体の用途に応じて適宜定めることができる。例えば、絶縁性支持体、半導体性支持体、プラスチックフィルム、ガラス板、木板、厚紙等広く採用することができる。さらに、絶縁体支持体としては、酸化シリコン、窒化シリコン、酸化アルミニウム、酸化チタン、フッ化カルシウム、アクリル樹脂、エポキシ樹脂等の絶縁性樹脂、ポリイミド、テフロン(
登録商標)、光ラジカル重合体、ノボラック樹脂等を用いることができる。半導体性支持体としては、シリコン、ゲルマニウム、ガリウム砒素、インジウム燐、炭化シリコン等を用いることができる。
本発明で採用する基板の表面は、平らであることが好ましい。また、微粒子等と配向させる官能基等を有さないくてもよい。このような基板とするため、微粒子を載せる以前に、基板の表面を酸処理してもよい。酸処理により、より平らな基板表面が得られる。
The substrate used in the production method of the present invention is not particularly defined, and can be appropriately determined according to the use of the three-dimensional structure. For example, an insulating support, a semiconductor support, a plastic film, a glass plate, a wooden board, cardboard, etc. can be widely used. Furthermore, as the insulator support, silicon oxide, silicon nitride, aluminum oxide, titanium oxide, calcium fluoride, acrylic resin, epoxy resin and other insulating resins, polyimide, Teflon (
Registered trademark), a photo-radical polymer, a novolac resin, and the like. As the semiconductor support, silicon, germanium, gallium arsenide, indium phosphide, silicon carbide, or the like can be used.
The surface of the substrate employed in the present invention is preferably flat. Moreover, it does not need to have a functional group or the like to be aligned with fine particles. In order to obtain such a substrate, the surface of the substrate may be acid-treated before placing the fine particles. Acid treatment results in a flatter substrate surface.

本発明の製造方法では、積層する層の数を、自由に設定することができる。層数は、1層のみでもよいし、5層以上であってもよいし、10層以上であってもよい。これらは、超音波を発射させる時間および基板上に載せる液体中の微粒子の濃度等を適宜調整することにより、調整することができる。このような手段を採用した結果、本発明の製造方法により製造される3次元構造体は、例えば、0.2〜100μmの厚さの積層体とすることもできる。
本発明の製造方法では、微粒子が最密充填となるよう充填させることができる。さらに、本発明の製造方法により製造される3次元構造体は、欠陥比率が、例えば、1%以下、さらには、0.5%以下のものも得られる。なお、本発明でいう最密充填は、完全な最密充填のほか、欠陥があるものも含む趣旨である。
加えて、本発明の方法では、超音波を発射させる時間、例えば、液体を揮発させる時間があれば最低限製造できるという利点を有する。
In the manufacturing method of the present invention, the number of layers to be stacked can be freely set. The number of layers may be only one layer, 5 layers or more, or 10 layers or more. These can be adjusted by appropriately adjusting the time for emitting ultrasonic waves and the concentration of fine particles in the liquid placed on the substrate. As a result of adopting such means, the three-dimensional structure manufactured by the manufacturing method of the present invention can be a laminated body having a thickness of 0.2 to 100 μm, for example.
In the production method of the present invention, the fine particles can be filled so as to be closest packed. Furthermore, the three-dimensional structure manufactured by the manufacturing method of the present invention can have a defect ratio of, for example, 1% or less, and further 0.5% or less. In addition, the closest packing in the present invention is intended to include not only complete closest packing but also defective ones.
In addition, the method of the present invention has an advantage that it can be manufactured at a minimum if there is time to emit ultrasonic waves, for example, time to volatilize the liquid.

また、本発明の製造方法では、微粒子を積層した積層体に、物理的処理または化学的処理を行うことにより、3次元構造体をより安定にすることができる。
例えば、積層体を水またはエタノール等に浸漬することにより、微粒子間の吸着力を高め、微粒子間の結合をより高めることができる。
また、積層体の表面を金属酸化物薄膜(TiO2等)等でコーティングすることにより、さらに、強固なものが得られる。この場合のコーティング方法としては、公知の方法、例えば、特開平9−241008号公報、特開平10−249985号公報、特開2003−252609号公報等に記載の方法等に従って行うことができる。さらに、本発明の製造方法では、金属酸化物薄膜でコーディングした表面にさらに、微粒子層を1層または2層以上を設けてもよい。
さらに、積層体をプラズマ処理することも好ましい。プラズマ処理としては、酸素プラズマ処理が好ましい。
Moreover, in the manufacturing method of this invention, a three-dimensional structure can be made more stable by performing a physical process or a chemical process to the laminated body which laminated | stacked microparticles | fine-particles.
For example, by immersing the laminate in water, ethanol, or the like, the adsorptive power between the fine particles can be increased and the bond between the fine particles can be further increased.
Further, by coating the surface of the laminate with a metal oxide thin film (TiO 2 or the like) or the like, a stronger one can be obtained. As a coating method in this case, a known method, for example, a method described in JP-A-9-241008, JP-A-10-249985, JP-A-2003-252609 or the like can be used. Further, in the production method of the present invention, one or more fine particle layers may be further provided on the surface coded with the metal oxide thin film.
Furthermore, it is also preferable to plasma-process the laminated body. As the plasma treatment, oxygen plasma treatment is preferable.

本発明の3次元構造体は、光学フィルター、光学スイッチ、導波管および低しきいレーザーアプリケーション等のための光学材料として好ましく利用できる。そのほか、金属酸化物薄膜をコーティングした場合、逆オパールの製造、触媒を載せる担体等に利用することも可能である。   The three-dimensional structure of the present invention can be preferably used as an optical material for optical filters, optical switches, waveguides, low threshold laser applications, and the like. In addition, when a metal oxide thin film is coated, it can be used for production of inverted opal, a carrier on which a catalyst is placed, and the like.

以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.

実施例1
ガラス基板を、過酸化水素水(30体積%)と濃硫酸(70体積%)の混合液に、8時間浸漬して、イオン交換水で洗浄した後、基板表面を窒素ガスにより風乾させた。この基板をガラスビーカーの底面に静置し、そのガラスビーカーを超音波発生装置(大和電子工業、1510)の水浴に配置した。直径548nmのポリスチレン微粒子(和光純薬(株)製)を分散させた水溶液30μl(2.72重量%)を該基板上に滴下した。滴下後、超音波(42kHz)を発生させて1時間そのままの状態にした。1時間後には、水分が蒸発しており、ポリスチレン微粒子層がガラス基板表面に形成されていた。得られたガラス基板を走査型電子顕微鏡(SEM)、(日立製作所製、S−5200)にて観察した。その結果を図1および図2に示した。ここで、図2は、図1を高倍率にて観察した基板表面であり、図2(b)は基板表面を、図2(c)は微粒子層の断面をそれぞれ示している。
図1および図2から明らかなとおり、3次元構造体が積層されていることが確認された。特に、図2(b)(c)より明らかなとおり、表面および層断面いずれにおいても、最密に充填されていることが確認された。さらに、図1中、白線で囲まれた部分の欠陥比率を測定したところ、0.5%以下であった。また、積層体の厚さは、10μmであった。
Example 1
The glass substrate was immersed in a mixed solution of hydrogen peroxide (30% by volume) and concentrated sulfuric acid (70% by volume) for 8 hours, washed with ion-exchanged water, and then the substrate surface was air-dried with nitrogen gas. This substrate was placed on the bottom of the glass beaker, and the glass beaker was placed in a water bath of an ultrasonic generator (Daiwa Denshi Kogyo, 1510). 30 μl (2.72 wt%) of an aqueous solution in which polystyrene fine particles having a diameter of 548 nm (manufactured by Wako Pure Chemical Industries, Ltd.) were dispersed was dropped onto the substrate. After dropping, an ultrasonic wave (42 kHz) was generated and left for 1 hour. After 1 hour, water was evaporated, and a polystyrene fine particle layer was formed on the surface of the glass substrate. The obtained glass substrate was observed with a scanning electron microscope (SEM) (manufactured by Hitachi, Ltd., S-5200). The results are shown in FIG. 1 and FIG. Here, FIG. 2 shows a substrate surface obtained by observing FIG. 1 at a high magnification, FIG. 2B shows the substrate surface, and FIG. 2C shows a cross section of the fine particle layer.
As is clear from FIGS. 1 and 2, it was confirmed that the three-dimensional structures were laminated. In particular, as is clear from FIGS. 2 (b) and 2 (c), it was confirmed that the surface and the layer cross-section were filled most closely. Furthermore, when the defect ratio of the part enclosed with the white line in FIG. 1 was measured, it was 0.5% or less. Moreover, the thickness of the laminated body was 10 μm.

実施例2
直径548nmのポリスチレン微粒子(和光純薬(株)製)を最終濃度が、0.87重量%、1.74重量%、2.6重量%となるように水に分散させ、これらの水溶液40μlを実施例1と同様の処理をした基板上に滴下し、実施例1と同様に行った。SEMを用いて観察した結果を図3に示す。図3中、a、b、cの順に、微粒子の含量は、0.87重量%、1.74重量%、2.6重量%のものを示している。図3aに示すとおり、0.87重量%では5層の、1.74重量%では12層の、2.6重量%では16層の積層体が形成されたことが確認された。
Example 2
Polystyrene fine particles having a diameter of 548 nm (manufactured by Wako Pure Chemical Industries, Ltd.) are dispersed in water so that the final concentration is 0.87 wt%, 1.74 wt%, 2.6 wt%, and 40 μl of these aqueous solutions are added. The solution was dropped on a substrate that had been treated in the same manner as in Example 1 and performed in the same manner as in Example 1. The result observed using SEM is shown in FIG. In FIG. 3, the content of fine particles is 0.87 wt%, 1.74 wt%, 2.6 wt% in the order of a, b, and c. As shown in FIG. 3a, it was confirmed that a laminate of 5 layers was formed at 0.87% by weight, 12 layers at 1.74% by weight, and 16 layers at 2.6% by weight.

実施例3
下記表1の条件に従い、他は実施例1と同様にして行った。SEMを用いて観察した結果を図4に示した。
Example 3
According to the conditions shown in Table 1 below, the others were carried out in the same manner as in Example 1. The results observed using SEM are shown in FIG.

Figure 2006247915
Figure 2006247915

図4から明らかなとおり、いずれの粒子径においても、微粒子が好適に積層されることが確認された。   As is clear from FIG. 4, it was confirmed that the fine particles were suitably laminated at any particle size.

実施例4
実施例3のcで作製した3次元構造体の表面に、ゾルゲル反応により、チタンブトキシドを付着させ、その表面を加水分解して酸化チタン膜を形成した。SEMを用いて観察した結果を図5に示した。
ここで、図5aは薄膜形成前のものを、図5bは薄膜形成後のものを、それぞれ示している。ここで、図5bは、積層構造の乱れ等はない一方で、微粒子がより安定に存在していることが認められた。
Example 4
Titanium butoxide was attached to the surface of the three-dimensional structure produced in Example 3c by a sol-gel reaction, and the surface was hydrolyzed to form a titanium oxide film. The results observed using SEM are shown in FIG.
Here, FIG. 5a shows the one before the thin film formation, and FIG. 5b shows the one after the thin film formation. Here, in FIG. 5b, it was recognized that fine particles exist more stably while there is no disorder of the laminated structure.

図1は、本願実施例1で作製した3次元構造体の電子顕微鏡写真を示す。FIG. 1 shows an electron micrograph of the three-dimensional structure produced in Example 1 of the present application. 図2は、図1の拡大図および断面拡大図を示す。FIG. 2 shows an enlarged view and a cross-sectional enlarged view of FIG. 図3は、本願実施例2で作製した3次元構造体の電子顕微鏡写真を示す。FIG. 3 shows an electron micrograph of the three-dimensional structure produced in Example 2 of the present application. 図4は、本願実施例3で作製した3次元構造体の電子顕微鏡写真を示す。FIG. 4 shows an electron micrograph of the three-dimensional structure produced in Example 3 of the present application. 図5は、本願実施例4で作製した3次元構造体の電子顕微鏡写真を示す。FIG. 5 shows an electron micrograph of the three-dimensional structure produced in Example 4 of the present application.

Claims (9)

粒子径が100nm〜2000nmであって、粒子径が略均一の微粒子を含む液体が載せられた基板に超音波を発射する工程を含む3次元構造体の製造方法。 A method for producing a three-dimensional structure, comprising a step of emitting ultrasonic waves to a substrate on which a liquid containing fine particles having a particle diameter of 100 nm to 2000 nm and a substantially uniform particle diameter is placed. 前記3次元構造体は微粒子が最密充填している、請求項1に記載の3次元構造体の製造方法。 The method for producing a three-dimensional structure according to claim 1, wherein the three-dimensional structure is closely packed with fine particles. 前記3次元構造体は、2層以上の微粒子層の積層体である、請求項1または2に記載の3次元構造体の製造方法。 The method for producing a three-dimensional structure according to claim 1 or 2, wherein the three-dimensional structure is a laminate of two or more fine particle layers. 前記微粒子は、ポリスチレンである、請求項1〜3のいずれかに記載の3次元構造体の製造方法。 The method for producing a three-dimensional structure according to claim 1, wherein the fine particles are polystyrene. 前記微粒子は、シリカである、請求項1〜3のいずれかに記載の3次元構造体の製造方法。 The method for producing a three-dimensional structure according to claim 1, wherein the fine particles are silica. 前記3次元構造体は、5層以上の微粒子が積層している、請求項1〜5のいずれかに記載の3次元構造体の製造方法。 The method for producing a three-dimensional structure according to any one of claims 1 to 5, wherein the three-dimensional structure is formed by laminating five or more fine particles. 欠陥比率が1%以下である、請求項1〜6のいずれかに記載の3次元構造体の製造方法。 The manufacturing method of the three-dimensional structure in any one of Claims 1-6 whose defect ratio is 1% or less. さらに、積層した微粒子層の表面を金属酸化物薄膜でコーティングする工程を含む、請求項1〜7のいずれかに記載の3次元構造体の製造方法。 Furthermore, the manufacturing method of the three-dimensional structure in any one of Claims 1-7 including the process of coating the surface of the laminated | stacked fine particle layer with a metal oxide thin film. 基板の特定の一部にのみ、粒子径が100〜2000nmであって、粒子径が略均一の微粒子を含む液体を載せ、該基板に超音波を発射する工程を含む3次元構造体の製造方法。 A method of manufacturing a three-dimensional structure including a step of placing a liquid containing fine particles having a particle diameter of 100 to 2000 nm and a substantially uniform particle diameter on only a specific part of the substrate and emitting ultrasonic waves to the substrate .
JP2005064899A 2005-03-09 2005-03-09 Manufacturing method of three-dimensional structure Pending JP2006247915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064899A JP2006247915A (en) 2005-03-09 2005-03-09 Manufacturing method of three-dimensional structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064899A JP2006247915A (en) 2005-03-09 2005-03-09 Manufacturing method of three-dimensional structure

Publications (1)

Publication Number Publication Date
JP2006247915A true JP2006247915A (en) 2006-09-21

Family

ID=37088905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064899A Pending JP2006247915A (en) 2005-03-09 2005-03-09 Manufacturing method of three-dimensional structure

Country Status (1)

Country Link
JP (1) JP2006247915A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246846A (en) * 2007-03-30 2008-10-16 Tokyo Institute Of Technology Film and composition for forming coating film
DE112010003375T5 (en) 2009-08-24 2012-06-14 Fuji Chemical Company, Limited Acrylic resin composition, process for its preparation and building material, fashion accessory and optical material formed by using the same
US9650491B2 (en) 2011-10-03 2017-05-16 Fuji Chemical Company, Limited Epoxy resin composition, and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246846A (en) * 2007-03-30 2008-10-16 Tokyo Institute Of Technology Film and composition for forming coating film
DE112010003375T5 (en) 2009-08-24 2012-06-14 Fuji Chemical Company, Limited Acrylic resin composition, process for its preparation and building material, fashion accessory and optical material formed by using the same
US9023961B2 (en) 2009-08-24 2015-05-05 Fuji Chemical Company, Limited Acrylic resin composition, method of manufacturing the same, and architectural material, fashion accessory, and optical material formed using the same
US9650491B2 (en) 2011-10-03 2017-05-16 Fuji Chemical Company, Limited Epoxy resin composition, and method for producing the same

Similar Documents

Publication Publication Date Title
Lai et al. Templated electrosynthesis of zinc oxide nanorods
Lai et al. Recent advances in TiO2‐based nanostructured surfaces with controllable wettability and adhesion
Wang et al. Room temperature synthesis of hollow CdMoO4 microspheres by a surfactant-free aqueous solution route
Yuan et al. A simple method for preparation of through-hole porous anodic alumina membrane
Hu et al. Enabling graphene oxide nanosheets as water separation membranes
Tsujino et al. Helical nanoholes bored in silicon by wet chemical etching using platinum nanoparticles as catalyst
Wang et al. Sonochemical fabrication and characterization of stibnite nanorods
Tan et al. Free-standing porous anodic alumina templates for atomic layer deposition of highly ordered TiO2 nanotube arrays on various substrates
Jakšić et al. Functionalization of artificial freestanding composite nanomembranes
TW201924949A (en) Energy storage devices, membrane thereof and ink for printed film
US9099376B1 (en) Laser direct patterning of reduced-graphene oxide transparent circuit
JP2007046042A (en) Method for producing porous structure, and porous structure obtained from the compound method
Shklovsky et al. Bioinspired peptide nanotubes: Deposition technology and physical properties
Ottone et al. Wetting behavior of hierarchical oxide nanostructures: TiO2 nanotubes from anodic oxidation decorated with ZnO nanostructures
Chen et al. A facile, low-cost plasma etching method for achieving size controlled non-close-packed monolayer arrays of polystyrene nano-spheres
KR20130118533A (en) Nano porous films composed carbon nano structure-metal composite or carbon nano structure-metal oxide composite and a process for preparing the same
JP2006247915A (en) Manufacturing method of three-dimensional structure
Singh et al. Universal method for the fabrication of detachable ultrathin films of several transition metal oxides
Ono Nanostructure analysis of anodic films formed on aluminum-focusing on the effects of electric field strength and electrolyte anions
Goyat et al. Synthesis of graphene-based nanocomposites for environmental remediation applications: A review
Xu et al. Light-powered active colloids from monodisperse and highly tunable microspheres with a thin TiO 2 shell
JP2007118169A (en) Method of coating inside of microchannel with metal oxide, derivative thereof and composite structure
JP2007106118A (en) Multilayer structure and manufacturing process of the same
Xu et al. Fabrication of architectures with dual hollow structures: Arrays of Cu2O nanotubes organized by hollow nanospheres
Zheng et al. Reticulated polyamide thin-film nanocomposite membranes incorporated with 2D boron nitride nanosheets for high-performance nanofiltration