JP2006247499A - Supercritical extraction method using test tube - Google Patents

Supercritical extraction method using test tube Download PDF

Info

Publication number
JP2006247499A
JP2006247499A JP2005066433A JP2005066433A JP2006247499A JP 2006247499 A JP2006247499 A JP 2006247499A JP 2005066433 A JP2005066433 A JP 2005066433A JP 2005066433 A JP2005066433 A JP 2005066433A JP 2006247499 A JP2006247499 A JP 2006247499A
Authority
JP
Japan
Prior art keywords
test tube
methanol
stainless steel
pressure
resistant stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005066433A
Other languages
Japanese (ja)
Inventor
Koichiro Tsurumi
浩一郎 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Japan Ltd
Original Assignee
BASF Coatings Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Coatings Japan Ltd filed Critical BASF Coatings Japan Ltd
Priority to JP2005066433A priority Critical patent/JP2006247499A/en
Publication of JP2006247499A publication Critical patent/JP2006247499A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive method of extracting trace substance just required for accurate analysis without requiring a large-scale facility or a lot of sample, and causing no contamination. <P>SOLUTION: Methanol is sealed in a half volume of a commercially available glass test tube, and methanol is sealed in a pressure-resistant stainless steel vessel up to the same level as the methanol in the test tube. Then, the stainless steel vessel is heated in an oven to perform supercritical extraction of trace sample by methanol. The test tube is disposable, causing no contamination, and enhances the accuracy of the trace substance analysis. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、大規模な設備や多量のサンプルを必要とせずに、安価な市販のガラス製試験管を用いて、微量のサンプルを超臨界抽出する方法に関する。   The present invention relates to a method for supercritical extraction of a small amount of sample using an inexpensive commercially available glass test tube without requiring large-scale equipment or a large amount of sample.

従来、超臨界流体抽出装置として知られている装置(例えば、特許文献1参照)は、設備が大型で、高価である。また、リアクター(サンプルを入れる容器)も小型のものでも100mlのサイズであり、抽出に必要なサンプルもそれに応じて数mgは最低限必要であり、微量のサンプルからの超臨界抽出が出来ないという欠点があった。さらに、直接、リアクターの内部にサンプルと抽出する液体を入れるため、完全な洗浄が困難であり、コンタミネ−ションの可能性も生じるという欠点があった。   Conventionally, an apparatus known as a supercritical fluid extraction apparatus (see, for example, Patent Document 1) has a large facility and is expensive. In addition, even if the reactor (container for the sample) is small, it has a size of 100 ml, and the sample required for extraction requires several mg at the minimum, and supercritical extraction from a very small amount of sample is impossible. There were drawbacks. Furthermore, since the sample and the liquid to be extracted are directly placed inside the reactor, there is a drawback that complete cleaning is difficult and contamination may occur.

また、トナーなどの固形サンプルをテトラヒドロフランなどの溶媒にて樹脂成分を抽出する方法として、ソックスレー抽出法が、よく知られており(例えば、特許文献2参照)、乾燥塗膜の破片から、塗料の成分を抽出する方法としても用いられる。しかしながら、この方法では、抽出効率が悪く、長時間を要するという欠点があり、加えて、上記の超臨界抽出方法と同様、容器の洗浄不十分によるコンタミネ−ションの懸念も存在する。
特許第3432513号公報 特開2001−272812号公報
As a method for extracting a resin component from a solid sample such as toner with a solvent such as tetrahydrofuran, a Soxhlet extraction method is well known (see, for example, Patent Document 2). It is also used as a method for extracting components. However, this method has the disadvantages that the extraction efficiency is low and takes a long time, and in addition, there is a concern about contamination due to insufficient washing of the container, as in the above supercritical extraction method.
Japanese Patent No. 3432513 JP 2001-272812 A

本発明の目的は、サンプル量が微量の場合でも、正確な分析に必要とされるだけの物質の抽出が可能であり、かつ、安価でコンタミネ−ションの懸念もない超臨界抽出をする方法を見出すことである。 It is an object of the present invention to provide a method for supercritical extraction that can extract substances necessary for accurate analysis even when the amount of a sample is very small, and that is inexpensive and free from contamination concerns. To find.

本発明者らは、上記の目的を達成するために鋭意研究を進めた結果、安価な市販のガラス製試験管を用いて、微量なサンプルから超臨界抽出ができることを見出した。   As a result of diligent research to achieve the above object, the present inventors have found that supercritical extraction can be performed from a small amount of sample using an inexpensive commercially available glass test tube.

すなわち、本発明は、(1)抽出しようとする微量のサンプルを試験管に入れ、試験管の容積のおよそ半分量のメタノールを加えた後、溶融によって試験管の封入口を封鎖する工程と、(2)試験管の体積の 1.1〜10倍の容積を有する耐圧ステンレスの容器に試験管を入れた後、耐圧ステンレス容器の中に試験管内のメタノールと液面が同じになるようにメタノールを加える工程と、(3)耐圧ステンレス容器を密封し、オーブンにて加熱し、メタノールが超臨界状態になるまで加熱する工程を経ることによって、微量物質の超臨界抽出方法を提供する。   That is, the present invention includes (1) a step of putting a small amount of sample to be extracted into a test tube, adding about half of the volume of the test tube, and then sealing the sealing port of the test tube by melting; (2) After placing the test tube in a pressure resistant stainless steel container having a volume 1.1 to 10 times the volume of the test tube, methanol is placed in the pressure resistant stainless steel container so that the liquid level is the same as the methanol in the test tube. And (3) sealing the pressure-resistant stainless steel container, heating in an oven, and heating until methanol reaches a supercritical state, thereby providing a supercritical extraction method for trace substances.

また、本発明は、用いる試験管が内径3〜5mm、長さ50〜100mmであることを特徴とする微量物質の超臨界抽出方法を提供する。   The present invention also provides a supercritical extraction method for trace substances, characterized in that the test tube used has an inner diameter of 3 to 5 mm and a length of 50 to 100 mm.

本発明は、封入された試験管容積の約半分量のメタノールと同じ液面になるように耐圧ステンレス容器の中にもメタノールを封入し、オーブンで加熱するだけで、試験管の破損もなく、微量のサンプルのメタノールによる超臨界抽出ができた。また、試験管は使い捨てのため、洗浄不十分等の理由によるコンタミネ−ションの心配もなく、微量物質分析の精度も向上する。     In the present invention, methanol is sealed in a pressure-resistant stainless steel container so that it has the same liquid level as about half of the volume of the sealed test tube volume, and it is heated in an oven. A supercritical extraction of a small amount of sample with methanol was achieved. In addition, since the test tube is disposable, there is no concern about contamination due to insufficient cleaning, and the accuracy of trace substance analysis is improved.

以下、本発明について詳細に説明する。     Hereinafter, the present invention will be described in detail.

本発明は、市販のガラス製試験管と、耐圧ステンレス容器とオーブンがあれば、超臨界抽出が可能であり、乾燥塗膜の微量の破片から定性分析ができる画期的な手法である。     The present invention is an epoch-making technique that enables supercritical extraction and enables qualitative analysis from a small amount of debris of a dried coating film if there is a commercially available glass test tube, a pressure resistant stainless steel container, and an oven.

本発明に用いる試験管は、特に限定がなく、市販の試験管を用いることができる。好ましくは、微量サンプルに用いることから、内径が3〜5mm、長さが50〜100mmであり、試験管の肉厚は、2〜4mmのものが好ましい。     The test tube used in the present invention is not particularly limited, and a commercially available test tube can be used. Preferably, since it is used for a trace amount sample, the inner diameter is 3 to 5 mm, the length is 50 to 100 mm, and the thickness of the test tube is preferably 2 to 4 mm.

本発明に用いる耐圧ステンレス容器は、特に限定はなく、加圧された状況下で密閉状態が維持できるものであればよい。但し、試験管の内圧を考慮すると、耐圧ステンレス容器の長さは、試験管の長さとほぼ同じ長さが好ましい。試験管の長さよりも長すぎる場合は、試験管の内圧が高くなりすぎてガラスが破裂する可能性がある。     The pressure-resistant stainless steel container used in the present invention is not particularly limited as long as the sealed state can be maintained under a pressurized condition. However, considering the internal pressure of the test tube, the length of the pressure resistant stainless steel container is preferably substantially the same as the length of the test tube. If it is longer than the length of the test tube, the internal pressure of the test tube becomes too high and the glass may burst.

本発明の第1工程は、抽出しようとする微量のサンプルを試験管に入れ、試験管の容積のおよそ半分量のメタノールを加えた後、加熱によって試験管の封入口を封鎖する工程であるが、メタノールの量が、厳密に試験管の1/2の容量である必要はない。半分よりも少ない量では、溶媒量が少なくなって、抽出効率が悪くなり、また、半分より多い量では、抽出濃度が薄くなり、逆に、耐圧ステンレス容器に入れるメタノールの量も多くなって不経済になることから、およそ、半分量であることが好ましい。     The first step of the present invention is a step of putting a small amount of sample to be extracted into a test tube, adding about half of the volume of the test tube, and then sealing the sealing port of the test tube by heating. The amount of methanol need not be exactly half the capacity of the test tube. If the amount is less than half, the amount of the solvent is reduced and the extraction efficiency is deteriorated.If the amount is more than half, the extraction concentration is decreased, and conversely, the amount of methanol to be put in the pressure resistant stainless steel container is increased. In view of economy, the amount is preferably about half.

本発明において、メタノールを抽出剤として用いる理由は、塗膜中の微量有機物の抽出に、比較的低い温度と圧力(240℃×7.9MPa)で超臨界状態に到達し、取扱いが容易であることによる。 従って、特殊な耐圧容器を必ずしも必要としない利点がある。   In the present invention, the reason why methanol is used as an extractant is that it is easy to handle because it reaches a supercritical state at a relatively low temperature and pressure (240 ° C. × 7.9 MPa) for extracting trace organic substances in the coating film. It depends. Therefore, there is an advantage that a special pressure vessel is not necessarily required.

例えば、水の超臨界条件は、374℃×22MPaであり、メタノールに比べて約130℃高い温度で、かつ圧力が3倍である。また、有機物質の抽出効率を考えた場合、水よりもメタノールの方が効率がよい。   For example, the supercritical condition of water is 374 ° C. × 22 MPa, a temperature about 130 ° C. higher than methanol, and the pressure is three times higher. Further, when considering the extraction efficiency of organic substances, methanol is more efficient than water.

本発明に用いられる微量のサンプルは、乾燥塗膜の場合、カッターナイフで薄いフレーク状に削ぎ取って採取することができる。サンプル量については、抽出する目的の物質にもよるが、0.1〜20mgが好ましい。   In the case of a dry coating film, a very small amount of sample used in the present invention can be collected by cutting it into thin flakes with a cutter knife. The sample amount is preferably 0.1 to 20 mg, although it depends on the target substance to be extracted.

本発明の第2工程は、試験管の体積の 1.1〜10倍の容積を有する耐圧ステンレスの容器に試験管を入れ、耐圧ステンレス用に試験管内のメタノールと液面が同じになるようにメタノールを加える工程である。耐圧ステンレス容器の容積は、試験管の体積の 1.1〜10倍の容積が好ましく、5〜9倍がさらに好ましい。耐圧ステンレス容器の容積が、試験管の体積の 1.1倍未満の場合は、耐圧ステンレス容器内に封入するメタノールが少なくなりすぎて、耐圧ステンレス容器内のメタノール蒸気圧が十分ではないことによって試験管が破損する可能性がある。また、耐圧ステンレス容器の容積が、試験管の体積の10倍を超える場合は、超臨界抽出に及ぼす影響はないが、耐ステンレス容器内に封入するメタノールが無駄である。     In the second step of the present invention, the test tube is placed in a pressure resistant stainless steel container having a volume 1.1 to 10 times the volume of the test tube, and the liquid level of methanol in the test tube is the same for the pressure resistant stainless steel. This is a step of adding methanol. The volume of the pressure-resistant stainless steel container is preferably 1.1 to 10 times the volume of the test tube, and more preferably 5 to 9 times. If the volume of the pressure-resistant stainless steel container is less than 1.1 times the volume of the test tube, the amount of methanol sealed in the pressure-resistant stainless steel container is too small, and the methanol vapor pressure in the pressure-resistant stainless steel container is not sufficient. The tube may be damaged. In addition, when the volume of the pressure resistant stainless steel container exceeds 10 times the volume of the test tube, there is no influence on the supercritical extraction, but the methanol enclosed in the stainless steel resistant container is useless.

また、本発明の第2工程において、耐圧ステンレスの容器内のメタノールと試験管内のメタノールの液面を同じ高さにする理由は、耐圧ステンレス容器内のメタノールの蒸気圧と試験管内のメタノールの蒸気圧とを同じにすることで、試験管にかかる内圧と外圧を等しくし、試験管の破損を防ぐ目的がある。ステンレス容器が透明ではないため、メタノールの液面を目視によって判断することができず、計算によって行うことが好ましい。 具体的な計算方法は、実施例1の箇所で記述する。     In the second step of the present invention, the reason why the liquid level of the methanol in the pressure resistant stainless steel container and the methanol in the test tube is the same height is that the vapor pressure of methanol in the pressure resistant stainless steel container and the vapor of methanol in the test tube By making the pressure the same, the purpose is to equalize the internal pressure and the external pressure applied to the test tube and prevent the test tube from being damaged. Since the stainless steel container is not transparent, the liquid level of methanol cannot be visually determined, and it is preferable to perform the calculation by calculation. A specific calculation method will be described in the first embodiment.

耐圧ステンレス容器内のメタノールの高さが、試験管内のメタノールの高さに比べて、低すぎる(メタノール量が少なすぎる)場合、試験管の内圧が高くなりすぎて、試験管が破裂する可能性がある。また、耐圧ステンレス容器内のメタノールの高さが、試験管内のメタノールの高さに比べて、高すぎる(メタノール量が多すぎる)場合、ステンレス容器の内圧が高くなりすぎて、試験管を押しつぶす可能性がある。   If the height of the methanol in the pressure-resistant stainless steel container is too low (the amount of methanol is too small) compared to the height of the methanol in the test tube, the test tube may become too high and the test tube may burst. There is. Also, if the height of the methanol in the pressure resistant stainless steel container is too high (the amount of methanol is too much) compared to the height of the methanol in the test tube, the internal pressure of the stainless steel container becomes too high and the test tube can be crushed. There is sex.

本発明の第3工程は、耐圧ステンレス容器を密封し、オーブンにて加熱し、メタノールが超臨界状態にまで溶融する工程である。オーブンの温度は、240〜300℃が好ましい。240℃未満の温度では、メタノールの超臨界条件には至らない可能性があり、300℃を超えた場合には、試験管の内圧が高くなりすぎて、破損をする可能性がある。オーブンが、適正な温度条件であれば、試験管内のメタノールは、70〜200気圧となり、超臨界条件は実現していると考えられる。     The third step of the present invention is a step in which the pressure resistant stainless steel container is sealed and heated in an oven, and methanol is melted to a supercritical state. The oven temperature is preferably 240 to 300 ° C. If the temperature is lower than 240 ° C., the supercritical condition of methanol may not be reached, and if it exceeds 300 ° C., the internal pressure of the test tube may become too high and breakage may occur. If the oven is in an appropriate temperature condition, the methanol in the test tube becomes 70 to 200 atm, and it is considered that the supercritical condition is realized.

以下、本発明を実施例、比較例によりさらに具体的に説明する。しかし、本発明の範囲は、これらの例になんら限定されるものではない。
<実施例1>
カッターナイフで削ぎ取った塗膜 0.3mgを、図1に示す内径 3mm(外径 5mm)で長さが65mm(底部の厚み 5mm)の市販のガラス製試験管に入れ、メタノールの高さが試験管の約半分の30mmになるようにメタノール 0.21mlを加えたのち、ガスバーナーを用いて、試験管を封緘する。次に、内径10mmの耐圧ステンレス容器に、封緘した試験管を収納し、メタノールの高さが試験管内のメタノールと同じになるように、2.06mlのメタノールを加える。次にこの耐圧ステンレス容器を密封し、オーブンにて280℃にて2時間加熱したのち、室温にまで冷却放置した。塗膜からメタノールによって抽出された成分をGC−MS(ガスクロマトグラフ質量分析)装置にて分析を行ったところ、図4に示すような塗膜中に含まれる添加剤の微量成分の定性分析ができた。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the scope of the present invention is not limited to these examples.
<Example 1>
0.3 mg of the coating film scraped with a cutter knife is placed in a commercially available glass test tube having an inner diameter of 3 mm (outer diameter of 5 mm) and a length of 65 mm (bottom thickness of 5 mm) shown in FIG. After adding 0.21 ml of methanol so that it is about 30 mm, which is about half of the test tube, the test tube is sealed with a gas burner. Next, the sealed test tube is accommodated in a pressure resistant stainless steel container having an inner diameter of 10 mm, and 2.06 ml of methanol is added so that the height of the methanol is the same as the methanol in the test tube. Next, this pressure resistant stainless steel container was sealed, heated in an oven at 280 ° C. for 2 hours, and then allowed to cool to room temperature. When components extracted from the coating film with methanol were analyzed with a GC-MS (Gas Chromatograph Mass Spectrometry) device, qualitative analysis of trace components of additives contained in the coating film as shown in FIG. 4 was possible. It was.

メタノール量は、次に示す計算に基づく。但し、試験管は小さいので、低部は球形であるが無視し、円筒形であると仮定して計算する。
ガラス管に加えるメタノール量:内径 3mmの円筒に、30mmの高さになる量として計算。(図1参照)
1.5×1.5×3.14×30=212mm (約0.21ml)
耐圧ステンレス容器に加えるメタノールの量:内径 10mmの円筒内に、外径 5mmで高さが35mm(30mmに試験管低部の厚み5mm)の円筒が中に入っているものとして計算。(図2、図3参照)
(5×5×3.14−2.5×2.5×3.14)×35=2061mm (約2.06ml)
<比較例1>
耐圧ステンレス容器に加えるメタノールの量を実施例の半分量の1.1mlとした以外は、実施例1と同じにしたところ、試験管が破裂して、塗膜中の微量成分の抽出ができなかった。
The amount of methanol is based on the following calculation. However, since the test tube is small, the lower part is spherical, but it is ignored and calculation is performed assuming that it is cylindrical.
Amount of methanol added to the glass tube: Calculated as the amount of 30 mm height in a cylinder with an inner diameter of 3 mm. (See Figure 1)
1.5 × 1.5 × 3.14 × 30 = 212 mm 3 (about 0.21 ml)
Amount of methanol added to pressure-resistant stainless steel container: Calculated assuming that inside a cylinder with an inner diameter of 10 mm, a cylinder with an outer diameter of 5 mm and a height of 35 mm (30 mm and the thickness of the lower part of the test tube is 5 mm) is contained. (See Figs. 2 and 3)
(5 × 5 × 3.14−2.5 × 2.5 × 3.14) × 35 = 2061 mm 3 (about 2.06 ml)
<Comparative Example 1>
Except that the amount of methanol added to the pressure-resistant stainless steel container was 1.1 ml, which is half the amount of the example, when the same as in Example 1, the test tube burst and the trace component in the coating film could not be extracted. It was.

メタノールを半分量加えた試験管の断面図Cross section of test tube with half amount of methanol added 耐圧ステンレス容器に試験管を入れた処の真上から見た平面図Plan view seen from directly above where the test tube is placed in a pressure resistant stainless steel container メタノールを半分量加えた試験管と同じ高さのメタノールを加えた耐圧ステンレス容器の断面図Cross-sectional view of a pressure-resistant stainless steel container with the same height of methanol as a test tube with half the amount of methanol 抽出した微量成分のGC−MS分析チャートGC-MS analysis chart of extracted trace components

符号の説明Explanation of symbols

11:メタノール、12:試験管(内径3mm、外径5mm)、13:耐圧ステンレス容器(内径10mm)
14:試験管の封緘部

11: methanol, 12: test tube (inner diameter 3 mm, outer diameter 5 mm), 13: pressure resistant stainless steel container (inner diameter 10 mm)
14: Sealing part of test tube

Claims (2)

(1)抽出しようとする微量のサンプルを試験管に入れ、試験管の容積のおよそ半分量のメタノールを加えた後、溶融によって試験管の封入口を封鎖する工程、
(2)試験管の体積の 1.1〜10倍の容積を有する耐圧ステンレスの容器に試験管を入れた後、耐圧ステンレス容器の中に試験管内のメタノールと液面が同じになるようにメタノールを加える工程、
(3)耐圧ステンレス容器を密封し、オーブンにて加熱し、メタノールが超臨界状態になるまで加熱する工程、
を経ることによる、微量物質の超臨界抽出方法。
(1) A step of putting a small amount of sample to be extracted into a test tube, adding about half of the volume of the test tube, and then sealing the sealing port of the test tube by melting;
(2) After placing the test tube in a pressure resistant stainless steel container having a volume 1.1 to 10 times the volume of the test tube, methanol is placed in the pressure resistant stainless steel container so that the liquid level is the same as the methanol in the test tube. Adding a process,
(3) sealing the pressure-resistant stainless steel container, heating in an oven, and heating until methanol is in a supercritical state;
Supercritical extraction method of trace substances by going through.
試験管が内径3〜5mm、長さ50〜100mmであることを特徴とする請求項1記載の微量物質の超臨界抽出方法。 2. The method of supercritical extraction of trace substances according to claim 1, wherein the test tube has an inner diameter of 3 to 5 mm and a length of 50 to 100 mm.
JP2005066433A 2005-03-10 2005-03-10 Supercritical extraction method using test tube Pending JP2006247499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066433A JP2006247499A (en) 2005-03-10 2005-03-10 Supercritical extraction method using test tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066433A JP2006247499A (en) 2005-03-10 2005-03-10 Supercritical extraction method using test tube

Publications (1)

Publication Number Publication Date
JP2006247499A true JP2006247499A (en) 2006-09-21

Family

ID=37088533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066433A Pending JP2006247499A (en) 2005-03-10 2005-03-10 Supercritical extraction method using test tube

Country Status (1)

Country Link
JP (1) JP2006247499A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032270A (en) * 2010-07-30 2012-02-16 Nhk Spring Co Ltd Cleanness inspection device for inspection target object, and cleanness inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032270A (en) * 2010-07-30 2012-02-16 Nhk Spring Co Ltd Cleanness inspection device for inspection target object, and cleanness inspection method
US8820146B2 (en) 2010-07-30 2014-09-02 Nhk Spring Co., Ltd. Cleanliness inspection apparatus and cleanliness inspection method for object to be inspected

Similar Documents

Publication Publication Date Title
JP6503120B2 (en) Instruments for the preparation of analytical samples
Bader Sample preparation for flame atomic absorption spectroscopy: an overview
Spietelun et al. Understanding solid-phase microextraction: key factors influencing the extraction process and trends in improving the technique
JP6561179B2 (en) Rapid sample preparation for analytical analysis using distributed energized extraction
JP5723269B2 (en) Teflon (registered trademark) sample decomposition vessel using gas condensation by air cooling
EA201891051A1 (en) SAMPLING CAPACITY AND SAMPLING SYSTEM, AND ALSO THE RELEVANT OPERATION METHOD
WO2009103025A3 (en) Reactor for extracting metals from metal sulfide containing materials and methods of use
Schmitt et al. A sublimation technique for high-precision measurements of δ 13 CO 2 and mixing ratios of CO 2 and N 2 O from air trapped in ice cores
CN101143270A (en) Sleeve type high-temperature and high-pressure resistant extracting pool and external member used for solvent extraction
JP2007256275A (en) Filtration apparatus and associated method for microwave-assisted chemistry
JP2006247499A (en) Supercritical extraction method using test tube
JP2008145358A (en) Method for analyzing dithiocarbamate pesticide
CN103091416B (en) Gas analyzing system and working method thereof
Li et al. Supercritical CO2 oil extraction from Chinese star anise seed and simultaneous compositional analysis using HPLC by fluorescence detection and online atmospheric CI‐MS identification
JP6266346B2 (en) Non-metallic element analysis method and analysis system
WO2013084948A1 (en) Container, vapor phase cracking method, vapor phase cracking device, analysis method, and analysis device
JP2005283508A (en) Pretreatment method for organic substance analysis, method for analyzing heavy metal in organic substance, reaction vessel and batch-type hydrothermal decomposition system
CN203508068U (en) Automatic-disinfection turntable test tube rack
CN104165943A (en) Detection method for N,N-dimethyl formamide in leather
CN105092748A (en) Method for screening organic pollutants in sludge
Bhatnagar et al. Forensic Sampling and Sample Preparation
CN104165945A (en) Method for detecting phthalate
Ferret et al. Impact of cleaning procedures and type of materials on the measure of 20 bisphenols in surface water samples
CN107561181A (en) A kind of detection method of underwater trace persistence organic pollutant
Zhao et al. Recent Developments in Microextraction Related Techniques for Trace Environmental Analysis