JP2006247485A - Method for treating/recovering strongly oxidizing metal ion in solid-coexistent aqueous solution by irradiating the aqueous solution with radial ray - Google Patents

Method for treating/recovering strongly oxidizing metal ion in solid-coexistent aqueous solution by irradiating the aqueous solution with radial ray Download PDF

Info

Publication number
JP2006247485A
JP2006247485A JP2005065162A JP2005065162A JP2006247485A JP 2006247485 A JP2006247485 A JP 2006247485A JP 2005065162 A JP2005065162 A JP 2005065162A JP 2005065162 A JP2005065162 A JP 2005065162A JP 2006247485 A JP2006247485 A JP 2006247485A
Authority
JP
Japan
Prior art keywords
solid
aqueous solution
metal ion
solution
oxidizing metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005065162A
Other languages
Japanese (ja)
Other versions
JP4565127B2 (en
Inventor
Ryuji Nagaishi
隆二 永石
Reiji Yamada
禮司 山田
Yoshiyuki Yoshida
善行 吉田
Yoshihiko Hatano
嘉彦 籏野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2005065162A priority Critical patent/JP4565127B2/en
Publication of JP2006247485A publication Critical patent/JP2006247485A/en
Application granted granted Critical
Publication of JP4565127B2 publication Critical patent/JP4565127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To recover chromium of a low oxidized state by promoting a reduction reaction of hexavalent chromium without using complicated chemical treatment and a large quantity of a chemical at a step of detoxifying and recovering hexavalent chromium. <P>SOLUTION: A strongly oxidizing metal ion being an environmentally toxic substance is reduced by adding a powdery or clumpy solid to the strongly oxidizing metal ion-dissolved aqueous solution and irradiating an solid-added aqueous solution-housed vessel with radial rays from the outside or from the inside, namely, from a radiation source introduced into the solid-added solution-housed vessel to utilize the reduction reaction to be induced in the solid-added aqueous solution and the reduced metal ion is recovered as a useful material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体材料を含む水溶液に放射線照射することにより誘起する還元反応を利用して、6価クロムなどの強酸化性金属イオンを処理あるいは回収する方法に関するものである。さらに詳しくは、この発明は、固体が放射線エネルギーを吸収して化学反応エネルギーに有効に変換する触媒(ここでは、放射線触媒と呼ぶ)としての機能することにより、環境有害物質の6価クロムなどを高効率で無害化し、より低い酸化状態の固体酸化物あるいはイオンの有用材料として回収する方法に関するものである。   The present invention relates to a method for treating or recovering a strong oxidizing metal ion such as hexavalent chromium using a reduction reaction induced by irradiating an aqueous solution containing a solid material with radiation. In more detail, the present invention functions as a catalyst (herein referred to as a radiation catalyst) in which a solid absorbs radiation energy and effectively converts it into chemical reaction energy, so that hexavalent chromium, which is an environmentally hazardous substance, can be used. The present invention relates to a method for recovering as a useful material of a solid oxide or ion having a lower oxidation state and a high efficiency and detoxification.

6価クロムを塗布した金属表面は耐食性・防食性に優れているため、現在多くの工業製品の表面処理に幅広く使用されているが、酸化力が強く発ガン性を有する有害物質であり、高濃度6価クロム廃液およびメッキ水洗液などの低濃度6価クロムの廃水の処理が不可欠である。6価クロムの無害化にはpH 2.5以下で添加した亜硫酸ソーダにより3価クロムへ還元するのが主流である。   Since the metal surface coated with hexavalent chromium is excellent in corrosion resistance and anticorrosion properties, it is currently widely used for surface treatment of many industrial products, but it is a hazardous substance with strong oxidizing power and carcinogenicity. Treatment of waste water of low concentration hexavalent chromium such as hexavalent chromium waste solution and plating water washing solution is indispensable. For detoxification of hexavalent chromium, the mainstream is to reduce it to trivalent chromium with sodium sulfite added at pH 2.5 or lower.

さらに、3価クロムはアルカリを使用して、pH 6.5-7.5程度で水酸化物Cr(OH)3沈殿として回収し、主に3価クロムスラッジとして埋め立て処分されている。メッキ廃水をイオン交換樹脂に通して直接6価クロムを回収する方法もある。いずれにしても、無害化や回収の工程では、複雑な化学処理が大量の化学薬品を使用して行われているのが現状である。 In addition, trivalent chromium is recovered as hydroxide Cr (OH) 3 precipitate at pH 6.5-7.5 using alkali and is mainly disposed of in landfill as trivalent chromium sludge. There is also a method of directly recovering hexavalent chromium by passing plating wastewater through an ion exchange resin. In any case, in the process of detoxification and recovery, the present situation is that complicated chemical treatment is performed using a large amount of chemicals.

6価クロムなどの無害化や回収の工程において、複雑な化学処理や大量の化学薬品を使用せずに、還元反応を促進し、低酸化状態のクロムを回収することが課題である。   In the process of detoxification and recovery of hexavalent chromium and the like, the problem is to promote the reduction reaction and recover low-oxidized chromium without using complicated chemical treatment and a large amount of chemicals.

本発明は、強酸化性金属イオンが溶存する水溶液に粉体ないしは塊状の固体を加えたものに、溶液を含む容器の外部からの放射線照射または放射線源を容器内に導入した内部からの放射線照射により、溶液中に誘起される還元反応を利用して、環境有害物質である強酸化性金属イオンを還元処理し有用材料として回収する方法である。   The present invention relates to an aqueous solution in which a strong oxidizing metal ion is dissolved and a powder or a massive solid added thereto, irradiation from the outside of the container containing the solution, or irradiation from the inside where a radiation source is introduced into the container. Thus, using a reduction reaction induced in the solution, a strong oxidizing metal ion which is an environmentally hazardous substance is reduced and recovered as a useful material.

上記粉体ないしは塊状の固体が酸化物である場合は、石英、アルミナ、酸化チタン、酸化ジルコニウム、酸化セシウム若しくは酸化クロム等、又はその混合物若しくは固溶体である。   When the powder or massive solid is an oxide, it is quartz, alumina, titanium oxide, zirconium oxide, cesium oxide or chromium oxide, or a mixture or solid solution thereof.

本発明による放射線触媒還元処理法の装置例を図1示す。6価クロムなどを含む水溶液中に少量の固体材料を添加し、キャプセル状の放射線源から放出されるガンマ線で外部照射、または溶液中に導入した放射性同位元素からのアルファ線、ベータ線で内部照射して、放射線触媒反応により6価クロムの還元反応を促進させて、3価ないしは4価クロムを固体またはイオンの状態で回収する。   FIG. 1 shows an example of an apparatus for a radiation catalytic reduction treatment method according to the present invention. Add a small amount of solid material in an aqueous solution containing hexavalent chromium, etc., and externally irradiate with gamma rays emitted from a capsule-like radiation source, or internally with alpha and beta rays from radioactive isotopes introduced into the solution Then, the reduction reaction of hexavalent chromium is promoted by a radiocatalytic reaction, and trivalent or tetravalent chromium is recovered in a solid or ionic state.

本発明は、放射線のエネルギーを固体材料が吸収し化学反応エネルギーに変換して、6価クロムなどの還元反応を促進する方法であり、後処理を要する還元剤や酸、アルカリを使用することなく、6価クロムの還元と3価ないしは4価クロムの回収を簡便かつ安価に実現することが可能となる。さらに、固体はそれ自体が壊れず、再利用可能であり、形状の自由度があり、かつ水溶液は脱気、pHなどの条件を選ばず、反応系が簡単である、などの利点がある。   The present invention is a method in which a solid material absorbs radiation energy and converts it into chemical reaction energy to promote a reduction reaction of hexavalent chromium, etc., without using a reducing agent, acid, or alkali that requires post-treatment. Further, reduction of hexavalent chromium and recovery of trivalent or tetravalent chromium can be realized easily and inexpensively. Further, the solid is not broken by itself, can be reused, has a degree of freedom in shape, and the aqueous solution has an advantage that the reaction system is simple regardless of conditions such as degassing and pH.

利用する放射線は、使用済み核燃料の再処理で取り出される放射性物質やその際に発生する高レベル廃液のガラス固化体からのガンマ線や、放射性同位元素からのアルファ線、ベータ線も対象としており、一般には利用されていない放射性廃棄物の資源化が可能となる。   The radiation used is also intended for gamma rays from radioactive materials extracted by reprocessing of spent nuclear fuel and vitrified solids of high-level waste, and alpha and beta rays from radioisotopes. Makes it possible to recycle unused radioactive waste.

本発明の処理対象である金属イオンは、4価セリウム、6価クロム、7価マンガン等があげられる。   Examples of the metal ion to be treated in the present invention include tetravalent cerium, hexavalent chromium, and heptavalent manganese.

(実施例1)
本発明の一具体例について説明する。重クロム酸イオンCr2O7 2-を含む希硫酸水溶液に、TiO2、γ-Al2O3、ZrO2などをそれぞれ単独に添加した。それらの溶液にガンマ線を照射して、6価クロムが還元される収量を測定した結果、単位エネルギーあたりの水の放射線分解による還元量と比較して、固体による還元量はそれぞれ100倍(TiO2)、280倍(γ-Al2O3)、70倍(ZrO2)程度の増大が見られた(図2)。これらの固体は還元反応では消費されず、いわゆる触媒として機能している。
(実施例2)
実施例1と同じ固体と6価クロムを含み、環境条件あるいは工業廃水の条件(pH 3-7)の水溶液にガンマ線照射して、照射後に溶液中の6価クロム濃度および全クロム量を分析し、固体表面のクロムの状態を分析した結果、水溶液のみの場合は6価クロムがほとんど還元しないのに対して、固体を添加することで6価クロムが顕著に還元する(図3)ことを明らかにするとともに、溶液中の6価クロムを環境への排出基準0.05 ppm(環境基本法)または0.5 ppm(水質汚濁防止法)以下まで減じ(表1)、4価あるいは3価クロムの酸化物に還元し、固化することがわかった。
Example 1
A specific example of the present invention will be described. TiO 2 , γ-Al 2 O 3 , ZrO 2 and the like were added individually to a dilute sulfuric acid aqueous solution containing the dichromate ion Cr 2 O 7 2- . As a result of measuring the yield of reduction of hexavalent chromium by irradiating these solutions with gamma rays, the amount of reduction by solids was 100 times that of reduction by radiolysis of water per unit energy (TiO 2 ), 280 times (γ-Al 2 O 3 ) and 70 times (ZrO 2 ) (Fig. 2). These solids are not consumed in the reduction reaction and function as so-called catalysts.
(Example 2)
Gamma rays were irradiated to an aqueous solution containing the same solid and hexavalent chromium as in Example 1 and environmental conditions or industrial wastewater conditions (pH 3-7), and the concentration of hexavalent chromium and the total chromium content in the solution were analyzed after irradiation. As a result of analyzing the state of chromium on the surface of the solid, it is clear that hexavalent chromium is remarkably reduced by adding solids, whereas hexavalent chromium is hardly reduced in the case of only an aqueous solution (FIG. 3). In addition, the hexavalent chromium in the solution is reduced to 0.05 ppm (Basic Environmental Law) or 0.5 ppm (Water Pollution Control Law) or below (Table 1) and reduced to tetravalent or trivalent chromium oxide. And found to solidify.

[発明の効果]
本発明は以下の特徴から、有利な効果を有する。
1)6価クロムの還元収量が非常に大きく、かつガンマ線は水溶液に対して高い透過能力を有しているため、高濃度6価クロム廃液をはじめとして、着色した固体あるいは溶液や、濁った溶液にも十分に適用可能である。
[The invention's effect]
The present invention has advantageous effects from the following features.
1) Since the reduction yield of hexavalent chromium is very large and gamma rays have a high permeability to aqueous solutions, colored solids or solutions such as high-concentration hexavalent chromium waste liquid, and turbid solutions It is also fully applicable to.

2)還元に必要な固体材料は触媒であり、固体はそれ自体が壊れず、回収可能であり半永久的に使用可能であり、経済性に優れている。
3)6価クロム処理に化学薬品を使用しないため、3価ないしは4価クロムの回収に後処理を必要とせず、高純度の3価ないしは4価クロムの回収が容易である。3価クロムはイオンとして3価クロムメッキに使用可能であり、固体としてはその形状の違いにより耐火レンガ、研磨剤、顔料(Cr2O3)、抵抗発熱体、高温用電極(LaCrO3)などの用途が考えられる。また、4価クロムは二酸化クロムCrO2として回収可能であり、強磁性材料として非常に優れた特徴を有する。さらに、3価ないしは4価クロムの固体は放射線触媒反応の固体材料としても利用できる。このように、有害な6価クロムの無害化と有用材料への転換が同時に実現可能となる。
2) The solid material necessary for the reduction is a catalyst, and the solid itself is not broken, can be recovered, can be used semipermanently, and is excellent in economic efficiency.
3) Since no chemicals are used for the hexavalent chromium treatment, no post-treatment is required for the recovery of trivalent or tetravalent chromium, and high purity trivalent or tetravalent chromium can be easily recovered. Trivalent chromium can be used as ions for trivalent chromium plating. As solid, refractory brick, abrasive, pigment (Cr 2 O 3 ), resistance heating element, high temperature electrode (LaCrO 3 ), etc. Can be used. Tetravalent chromium can be recovered as chromium dioxide CrO 2 and has very excellent characteristics as a ferromagnetic material. Further, a trivalent or tetravalent chromium solid can be used as a solid material for the radiocatalytic reaction. Thus, detoxification of harmful hexavalent chromium and conversion to useful materials can be realized at the same time.

4)利用する放射線は、使用済み核燃料の再処理で取り出される放射性物質やその際に発生する高レベル廃液のガラス固化体からのガンマ線や、放射性同位元素からのアルファ線、ベータ線も対象にしており、一般には利用されていない放射性廃棄物の資源化が可能となる。   4) The radiation to be used also covers gamma rays from radioactive materials extracted by reprocessing of spent nuclear fuel and high-level waste liquid vitrification, alpha rays and beta rays from radioactive isotopes. Therefore, it is possible to recycle radioactive waste that is not generally used.

本発明による強酸化性金属イオンの還元処理工程を示す図である。It is a figure which shows the reduction process process of the strong oxidation metal ion by this invention. 水溶液に添加した固体による強酸化性金属イオンの還元量を示す図である(水溶液の放射線分解による還元収量との相対値が示される)。It is a figure which shows the amount of reduction | restoration of the strong oxidizing metal ion by the solid added to aqueous solution (The relative value with the reduction | restoration yield by the radiolysis of aqueous solution is shown). ガンマ線照射前後の水溶液(pH6−8)中のクロム濃度の分析結果を示す図である。It is a figure which shows the analysis result of the chromium density | concentration in the aqueous solution (pH 6-8) before and behind gamma ray irradiation.

Claims (6)

強酸化性金属イオンが溶存する水溶液に粉体ないしは塊状の固体を加えたものに、溶液を含む容器の外部からの放射線照射または放射線源を容器内に導入した内部からの放射線照射により、溶液中に誘起される還元反応を利用して、環境有害物質である強酸化性金属イオンを還元処理し有用材料として回収することからなる、固体を共存した水溶液への放射線照射による水溶液中の強酸化性金属イオンの処理回収方法。   In aqueous solution in which strong oxidizing metal ions are dissolved, powder or lump solid is added to the solution by irradiation from the outside of the container containing the solution or irradiation from the inside where a radiation source is introduced into the container. Strong oxidation in aqueous solution by irradiation of aqueous solution coexisting with solids, which uses reduction reaction induced by water to reduce and recover strong oxidizing metal ions, which are environmentally hazardous substances, as useful materials Metal ion processing recovery method. 前記強酸化性金属イオンが、6価クロムなどに代表される、水溶液中に高酸化状態で安定に溶存し酸化力の強いイオンであり、又は前記粉体ないしは塊状の固体から発生する放射線誘起の還元種の反応特性から、−2.0 V以上の標準酸化還元電位(V vs 標準水素発生電位)を有する金属イオンである請求項1記載の方法。   The strong oxidizable metal ion is a highly oxidative ion that is stably dissolved in an aqueous solution in a highly oxidized state, typified by hexavalent chromium, or the like, or a radiation-induced ion generated from the powder or massive solid. The method according to claim 1, which is a metal ion having a standard oxidation-reduction potential (V vs. standard hydrogen generation potential) of −2.0 V or more from the reaction characteristics of the reducing species. 粉体ないしは塊状の固体が、酸化物、金属ないしはそれらを含有する材料、または/及び前記強酸化性金属イオンが還元固化した酸化物である請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the powder or massive solid is an oxide, a metal or a material containing them, and / or an oxide obtained by reducing and solidifying the strong oxidizing metal ion. 粉体ないしは塊状の固体の酸化物は、単独の酸化物、複数の酸化物の混合物、又は単独の酸化物若しくは複数の酸化物の固溶体である請求項3記載の方法。   4. The method according to claim 3, wherein the powder or massive solid oxide is a single oxide, a mixture of a plurality of oxides, or a single oxide or a solid solution of a plurality of oxides. 放射線が、放射線源、放射線発生装置、原子炉、燃料棒、高レベル廃液を含むガラス固化体から発生するガンマ線、エックス線、電子線や、水溶液中に導入した放射性同位元素からのアルファ線、ベータ線である請求項1乃至3のいずれかに記載の方法。   Gamma rays, X-rays, electron beams generated from radioactive sources, radiation generators, nuclear reactors, fuel rods, vitrified solids containing high-level liquid waste, alpha rays and beta rays from radioactive isotopes introduced into aqueous solutions The method according to any one of claims 1 to 3. 溶液中の還元反応を引き起こす還元種が、固体表面に生成する励起電子、固体から放出する二次電子、水溶液中で生成した水和電子などのラジカルなどである請求項2記載の方法。   3. The method according to claim 2, wherein the reducing species causing the reduction reaction in the solution are radicals such as excited electrons generated on the surface of the solid, secondary electrons emitted from the solid, and hydrated electrons generated in the aqueous solution.
JP2005065162A 2005-03-09 2005-03-09 Treatment and recovery of strong oxidizing metal ions in aqueous solution by irradiation of aqueous solution coexisting with solid Active JP4565127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005065162A JP4565127B2 (en) 2005-03-09 2005-03-09 Treatment and recovery of strong oxidizing metal ions in aqueous solution by irradiation of aqueous solution coexisting with solid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005065162A JP4565127B2 (en) 2005-03-09 2005-03-09 Treatment and recovery of strong oxidizing metal ions in aqueous solution by irradiation of aqueous solution coexisting with solid

Publications (2)

Publication Number Publication Date
JP2006247485A true JP2006247485A (en) 2006-09-21
JP4565127B2 JP4565127B2 (en) 2010-10-20

Family

ID=37088520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005065162A Active JP4565127B2 (en) 2005-03-09 2005-03-09 Treatment and recovery of strong oxidizing metal ions in aqueous solution by irradiation of aqueous solution coexisting with solid

Country Status (1)

Country Link
JP (1) JP4565127B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065261A (en) * 2008-09-09 2010-03-25 Japan Atomic Energy Agency Method for recovering noble metal, method for producing functional material and method for treating strongly oxidizing metal ion-containing aqueous solution using this functional material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496765A (en) * 1972-05-08 1974-01-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496765A (en) * 1972-05-08 1974-01-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065261A (en) * 2008-09-09 2010-03-25 Japan Atomic Energy Agency Method for recovering noble metal, method for producing functional material and method for treating strongly oxidizing metal ion-containing aqueous solution using this functional material

Also Published As

Publication number Publication date
JP4565127B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
US7531708B2 (en) Mediated electrochemical oxidation for decontamination
US20100320156A1 (en) Oxidative Treatment Method
US5523513A (en) Decontamination processes
Walling et al. Fenton and Fenton-like wet oxidation for degradation and destruction of organic radioactive wastes
EP1054413A3 (en) Method of chemically decontaminating components of radioactive material handling facility and system for carrying out the same
Sunder et al. Gamma radiolysis of water solutions relevant to the nuclear fuel waste management program
CN108217834A (en) The method of production activation persulfate production carbonate radical removal nitrogen-containing wastewater
JP3846820B2 (en) Solid waste treatment method
JP4565127B2 (en) Treatment and recovery of strong oxidizing metal ions in aqueous solution by irradiation of aqueous solution coexisting with solid
JP5424297B2 (en) Method for recovering noble metal, method for producing functional material, and method for treating aqueous solution containing strong oxidizable metal ion using functional material
Su et al. Gamma-ray destruction of EDTA catalyzed by titania
JP2000061423A (en) Waste treatment and waste treating device
Volkova et al. Radionuclides in irradiated graphite of uranium–graphite reactors: decontamination of sleeves using liquid reagents
Ganesh et al. Electrolytic and ozone aided destruction of oxalate ions in plutonium oxalate supernatant of the PUREX process: A comparative study
JPH11231097A (en) Chemical decontamination method
He Review in the TiO2 photocatalytic degradation of organic matter in radioactive waste water
Clarens et al. Influence of β radiation on UO2 dissolution at different pH values
Hooper Some recent studies on aqueous waste treatment involving inorganic absorbers
Nagaishi et al. Radiation-induced catalytic reduction of chromium (VI) in aqueous solution containing TiO2, Al2O3 or SiO2 fine particles
JP2006248821A (en) Hydrogen production method by radiation-induced catalytic reaction using high-level radioactive waste as radiation source
Guzii et al. Magnetite-ferrocyanide-copper sorbents for recovery of cesium ions from low-activity liquid radioactive waters
Harjula et al. Development of a selective cesium and strontium removal system for the JAERI Tokai-Mura site-laboratory tests
Sebesta et al. Study of combined processes for the treatment of liquid radioactive waste containing complexing agents
Peretrukhin et al. Purification of alkaline solutions and wastes from actinides and technetium by coprecipitation with some carriers using the method of appearing reagents
Sahu et al. Method development for the recovery of plutonium from refractory alumina crucible using NaOH fusion technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100702

R150 Certificate of patent or registration of utility model

Ref document number: 4565127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250