JP2006246770A - Method of inducing cell differentiation - Google Patents

Method of inducing cell differentiation Download PDF

Info

Publication number
JP2006246770A
JP2006246770A JP2005066683A JP2005066683A JP2006246770A JP 2006246770 A JP2006246770 A JP 2006246770A JP 2005066683 A JP2005066683 A JP 2005066683A JP 2005066683 A JP2005066683 A JP 2005066683A JP 2006246770 A JP2006246770 A JP 2006246770A
Authority
JP
Japan
Prior art keywords
cells
cell differentiation
resin
cell
inducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005066683A
Other languages
Japanese (ja)
Inventor
Yasuhide Nakayama
泰秀 中山
Haiying Huang
海瑛 黄
Joji Ando
譲二 安藤
Jun Yamashita
潤 山下
Yutaka Ito
裕 伊藤
Keiichi Kanda
圭一 神田
Yoshihiro Okamoto
吉弘 岡本
Yasushi Nemoto
泰 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAT CARDIOVASCULAR CT
Bridgestone Corp
Japan National Cardiovascular Center
Original Assignee
NAT CARDIOVASCULAR CT
Bridgestone Corp
Japan National Cardiovascular Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAT CARDIOVASCULAR CT, Bridgestone Corp, Japan National Cardiovascular Center filed Critical NAT CARDIOVASCULAR CT
Priority to JP2005066683A priority Critical patent/JP2006246770A/en
Publication of JP2006246770A publication Critical patent/JP2006246770A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/12Pulsatile flow
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/04Mechanical means, e.g. sonic waves, stretching forces, pressure or shear stimuli

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Mechanical Engineering (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Prostheses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of inducing cell differentiation capable of differentiating embryonic stem cells to vascular endothelial cells near the surface of histoengineering scaffold material on which the embryonic stem cells are engrafted and to smooth muscle cells in the histoengineering scaffold material, thus capable of producing hybrid-type artificial blood vessel having three-dimensional hierarchical structure. <P>SOLUTION: The method of inducing the differentiation of cells by engrafting the cells on a histoengineering scaffold material of thermoplastic resin having porous three-dimensional network structure is provided, involving culturing the cells under applying pulsatile flow thereto. Thus, endothelial cells are differentiated by shearing force caused by the pulsatile flow burden, while smooth muscle cells are differentiated by periodical stretch/contraction and pressure pulse. By this method, as multiple vascular wall-constructive cells can be differentiated simultaneously, the hybrid-type artificial blood vessel having three-dimensional hierarchical structure can be constructed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、細胞の分化誘導方法に係り、特に人工血管を製造するのに好適な細胞分化誘導法に関する。   The present invention relates to a cell differentiation induction method, and more particularly to a cell differentiation induction method suitable for producing an artificial blood vessel.

細胞の分化は細胞分裂と異なり、いくつかの細胞へ変化する可能性があり、特に幹細胞のような多分化能を有する細胞は、多種多様な細胞へ分化することが可能である。組織工学においては、培養した細胞又は培養している細胞を目的とする細胞へ分化誘導する必要があり、従って、細胞を選択的に分化誘導することは重要な技術である。   Unlike cell division, cell differentiation may change into several cells. In particular, cells having pluripotency such as stem cells can differentiate into a wide variety of cells. In tissue engineering, it is necessary to induce differentiation of a cultured cell or a cultured cell into a target cell. Therefore, selective differentiation induction of a cell is an important technique.

未分化胚性幹(ES)細胞のin vitroでの血管壁構成細胞への分化誘導に関して、生化学的手法を利用し、VEGFやPDGFなどのサイトカインによって血管内皮細胞や周皮細胞が誘導され、さらに3次元培養によって毛細血管様の管状組織体が形成されることが報告されている。
Yamashita J, Itoh H, et al. Flk1 positive cells derived from embryonic stem cells serveas vascular progenitors. Nature 408: 92-96, 2000. Yurugi-Kobayashi T, Itoh H, Yamashita J, et al. Effective contribution of transplanted vascular progenitor cells derived from embryonic stem cells to about neovascularization in proper differentiation stage. Blood 101: 2675-2678, 2003.
Regarding the induction of differentiation of undifferentiated embryonic stem (ES) cells into vascular wall constituent cells in vitro, vascular endothelial cells and pericytes are induced by cytokines such as VEGF and PDGF using biochemical techniques, Furthermore, it has been reported that capillary-like tubular tissues are formed by three-dimensional culture.
Yamashita J, Itoh H, et al. Flk1 positive cells derived from embryonic stem cells serveas vascular progenitors.Nature 408: 92-96, 2000. Yurugi-Kobayashi T, Itoh H, Yamashita J, et al. Effective contribution of transplanted vascular progenitor cells derived from embryonic stem cells to about neovascularization in proper differentiation stage.Blood 101: 2675-2678, 2003.

胚性幹細胞は近年注目される再生医学、再生医療に利用できる可能性が大きい細胞であるが、未分化の状態で生体内へ移植された場合、腫瘍細胞となる危険性があることは公知の事実である。従って、再生医療において胚性幹細胞を未分化のものを残すことなく分化させること、特に、スキャホールド材へ生着させた細胞を目的とする細胞に分化誘導する技術の確立は大きな課題である。   Embryonic stem cells are cells that have a high possibility of being used in regenerative medicine and regenerative medicine that have attracted attention in recent years, but it is known that there is a risk of becoming tumor cells when transplanted into a living body in an undifferentiated state. It is a fact. Therefore, differentiation of embryonic stem cells in regenerative medicine without leaving undifferentiated cells, in particular, establishment of a technique for inducing differentiation of cells engrafted in a scaffold into a target cell is a major issue.

本発明は、胚性幹細胞を生着させた組織工学用スキャホールド材の表面付近では胚性幹細胞を血管内皮細胞に分化させ、組織工学用スキャホールド材内部では平滑筋細胞に分化させることができ、3次元的な階層構造を有したハイブリッド型人工血管を製造することが可能な細胞分化誘導法を提供することを目的とする。   The present invention can differentiate embryonic stem cells into vascular endothelial cells near the surface of the tissue engineering scaffold material engrafted with embryonic stem cells, and differentiate into smooth muscle cells inside the tissue engineering scaffold material. An object of the present invention is to provide a cell differentiation induction method capable of producing a hybrid type artificial blood vessel having a three-dimensional hierarchical structure.

請求項1の細胞分化誘導法は、多孔質三次元網状構造を有した熱可塑性樹脂製の組織工学用スキャホールド材に細胞を生着させ、該細胞の分化を誘導する方法において、該細胞に対し拍動流を加えつつ培養することを特徴とするものである。   The method of inducing cell differentiation according to claim 1 is a method of engrafting cells in a scaffold material for tissue engineering made of a thermoplastic resin having a porous three-dimensional network structure to induce differentiation of the cells. In contrast, the culture is performed while applying a pulsatile flow.

請求項2の細胞分化誘導法は、請求項1において、該熱可塑性樹脂がポリウレタン樹脂、ポリアミド樹脂、ポリ乳酸樹脂、ポリオレフィン樹脂、ポリエステル樹脂、フッ素樹脂、アクリル樹脂及びメタクリル樹脂並びにこれらの誘導体からなる群から選択される1種又は2種以上であることを特徴とするものである。   The cell differentiation induction method according to claim 2 is the method according to claim 1, wherein the thermoplastic resin is made of a polyurethane resin, a polyamide resin, a polylactic acid resin, a polyolefin resin, a polyester resin, a fluororesin, an acrylic resin, a methacrylic resin, and derivatives thereof. It is 1 type or 2 types or more selected from a group, It is characterized by the above-mentioned.

請求項3の細胞分化誘導法は、請求項2において、該熱可塑性樹脂がポリウレタン樹脂であることを特徴とするものである。   The cell differentiation induction method according to claim 3 is characterized in that, in claim 2, the thermoplastic resin is a polyurethane resin.

請求項4の細胞分化誘導法は、請求項3において、該ポリウレタン樹脂が生体親和性物質でコーティングされていることを特徴とするものである。   The cell differentiation induction method according to claim 4 is characterized in that, in claim 3, the polyurethane resin is coated with a biocompatible substance.

請求項5の細胞分化誘導法は、請求項1ないし4のいずれか1項において、拍動の周期が0.1Hz〜10000Hzであることを特徴とするものである。   The cell differentiation inducing method according to claim 5 is characterized in that, in any one of claims 1 to 4, the pulsation period is 0.1 Hz to 10000 Hz.

請求項6の細胞分化誘導法は、請求項1ないし5のいずれか1項において、拍動の最高圧と最低圧との差が1mmHg〜500mmHgであることを特徴とするものである。   The cell differentiation induction method according to claim 6 is characterized in that, in any one of claims 1 to 5, the difference between the highest and lowest pulsation pressures is 1 mmHg to 500 mmHg.

請求項7の細胞分化誘導法は、請求項1ないし6のいずれか1項において、細胞が幹細胞であることを特徴とするものである。   The cell differentiation induction method according to claim 7 is characterized in that, in any one of claims 1 to 6, the cell is a stem cell.

請求項8の細胞分化誘導法は、請求項7において、幹細胞が胚性幹細胞であることを特徴とするものである。   The cell differentiation induction method according to claim 8 is characterized in that, in claim 7, the stem cell is an embryonic stem cell.

請求項9の細胞分化誘導法は、請求項1ないし8のいずれか1項において、該組織工学用スキャホールド材が管状であり、細胞の分化によって人工血管を製造することを特徴とするものである。   The cell differentiation inducing method according to claim 9 is characterized in that, in any one of claims 1 to 8, the tissue engineering scaffold is tubular, and an artificial blood vessel is produced by cell differentiation. is there.

本発明によると、拍動流負荷によって生じるずり応力によって内皮細胞が分化誘導され、周期的伸縮と圧拍動によって平滑筋細胞が分化誘導されると考えられる。   According to the present invention, it is considered that endothelial cells are induced to differentiate by shear stress generated by a pulsatile flow load, and smooth muscle cells are induced to differentiate by periodic stretching and pressure pulsation.

管状の組織工学用スキャホールド材を用いた場合には、複数の血管壁構成細胞が同時に分化誘導できることから、3次元的な階層構造を有するハイブリッド型人工血管を構築できる。   When a tubular tissue engineering scaffold is used, a plurality of blood vessel wall-constituting cells can be induced to differentiate simultaneously, so that a hybrid artificial blood vessel having a three-dimensional hierarchical structure can be constructed.

以下、本発明の好ましい形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

まず、本発明の細胞分化誘導法に用いられる組織工学用スキャホールド材について説明する。   First, the scaffold material for tissue engineering used in the cell differentiation induction method of the present invention will be described.

この組織工学用スキャホールド材を構成する熱可塑性樹脂からなる三次元網状構造部は、好ましくは管状であり、連通性の、即ち、連続気孔性の多孔性三次元網状構造であれば良く、内壁から外壁にいたる全体が類似の構造を有してもいても、内壁付近と外壁付近とで相違していても良い。また、部分的に平均孔径や見掛け密度が変化するものであっても良く、例えば、内壁から外壁方向へ向けて平均孔径が徐々に変化する、所謂、異方性を有していても良い。管状体の外周面にスキン層が設けられていてもよい。   The three-dimensional network structure portion made of a thermoplastic resin constituting the tissue engineering scaffold is preferably tubular, and may be a continuous, ie, porous, three-dimensional network structure having a continuous porosity. Even if the whole from the outer wall to the outer wall may have a similar structure, it may be different between the vicinity of the inner wall and the vicinity of the outer wall. Further, the average pore diameter and the apparent density may partially change, and for example, it may have so-called anisotropy in which the average pore diameter gradually changes from the inner wall toward the outer wall. A skin layer may be provided on the outer peripheral surface of the tubular body.

この熱可塑性樹脂からなる多孔性三次元網状構造の平均孔径は、好ましくは20〜650μmで、見掛け密度は0.01〜0.5g/cmであるが、より好ましくは30〜100μmである。見掛け密度としては0.01〜0.5g/cm範囲内であれば、細胞生着性が良好で、優れた物理的強度を維持し、生体に近似した弾性特性が得られるが、好ましくは0.01〜0.2g/cm、より好ましくは0.01〜0.1g/cmである。 The average pore diameter of the porous three-dimensional network structure made of this thermoplastic resin is preferably 20 to 650 μm, and the apparent density is 0.01 to 0.5 g / cm 3 , more preferably 30 to 100 μm. If the apparent density is in the range of 0.01 to 0.5 g / cm 3 , cell engraftment is good, excellent physical strength is maintained, and elastic properties approximate to a living body are obtained. 0.01 to 0.2 g / cm 3 , more preferably 0.01 to 0.1 g / cm 3 .

孔径の分布は単分散の方が好ましく、細胞の侵入に重要な孔径サイズである孔径30〜100μmの孔の寄与率が高いことが望ましい。孔径30〜100μmの孔の寄与率が10%以上、好ましくは20%以上、より好ましくは30%以上、更に好ましくは40%以上、特に好ましくは50%以上あると、細胞が侵入し易く、また、侵入した細胞が接着、成長しやすいため、スキャホールド材及び人工血管としての用途に有効である。   The distribution of the pore size is preferably monodispersed, and it is desirable that the contribution ratio of pores having a pore size of 30 to 100 μm, which is a pore size important for cell invasion, is high. When the contribution ratio of pores having a pore diameter of 30 to 100 μm is 10% or more, preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, and particularly preferably 50% or more, cells easily invade, Since the invading cells are likely to adhere and grow, it is effective for use as a scaffold material and an artificial blood vessel.

このような平均孔径、見掛け密度及び孔径分布の多孔性三次元網状構造であれば、細胞及び培養液等が容易に空孔部分へ浸透し、多孔性構造層へ細胞が接着、成長しやすい。従って、これを管状に成形した場合には、内壁から外周にいたる全体に細胞を生着させることができるため、閉塞の危険性の低い、開存率の高い人工血管を実現することができる。   With such a porous three-dimensional network structure having an average pore size, apparent density, and pore size distribution, cells, culture solution, and the like can easily penetrate into the pores, and cells can easily adhere to and grow in the porous structure layer. Therefore, when this is formed into a tubular shape, cells can be engrafted from the inner wall to the outer periphery, so that an artificial blood vessel with a low risk of occlusion and a high patency rate can be realized.

この組織工学用スキャホールド材を構成する熱可塑性樹脂としては、ポリウレタン樹脂、ポリアミド樹脂、ポリ乳酸樹脂、ポリオレフィン樹脂、ポリエステル樹脂、フッ素樹脂、アクリル樹脂、メタクリル樹脂並びにそれらの誘導体を例示することができ、これらは1種を単独で使用しても良く、2種以上を併用しても良いが、好ましくは、ポリウレタン樹脂であり、中でもセグメント化ポリウレタン樹脂が抗血栓性や物理特性などの点でも優れた人工血管を得ることができ、好ましい。   Examples of the thermoplastic resin constituting the scaffold for tissue engineering include polyurethane resin, polyamide resin, polylactic acid resin, polyolefin resin, polyester resin, fluororesin, acrylic resin, methacrylic resin and derivatives thereof. These may be used alone or in combination of two or more, but are preferably polyurethane resins, and segmented polyurethane resins are particularly excellent in antithrombogenicity and physical properties. An artificial blood vessel can be obtained, which is preferable.

また、熱可塑性樹脂が加水分解性又は生分解性を有するものであれば、人工血管の生体移植後に徐々に分解、吸収され、最終的には生着した細胞を残したまま樹脂製の基材自体を生体から排除することも可能である。   Also, if the thermoplastic resin is hydrolyzable or biodegradable, it is gradually decomposed and absorbed after the transplantation of the artificial blood vessel, and finally the resin base material leaving the engrafted cells. It is also possible to exclude itself from the living body.

このスキャホールド材の表面にフィブロネクチンなどの生体親和性化合物をコーティングすることにより、細胞の付着性を向上させることができる。   By coating the surface of this scaffold material with a biocompatible compound such as fibronectin, the adherence of cells can be improved.

このスキャホールド材に生着させる細胞としては胚性幹細胞(ES細胞)や、ES細胞由来のFlk−1陽性細胞が好適である。   As cells to be engrafted in this scaffold material, embryonic stem cells (ES cells) and ES cell-derived Flk-1 positive cells are suitable.

この細胞を上記スキャホールド材に生着させるには、この細胞浮遊液を、必要に応じ少なくとも一部をMACS(磁気細胞分離装置)によって純化処理した後、スキャホールド材に播種すればよい。この純化処理方法としては、FLK−1抗体を固定した磁気ビーズでFLK−1陽性細胞を磁気ラベルし、カラムにて分離する方法が例示される。純化率としては90%以上であることが好ましい。また、磁気ラベルされた細胞はそのまま(抗体を固定した磁気ビーズを外すことなく)スキャホールド材へ播種することが好ましい。   In order to engraft the cells on the scaffold material, at least a part of the cell suspension may be purified by MACS (magnetic cell separation device) as necessary, and then seeded on the scaffold material. Examples of this purification treatment method include a method in which FLK-1 positive cells are magnetically labeled with magnetic beads to which an FLK-1 antibody is immobilized, and then separated on a column. The purification rate is preferably 90% or more. In addition, the magnetically labeled cells are preferably seeded on the scaffold as they are (without removing the magnetic beads on which the antibody is immobilized).

本発明の方法によって人工血管を製造する場合、スキャホールド材は中空管状とされ、細胞浮遊液が管腔内面に播種される。具体的には、ノズルを管腔に差し込み、このノズルから細胞浮遊液を吐出させつつ管状スキャホールド材を軸心回りに回転させ、内腔面に均一に細胞浮遊液を付着させる方法や、中空管状のスキャホールド材の片側末端を密閉し、もう一方の末端から細胞浮遊液を注入し、そのまま加圧することで播種する方法、あるいは中空管状のスキャホールド材に細胞浮遊液を注入し、連続的にあるいは断続的に回転させながら静置培養する方法などが例示される。   When an artificial blood vessel is manufactured by the method of the present invention, the scaffold material is a hollow tube, and the cell suspension is seeded on the inner surface of the lumen. Specifically, by inserting a nozzle into the lumen and rotating the tubular scaffold material around the axis while discharging the cell suspension from the nozzle, the cell suspension can be uniformly attached to the lumen surface, Either one end of the tubular scaffold material is sealed, the cell suspension is injected from the other end, and then seeded by pressurization, or the cell suspension is injected into the hollow tubular scaffold material and continuously Or a method of stationary culture while rotating intermittently.

内腔面単位面積当りの細胞付着量は1〜50万cells/cm程度が好適であるが、これに限定されない。 The cell adhesion amount per unit area of the lumen surface is preferably about 1 to 500,000 cells / cm 2, but is not limited thereto.

播種後は、0.5〜4日程度、VEGFや、血小板由来増殖因子、上皮増殖因子、形質転換増殖因子α、インスリン様増殖因子、インスリン様増殖因子結合蛋白、肝細胞増殖因子、アンジオポイエチン、神経増殖因子、脳由来神経栄養因子、毛様体神経栄養因子、形質転換増殖因子β、潜在型形質転換増殖因子β、アクチビン、骨形質タンパク、繊維芽細胞増殖因子、腫瘍増殖因子β、二倍体繊維芽細胞増殖因子、ヘパリン結合性上皮増殖因子様増殖因子、シュワノーマ由来増殖因子、アンフィレグリン、ベーターセルリン、エピグレリン、リンホトキシン、エリスロエポイエチンなどのサイトカインを0.1〜10ug/mL程度含んだ培養途中で静置培養した後、VEGFやPDGFなどのサイトカインを含まない培養液を管腔内に流通させる。この流通に際し、培養液を拍動させる。   About 0.5 to 4 days after sowing, VEGF, platelet-derived growth factor, epidermal growth factor, transforming growth factor α, insulin-like growth factor, insulin-like growth factor binding protein, hepatocyte growth factor, angiopoietin , Nerve growth factor, brain-derived neurotrophic factor, ciliary neurotrophic factor, transforming growth factor β, latent transforming growth factor β, activin, bone trait protein, fibroblast growth factor, tumor growth factor β, two About 0.1-10 ug / mL of cytokines such as ploidy fibroblast growth factor, heparin-binding epidermal growth factor-like growth factor, schwanoma-derived growth factor, amphiregulin, betacellulin, epigrelin, lymphotoxin, erythroepoetin After stationary culture in the middle of the culture, the culture solution containing no cytokines such as VEGF and PDGF is distributed in the lumen. That. During this distribution, the culture solution is beaten.

培養液の培地としては、DMEM、BME、グルタマックスなどを用いることができる。   As the culture medium, DMEM, BME, glutamax and the like can be used.

培養液の平均流通速度(管軸方向の平均流速)は5〜250ml/min程度が好適である。   The average flow rate (average flow rate in the tube axis direction) of the culture solution is preferably about 5 to 250 ml / min.

拍動させるには脈動式ポンプを用いればよい。拍動の周期は0.7〜1.2秒程度が好適であり、1回の拍動のうち収縮期は0.2〜0.4秒程度、拡張期は0.4〜0.6秒程度が好適である。拍動の平均圧は10〜100mmHg程度が好適であり、拍動の最高圧と最低圧との差は10〜150mmHg程度が好適である。   A pulsating pump may be used for pulsation. The period of pulsation is preferably about 0.7 to 1.2 seconds, and in one pulsation, the systole is about 0.2 to 0.4 seconds, and the diastolic period is 0.4 to 0.6 seconds. The degree is preferred. The average pulsation pressure is preferably about 10 to 100 mmHg, and the difference between the maximum pulsation pressure and the minimum pressure is preferably about 10 to 150 mmHg.

実施例1
未分化マウスES細胞由来のFlk−1陽性細胞を主構成成分とする濃度5×10cells/mLの細胞浮遊液を調製し、FLK−1抗体を固定した磁気ビーズで磁気ラベルした後にMACSにて磁気細胞分離することにより純化処理した後に、未純化のものと混合して細胞浮遊液とした。
Example 1
After preparing a cell suspension with a concentration of 5 × 10 9 cells / mL mainly composed of Flk-1 positive cells derived from undifferentiated mouse ES cells, and magnetically labeling them with magnetic beads fixed with FLK-1 antibody, Then, the cells were purified by magnetic cell separation and then mixed with unpurified cells to obtain a cell suspension.

外周面にスキン層を設けたポリウレタン製スポンジチューブとして、内径5mm、外径6mm、長さ30mmのものと、内径1.8mm、外径30mm、長さ30mmのものを用意した。スキン層の厚みはいずれも約0.05〜0.2mmである。このスポンジチューブの平均孔径は40μmであり、見掛け密度は0.23g/cmである。各チューブの内周面に0.1%フィブロネクチンを含むPBS溶液に30分浸漬させることでフィブロネクチンを薄くコーティングした。 Polyurethane sponge tubes having a skin layer on the outer peripheral surface were prepared with an inner diameter of 5 mm, an outer diameter of 6 mm, and a length of 30 mm, and an inner diameter of 1.8 mm, an outer diameter of 30 mm, and a length of 30 mm. The thickness of the skin layer is about 0.05 to 0.2 mm. This sponge tube has an average pore diameter of 40 μm and an apparent density of 0.23 g / cm 3 . Fibronectin was thinly coated by immersing it in a PBS solution containing 0.1% fibronectin on the inner peripheral surface of each tube for 30 minutes.

これらのチューブをホルダで保持し、2000rpmにて軸心回りに回転させながら、管腔内にノズルを差し込んで上記細胞浮遊液を吐出させ、内腔面より播種した。内腔面の単位面積当りの播種量は300万cells/mmである。 While holding these tubes with a holder and rotating them around the axis at 2000 rpm, a nozzle was inserted into the lumen to discharge the cell suspension and seeded from the lumen surface. The seeding amount per unit area of the lumen surface is 3 million cells / mm 2 .

次いで、VEGFを0.1μg/mL含有するα−MEM培地(10%FBSと5×10−5Mの2−mercaptoethanolを含む)よりなる培養液中にて2日間静置前培養を行った。その後、VEGFを含有しない他は上記と同一の培養液を各チューブの内腔に脈動式ポンプを用いて通液した。 Subsequently, pre-stationary culture was performed for 2 days in a culture medium composed of α-MEM medium (containing 10% FBS and 5 × 10 −5 M 2-mercaptoethanol) containing 0.1 μg / mL of VEGF. Thereafter, the same culture solution as above except that VEGF was not contained was passed through the lumen of each tube using a pulsating pump.

通液の平均線速度は、50mL/minとした。拍動は、収縮期0.3秒、拡張期0.5秒、拍動最高圧30mmHg、拍動最低圧10mmHg、ずり応力−0.98〜2.2dyn/cm、周辺応力4.6〜9.6×10dyn/cmの条件にて行った。 The average linear velocity of liquid flow was 50 mL / min. The pulsation is as follows: systole 0.3 seconds, diastolic 0.5 seconds, pulsation maximum pressure 30 mmHg, pulsation minimum pressure 10 mmHg, shear stress −0.98 to 2.2 dyn / cm 2 , peripheral stress 4.6 to The measurement was performed under the condition of 9.6 × 10 4 dyn / cm 2 .

2日間この通液を行った後細胞種を免疫組織的に調べ、内腔面の細胞形態をSEMで観察した。その結果、血管内皮細胞マーカー(CD31、CD144)陽性細胞と平滑筋細胞マーカー(αSMA)陽性細胞が認められた。   After passing this solution for 2 days, the cell type was examined immunohistologically, and the cell morphology of the luminal surface was observed with SEM. As a result, vascular endothelial cell marker (CD31, CD144) positive cells and smooth muscle cell marker (αSMA) positive cells were observed.

これは、拍動流負荷によって生じるずり応力によって、内皮細胞が分化誘導され、周期的伸縮と圧拍動によって平滑筋細胞が分化誘導されたためであると考えられる。   This is thought to be because endothelial cells were induced to differentiate by shear stress generated by pulsatile flow load, and smooth muscle cells were induced to differentiate by periodic stretching and pressure pulsation.

Claims (9)

多孔質三次元網状構造を有した熱可塑性樹脂製の組織工学用スキャホールド材に細胞を生着させ、該細胞の分化を誘導する方法において、該細胞に対し拍動流を加えつつ培養することを特徴とする細胞分化誘導法。   In a method for engrafting cells in a tissue engineering scaffold made of thermoplastic resin having a porous three-dimensional network structure and inducing differentiation of the cells, culturing the cells while applying a pulsatile flow A cell differentiation inducing method characterized by the above. 請求項1において、該熱可塑性樹脂がポリウレタン樹脂、ポリアミド樹脂、ポリ乳酸樹脂、ポリオレフィン樹脂、ポリエステル樹脂、フッ素樹脂、アクリル樹脂及びメタクリル樹脂並びにこれらの誘導体からなる群から選択される1種又は2種以上であることを特徴とする細胞分化誘導法。   2. The thermoplastic resin according to claim 1, wherein the thermoplastic resin is selected from the group consisting of polyurethane resin, polyamide resin, polylactic acid resin, polyolefin resin, polyester resin, fluororesin, acrylic resin, methacrylic resin, and derivatives thereof. A method for inducing cell differentiation characterized by the above. 請求項2において、該熱可塑性樹脂がポリウレタン樹脂であることを特徴とする細胞分化誘導法。   The cell differentiation induction method according to claim 2, wherein the thermoplastic resin is a polyurethane resin. 請求項3において、該ポリウレタン樹脂が生体親和性物質でコーティングされていることを特徴とする細胞分化誘導法。   The cell differentiation induction method according to claim 3, wherein the polyurethane resin is coated with a biocompatible substance. 請求項1ないし4のいずれか1項において、拍動の周期が0.1Hz〜10000Hzであることを特徴とする細胞分化誘導法。   The method for inducing cell differentiation according to any one of claims 1 to 4, wherein a cycle of pulsation is 0.1 Hz to 10000 Hz. 請求項1ないし5のいずれか1項において、拍動の最高圧と最低圧との差が1mmHg〜500mmHgであることを特徴とする細胞分化誘導法。   6. The method for inducing cell differentiation according to any one of claims 1 to 5, wherein the difference between the highest pressure and the lowest pressure of pulsation is 1 mmHg to 500 mmHg. 請求項1ないし6のいずれか1項において、細胞が幹細胞であることを特徴とする細胞分化誘導法。   The cell differentiation induction method according to any one of claims 1 to 6, wherein the cell is a stem cell. 請求項7において、幹細胞が胚性幹細胞であることを特徴とする細胞分化誘導法。   8. The method for inducing cell differentiation according to claim 7, wherein the stem cell is an embryonic stem cell. 請求項1ないし8のいずれか1項において、該組織工学用スキャホールド材が管状であり、細胞の分化によって人工血管を製造することを特徴とする細胞分化誘導法。   9. The method for inducing cell differentiation according to claim 1, wherein the tissue engineering scaffold is tubular and an artificial blood vessel is produced by cell differentiation.
JP2005066683A 2005-03-10 2005-03-10 Method of inducing cell differentiation Pending JP2006246770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066683A JP2006246770A (en) 2005-03-10 2005-03-10 Method of inducing cell differentiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066683A JP2006246770A (en) 2005-03-10 2005-03-10 Method of inducing cell differentiation

Publications (1)

Publication Number Publication Date
JP2006246770A true JP2006246770A (en) 2006-09-21

Family

ID=37087885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066683A Pending JP2006246770A (en) 2005-03-10 2005-03-10 Method of inducing cell differentiation

Country Status (1)

Country Link
JP (1) JP2006246770A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011008986A2 (en) * 2009-07-15 2011-01-20 California Institute Of Technology A method applying hemodynamic forcing and klf2 to initiate the growth and development of cardiac valves
CN104758980A (en) * 2015-02-03 2015-07-08 北京航空航天大学 Method for in-vitro construction of vascular endodermis with flow shear stress resistant and platelet aggregation resistant functions
WO2018207783A1 (en) * 2017-05-08 2018-11-15 学校法人慶應義塾 Multilayer structure body, method for producing same, and method for using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011008986A2 (en) * 2009-07-15 2011-01-20 California Institute Of Technology A method applying hemodynamic forcing and klf2 to initiate the growth and development of cardiac valves
WO2011008986A3 (en) * 2009-07-15 2011-06-16 California Institute Of Technology A method applying hemodynamic forcing and klf2 to initiate the growth and development of cardiac valves
CN104758980A (en) * 2015-02-03 2015-07-08 北京航空航天大学 Method for in-vitro construction of vascular endodermis with flow shear stress resistant and platelet aggregation resistant functions
WO2018207783A1 (en) * 2017-05-08 2018-11-15 学校法人慶應義塾 Multilayer structure body, method for producing same, and method for using same
JPWO2018207783A1 (en) * 2017-05-08 2020-03-12 学校法人慶應義塾 Multilayer structure, method for producing and using the same
JP7165330B2 (en) 2017-05-08 2022-11-04 慶應義塾 Multilayer structure and method for manufacturing and using the same

Similar Documents

Publication Publication Date Title
JP5674442B2 (en) Three-dimensional cell culture containing blood vessel-like structures
Uttayarat et al. Micropatterning of three-dimensional electrospun polyurethane vascular grafts
Boland et al. Electrospinning collagen and elastin: preliminary vascular tissue engineering
JP5950899B2 (en) Multi-layer blood vessel tube
JP6599850B2 (en) Vascular graft
US20060204556A1 (en) Cell-loaded prostheses for regenerative intraluminal applications
JP5986535B2 (en) Base material for cardiovascular tissue culture and method for producing cardiovascular tissue for transplantation
Elliott et al. Three-dimensional culture of small-diameter vascular grafts
KR20020059382A (en) Engineered muscle
US20130030452A1 (en) Devices for surgical applications
JP2023014146A (en) Highly reliable and reproducible industrialized process for removing air bubbles in fabrication of engineered vascular tissue
JP2001078750A (en) Base material for culturing cardiovascular tissue and method for tissue regeneration
JP2006246770A (en) Method of inducing cell differentiation
JP2017519565A (en) in situ tissue engineering
US20210353828A1 (en) Microcapillary network based scaffold
WO2006069349A9 (en) Cell-loaded prostheses for regenerative intraluminal applications
US10149865B2 (en) Method for preparing a biological tissue construct and use of autologous cells obtained specifically
JP5252538B2 (en) Method for producing cultured blood vessel having elastic fiber tissue and cultured blood vessel having elastic fiber tissue
CN116536246B (en) Three-dimensional artificial tubular tissue and preparation method and application thereof
Chumtong et al. Design and fabrication of micro/bio chip for in vitro fabrication of toroidal cellular aggregates
Poot et al. Vascular tissue engineering
Kanda et al. General Session “Vascular Prosthesis”
Jayawarna et al. Self-assembling peptide hydrogels: Directing cell behaviour by chemical composition
Wang et al. Micro-and Nanotechnology in Tissue Engineering
Melchiorri Engineering biodegradable vascular scaffolds for congenital heart disease