JP2006243487A - Electrophotographic photoreceptor, method for manufacturing the electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus using the electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor, method for manufacturing the electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus using the electrophotographic photoreceptor Download PDF

Info

Publication number
JP2006243487A
JP2006243487A JP2005060664A JP2005060664A JP2006243487A JP 2006243487 A JP2006243487 A JP 2006243487A JP 2005060664 A JP2005060664 A JP 2005060664A JP 2005060664 A JP2005060664 A JP 2005060664A JP 2006243487 A JP2006243487 A JP 2006243487A
Authority
JP
Japan
Prior art keywords
layer
photosensitive member
electrophotographic
group
electrophotographic photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005060664A
Other languages
Japanese (ja)
Other versions
JP4402610B2 (en
JP2006243487A5 (en
Inventor
Hideaki Nagasaka
秀昭 長坂
Kunihiko Sekido
邦彦 関戸
Michiyo Sekiya
道代 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005060664A priority Critical patent/JP4402610B2/en
Publication of JP2006243487A publication Critical patent/JP2006243487A/en
Publication of JP2006243487A5 publication Critical patent/JP2006243487A5/ja
Application granted granted Critical
Publication of JP4402610B2 publication Critical patent/JP4402610B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor that achieves a ghost image more server than ever without inducing changes in the sensitivity while keeping high sensitivity. <P>SOLUTION: The electrophotographic photoreceptor has an intermediate layer between a conductive supporting body and a photosensitive layer, wherein the intermediate layer contains a compound represented by formula (1). In formula (1), each of Z<SB>1</SB>and Z<SB>2</SB>independently represents oxygen, a C(CN)<SB>2</SB>group or N-R, wherein R is an aryl group or an alkyl group which may have a substituent; and each of X<SB>1</SB>to X<SB>8</SB>independently represents a hydrogen atom, a halogen atom, a nitro group, a trifluoroalkyl group, an alkoxy group which may have a substituent, or an alkyl group which may have a substituent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電子写真感光体に関し、該感光体が導電性支持体上に中間層、電荷発生層、電荷輸送層をこの順に有する積層型電子写真感光体であり、該電荷輸送層が正孔輸送剤を含み、該中間層が式(1)〜(3)で表される化合物を含むことを特徴とする電子写真感光体に関する。本発明は更に該電子写真感光体の製造方法、該電子写真感光体を用いるプロセスカートリッジ及び電子写真装置に関する。   The present invention relates to an electrophotographic photoreceptor, which is a laminated electrophotographic photoreceptor having an intermediate layer, a charge generation layer, and a charge transport layer in this order on a conductive support, and the charge transport layer transports holes. The present invention relates to an electrophotographic photoreceptor comprising an agent, wherein the intermediate layer contains compounds represented by formulas (1) to (3). The present invention further relates to a method for producing the electrophotographic photosensitive member, a process cartridge using the electrophotographic photosensitive member, and an electrophotographic apparatus.

従来、電子写真感光体としては、セレン、酸化亜鉛、硫化カドミウム等の無機光導電性化合物を主成分とする無機感光体が広く用いられてきた。近年では、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5等に見られるように、有機系光導電性物質を樹脂等で結着した電荷輸送層及び電荷発生層の2つの機能を分離させた層を有する積層型有機系電子写真感光体に関して様々な提案がなされている。なかでも電荷発生層上に電荷輸送層を設けた層構成を有する電子写真感光体は、耐久性に優れており、現在では主流となっている。例えば、特許文献6にはトリアリルピラゾリンを含有する電荷移動層を有する感光体、特許文献7にはペリレン顔料の誘導体からなる電荷発生層と3−プロピレンとホルムアルデヒドの縮合体からなる電荷移動層とから構成される感光体等が開示されている。また、特許文献8、特許文献9等にはジスアゾ顔料またはトリスアゾ顔料を電荷発生物質として用いた感光体が開示されている。さらに有機光導電性化合物はその化合物によって電子写真感光体の感光波長域を自由に選択することが可能である。例えば、アゾ系の有機顔料に関していえば特許文献10、特許文献11には可視領域で高感度を示すものが開示されており、また、特許文献12、特許文献13に開示された物質には赤外領域にまで感度を有しているものもある。   Conventionally, as an electrophotographic photoreceptor, inorganic photoreceptors mainly composed of an inorganic photoconductive compound such as selenium, zinc oxide, cadmium sulfide have been widely used. In recent years, as seen in Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, Patent Document 5, etc., a charge transport layer and a charge generation layer in which an organic photoconductive substance is bound with a resin or the like are used. Various proposals have been made regarding a laminated organic electrophotographic photosensitive member having a layer in which two functions are separated. In particular, an electrophotographic photosensitive member having a layer structure in which a charge transport layer is provided on a charge generation layer is excellent in durability and is currently mainstream. For example, Patent Document 6 discloses a photoreceptor having a charge transfer layer containing triallylpyrazoline, and Patent Document 7 discloses a charge generation layer formed of a derivative of perylene pigment and a charge transfer layer formed of a condensate of 3-propylene and formaldehyde. And the like. Patent Documents 8, 9 and the like disclose photoreceptors using disazo pigments or trisazo pigments as charge generation materials. Further, the organic photoconductive compound can freely select the photosensitive wavelength region of the electrophotographic photosensitive member depending on the compound. For example, with regard to azo organic pigments, Patent Documents 10 and 11 disclose high sensitivity in the visible region, and substances disclosed in Patent Document 12 and Patent Document 13 include red. Some have sensitivity even in the outer region.

これらの材料のうち、赤又は赤外領域に感度を有する材料は、近年の進歩の著しいレーザービームプリンターやLEDプリンター等に使用され、その需要は高くなってきている。従来、赤外領域に感度を有する材料として銅フタロシアニン(特許文献14)や無金属フタロシアニン等があげられたが、今日の高感度化には不十分である。さらに、特許文献15等では、積層型有機電子写真感光体において、電荷発生層に有機アクセプターを添加することにより高感度化をはかることが提案されているが、十分とはいえるものではない。近年の高感度に対応できる材料としてオキシチタニウムフタロシアニン顔料(特許文献16、特許文献17)、ガリウムフタロシアニン顔料(特許文献18、特許文献19)やクロロガリウムフタロシアニン顔料(特許文献20、特許文献21)等が注目されている。   Among these materials, materials having sensitivity in the red or infrared region are used in laser beam printers, LED printers, and the like that have made remarkable progress in recent years, and the demand for these materials is increasing. Conventionally, copper phthalocyanine (Patent Document 14), metal-free phthalocyanine, and the like have been cited as materials having sensitivity in the infrared region, but this is insufficient for increasing sensitivity today. Further, in Patent Document 15 and the like, it has been proposed to increase sensitivity by adding an organic acceptor to the charge generation layer in the laminated organic electrophotographic photoreceptor, but this is not sufficient. Oxytitanium phthalocyanine pigments (Patent Literature 16, Patent Literature 17), gallium phthalocyanine pigments (Patent Literature 18, Patent Literature 19), chlorogallium phthalocyanine pigments (Patent Literature 20, Patent Literature 21), etc. Is attracting attention.

しかしながら、今日の電子写真技術の発展は著しく、電子写真感光体に求められる特性に対しても非常に高度な技術が要求されている。例えば、プロセススピードは年々早くなり、帯電特性、感度や耐久安定性等が求められるようになってきている。特に、近年ではカラー化に代表されるように高画質化がさけばれ、白黒画像が文字中心の画像だったものが、カラー化により、写真に代表されるハーフトーン画像やベタ画像が多くなっており、それらの画像品質は年々高まる一方である。特に、画像1枚の中で光が照射された部分が次回転目にハーフトーン画像において前記光照射部分のみの濃度が濃くなる現象、所謂ポジゴースト画像、逆に前記部分の濃度が薄くなる、所謂ネガゴースト画像、等に対する許容範囲が、白黒プリンターや白黒複写機の許容範囲に比べると格段に厳しくなってきている。これらのゴースト画像は、高感度な電荷発生材料を用いることにより、キャリアーの絶対数が多く、ホールが電荷輸送層中に注入した後の電子が電荷発生層中に残りやすく、メモリーとなるためと考えられ、特にガリウムフタロシアニンのような高感度な材料を電荷発生材料として用いた場合に顕著な現象となる。   However, the development of today's electrophotographic technology is remarkable, and very advanced technology is required for the characteristics required for electrophotographic photoreceptors. For example, the process speed is increasing year by year, and charging characteristics, sensitivity, durability stability, and the like have been demanded. In particular, in recent years, high-quality images have been avoided as represented by colorization, and black-and-white images that have been character-centered have become more and more halftone images and solid images represented by photographs. Their image quality is increasing year by year. In particular, a phenomenon in which the light-irradiated portion of one image is darkened only in the light-irradiated portion in the halftone image at the next rotation, a so-called positive ghost image, on the contrary, the density of the portion is lightened. The allowable range for so-called negative ghost images and the like has become much stricter than the allowable range of monochrome printers and monochrome copying machines. These ghost images are made of a highly sensitive charge generation material, so that the absolute number of carriers is large and electrons after holes are injected into the charge transport layer are likely to remain in the charge generation layer, resulting in a memory. In particular, this phenomenon becomes prominent when a highly sensitive material such as gallium phthalocyanine is used as the charge generation material.

一方、低コスト化や小型化も年々進化していき、クリーナーレスや前露光レス等のレス化技術も要求されることが多くなってきている。特に、前露光に関しては、白黒レーザープリンターや白黒複写機においては、現在でも既に搭載されていないことが多く、カラープリンターやカラー複写機においても前露光を搭載しないものが増えてくることは容易に想像できることである。しかしながら、前露光のないカラー機におけるゴースト画像のレベルは、白黒プリンターや白黒複写機で許容されていたレベルよりも数段のレベル・アップが必要となる。   On the other hand, cost reduction and miniaturization are evolving year by year, and there is an increasing demand for less technology such as cleaner-less and pre-exposure-less. In particular, with regard to pre-exposure, black and white laser printers and black-and-white copiers are often not already installed, and it is easy to increase the number of color printers and color copiers that do not have pre-exposure. It can be imagined. However, the level of a ghost image in a color machine without pre-exposure needs to be several levels higher than that allowed by a black and white printer or black and white copier.

ゴースト低減の提案として、中間層に多環キノン、ペリレン等を含有させた例(特許文献22)、メタロセン化合物と電子吸引性化合物、メラミン樹脂を用いた例(特許文献23)、金属酸化物微粒子とシランカップリング剤を用いた例(特許文献24)、シランカップリング剤で表面処理した金属酸化物微粒子を用いた例(特許文献25)等が発表されているが、これも上記のような厳しいゴーストレベルに効果があるものではなかった。   Examples of proposals for reducing ghosts include an example in which polycyclic quinone and perylene are contained in the intermediate layer (Patent Document 22), an example using a metallocene compound and an electron-withdrawing compound, a melamine resin (Patent Document 23), and metal oxide fine particles And an example using a silane coupling agent (Patent Document 24), an example using metal oxide fine particles surface-treated with a silane coupling agent (Patent Document 25), etc. It was not effective for severe ghost levels.

また上記ゴースト現象や感度変化は、導電性の基体上に直接感光層を形成した場合に比較し、中間層を用いた感光体において特に発現しやすい。つまり、基体の欠陥に起因する感光体の特性低下、白抜けや黒点を防ぐ為に用いられた中間層が逆に新たなゴーストという画像欠陥や感度変化を招いていると考えられる。   In addition, the ghost phenomenon and sensitivity change are particularly likely to occur in a photoconductor using an intermediate layer, compared to the case where a photosensitive layer is directly formed on a conductive substrate. That is, it is considered that the intermediate layer used for preventing the deterioration of the characteristics of the photosensitive member due to the defect of the substrate, the white spot and the black spot, causes a new ghost image defect and sensitivity change.

以上のように、前露光のないプリンターや複写機、特にカラー機においての厳しいゴーストレベルを満足する感光体が望まれている。
特開昭57−54942号公報 特開昭60−59355号公報 特開昭61−203461号公報 特開昭62−47054号公報 特開昭62−67094号公報 米国特許第3837851号明細書 米国特許第3871882号明細書 特開昭9−33445号公報 特開昭56−46237号公報 特開昭60−272754号公報 特開昭56−167759号公報 特開昭57−195767号公報 特開昭61−228453号公報 特開昭50−38543号公報 特開昭61−2157号公報 特開昭63−366号公報 特開平1−319934号公報 特開平5−249716号公報 特開平5−263007号公報 特開平5−188615号公報 特開平5−194523号公報 特開平8−146639号公報 特開平10−73942号公報 特開平8−22136号公報 特開平9−258469号公報
As described above, there is a demand for a photoreceptor that satisfies a severe ghost level in printers and copiers without pre-exposure, particularly color machines.
JP-A-57-54942 JP 60-59355 A JP-A-61-203461 JP-A 62-47054 JP-A 62-67094 U.S. Pat. No. 3,378,851 U.S. Pat. No. 3,871,882 Japanese Unexamined Patent Publication No. 9-33445 JP 56-46237 A JP 60-272754 A JP 56-167759 A JP-A-57-195767 Japanese Patent Laid-Open No. 61-228453 Japanese Patent Laid-Open No. 50-38543 JP-A-61-2157 JP-A-63-366 JP-A-1-319934 JP-A-5-249716 Japanese Patent Laid-Open No. 5-263007 JP-A-5-188615 JP-A-5-194523 Japanese Patent Application Laid-Open No. 8-14639 Japanese Patent Laid-Open No. 10-73942 JP-A-8-22136 JP 9-258469 A

本発明の目的は、以上の事情に鑑みてなされたもので、高感度を維持しつつ、感度変化を起こさず、今までにない厳しいレベルのゴースト画像を達成する電子写真感光体を提供することである。   The object of the present invention was made in view of the above circumstances, and provides an electrophotographic photosensitive member that achieves a ghost image of a severe level that has never been achieved without causing a change in sensitivity while maintaining high sensitivity. It is.

本発明者らは、電子写真感光体の導電性支持体上に中間層、電荷発生層、電荷輸送層をこの順に有する積層型電子写真感光体において、該中間層が下記式(1)〜(3)で表される化合物を含むことによって上記課題を解決できることを見出した。   In the laminated electrophotographic photoreceptor having an intermediate layer, a charge generation layer, and a charge transport layer in this order on a conductive support of the electrophotographic photoreceptor, the intermediate layer has the following formulas (1) to ( It has been found that the above problem can be solved by including the compound represented by 3).

従って、本発明は、導電性支持体と感光層との間に中間層を有する電子写真感光体において、該中間層が下記式(1)〜(3)で表される化合物を含むことを特徴とする。   Accordingly, the present invention is an electrophotographic photosensitive member having an intermediate layer between a conductive support and a photosensitive layer, wherein the intermediate layer contains a compound represented by the following formulas (1) to (3). And

本発明は、上記の電子写真感光体と、該電子写真感光体を帯電させる帯電手段、静電潜像の形成された電子写真感光体をトナーで現像する現像手段及び転写工程後の電子写真感光体上に残余するトナーを回収するクリーニング手段からなる群より選ばれる少なくとも1つの手段とを共に一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジである。   The present invention relates to the above electrophotographic photosensitive member, a charging means for charging the electrophotographic photosensitive member, a developing means for developing the electrophotographic photosensitive member on which the electrostatic latent image is formed with toner, and the electrophotographic photosensitive member after the transfer process. A process cartridge that integrally supports at least one means selected from the group consisting of cleaning means for collecting toner remaining on the body and is detachable from the main body of the electrophotographic apparatus.

また、本発明は、上記の電子写真感光体、該電子写真感光体を帯電させる帯電手段、帯電した電子写真感光体に対し露光を行い、静電潜像を形成する露光手段、該静電潜像の形成された電子写真感光体をトナーで現像する現像手段及び該電子写真感光体上のトナー像を転写材上に転写する転写手段を備えることを特徴とする電子写真装置である。   The present invention also provides an electrophotographic photosensitive member, a charging means for charging the electrophotographic photosensitive member, an exposure means for exposing the charged electrophotographic photosensitive member to form an electrostatic latent image, and the electrostatic latent image. An electrophotographic apparatus comprising: a developing unit that develops an electrophotographic photosensitive member having an image formed thereon with toner; and a transferring unit that transfers a toner image on the electrophotographic photosensitive member onto a transfer material.

本発明によれば、導電性支持体上に中間層、電荷発生層、電荷輸送層をこの順に有する積層型電子写真感光体において、該中間層が式(1)〜(3)で表される化合物を含むこと、及び、高感度を維持しつつ、感度変化による画像濃度を起こさず、今までにない厳しいレベルのゴースト画像を達成する電子写真感光体、プロセスカートリッジ及び電子写真装置を提供することが可能となった。   According to the present invention, in a laminated electrophotographic photosensitive member having an intermediate layer, a charge generation layer, and a charge transport layer in this order on a conductive support, the intermediate layer is represented by formulas (1) to (3). To provide an electrophotographic photosensitive member, a process cartridge, and an electrophotographic apparatus that include a compound and that achieve high ghost images of unprecedented levels without causing image density due to sensitivity changes while maintaining high sensitivity. Became possible.

以下、本発明の電子写真用感光体について詳細に説明する。   Hereinafter, the electrophotographic photoreceptor of the present invention will be described in detail.

本発明に用いられる導電性支持体としては、アルミニウム、ニッケル、銅、金、鉄等の金属単体または合金、ポリエステル、ポリカーボネート、ポリイミド、ガラス等の絶縁性支持体上にアルミニウム、銀、金等の金属単体あるいは酸化インジウム、酸化スズ等の酸化物の導電性薄膜を形成したもの、カーボンや導電性フィラーを樹脂中に分散し導電性を付与したもの等が例示できる。これらの支持体表面は電気的特性改善あるいは密着性改善のために、陽極酸化等の電気化学的な処理を行った支持体や、導電性支持体表面をアルカリリン酸塩あるいはリン酸やタンニン酸を主成分とする酸性水溶液に金属塩の化合物又はフッ素化合物の金属塩を溶解して得た溶液で化学処理を施したものを用いることもできる。   As the conductive support used in the present invention, a single metal or alloy such as aluminum, nickel, copper, gold, and iron, an insulating support such as polyester, polycarbonate, polyimide, and glass, aluminum, silver, gold, etc. Examples thereof include a single metal or a conductive thin film of an oxide such as indium oxide or tin oxide, carbon or conductive filler dispersed in a resin to impart conductivity. These support surfaces were subjected to electrochemical treatment such as anodization to improve electrical characteristics or adhesion, and conductive support surfaces were treated with alkali phosphate, phosphoric acid or tannic acid. It is also possible to use a solution obtained by dissolving a metal salt compound or a fluorine compound metal salt in an acidic aqueous solution containing as a main component and a chemical treatment.

また、単一波長のレーザー光等を用いたプリンターに本感光体を用いる場合には、干渉縞を抑制するために導電性支持体はその表面を適度に荒らしておくことが必要である。具体的には上記支持体表面をホーニング、ブラスト、切削、電界研磨等の処理をした支持体もしくはアルミニウム単体及びアルミニウム合金上に導電性金属酸化物及び結着樹脂からなる導電性皮膜を有する支持体を用いることが必要である。   Further, when the present photoreceptor is used in a printer using a single wavelength laser beam or the like, the surface of the conductive support needs to be appropriately roughened in order to suppress interference fringes. Specifically, a support having the surface of the support subjected to honing, blasting, cutting, electropolishing, or the like, or a support having a conductive film made of a conductive metal oxide and a binder resin on an aluminum simple substance and an aluminum alloy. Must be used.

ホーニング処理としては、乾式及び湿式での処理方法があるがいずれを用いてもよい。湿式ホーニング処理は、水等の液体に粉末状の研磨剤を懸濁させ、高速度で基体表面に吹き付けて粗面化する方法であり、表面粗さは吹き付け圧力、速度、研磨剤の量、種類、形状、大きさ、硬度、比重及び懸濁温度等により制御することができる。同様に、乾式ホーニング処理は、研磨剤をエアーにより、高速度で導電性基体表面に吹き付けて粗面化する方法であり、湿式ホーニング処理と同じように表面粗さを制御することができる。これら湿式または乾式ホーニング処理に用いる研磨剤としては、炭化ケイ素、アルミナ、鉄、ガラスビーズ等の粒子があげられる。   As the honing treatment, there are dry and wet treatment methods, and any of them may be used. The wet honing treatment is a method of suspending a powdery abrasive in a liquid such as water and spraying the surface of the substrate at a high speed to roughen the surface. The surface roughness is the spray pressure, speed, amount of abrasive, It can be controlled by the type, shape, size, hardness, specific gravity, suspension temperature and the like. Similarly, the dry honing process is a method in which an abrasive is sprayed onto the surface of a conductive substrate with air at a high speed to roughen the surface, and the surface roughness can be controlled in the same manner as the wet honing process. Examples of the abrasive used for the wet or dry honing treatment include particles of silicon carbide, alumina, iron, glass beads and the like.

導電性金属酸化物及び結着樹脂から構成される導電性皮膜をアルミニウム単体やアルミニウム合金の支持体に塗布し導電性支持体とする方法では、導電性皮膜中にはフィラーとして、導電性微粒子からなる粉体を含有させる。この方法では微粒子を皮膜中に分散させることでレーザー光を乱反射させ干渉縞を防ぐと共に塗布前の支持体の傷や突起等を隠蔽する効果もある。微粒子には酸化チタン、硫酸バリウム等が用いられ、必要によってはこの微粒子に酸化錫等で導電性被覆層を設けることにより、フィラーにより適切な比抵抗を付与している。導電性微粒子粉体の比抵抗は0.1〜1000Ωcm、更には1〜1000Ωcmが好ましい。本発明において、粉体比抵抗は三菱化学社製の抵抗測定装置ロレスタAP(Loresta Ap)を用いて測定した。測定対象の粉体は、500kg/cm2の圧力でかためてコイン状のサンプルとして上記測定装置に装着した。微粒子の平均粒径は0.05〜1.0μm、更には0.07〜0.7μmが好ましい。本発明において、微粒子の平均粒径は遠心沈降法により測定した値である。フィラーの含有量は、導電性皮膜層に対して1.0〜90質量%、更には5.0〜80質量%が好ましい。被覆層には、必要に応じてフッ素あるいはアンチモンを含有させてもよい。 In a method in which a conductive film composed of a conductive metal oxide and a binder resin is applied to a support of aluminum alone or an aluminum alloy to form a conductive support, a conductive fine particle is used as a filler in the conductive film. The powder which becomes is contained. In this method, the fine particles are dispersed in the film, so that the laser beam is diffusely reflected to prevent interference fringes and to conceal the scratches and protrusions of the support before coating. Titanium oxide, barium sulfate, or the like is used for the fine particles. If necessary, an appropriate specific resistance is imparted to the fine particles by providing a conductive coating layer with tin oxide or the like. The specific resistance of the conductive fine particle powder is preferably 0.1 to 1000 Ωcm, more preferably 1 to 1000 Ωcm. In the present invention, the powder specific resistance was measured by using a resistance measuring device Loresta AP (Loresta Ap) manufactured by Mitsubishi Chemical Corporation. The powder to be measured was caulked at a pressure of 500 kg / cm 2 and attached to the measuring device as a coin-like sample. The average particle size of the fine particles is preferably 0.05 to 1.0 μm, more preferably 0.07 to 0.7 μm. In the present invention, the average particle diameter of the fine particles is a value measured by a centrifugal sedimentation method. The filler content is preferably 1.0 to 90 mass%, more preferably 5.0 to 80 mass% with respect to the conductive coating layer. The coating layer may contain fluorine or antimony as necessary.

本発明の導電性皮膜に用いられる結着樹脂としては、例えば、フェノール樹脂、ポリウレタン、ポリアミド、ポリイミド、ポリアミドイミド、ポリアミド酸、ポリビニールアセタール、エポキシ樹脂、アクリル樹脂、メラミン樹脂あるいはポリエステル等が好ましい。これらの樹脂は単独でも、二種以上を組み合わせて用いてもよい。これらの樹脂は、支持体に対する接着性が良好であると共に、本発明で使用するフィラーの分散性を向上させ、かつ成膜後の耐溶剤性が良好である。上記樹脂の中でも特にフェノール樹脂、ポリウレタン及びポリアミド酸が好ましい。   As the binder resin used for the conductive film of the present invention, for example, phenol resin, polyurethane, polyamide, polyimide, polyamideimide, polyamic acid, polyvinyl acetal, epoxy resin, acrylic resin, melamine resin or polyester is preferable. These resins may be used alone or in combination of two or more. These resins have good adhesion to the support, improve dispersibility of the filler used in the present invention, and have good solvent resistance after film formation. Among the above resins, phenol resin, polyurethane and polyamic acid are particularly preferable.

導電性皮膜は、例えば浸漬あるいはマイヤーバー等による溶剤塗布で形成することができる。導電性皮膜の厚みは0.1〜30μm、更には0.5〜20μmが好ましい。また、導電性皮膜の体積抵抗率は1013Ωcm以下、更には1012Ωcm以下105Ωcm以上が好ましい。本発明において、体積抵抗率はアルミニウム板上に測定対象の導電性皮膜を形成し、更にこの皮膜上に金の薄膜を形成して、アルミニウム板と金薄膜の両電極間を流れる電流値をpAメーターで測定して求めた。導電性皮膜には、被覆層を有する硫酸バリウム微粒子から構成される粉体以外に、酸化亜鉛や酸化チタン等の粉体から構成されるフィラーを含有させてもよい。更に、表面性を高めるためにレベリング剤を添加してもよい。 The conductive film can be formed, for example, by dipping or solvent application with a Meyer bar or the like. The thickness of the conductive film is preferably 0.1 to 30 μm, more preferably 0.5 to 20 μm. The volume resistivity of the conductive film is preferably 10 13 Ωcm or less, more preferably 10 12 Ωcm or less and 10 5 Ωcm or more. In the present invention, the volume resistivity is obtained by forming a conductive film to be measured on an aluminum plate, further forming a gold thin film on this film, and calculating the current value flowing between both the aluminum plate and the gold thin film as pA. It was determined by measuring with a meter. In addition to the powder composed of barium sulfate fine particles having a coating layer, the conductive film may contain a filler composed of powder such as zinc oxide and titanium oxide. Furthermore, a leveling agent may be added to enhance the surface property.

導電性支持体の形状は特に制約はなく、必要に応じて板状、ドラム状、ベルト状のものが用いられる。   The shape of the conductive support is not particularly limited, and a plate shape, a drum shape, or a belt shape is used as necessary.

本発明に用いられる中間層は、少なくとも下記式(1)〜(3)で表わされる化合物を溶解した中間層用塗布液を導電性支持体上に塗布し、乾燥することによって形成する。   The intermediate layer used in the present invention is formed by applying an intermediate layer coating solution in which at least compounds represented by the following formulas (1) to (3) are dissolved on a conductive support and drying.

(式中、Z及びZはそれぞれ独立に酸素、C(CN)基又はN−R(Rは置換基を有してもよいアリール基、アルキル基)を示し、XからXはそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、トリフルオロアルキル基、置換基を有してもよいアルコキシ基又は置換基を有してもよいアルキル基を示す。) Wherein Z 1 and Z 2 each independently represent oxygen, C (CN) 2 group or N—R (R represents an aryl group or alkyl group which may have a substituent), and X 1 to X 8 Each independently represents a hydrogen atom, a halogen atom, a nitro group, a trifluoroalkyl group, an optionally substituted alkoxy group or an optionally substituted alkyl group.)

(式中、Z3及びZ4はそれぞれ独立に酸素、C(CN)基又はN−R(Rは置換基を有してもよいアリール基、アルキル基)を示し、X10からX15はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、トリフルオロアルキル基、置換基を有してもよいアルコキシ基又は置換基を有してもよいアルキル基を示す。) Wherein Z 3 and Z 4 each independently represent oxygen, C (CN) 2 group or N—R (R represents an aryl group or alkyl group which may have a substituent), and X 10 to X 15 Each independently represents a hydrogen atom, a halogen atom, a nitro group, a trifluoroalkyl group, an optionally substituted alkoxy group or an optionally substituted alkyl group.)

(式中、Z5及びZ6はそれぞれ独立に酸素、C(CN)基又はN−R(Rは置換基を有してもよいアリール基、アルキル基)を示し、X20からX25はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、トリフルオロアルキル基、置換基を有してもよいアルコキシ基又は置換基を有してもよいアルキル基を示す。)
本発明において、中間層に上記化合物(1)〜(3)を含有させることでゴースト画像の抑制がなされる理由は定かではないが、以下のように考えられている。ゴースト画像では、露光を受けた部分と受けなかった部分に残存するキャリアー数の差により、次回転露光後の電位差が生じる。
(Wherein Z 5 and Z 6 each independently represent oxygen, C (CN) 2 group or N—R (R represents an aryl group or alkyl group which may have a substituent), and X 20 to X 25 Each independently represents a hydrogen atom, a halogen atom, a nitro group, a trifluoroalkyl group, an optionally substituted alkoxy group or an optionally substituted alkyl group.)
In the present invention, the reason why the ghost image is suppressed by adding the compounds (1) to (3) to the intermediate layer is not clear, but is considered as follows. In the ghost image, a potential difference after the next rotation exposure is generated due to the difference in the number of carriers remaining in the exposed portion and the unexposed portion.

露光により電荷発生剤で電荷が発生し、分離されたホール及び電子のキャリアーはバインダー樹脂を介して移動していく。負帯電積層感光体の場合、ホールはホール輸送物質を含む電荷輸送層側へ注入されていくが、電子は電荷発生層と中間層の界面にある種の電荷として残存しやすく次回転露光時に電位差を生じさせると考えられる。この電位差はゴースト画像や感度変化による画像濃度の変化を引き起こすが、この残存した電荷に本発明の化合物が何かしらの作用をしていると思われる。そのため、得られる効果は電荷発生剤と中間層の組み合わせにより変化し、本発明の化合物は、フタロシアニン系電荷発生剤、特にガリウムフタロシアニンとの組み合わせにおいて良好な特性を示した。   Charge is generated in the charge generating agent by exposure, and the separated hole and electron carriers move through the binder resin. In the case of a negatively charged laminated photoconductor, holes are injected into the charge transport layer containing the hole transport material, but electrons are likely to remain as a kind of charge at the interface between the charge generation layer and the intermediate layer, and the potential difference during the next rotation exposure. It is thought to give rise to. This potential difference causes a change in image density due to a ghost image or a sensitivity change, but the compound of the present invention seems to have some effect on the remaining charge. Therefore, the effect obtained varies depending on the combination of the charge generating agent and the intermediate layer, and the compound of the present invention showed good characteristics in combination with the phthalocyanine charge generating agent, particularly gallium phthalocyanine.

また、中間層には、必要に応じて、接着機能およびバリアー機能を有するバインダー樹脂を含有させてもよく、バインダー樹脂としてはポリアミド、ポリビニルアルコール、ポリエチレンオキシド、エチルセルロース、カゼイン、ポリウレタンおよびポリエーテルウレタン等の熱可塑性樹脂やメラミン樹脂、フェノール樹脂、アルキド樹脂、エポキシ樹脂やシランカップリング剤、有機金属錯体等の熱硬化性の材料が挙げられる。化合物(1)〜(3)の添加割合は中間層全体に対して5〜95wt%が好ましく、より好ましくは25〜80wt%の範囲である。   In addition, the intermediate layer may contain a binder resin having an adhesive function and a barrier function, if necessary. Examples of the binder resin include polyamide, polyvinyl alcohol, polyethylene oxide, ethyl cellulose, casein, polyurethane, and polyether urethane. And thermosetting materials such as thermoplastic resins, melamine resins, phenol resins, alkyd resins, epoxy resins, silane coupling agents, and organometallic complexes. The addition ratio of the compounds (1) to (3) is preferably 5 to 95 wt%, more preferably 25 to 80 wt% with respect to the entire intermediate layer.

また、該化合物はいずれの構造のものでも効果はあるが、還元電位0〜−0.8V(対SCE)の化合物が好ましく、更に−0.25〜−0.65V(対SCE)の化合物がより好ましい。また、ここで述べている還元電位とはピーク電流値における電位である。   In addition, the compound having any structure is effective, but a compound having a reduction potential of 0 to −0.8 V (vs. SCE) is preferable, and a compound of −0.25 to −0.65 V (vs. SCE) is more preferable. More preferred. The reduction potential described here is a potential at the peak current value.

上記材料は、適当な溶剤に溶解して塗布され、中間層の膜厚は0.05〜5μmが好ましく、特には0.3〜3μmが適当である。   The above-mentioned material is dissolved and applied in a suitable solvent, and the thickness of the intermediate layer is preferably 0.05 to 5 μm, particularly 0.3 to 3 μm.

使用される溶媒はアルコール、スルホキシド、ケトン、エーテル、エステル、脂肪族ハロゲン化炭化水素、芳香族化合物などである。   Solvents used are alcohols, sulfoxides, ketones, ethers, esters, aliphatic halogenated hydrocarbons, aromatic compounds and the like.

次に上記一般式(1)〜(3)の化合物例は表1〜4に示すが、これらに限定されるわけではない。   Next, although the compound example of the said General formula (1)-(3) is shown in Tables 1-4, it is not necessarily limited to these.


本発明の電荷発生層に用いられる電荷発生物質としてピリリウム系染料、チオピリリウム系染料、フタロシアニン系顔料、アントアントロン系顔料、ジベンズピレンキノン系顔料、ピラトロン系顔料、アゾ系顔料、インジゴ系顔料、キナクリドン系顔料及びキノシアニン系染料等が挙げられる。フタロシアニン化合物(フタロシアニン系顔料)には、無金属フタロシアニンや、オキシチタニウムフタロシアニン、ヒドロキシフタロシアニン、および、クロロガリウム等のハロゲン化ガリウムフタロシアニン等が挙げられる。詳細は明らかではないが、本発明においてガリウムフタロシアニン、特にヒドロキシガリウムフタロシアニンを用いた場合、特に好ましいゴースト抑制効果が得られた。   As the charge generation material used in the charge generation layer of the present invention, pyrylium dyes, thiopyrylium dyes, phthalocyanine pigments, anthanthrone pigments, dibenzpyrenequinone pigments, pyratron pigments, azo pigments, indigo pigments, quinacridone And pigments and quinocyanine dyes. Examples of the phthalocyanine compound (phthalocyanine pigment) include metal-free phthalocyanine, oxytitanium phthalocyanine, hydroxyphthalocyanine, and gallium halide phthalocyanine such as chlorogallium. Although details are not clear, in the present invention, when gallium phthalocyanine, particularly hydroxygallium phthalocyanine is used, a particularly preferable ghost suppressing effect is obtained.

上記電荷発生層には、フタロシアニン化合物(フタロシアニン系顔料)以外の電荷発生物質を、全電荷発生物質に対して50質量%まで含有させることも可能である。例えば、セレン−テルル、ピリリウム、チアピリリウム系染料、アントアントロン、ジベンズピレンキノン、トリスアゾ、シアニン、ジスアゾ、モノアゾ、インジゴ、キナクリドンおよび非対称キノシアニン系の各顔料等が挙げられる。   The charge generation layer may contain a charge generation material other than the phthalocyanine compound (phthalocyanine pigment) up to 50 mass% with respect to the total charge generation material. Examples thereof include selenium-tellurium, pyrylium, thiapyrylium dyes, anthanthrone, dibenzpyrenequinone, trisazo, cyanine, disazo, monoazo, indigo, quinacridone, and asymmetric quinocyanine pigments.

電荷発生層は、前記電荷発生物質を質量比で0.3〜4倍量のバインダー樹脂および溶剤とともにホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライター、ロールミルまたは液衝突型高速分散機等を使用して十分分散し、その後分散液中に電子搬送性化合物を添加して得られた塗料を塗布、乾燥させて形成される。バインダー樹脂としては、ブチラール樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリスチレン樹脂、ポリビニルメタクリレート樹脂、ポリビニルアクリレート樹脂、ポリ酢酸ビニル樹脂、ポリ塩化ビニル樹脂、ポリアミド樹脂、ポリウレタン樹脂、シリコーン樹脂、アルキッド樹脂、エポキシ樹脂、セルロース樹脂、メラミン樹脂等が挙げられるが、これらに限定されるものではない。特に、ブチラール樹脂が好ましい。電荷発生層の膜厚は5μm以下が好ましく、特には0.1〜2μmが好ましい。   The charge generation layer is a homogenizer, ultrasonic dispersion, ball mill, vibration ball mill, sand mill, attritor, roll mill or liquid collision type high-speed disperser together with the charge generation material in a mass ratio of 0.3 to 4 times the binder resin and solvent. And the like, and then a coating obtained by adding an electron transporting compound to the dispersion is applied and dried. As binder resin, butyral resin, polyester resin, polycarbonate resin, polyarylate resin, polystyrene resin, polyvinyl methacrylate resin, polyvinyl acrylate resin, polyvinyl acetate resin, polyvinyl chloride resin, polyamide resin, polyurethane resin, silicone resin, alkyd resin , Epoxy resin, cellulose resin, melamine resin and the like, but are not limited thereto. In particular, a butyral resin is preferred. The thickness of the charge generation layer is preferably 5 μm or less, particularly preferably 0.1 to 2 μm.

使用される溶剤はアルコール、スルホキシド、ケトン、エーテル、エステル、脂肪族ハロゲン化炭化水素、芳香族化合物等が挙げられ、具体的にはシクロヘキサノン、酢酸エチル、テトラヒドロフラン等である。   Examples of the solvent used include alcohols, sulfoxides, ketones, ethers, esters, aliphatic halogenated hydrocarbons, aromatic compounds, and the like. Specific examples include cyclohexanone, ethyl acetate, and tetrahydrofuran.

また、電荷発生層には、種々の増感剤、酸化防止剤、紫外線吸収剤、可塑剤などを必要に応じて添加することもできる。   In addition, various sensitizers, antioxidants, ultraviolet absorbers, plasticizers, and the like can be added to the charge generation layer as necessary.

電荷発生層の上には電荷輸送層が形成される。電荷輸送層は、主として電荷輸送物質とバインダー樹脂とを溶剤中に溶解させて得られた塗料を塗布、乾燥して形成する。本発明で用いられる電荷輸送物質は正孔輸送剤でありトリアリールアミン系化合物、ヒドラゾン化合物、スチルベン化合物、ピラゾリン系化合物、オキサゾール系化合物、トリアリルメタン系化合物およびチアゾール系化合物等が挙げられる。バインダー樹脂としてはポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリスチレン樹脂、ポリビニルメタクリレート樹脂、ポリビニルアクリレート樹脂、ポリアミド樹脂、ポリウレタン樹脂、シリコーン樹脂、アルキッド樹脂、エポキシ樹脂、セルロース樹脂、メラミン樹脂等が挙げられるが、下記式(4)で示される構造単位を有するポリアリレート樹脂を用いた場合に特に好ましいゴースト抑制効果が得られた。   A charge transport layer is formed on the charge generation layer. The charge transport layer is formed by applying and drying a paint obtained by dissolving a charge transport material and a binder resin in a solvent. The charge transport material used in the present invention is a hole transport agent, and examples thereof include triarylamine compounds, hydrazone compounds, stilbene compounds, pyrazoline compounds, oxazole compounds, triallylmethane compounds, and thiazole compounds. Examples of the binder resin include polyester resin, polycarbonate resin, polyarylate resin, polystyrene resin, polyvinyl methacrylate resin, polyvinyl acrylate resin, polyamide resin, polyurethane resin, silicone resin, alkyd resin, epoxy resin, cellulose resin, and melamine resin. When using a polyarylate resin having a structural unit represented by the following formula (4), a particularly preferable ghost suppressing effect was obtained.

下記式(4)で示される構造単位を有するポリアリレート樹脂は単独であるいはポリカーボネート樹脂、ポリエステル樹脂、ポリメタクリル酸エステル、ポリスチレン樹脂、アクリル樹脂、ポリアミド樹脂等の樹脂、ポリ−N−ビニルカルバゾール、ポリビニルアントラセンのような有機光導電性ポリマー等と混合して用いることが好ましい。   The polyarylate resin having a structural unit represented by the following formula (4) may be used alone or as a resin such as polycarbonate resin, polyester resin, polymethacrylic acid ester, polystyrene resin, acrylic resin, polyamide resin, poly-N-vinylcarbazole, polyvinyl It is preferable to use a mixture with an organic photoconductive polymer such as anthracene.

(式中、Xは炭素原子または単結合(この際のRおよびRはなし)を示し、R〜Rは水素原子、ハロゲン原子、置換されてもよいアルキル基またはアリール基を示し、RおよびRは水素原子、ハロゲン原子、置換されてもよいアルキル基、アリール基またはRとRが結合することによって形成されるアルキリデン基を示し、R〜R10は水素原子、ハロゲン原子、置換されてもよいアルキル基またはアリール基を示す。)
バインダー樹脂の重量平均分子量は、5万〜20万が好ましく、さらに、10万〜18万がより好ましい。重量平均分子量の測定は、ゲルパーミエーションクロマトグラフィー(東ソー(株)製「HLC−8120」)を用いて分子量分布を測定し、ポリスチレン換算で計算した。
(Wherein, X 1 represents a carbon atom or a single bond (in which R 5 and R 6 are absent), and R 1 to R 4 represent a hydrogen atom, a halogen atom, an optionally substituted alkyl group or an aryl group. , R 5 and R 6 represent a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an aryl group, or an alkylidene group formed by combining R 5 and R 6 , and R 7 to R 10 represent a hydrogen atom Represents a halogen atom, an optionally substituted alkyl group or an aryl group.)
The weight average molecular weight of the binder resin is preferably 50,000 to 200,000, and more preferably 100,000 to 180,000. The weight average molecular weight was determined by measuring the molecular weight distribution using gel permeation chromatography (“HLC-8120” manufactured by Tosoh Corporation) and calculating the polystyrene equivalent.

測定は、展開溶媒としてTHFを用い、樹脂試料の0.1質量%溶液について、カラムとして排除限界分子量(ポリスチレン換算)4×10のカラム(東ソー(株)製「TSKgel SuperHM−N」)、検出器としてRIを用いて、カラム温度40℃、インジェクション量20μl、流速1.0ml/分の条件で行った。 For the measurement, THF was used as a developing solvent, and a 0.1 mass% solution of a resin sample was used as a column with an exclusion limit molecular weight (polystyrene conversion) 4 × 10 6 (“TSKgel SuperHM-N” manufactured by Tosoh Corporation), RI was used as a detector, under conditions of a column temperature of 40 ° C., an injection amount of 20 μl, and a flow rate of 1.0 ml / min.

電荷輸送物質は質量比で0.5〜2倍量のバインダー樹脂と組み合わせて溶剤に溶解させ、塗布、乾燥して電荷輸送層を形成する。電荷輸送層の膜厚は、5〜30μmが好ましく、さらに、8〜19μmがより好ましい。   The charge transport material is combined with a binder resin in an amount of 0.5 to 2 times by mass, dissolved in a solvent, applied and dried to form a charge transport layer. The film thickness of the charge transport layer is preferably 5 to 30 μm, and more preferably 8 to 19 μm.

使用される溶剤はアセトン、メチルエチルケトンなどのケトン、酢酸メチル、酢酸エチルなどのエステル、トルエン、キシレンなどの芳香族炭化水素、1,4−ジオキサン、テトラヒドロフランなどのエーテル、クロロベンゼン、クロロホルム、四塩化炭素などのハロゲン原子で置換された炭化水素などが用いられる。 電荷輸送層には、その他、ヒンダードフェノール類やヒンダードアミン類等の酸化防止剤、シリコーンオイル、シリコーンオイル粒子、フッ素原子含有樹脂粒子等の潤滑性材料、シリコーン玉等の膜強度補強材等を添加してもよい。これらを含有した塗工液を電荷発生層上に塗布し、乾燥して、電荷輸送層が得られる。   Solvents used include ketones such as acetone and methyl ethyl ketone, esters such as methyl acetate and ethyl acetate, aromatic hydrocarbons such as toluene and xylene, ethers such as 1,4-dioxane and tetrahydrofuran, chlorobenzene, chloroform and carbon tetrachloride. A hydrocarbon substituted with a halogen atom is used. In addition to the charge transport layer, antioxidants such as hindered phenols and hindered amines, lubricating materials such as silicone oil, silicone oil particles, and fluorine atom-containing resin particles, and film strength reinforcing materials such as silicone balls are added. May be. A coating liquid containing these is applied onto the charge generation layer and dried to obtain a charge transport layer.

また、本発明の感光層は上記電荷発生層及び電荷輸送層から構成されている。   The photosensitive layer of the present invention is composed of the charge generation layer and the charge transport layer.

さらにまた、本発明においては、電荷輸送層上に保護層を設けてもよい。   Furthermore, in the present invention, a protective layer may be provided on the charge transport layer.

保護層を構成する材料としては、ポリエステル、ポリアクリレート、ポリエチレン、ポリスチレン、ポリブタジエン、ポリカーボネート、ポリアミド、ポリプロピレン、ポリイミド、ポリアミドイミド、ポリサルホン、ポリアクリルエーテル、ポリアセタール、フェノール、アクリル、シリコーン、エポキシ、ユリア、アリル、アルキッド、ブチラール、フェノキシ、ホスファゼン、アクリル変性エポキシ、アクリル変性ウレタン及びアクリル変性ポリエステル樹脂等が挙げられる。保護層の膜厚は、0.2〜10μmであることが好ましい。   The material constituting the protective layer is polyester, polyacrylate, polyethylene, polystyrene, polybutadiene, polycarbonate, polyamide, polypropylene, polyimide, polyamideimide, polysulfone, polyacryl ether, polyacetal, phenol, acrylic, silicone, epoxy, urea, allyl. Alkyd, butyral, phenoxy, phosphazene, acrylic-modified epoxy, acrylic-modified urethane, and acrylic-modified polyester resin. The thickness of the protective layer is preferably 0.2 to 10 μm.

保護層は例えば、浸漬塗布法(浸漬コーティング法)、スプレーコーティング法、スピンナーコーティング法、ローラーコーティング法、マイヤーバーコーティング法、ブレードコーティング法などの塗布方法を用いて形成される。   The protective layer is formed using, for example, a coating method such as a dip coating method (dip coating method), a spray coating method, a spinner coating method, a roller coating method, a Meyer bar coating method, or a blade coating method.

以上の各層には、クリーニング性や耐摩耗性等の改善のために、ポリ四フッ化エチレン、ポリフッ化ビニリデン、フッ素系グラフトポリマー、シリコーン系グラフトポリマー、フッ素系ブロックポリマー、シリコーン系ブロックポリマー及びシリコーン系オイル等の潤滑剤を含有させてもよい。   Each of the above layers has a polytetrafluoroethylene, polyvinylidene fluoride, a fluorine-based graft polymer, a silicone-based graft polymer, a fluorine-based block polymer, a silicone-based block polymer, and a silicone for improving cleaning properties and abrasion resistance. You may contain lubricants, such as system oil.

更に、耐候性を向上させる目的で、酸化防止剤等の添加物を加えてもよい。   Furthermore, an additive such as an antioxidant may be added for the purpose of improving the weather resistance.

また、保護層には、抵抗制御の目的で、導電性酸化スズ及び導電性酸化チタニウム等の導電性粉体を分散してもよい。   Further, conductive powder such as conductive tin oxide and conductive titanium oxide may be dispersed in the protective layer for the purpose of resistance control.

また感光体の1cm当たりの静電容量は135pF/cm以上が好ましい。さらに150pF/cm以上、400pF/cm以下が好ましい。感光体の静電容量は、感光層の層すべてで決まり、さらに、層と層の関係にも若干左右される。層構成の中で電荷輸送層は、感光体の膜構成のなかで最も静電容量を支配する割合が大きく、そのなかでもバインダー樹脂の比誘電率εと電荷輸送層の膜厚が大きな影響を与える。電荷輸送層のバインダー樹脂の比誘電率としては、2.6〜3.5が好ましく、さらに、2.8〜3.2がより好ましい。静電容量の測定は、感光体表面にある一定の面積の電極を金スパッタリング等により作製し、インピーダンス測定器(YHP(株)製 4192A)を用いて、周波数が1kHzのときの静電容量の測定値から電極の面積を割り1cm当たりの静電容量の測定値とした。曲率のあるサンプルに関しては、例えば、約2cm四方に切り取り、金スパッタリングにより1cmの電極を作製し、測定することができる。また、測定器の若干の改造が必要な場合もある。 The electrostatic capacity per 1 cm 2 of the photoreceptor is preferably 135 pF / cm 2 or more. Furthermore, 150 pF / cm 2 or more and 400 pF / cm 2 or less are preferable. The electrostatic capacity of the photoreceptor is determined by all the layers of the photosensitive layer, and is also slightly affected by the relationship between the layers. In the layer structure, the charge transport layer has the largest ratio of controlling the capacitance among the film structures of the photoconductor. Among them, the relative permittivity ε of the binder resin and the film thickness of the charge transport layer have a great influence. give. The relative dielectric constant of the binder resin of the charge transport layer is preferably 2.6 to 3.5, and more preferably 2.8 to 3.2. The capacitance is measured by producing an electrode of a certain area on the surface of the photoreceptor by gold sputtering or the like, and using an impedance measuring instrument (4192A manufactured by YHP Co., Ltd.), the capacitance when the frequency is 1 kHz. The area of the electrode was divided from the measured value to obtain a measured value of capacitance per 1 cm 2 . With respect to a sample having a curvature, for example, it is cut into about 2 cm square, and a 1 cm 2 electrode can be produced by gold sputtering and measured. In some cases, the instrument may need some modifications.

図1に本発明のプロセスカートリッジ及び電子写真装置の概略構成を示す。   FIG. 1 shows a schematic configuration of a process cartridge and an electrophotographic apparatus of the present invention.

図において、1はドラム状の本発明の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度で回転駆動される。感光体1は、回転過程において、感光体に接触された一次帯電手段3によりその周面に正または負の所定電位の均一帯電を受け、次いで、スリット露光やレーザービーム走査露光等の露光手段(不図示)からの露光光4を受ける。こうして感光体1の周面に静電潜像が順次形成されていく。   In the figure, reference numeral 1 denotes a drum-shaped electrophotographic photosensitive member of the present invention, which is rotated about a shaft 2 in the direction of an arrow at a predetermined peripheral speed. In the rotating process, the photosensitive member 1 is uniformly charged with a positive or negative predetermined potential on its peripheral surface by the primary charging unit 3 in contact with the photosensitive member, and then exposed to exposure means (such as slit exposure and laser beam scanning exposure). Exposure light 4 from (not shown) is received. In this way, electrostatic latent images are sequentially formed on the peripheral surface of the photoreceptor 1.

形成された静電潜像は、次いで現像手段5によりトナー現像され、現像されたトナー現像像は、不図示の給紙部から感光体1と転写手段6との間に感光体1の回転と同期取り出されて給紙された転写材7に、転写手段6により順次転写されていく。   The formed electrostatic latent image is then developed with toner by the developing unit 5, and the developed toner developed image is rotated between the photosensitive member 1 and the transfer unit 6 from a sheet feeding unit (not shown). The image is sequentially transferred by the transfer means 6 to the transfer material 7 that is synchronously taken out and fed.

像転写を受けた転写材7は、感光体面から分離されて像定着手段8へ導入されて像定着を受けることにより複写物(コピー)として装置外へプリントアウトされる。   The transfer material 7 that has received the image transfer is separated from the surface of the photosensitive member, introduced into the image fixing means 8, and subjected to image fixing, thereby being printed out as a copy (copy).

像転写後の感光体1の表面は、クリーニング手段9によって転写残りトナーの除去を受けて清浄面化され、繰り返し画像形成に使用される。   The surface of the photoreceptor 1 after the image transfer is cleaned by the transfer unit 9 after the transfer residual toner is removed, and is repeatedly used for image formation.

一次帯電手段3は、コロナ放電を利用したスコロトロン帯電器やコロトロン帯電器でもよく、ローラー形状、ブレード形状、ブラシ形状等公知の形態が使用される接触型帯電器を用いてもよい。接触型帯電器の部材の材料としては、通常、導電性を付与した弾性体が使用される。接触帯電部材に印加される電圧としては、直流電圧のみでもよく、直流電圧に交流電圧を重畳した振動電圧でもよい。ここで言う振動電圧とは、時間とともに周期的に電圧値が変化する電圧であり、交流電圧は、直流電圧のみ印加時における感光体の帯電開始電圧の2倍以上のピーク間電圧を有することが好ましい。   The primary charging means 3 may be a scorotron charger or a corotron charger using corona discharge, or a contact type charger using a known form such as a roller shape, a blade shape, or a brush shape. As a material for the member of the contact charger, an elastic body imparted with conductivity is usually used. The voltage applied to the contact charging member may be only a DC voltage or an oscillating voltage obtained by superimposing an AC voltage on the DC voltage. The oscillating voltage referred to here is a voltage whose voltage value periodically changes with time, and the AC voltage has a peak-to-peak voltage that is at least twice the charging start voltage of the photosensitive member when only the DC voltage is applied. preferable.

本発明においては、上述の電子写真感光体1、一次帯電手段3、現像手段5及びクリーニング手段9等の構成要素のうち、複数のものをプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱自在に構成してもよい。例えば、一次帯電手段3、現像手段5及びクリーニング手段9の少なくとも1つを感光体1と共に一体に支持してカートリッジ化して、装置本体のレール12等の案内手段を用いて装置本体に着脱自在なプロセスカートリッジ11とすることができる。   In the present invention, a plurality of components such as the electrophotographic photosensitive member 1, the primary charging unit 3, the developing unit 5 and the cleaning unit 9 described above are integrally coupled as a process cartridge. May be configured to be detachable from an electrophotographic apparatus main body such as a copying machine or a laser beam printer. For example, at least one of the primary charging unit 3, the developing unit 5, and the cleaning unit 9 is integrally supported together with the photosensitive member 1 to form a cartridge, and is detachable from the apparatus main body using guide means such as a rail 12 of the apparatus main body. The process cartridge 11 can be obtained.

また、露光光4は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいは、センサーで原稿を読取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動及び液晶シャッターアレイの駆動等により照射される光である。   Further, when the electrophotographic apparatus is a copying machine or a printer, the exposure light 4 is reflected or transmitted light from the original, or the original is read by a sensor and converted into a signal, and a laser beam scanning performed according to this signal is performed. Light emitted by driving the LED array, driving the liquid crystal shutter array, or the like.

まず、本発明に用いるヒドロキシガリウムフタロシアニンの製造例を示す。   First, the manufacture example of the hydroxygallium phthalocyanine used for this invention is shown.

<製造例1>
o−フタロジニトリル73g、三塩化ガリウム25g、α−クロロナフタレン400mlを窒素雰囲気下200℃で4時間反応させた後、130℃で生成物を濾過した。得られた生成物をN,N−ジメチルホルムアミドを用いて130℃で1時間分散洗浄した後、濾過し、メタノールで洗浄後に乾燥し、クロロガリウムフタロシアニンを45g得た。
<Production Example 1>
After reacting 73 g of o-phthalodinitrile, 25 g of gallium trichloride and 400 ml of α-chloronaphthalene at 200 ° C. for 4 hours in a nitrogen atmosphere, the product was filtered at 130 ° C. The obtained product was dispersed and washed at 130 ° C. for 1 hour using N, N-dimethylformamide, filtered, washed with methanol and dried to obtain 45 g of chlorogallium phthalocyanine.

ここで得られたクロロガリウムフタロシアニン15gを10℃の濃硫酸450gに溶解させ、氷水2300g中に攪拌下に滴下して再析出させて濾過した。2%アンモニア水で分散洗浄後、イオン交換水で十分に水洗した後、濾別、乾燥してヒドロキシガリウムフタロシアニンを13g得た。顔料化工程としては、得られたヒドロキシガリウムフタロシアニン10g、N,N’−ジメチルホルムアミド300gを、1mmφのガラスビーズ450gと共に、室温(22℃)下、6時間、ミリング処理した。   15 g of the chlorogallium phthalocyanine obtained here was dissolved in 450 g of concentrated sulfuric acid at 10 ° C., dropped into 2300 g of ice water with stirring, reprecipitated and filtered. After being dispersed and washed with 2% aqueous ammonia and sufficiently washed with ion-exchanged water, it was filtered and dried to obtain 13 g of hydroxygallium phthalocyanine. In the pigmentation step, 10 g of the obtained hydroxygallium phthalocyanine and 300 g of N, N′-dimethylformamide were milled together with 450 g of 1 mmφ glass beads at room temperature (22 ° C.) for 6 hours.

この分散液により固形分を取り出し、メタノール、次いで水で十分に洗浄、乾燥してヒドロキシガリウムフタロシアニン結晶9.2gを得た。このヒドロキシガリウムフタロシアニンは、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の7.4°及び28.2°に強いピークを有していた。   The solid was taken out from this dispersion, washed thoroughly with methanol and then with water, and dried to obtain 9.2 g of hydroxygallium phthalocyanine crystals. This hydroxygallium phthalocyanine had strong peaks at 7.4 ° and 28.2 ° of the Bragg angle (2θ ± 0.2 °) in CuKα characteristic X-ray diffraction.

次に本発明を実施例により具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.

熱間押し出しにより得たA3003の外径φ30.5mm、内径φ28.5mm、長さ260.5mmアルミニウム素管(ED管)を準備した。   A 3003 outer diameter φ30.5 mm, inner diameter φ28.5 mm, length 260.5 mm aluminum base pipe (ED pipe) obtained by hot extrusion was prepared.

酸化スズで形成された被覆層を有する硫酸バリウム微粒子からなる粉体(被覆率50質量%、粉体比抵抗700Ωcm)120質量部(以下、部と略す。)とレゾール型フェノール樹脂(商品名:ブライオ−フェンJ−325、大日本インキ化学工業(株)製、固形分70%)70部と2−メトキシ−1−プロパノール100部とからなる溶液を約20時間ボールミルで分散し、導電性粒子樹脂分散層用塗布液を調製した(この塗布液に含有されるフィラーの平均粒径は0.22μmであった)。この液を外径29.92mmφ、内径28.5 mmφ、長さ260 mmのアルミニウムシリンダー上に浸漬コーティング法によって塗布し、140℃で30分間加熱硬化することにより、膜厚10μmの導電性粒子樹脂分散層を形成し、これを導電性支持体とした。   120 parts by mass (hereinafter abbreviated as “parts”) of a powder composed of fine particles of barium sulfate having a coating layer formed of tin oxide (coverage: 50 mass%, powder specific resistance: 700 Ωcm) and resol type phenol resin (trade name: A solution composed of 70 parts of BRIO-Fen J-325, manufactured by Dainippon Ink & Chemicals, Inc., solid content 70%) and 100 parts of 2-methoxy-1-propanol was dispersed with a ball mill for about 20 hours to obtain conductive particles. A coating solution for the resin dispersion layer was prepared (the average particle size of the filler contained in the coating solution was 0.22 μm). This liquid is applied on an aluminum cylinder having an outer diameter of 29.92 mmφ, an inner diameter of 28.5 mmφ, and a length of 260 mm by a dip coating method, and is heated and cured at 140 ° C. for 30 minutes, thereby forming a conductive particle resin having a thickness of 10 μm. A dispersion layer was formed and used as a conductive support.

上記導電性支持体上に表2記載の[E2−2](還元電位−0.37V)2部、N−メトキシメチル化ナイロン4部と共重合ナイロン4部を、DMF150部とメタノール100部とに溶解した溶液を浸漬塗布法で塗布し、90℃、5分間乾燥し、膜厚0.4μmの中間層を形成した。   2 parts of [E2-2] (reduction potential -0.37 V) listed in Table 2, 4 parts of N-methoxymethylated nylon and 4 parts of copolymer nylon on the above conductive support, 150 parts of DMF and 100 parts of methanol, The solution dissolved in 1 was applied by a dip coating method and dried at 90 ° C. for 5 minutes to form an intermediate layer having a thickness of 0.4 μm.

次に、電荷発生材料として製造例1に従って合成したヒドロキシガリウムフタロシアニン結晶20部、ポリビニルブチラール樹脂(商品名:BX−1、積水化学工業株式会社製)10部にシクロヘキサノン350部を加え、1mmφガラスビーズを用いたサンドミルで3時間分散し、これに酢酸エチル1200部を加えて希釈した。このときの電荷発生材料のCAPA−700(堀場製作所(株)製)による分散粒径は、0.15μmであった。中間層上に、この電荷発生層用塗工液を浸漬塗布し、100℃で10分間乾燥して、膜厚が0.15μmの電荷発生層を形成した。   Next, 350 parts of cyclohexanone is added to 20 parts of a hydroxygallium phthalocyanine crystal synthesized according to Production Example 1 as a charge generation material and 10 parts of polyvinyl butyral resin (trade name: BX-1, manufactured by Sekisui Chemical Co., Ltd.). The mixture was dispersed for 3 hours with a sand mill using 1, and diluted with 1200 parts of ethyl acetate. At this time, the dispersed particle diameter of CAPA-700 (manufactured by Horiba, Ltd.) of the charge generation material was 0.15 μm. This charge generation layer coating solution was dip-coated on the intermediate layer and dried at 100 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.15 μm.

次に、下記式(5)の化合物を7部、式(6)の化合物を1部、   Next, 7 parts of the compound of the following formula (5), 1 part of the compound of the formula (6),

及び、式(7)で示すC型ポリアリレート樹脂10部を、モノクロルベンゼン50部とジクロルメタン10部に溶解し、電荷輸送層用塗料を調製した。この塗料を電荷発生層上に浸漬塗布法で塗布し、110℃で1時間乾燥して、膜厚18μmの電荷輸送層を形成した。こうして電子写真感光体を作製した。
And 10 parts of C type polyarylate resin shown by Formula (7) was melt | dissolved in 50 parts of monochlorobenzene and 10 parts of dichloromethane, and the coating material for charge transport layers was prepared. This paint was applied onto the charge generation layer by a dip coating method and dried at 110 ° C. for 1 hour to form a charge transport layer having a thickness of 18 μm. Thus, an electrophotographic photosensitive member was produced.

評価法としては、上記作製した電子写真感光体をヒューレットーパッカード(株)製カラーレーザープリンター、レーザージェット4600改造機(一次帯電:ローラー接触DC帯電、暗部電位−500V、プロセススピード100mm/秒、レーザー露光)を用いて、前露光を消した状態で、15℃/10%RHの環境下において、画像濃度4%画像において3000枚耐久後直後、ゴースト画像の評価を行った。ゴースト画像は、マゼンタ、シアン、イエロー、黒のそれぞれ単色で作製し、例えば、黒の場合は、図2に示すように、画像の先頭部に黒い四角の画像を出した後、1ドット桂馬パターンでハーフトーン画像を作製した。画像作製の順番は、1枚目にベタ白画像をとり、その後上記ゴースト画像を連続5枚とり、次に、ベタ黒画像を1枚とった後に再度ゴースト画像を5枚とり、計10枚のゴースト画像で評価を行った。   As an evaluation method, the produced electrophotographic photosensitive member is a color laser printer manufactured by Hewlett-Packard Co., Ltd., laser jet 4600 remodeling machine (primary charging: roller contact DC charging, dark part potential -500 V, process speed 100 mm / second, laser The ghost image was evaluated immediately after the endurance of 3000 sheets in a 4% image density image in an environment of 15 ° C./10% RH with the pre-exposure removed. The ghost image is produced in a single color of magenta, cyan, yellow, and black. For example, in the case of black, as shown in FIG. A halftone image was prepared. The order of image production is to take a solid white image as the first image, then take five consecutive ghost images, then take one solid black image and then take five ghost images again for a total of ten images. Evaluation was performed using a ghost image.

ゴースト画像の評価は、桂馬パターン画像濃度とゴースト部の画像濃度との濃度差を、分光濃度計X−Rite504/508(X−Rite(株)製)で、1枚のゴースト画像で10点測定し、それら10点の平均をとり1枚の結果とし、前述の10枚のゴースト画像すべてを同様に測定した。それらの平均値を求めた。この方法で、他の3色も同様に行い、それらの値の平均値で評価を行った。各色の測定結果は、分光濃度計X−Riteのマゼンタ、シアン、イエロー、黒のそれぞれの色の結果が表示されるが、画像の色と同じ色の値を測定値としている。また濃度差の評価は、100枚連続で1ドット桂馬パターンでハーフトーン画像を出力し、1枚目の画像濃度と100枚目の画像濃度の差を上記ゴースト部評価と同様に測定した。結果を表5に示す。   The evaluation of the ghost image is carried out by measuring the density difference between the Keima pattern image density and the image density of the ghost part with a spectral densitometer X-Rite 504/508 (manufactured by X-Rite Co., Ltd.) at 10 points with one ghost image. Then, the average of those 10 points was taken as one result, and all the above-mentioned 10 ghost images were measured in the same manner. Their average value was determined. By this method, the other three colors were similarly processed, and evaluation was performed using an average value of these values. As the measurement result of each color, the result of each color of magenta, cyan, yellow, and black of the spectral densitometer X-Rite is displayed, and the value of the same color as the image color is used as the measurement value. The evaluation of the density difference was performed by outputting a halftone image with a 1-dot Keima pattern continuously for 100 sheets, and measuring the difference between the image density of the first sheet and the image density of the 100th sheet in the same manner as the ghost portion evaluation. The results are shown in Table 5.

中間層に添加する化合物[E2−2]を8部に変えた以外は実施例1と同様に電子写真感光体を作製し同様な評価を行った。結果を表5に示す。   An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that the compound [E2-2] added to the intermediate layer was changed to 8 parts. The results are shown in Table 5.

中間層に添加する化合物を[E1−8](還元電位−0.24V)に変えた以外は実施例1と同様に電子写真感光体を作製し同様な評価を行った。結果を表5に示す。   An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1 except that the compound added to the intermediate layer was changed to [E1-8] (reduction potential -0.24 V). The results are shown in Table 5.

中間層に添加する化合物を[E3−4](還元電位−0.46V)に変えた以外は実施例1と同様に電子写真感光体を作製し同様な評価を行った。結果を表5に示す。   An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1 except that the compound added to the intermediate layer was changed to [E3-4] (reduction potential -0.46 V). The results are shown in Table 5.

中間層に添加する化合物を[E1−1](還元電位−0.71V)に変えた以外は実施例1と同様に電子写真感光体を作製し同様な評価を行った。結果を表5に示す。   An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that the compound added to the intermediate layer was changed to [E1-1] (reduction potential -0.71 V). The results are shown in Table 5.

中間層塗工液として[E2−2]を7部、N−メトキシメチル化ナイロン1.5部と共重合ナイロン1.5部とした以外は実施例1と同様に電子写真感光体を作製し同様な評価を行った。結果を表5に示す。   An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that 7 parts of [E2-2] as an intermediate layer coating solution, 1.5 parts of N-methoxymethylated nylon and 1.5 parts of copolymer nylon were used. Similar evaluations were made. The results are shown in Table 5.

電荷輸送層用溶液のC型ポリアリレート樹脂をビスフェノールZ型ポリカーボネート樹脂(商品名:ユーピロン、三菱エンジニヤリングプラスチックス株式会社製)に変えた以外は実施例2と同様に電子写真感光体を作製し同様な評価を行った。結果を表5に示す。   An electrophotographic photosensitive member was prepared in the same manner as in Example 2 except that the C-type polyarylate resin of the solution for the charge transport layer was changed to bisphenol Z-type polycarbonate resin (trade name: Iupilon, manufactured by Mitsubishi Engineering Plastics Co., Ltd.). Similar evaluations were made. The results are shown in Table 5.

電荷発生材料としてCuKαの特性X線回折におけるブラッグ角(2θ±0.2°)の9.0°、14.2°、23.9°及び27.1°に強いピークを有する結晶形のオキシチタニウムフタロシアニンを用いた以外は、実施例2と同様にして電子写真感光体を作製し、同様な評価を行った。結果を表5に示す。   Crystalline oxy having strong peaks at 9.0 °, 14.2 °, 23.9 ° and 27.1 ° of Bragg angles (2θ ± 0.2 °) in characteristic X-ray diffraction of CuKα as a charge generating material An electrophotographic photosensitive member was produced in the same manner as in Example 2 except that titanium phthalocyanine was used, and the same evaluation was performed. The results are shown in Table 5.

電荷発生材料としてCuKαの特性X線回折におけるブラッグ角(2θ±0.2°)の7.4°、16.6°、25.5°及び28.2°に強いピークを有するクロロガリウムフタロシアニンを用いた以外は、実施例2と同様にして電子写真感光体を作製し、同様な評価を行った。結果を表5に示す。
[比較例1]
中間層塗工液として表2記載の[E2−2]を用いなかった以外は実施例2と同様に電子写真感光体を作製し同様な評価を行った。結果を表5に示す。
[比較例2]
中間層に添加する化合物を下記構造式E−4(0から−0.8Vの範囲で還元ピークなし)に変えた以外は実施例2と同様に電子写真感光体を作製し同様な評価を行った。結果を表5に示す。
Chlorogallium phthalocyanine having strong peaks at 7.4 °, 16.6 °, 25.5 ° and 28.2 ° of the Bragg angle (2θ ± 0.2 °) in the characteristic X-ray diffraction of CuKα as a charge generation material. An electrophotographic photosensitive member was produced in the same manner as in Example 2 except that it was used, and the same evaluation was performed. The results are shown in Table 5.
[Comparative Example 1]
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 2 except that [E2-2] shown in Table 2 was not used as the intermediate layer coating solution. The results are shown in Table 5.
[Comparative Example 2]
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 2 except that the compound added to the intermediate layer was changed to the following structural formula E-4 (no reduction peak in the range of 0 to -0.8 V). It was. The results are shown in Table 5.

[比較例3]
中間層に添加する化合物を下記構造式E−5(還元電位−0.64V)に変えた以外は実施例2と同様に電子写真感光体を作製し同様な評価を行った。結果を表5に示す。
[Comparative Example 3]
An electrophotographic photosensitive member was produced and evaluated in the same manner as in Example 2 except that the compound added to the intermediate layer was changed to the following structural formula E-5 (reduction potential -0.64 V). The results are shown in Table 5.

[比較例4]
中間層に添加する化合物を下記構造式E−6(還元電位−0.54V)に変えた以外は実施例2と同様に電子写真感光体を作製し同様な評価を行った。結果を表5に示す。
[Comparative Example 4]
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 2 except that the compound added to the intermediate layer was changed to the following structural formula E-6 (reduction potential -0.54 V). The results are shown in Table 5.

前露光のないプリンターや複写機、特にカラー機においての厳しいゴーストレベルを満足する感光体としての利用が期待できる。   It can be expected to be used as a photoreceptor satisfying a severe ghost level in printers and copying machines without pre-exposure, particularly color machines.

本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成の例を示す図である。1 is a diagram illustrating an example of a schematic configuration of an electrophotographic apparatus including a process cartridge having the electrophotographic photosensitive member of the present invention. ゴースト画像の一例を示す図である。It is a figure which shows an example of a ghost image.

符号の説明Explanation of symbols

1 電子写真感光体
2 軸
3 帯電手段
4 露光光
5 現像手段
6 転写手段
7 転写材
8 定着手段
9 クリーニング手段
11 プロセスカートリッジ
12 レール
DESCRIPTION OF SYMBOLS 1 Electrophotographic photosensitive member 2 Shaft 3 Charging means 4 Exposure light 5 Developing means 6 Transfer means 7 Transfer material 8 Fixing means 9 Cleaning means 11 Process cartridge 12 Rail

Claims (10)

導電性支持体と感光層との間に中間層を有する電子写真感光体において、該中間層が下記式(1)

(式中、Z及びZはそれぞれ独立に酸素、C(CN)基又はN−R(Rは置換基を有してもよいアリール基、アルキル基)を示し、X1からX8はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、トリフルオロアルキル基、置換基を有してもよいアルコキシ基又は置換基を有してもよいアルキル基を示す。)
で示される化合物を含むことを特徴とする電子写真感光体。
In the electrophotographic photosensitive member having an intermediate layer between the conductive support and the photosensitive layer, the intermediate layer is represented by the following formula (1).

Wherein Z 1 and Z 2 each independently represent oxygen, C (CN) 2 group or N—R (R represents an aryl group or alkyl group which may have a substituent), and X 1 to X 8 Each independently represents a hydrogen atom, a halogen atom, a nitro group, a trifluoroalkyl group, an optionally substituted alkoxy group or an optionally substituted alkyl group.)
An electrophotographic photoreceptor comprising a compound represented by the formula:
前記感光層が電荷発生層及び電荷輸送層から構成されており、前記電子写真感光体が、前記導電性支持体上に前記中間層、該電荷発生層、該電荷輸送層をこの順に有する積層型電子写真感光体であり、該該電荷輸送層が正孔輸送剤を含むことを特徴とする請求項1に記載の電子写真感光体。   The photosensitive layer is composed of a charge generation layer and a charge transport layer, and the electrophotographic photosensitive member has the intermediate layer, the charge generation layer, and the charge transport layer in this order on the conductive support. 2. The electrophotographic photoreceptor according to claim 1, wherein the electrophotographic photoreceptor is an electrophotographic photoreceptor, and the charge transport layer contains a hole transport agent. 導電性支持体と感光層との間に中間層を有する電子写真感光体において、該中間層が下記式(2)

(式中、Z3及びZ4はそれぞれ独立に酸素、C(CN)基又はN−R(Rは置換基を有してもよいアリール基、アルキル基)を示し、X10からX15はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、トリフルオロアルキル基、置換基を有してもよいアルコキシ基又は置換基を有してもよいアルキル基を示す。)
で示される化合物を含むことを特徴とする電子写真感光体。
In the electrophotographic photosensitive member having an intermediate layer between the conductive support and the photosensitive layer, the intermediate layer is represented by the following formula (2).

Wherein Z 3 and Z 4 each independently represent oxygen, C (CN) 2 group or N—R (R represents an aryl group or alkyl group which may have a substituent), and X 10 to X 15 Each independently represents a hydrogen atom, a halogen atom, a nitro group, a trifluoroalkyl group, an optionally substituted alkoxy group or an optionally substituted alkyl group.)
An electrophotographic photoreceptor comprising a compound represented by the formula:
前記感光層が電荷発生層及び電荷輸送層から構成されており、前記電子写真感光体が、前記導電性支持体上に前記中間層、該電荷発生層、該電荷輸送層をこの順に有する積層型電子写真感光体であり、該電荷輸送層が正孔輸送剤を含むことを特徴とする請求項3に記載の電子写真感光体。   The photosensitive layer is composed of a charge generation layer and a charge transport layer, and the electrophotographic photosensitive member has the intermediate layer, the charge generation layer, and the charge transport layer in this order on the conductive support. 4. The electrophotographic photoreceptor according to claim 3, wherein the electrophotographic photoreceptor is an electrophotographic photoreceptor, and the charge transport layer contains a hole transport agent. 導電性支持体と感光層との間に中間層を有する電子写真感光体において、該中間層が下記式(3)

(式中、Z5及びZ6はそれぞれ独立に酸素、C(CN)基又はN−R(Rは置換基を有してもよいアリール基、アルキル基)を示し、X20からX25はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、トリフルオロアルキル基、置換基を有してもよいアルコキシ基又は置換基を有してもよいアルキル基を示す。)
で示される化合物を含むことを特徴とする電子写真感光体。
In the electrophotographic photosensitive member having an intermediate layer between the conductive support and the photosensitive layer, the intermediate layer is represented by the following formula (3).

(Wherein Z 5 and Z 6 each independently represent oxygen, C (CN) 2 group or N—R (R represents an aryl group or alkyl group which may have a substituent), and X 20 to X 25 Each independently represents a hydrogen atom, a halogen atom, a nitro group, a trifluoroalkyl group, an optionally substituted alkoxy group or an optionally substituted alkyl group.)
An electrophotographic photoreceptor comprising a compound represented by the formula:
前記感光層が電荷発生層及び電荷輸送層から構成されており、前記電子写真感光体が、前記導電性支持体上に前記中間層、該電荷発生層、該電荷輸送層をこの順に有する積層型電子写真感光体であり、該電荷輸送層が正孔輸送剤を含むことを特徴とする請求項5に記載の電子写真感光体。   The photosensitive layer is composed of a charge generation layer and a charge transport layer, and the electrophotographic photosensitive member has the intermediate layer, the charge generation layer, and the charge transport layer in this order on the conductive support. 6. The electrophotographic photoreceptor according to claim 5, wherein the electrophotographic photoreceptor is an electrophotographic photoreceptor, and the charge transport layer contains a hole transport agent. 前記電荷発生層中の電荷発生材料がガリウムフタロシアニンである請求項2、4及び6のいずれかに記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 2, wherein the charge generation material in the charge generation layer is gallium phthalocyanine. 前記ガリウムフタロシアニンがヒドロキシガリウムフタロシアニンである請求項7に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 7, wherein the gallium phthalocyanine is hydroxygallium phthalocyanine. 請求項1〜8のいずれかに記載の電子写真感光体と、該電子写真感光体を帯電させる帯電手段、静電潜像の形成された電子写真感光体をトナーで現像する現像手段及び転写工程後の電子写真感光体上に残余するトナーを回収するクリーニング手段からなる群より選ばれる少なくとも1つの手段とを共に一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジ。   9. The electrophotographic photosensitive member according to claim 1, a charging unit for charging the electrophotographic photosensitive member, a developing unit for developing the electrophotographic photosensitive member having an electrostatic latent image formed thereon with toner, and a transfer step. A process cartridge characterized in that it integrally supports at least one means selected from the group consisting of cleaning means for collecting toner remaining on a later electrophotographic photosensitive member, and is detachable from the electrophotographic apparatus main body. . 請求項1〜8のいずれかに記載の電子写真感光体、該電子写真感光体を帯電させる帯電手段、帯電した電子写真感光体に対し露光を行い、静電潜像を形成する露光手段、該静電潜像の形成された電子写真感光体をトナーで現像する現像手段及び該電子写真感光体上のトナー像を転写材上に転写する転写手段を備えることを特徴とする電子写真装置。   The electrophotographic photosensitive member according to any one of claims 1 to 8, a charging unit for charging the electrophotographic photosensitive member, an exposure unit for exposing the charged electrophotographic photosensitive member to form an electrostatic latent image, An electrophotographic apparatus comprising: developing means for developing an electrophotographic photosensitive member on which an electrostatic latent image is formed with toner; and transfer means for transferring a toner image on the electrophotographic photosensitive member onto a transfer material.
JP2005060664A 2005-03-04 2005-03-04 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus Expired - Fee Related JP4402610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005060664A JP4402610B2 (en) 2005-03-04 2005-03-04 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060664A JP4402610B2 (en) 2005-03-04 2005-03-04 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Publications (3)

Publication Number Publication Date
JP2006243487A true JP2006243487A (en) 2006-09-14
JP2006243487A5 JP2006243487A5 (en) 2008-04-10
JP4402610B2 JP4402610B2 (en) 2010-01-20

Family

ID=37049947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060664A Expired - Fee Related JP4402610B2 (en) 2005-03-04 2005-03-04 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Country Status (1)

Country Link
JP (1) JP4402610B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227723A (en) * 2016-06-21 2017-12-28 キヤノン株式会社 Electrophotographic photoreceptor, method for manufacturing the same, process cartridge, and electrophotographic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227723A (en) * 2016-06-21 2017-12-28 キヤノン株式会社 Electrophotographic photoreceptor, method for manufacturing the same, process cartridge, and electrophotographic device

Also Published As

Publication number Publication date
JP4402610B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
JP4649321B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4859239B2 (en) Method for producing electrophotographic photosensitive member
JP4405970B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2013257416A (en) Electrophotographic photoreceptor, and image forming apparatus and process cartridge comprising the same
JPWO2005066718A1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5147274B2 (en) Novel imide compound and electrophotographic photosensitive member, process cartridge and electrophotographic apparatus using the same
JP4574490B2 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus having the same
JP5064815B2 (en) Novel imide compound, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4411232B2 (en) Method for producing electrophotographic photosensitive member
JP4810441B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP3987040B2 (en) Electrophotographic photoreceptor and image forming apparatus having the same
JP4393371B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2007193210A (en) Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2006251487A5 (en)
JP4402610B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4466414B2 (en) Electrophotographic photoreceptor, image forming apparatus using the photoreceptor, and cartridge
JP4911711B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2003316054A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP4411231B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4709014B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2011150247A (en) Method for evaluating electrophotographic photoreceptor, electrophotographic photoreceptor satisfying the same and image forming apparatus including the same
JP2007256791A (en) Electrophotographic photoreceptor
JP2006243487A5 (en)
US8703372B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4661241B2 (en) Fluorine-substituted indium phthalocyanine, and electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091029

R150 Certificate of patent or registration of utility model

Ref document number: 4402610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees