JP2006243370A - Interference exposure device - Google Patents

Interference exposure device Download PDF

Info

Publication number
JP2006243370A
JP2006243370A JP2005059229A JP2005059229A JP2006243370A JP 2006243370 A JP2006243370 A JP 2006243370A JP 2005059229 A JP2005059229 A JP 2005059229A JP 2005059229 A JP2005059229 A JP 2005059229A JP 2006243370 A JP2006243370 A JP 2006243370A
Authority
JP
Japan
Prior art keywords
light
recording material
exposure
exposure apparatus
interference exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005059229A
Other languages
Japanese (ja)
Other versions
JP4598564B2 (en
Inventor
Kazuya Miyagaki
一也 宮垣
Masanori Kobayashi
正典 小林
Hiroyuki Sugimoto
浩之 杉本
Hiroyoshi Funato
広義 船戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005059229A priority Critical patent/JP4598564B2/en
Publication of JP2006243370A publication Critical patent/JP2006243370A/en
Application granted granted Critical
Publication of JP4598564B2 publication Critical patent/JP4598564B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that when a holographic PDLC element is manufactured while an exposure state is monitored by an interference exposure device, it is difficult to end exposure with a proper exposure quantity because of a decrease in monitor level although monitor light in use is short-pulse light or attenuated to low power density since a recording material is exposed to the monitor light so that wavelengths of a light source for exposure and a light source for monitoring are in the same wavelength band. <P>SOLUTION: Coherent light emitted by a laser light source 11 is branched by a luminous flux branching means 14 into two pieces of luminous flux, to which a recording material 16 is exposed from mutually different directions one over the other through deflecting means 15 respectively. One of luminous flux passed through the recording material is made incident on a polarized light conversion section comprising a retardation plate 17 and a mirror 18. Return light from the polarized light conversion section changes in polarizing direction by 90° before being incident on the recording material 16 again and does not contribute to the exposure of the recording material, and diffracted light reaches a monitor detecting element 19. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、回折格子(ホログラム)作製のための光モニター制御部を備えた干渉露光装置に関する。   The present invention relates to an interference exposure apparatus including an optical monitor control unit for producing a diffraction grating (hologram).

干渉露光装置を用いて回折格子(ホログラム)を作製するとき、露光状態をモニターすることが行われる。
干渉露光装置を用いないホログラムの作製方法として、露光用光源と、モニター用光源の発振波長域を異ならせる方法が提案されている(例えば、非特許文献 1参照。)。この方法のホログラフィックPDLC素子は、p偏光のみを回折する回折格子(ホログラム)素子である。モニター用光源は露光用光源と異なる発振波長であり、かつ、モニター光源の波長では記録材料は感度が無いためモニター光源で記録材料は露光されない。露光波長とモニター波長が異なっていても問題が無ければ、非常に有効なモニター付き露光光学系である。
露光に用いる光の波長とモニター光の波長を同波長帯域としなければならない場合、モニター光によって記録材料が露光されるためモニター光を短パルス光にしたり、低パワー密度に減衰させてから記録材料に照射する必要があった。このために、モニターの感度(モニターレベル)が低下し適切な露光量で露光を終了させることが困難であった。そこで、露光ビームによって回折格子からの回折光のうち、0次と+1次以外の次数のわずかに発生する回折光をモニター光としてみた。しかし、この方法では、非特許文献1に記載のホログラムのように、p偏光で回折し、s偏光では回折しない素子の場合は、干渉露光法の露光ビームがs偏光を用いるためにモニターできない。この問題を解決する方法として、モニター用光源を露光用光源と別に用意するか、あるいは共通にする場合には出射光を分岐してモニター光のみ偏光を90°回転させる。
When producing a diffraction grating (hologram) using an interference exposure apparatus, the exposure state is monitored.
As a method for producing a hologram that does not use an interference exposure apparatus, a method has been proposed in which the oscillation wavelength range of the exposure light source and the monitor light source is different (see, for example, Non-Patent Document 1). The holographic PDLC element of this method is a diffraction grating (hologram) element that diffracts only p-polarized light. The monitor light source has an oscillation wavelength different from that of the exposure light source, and since the recording material is not sensitive at the wavelength of the monitor light source, the recording material is not exposed with the monitor light source. If there is no problem even if the exposure wavelength and the monitor wavelength are different, the exposure optical system with a monitor is very effective.
When the wavelength of the light used for exposure and the wavelength of the monitor light must be in the same wavelength band, the recording material is exposed to the monitor light, so the monitor light is changed to a short pulse light or attenuated to a low power density before being recorded. Needed to be irradiated. For this reason, the sensitivity (monitor level) of the monitor is lowered, and it is difficult to end the exposure with an appropriate exposure amount. Accordingly, among the diffracted light from the diffraction grating by the exposure beam, the diffracted light slightly generated in the orders other than the 0th order and the + 1st order was considered as the monitor light. However, with this method, in the case of an element that diffracts with p-polarized light but does not diffract with s-polarized light, as in the hologram described in Non-Patent Document 1, the exposure beam of the interference exposure method cannot be monitored because it uses s-polarized light. As a method of solving this problem, when the monitor light source is prepared separately from the exposure light source, or when the monitor light source is made common, the emitted light is branched and only the monitor light is rotated by 90 °.

露光用のレーザ光の一部をモニター光に利用する場合には2つ問題がある。ひとつは露光のための光強度が低下してしまうこと。2つめは、分岐させるためにレーザ光の波面fが劣化してしまうこと。露光光強度が低下すると同じ露光量を得るには露光時間を長くする必要があり、製造コストを上昇させる。レーザ波面の劣化はスペイシャルフィルタを用いることで良好な波面を得ることができるが、波面の乱れが大きいほどスペイシャルフィルタからの光強度は低下する。   There are two problems when using a part of the laser beam for exposure as monitor light. One is that the light intensity for exposure decreases. The second is that the wavefront f of the laser beam is degraded due to the branching. When the exposure light intensity decreases, it is necessary to lengthen the exposure time in order to obtain the same exposure amount, which increases the manufacturing cost. As for the degradation of the laser wavefront, a good wavefront can be obtained by using a spatial filter, but the intensity of light from the spatial filter decreases as the wavefront disturbance increases.

荻原 他、“Property of Polarization Dependent Holographic Polymer Dispersed Liquid Crystal Device and its Application for Information Display”、P.161、Fig.1、International Display Workshops、2002 DigestSugawara et al., “Property of Polarization Dependent Holographic Polymer Dispersed Liquid Crystal Device and its Application for Information Display”, p. 161, FIG. 1. International Display Workshops, 2002 Digest

本発明は露光光強度を犠牲にせずに1台のレーザ光源で干渉露光とモニターリングを可能にすることを目的とする。
上記目的に加えて光源波長を変えたときでも波長変換素子部を流用できることを目的とする。
また、モニター光を簡便に受光できる光学系の実現を目的とする。
また、露光波長を変えてもモニター光学系を変える必要のない光学系の実現を目的とする。
さらに、モニター光の光強度を大きくすることを目的とする。
An object of the present invention is to enable interference exposure and monitoring with a single laser light source without sacrificing exposure light intensity.
In addition to the above object, it is an object to be able to divert the wavelength conversion element even when the light source wavelength is changed.
It is another object of the present invention to realize an optical system that can easily receive monitor light.
Another object of the present invention is to realize an optical system that does not need to change the monitor optical system even if the exposure wavelength is changed.
A further object is to increase the light intensity of the monitor light.

請求項1に記載の発明では、可干渉性の光束を出射する光源と、前記光束を複数の光束に分岐する光束分岐手段と、前記複数の光束を記録材料に所定の方位、所定の入射角で照射する偏向手段とを有し、前記記録材料に所望の回折格子を作製する干渉露光装置において、前記複数の光束のうち、前記記録材料を透過した所定の1光束のみ偏光振動面を90°変換して再度前記記録材料に戻り入射させる偏光変換部と、前記戻り入射した光束が前記記録材料で回折された光束をモニターするための受光素子とを有することを特徴とする。   According to the first aspect of the present invention, a light source that emits a coherent light beam, a light beam branching unit that branches the light beam into a plurality of light beams, a predetermined orientation and a predetermined incident angle with respect to the plurality of light beams as a recording material In the interference exposure apparatus for producing a desired diffraction grating on the recording material, only one predetermined light beam that has passed through the recording material has a polarization vibration plane of 90 °. A polarization conversion unit that converts the light again to enter the recording material, and a light receiving element for monitoring the light beam diffracted by the recording material.

請求項2に記載の発明では、請求項1に記載の干渉露光装置において、前記偏光変換部がλ/4の位相を与える位相差板と、ミラーで構成されることを特徴とする。
請求項3に記載の発明では、請求項2に記載の干渉露光装置において、前記1光束とその戻り光が共に前記位相差板を通過することを特徴とする。
請求項4に記載の発明では、請求項3に記載の干渉露光装置において、前記位相差板はλ/4板であることを特徴とする。
According to a second aspect of the present invention, in the interference exposure apparatus according to the first aspect, the polarization conversion unit includes a phase difference plate that gives a phase of λ / 4 and a mirror.
According to a third aspect of the present invention, in the interference exposure apparatus according to the second aspect, both the one light beam and its return light pass through the retardation plate.
According to a fourth aspect of the present invention, in the interference exposure apparatus according to the third aspect, the retardation plate is a λ / 4 plate.

請求項5に記載の発明では、請求項3に記載の干渉露光装置において、前記位相差板は1個のフレネルの菱面体であることを特徴とする。
請求項6に記載の発明では、請求項2に記載の干渉露光装置において、前記1光束とその戻り光の一方のみが前記位相差板を通過することを特徴とする。
請求項7に記載の発明では、請求項6に記載の干渉露光装置において、前記位相差板はλ/2板であることを特徴とする。
According to a fifth aspect of the present invention, in the interference exposure apparatus according to the third aspect, the retardation plate is a Fresnel rhombohedron.
According to a sixth aspect of the present invention, in the interference exposure apparatus according to the second aspect, only one of the one light beam and its return light passes through the retardation plate.
According to a seventh aspect of the present invention, in the interference exposure apparatus according to the sixth aspect, the retardation plate is a λ / 2 plate.

請求項8に記載の発明では、請求項6に記載の干渉露光装置において、前記位相差板は2個のフレネルの菱面体の組み合わせであることを特徴とする。
請求項9に記載の発明では、請求項1ないし8に記載の干渉露光装置において、前記モニターをするための光束の前記記録材料への入射角は、すべての露光光束の入射角のいずれとも異なることを特徴とする。
According to an eighth aspect of the present invention, in the interference exposure apparatus according to the sixth aspect, the retardation plate is a combination of two Fresnel rhombohedrons.
According to a ninth aspect of the present invention, in the interference exposure apparatus according to any one of the first to eighth aspects, an incident angle of the light beam for monitoring to the recording material is different from any of the incident angles of all exposure light beams. It is characterized by that.

請求項10に記載の発明では、請求項1に記載の干渉露光装置において、前記偏光変換部は3枚のミラーからなることを特徴とする。
請求項11に記載の発明では、請求項1ないし10のいずれか1つに記載の干渉露光装置において、前記偏向手段の1つは偏光ビームスプリッタであることを特徴とする。
According to a tenth aspect of the present invention, in the interference exposure apparatus according to the first aspect, the polarization conversion unit includes three mirrors.
According to an eleventh aspect of the present invention, in the interference exposure apparatus according to any one of the first to tenth aspects, one of the deflection means is a polarization beam splitter.

本発明によれば、1台のレーザ光源で露光とモニターを可能にし、露光光強度を犠牲にすることなく、かつ、モニターによって記録材料面で不要な干渉縞を発生させず良好な回折格子を作製できる。
上記効果に加えて、位相差板をフレネルの菱面体とするため、露光波長を変えた場合でも偏光変換素子部を流用することができる。
また、モニター光の入射角が全ての露光光の入射角とは異なるように設定するため、回折されたモニター光と露光光の分離が簡便にできる。
さらに、3枚のミラーで偏光変換素子部を構成するため、露光波長を変更しても偏光変換素子部を変更する必要が全く無い。
さらに、モニター光の記録材料への入射角を一つの露光光の入射角と同じにするため、モニター光強度を大きくすることができて、露光光とモニター光は偏光ビームスプリッタで容易に分離することができる。
According to the present invention, exposure and monitoring can be performed with a single laser light source, and a good diffraction grating can be obtained without sacrificing exposure light intensity and without generating unnecessary interference fringes on the surface of the recording material. Can be made.
In addition to the above effects, since the retardation plate is a Fresnel rhombohedron, the polarization conversion element portion can be used even when the exposure wavelength is changed.
Further, since the incident angle of the monitor light is set to be different from the incident angles of all the exposure light, the diffracted monitor light and the exposure light can be easily separated.
Further, since the polarization conversion element unit is constituted by three mirrors, there is no need to change the polarization conversion element unit even if the exposure wavelength is changed.
Furthermore, since the incident angle of the monitor light to the recording material is the same as the incident angle of one exposure light, the intensity of the monitor light can be increased, and the exposure light and the monitor light are easily separated by the polarization beam splitter. be able to.

図1は本発明の第1の実施例を説明するための図である。
同図において符号11はレーザ光源、12はスペイシャルフィルタ、13はコリメートレンズ、14はハーフミラー、15a、15bはミラー、16は記録材料、17は位相差板としてのλ/4板、18はミラー、19は受光素子、20は制御装置、21は電磁シャッタをそれぞれ示す。
レーザ11からの出射光をスペイシャルフィルタ12でビームの横モードを0次とし、スペイシャルフィルタ12からの発散光をコリメートレンズ13で平行光束にする。この平行光をハーフミラー14で二分し、各々のビームを偏向手段であるミラー15a、15bを用いて所定の入射角で記録材料16に照射する。スペイシャルフィルタ12は対物レンズとピンホール(図示せず)で構成される。記録材料はp偏光で高効率に回折するものが望ましい。レーザ光源11の出射光の偏光は記録材料に対してs偏光(紙面に垂直)とする。
FIG. 1 is a diagram for explaining a first embodiment of the present invention.
In the figure, reference numeral 11 is a laser light source, 12 is a spatial filter, 13 is a collimating lens, 14 is a half mirror, 15a and 15b are mirrors, 16 is a recording material, 17 is a λ / 4 plate as a retardation plate, and 18 is A mirror, 19 is a light receiving element, 20 is a control device, and 21 is an electromagnetic shutter.
The outgoing light from the laser 11 is converted into a zero-order beam transverse mode by the spatial filter 12, and the divergent light from the spatial filter 12 is converted into a parallel beam by the collimator lens 13. The parallel light is divided into two by the half mirror 14, and the recording material 16 is irradiated with each beam at a predetermined incident angle using mirrors 15a and 15b as deflection means. The spatial filter 12 includes an objective lens and a pinhole (not shown). The recording material is preferably p-polarized and diffracted with high efficiency. The light emitted from the laser light source 11 is polarized with respect to the recording material as s-polarized light (perpendicular to the paper surface).

図2はホログラフィックPDLCの構成を説明するための図である。
同図において符号22はポリマー層、23は液晶層、24はp偏光、25はポリマー分散型液晶(以下ホログラフィックPDLCと称す)、26はガラス基板をそれぞれ示す。
記録材料16としては、非特許文献1に記載されるようなホログラフィックPDLCを用いることができる。このホログラフィックPDLC25は、同図に示すようにポリマー層22と液晶層23が周期的に形成されており、ポリマーの屈折率と液晶の常光屈折率がほぼ等しい。液晶はポリマー層22の壁に垂直となるように配向している。したがって、s偏光はポリマー層22と液晶層23の屈折率差を感じることがなく、回折しない。しかし、p偏光24はポリマー層22と液晶層23の異常光屈折率との差を感じるために、回折格子の機能を発現し回折される。このようなホログラフィックPDLC25は、光重合性モノマーと光非重合性液晶との混合液をガラス基板26間に挟み、干渉露光することにより作製される。
FIG. 2 is a diagram for explaining the configuration of the holographic PDLC.
In the figure, reference numeral 22 is a polymer layer, 23 is a liquid crystal layer, 24 is p-polarized light, 25 is a polymer dispersed liquid crystal (hereinafter referred to as holographic PDLC), and 26 is a glass substrate.
As the recording material 16, holographic PDLC as described in Non-Patent Document 1 can be used. In this holographic PDLC 25, as shown in the figure, a polymer layer 22 and a liquid crystal layer 23 are periodically formed, and the refractive index of the polymer and the ordinary light refractive index of the liquid crystal are substantially equal. The liquid crystal is aligned so as to be perpendicular to the wall of the polymer layer 22. Therefore, the s-polarized light does not feel the difference in refractive index between the polymer layer 22 and the liquid crystal layer 23 and does not diffract. However, since the p-polarized light 24 feels a difference between the extraordinary refractive index of the polymer layer 22 and the liquid crystal layer 23, the p-polarized light 24 is diffracted by exhibiting the function of a diffraction grating. Such a holographic PDLC 25 is produced by sandwiching a liquid mixture of a photopolymerizable monomer and a photononpolymerizable liquid crystal between glass substrates 26 and performing interference exposure.

二つの露光ビームのうち、ミラー15bで反射されるビームの記録材料透過光をモニター光に利用する。透過光はλ/4板17とミラー18によって入射光(s偏光)と直交するp偏光の戻り光に変換され、再度記録材料16に入射される。λ/4板17とミラー18の組み合わせは偏光変換部として機能する。λ/4板17は図1のように所定の入射角に対してλ/4の位相が発生するもので、好ましくは、モニター光(p偏光)の記録材料への入射角は露光ビームの入射角と異ならせる。モニター光は記録材料で回折され受光素子19でモニターされる。受光信号が所定の値に達したときに制御装置20を介して電磁シャッタ21が閉じられ露光ビームが遮断される。
本発明では露光ビームの一方の記録材料からの透過光をモニター光に流用しているため、露光光強度を犠牲にすることがない。また、モニター光と露光ビームの偏光は直交しているため、モニター光による不要な干渉縞は発生しない。このため、モニターによって記録材料部に不必要な構造が作製されることがない。
本実施例では2光束干渉露光であるが、露光ビームの本数と本発明の効果には相関は無く、3光束以上の多光束干渉露光でも本発明を用いることが可能である。
Of the two exposure beams, the recording material transmitted light reflected by the mirror 15b is used as monitor light. The transmitted light is converted into p-polarized return light orthogonal to the incident light (s-polarized light) by the λ / 4 plate 17 and the mirror 18 and is incident on the recording material 16 again. The combination of the λ / 4 plate 17 and the mirror 18 functions as a polarization conversion unit. As shown in FIG. 1, the λ / 4 plate 17 generates a phase of λ / 4 with respect to a predetermined incident angle. Preferably, the incident angle of the monitor light (p-polarized light) to the recording material is the incidence of the exposure beam. Make it different from the corner. The monitor light is diffracted by the recording material and monitored by the light receiving element 19. When the light reception signal reaches a predetermined value, the electromagnetic shutter 21 is closed via the control device 20 to block the exposure beam.
In the present invention, since the transmitted light from one recording material of the exposure beam is diverted to the monitor light, the exposure light intensity is not sacrificed. Further, since the monitor light and the polarization of the exposure beam are orthogonal to each other, unnecessary interference fringes are not generated by the monitor light. For this reason, an unnecessary structure is not produced in the recording material portion by the monitor.
In this embodiment, the two-beam interference exposure is used. However, there is no correlation between the number of exposure beams and the effect of the present invention, and the present invention can be used for multi-beam interference exposure of three or more beams.

図3は本発明の第2の実施例を説明するための図である。
図4は偏光変換素子部の構成を示す図である。
両図において符号30は偏光変換部、31、32、33はミラーを示す。その他第1の実施例と同じ部分は同じ符号で示している。
偏光変換部30は3枚のミラー31、32、33で構成される。偏光変換部30に入射する光の進行方向をz軸とし、偏光p1振動方向にy軸をとる。第1のミラー31は入射光を−y軸方向に反射させる。このとき反射光の偏光p2はz軸に平行となる。第2のミラー32で光は+x方向に反射される。この偏光方向はz軸に平行である。第3のミラー33で光は−z方向に反射される。このとき偏光はx軸に平行となる。したがって、3枚のミラーによって偏光状態を直交させることができる。ただし、偏光変換部30における入射光束と出射光束は上下(y方向)、左右(x方向)共に若干ずれΔy、Δxが生ずる。
これに対し、第3のミラーの角度を調整すれば偏光振動面はxz面内を維持してz軸からの角度を変えることができる。複屈折板を用いた偏光変換部では入射角が異なれば光の感じる位相差が異なるため、任意に出射方向を変えることが出来ない。所定の方向からずれると出射光の偏光が楕円偏光となり、入射光の振動方向と同じ方向の電界振幅成分が残ってしまい、モニター光と露光光とで干渉が起こり、不要な光干渉縞を発生させ、結果的にゴーストを含む回折格子を作製することになる。ところが、本構成では第3のミラー33の回転調整だけで出射光の方向を変えることができ、かつ、所望の偏光状態に変換できる。したがって、少なくともxz平面内のずれ分は補正することができる。
FIG. 3 is a diagram for explaining a second embodiment of the present invention.
FIG. 4 is a diagram showing the configuration of the polarization conversion element section.
In both figures, reference numeral 30 denotes a polarization converter, and 31, 32, and 33 denote mirrors. The same parts as those of the first embodiment are denoted by the same reference numerals.
The polarization conversion unit 30 includes three mirrors 31, 32, and 33. The traveling direction of the light incident on the polarization converter 30 is taken as the z axis, and the y axis is taken as the polarization p1 vibration direction. The first mirror 31 reflects incident light in the −y axis direction. At this time, the polarized light p2 of the reflected light is parallel to the z-axis. Light is reflected by the second mirror 32 in the + x direction. This polarization direction is parallel to the z-axis. The light is reflected by the third mirror 33 in the −z direction. At this time, the polarized light is parallel to the x-axis. Therefore, the polarization state can be orthogonalized by the three mirrors. However, the incident light flux and the outgoing light flux in the polarization conversion unit 30 are slightly shifted Δy and Δx both in the vertical direction (y direction) and in the horizontal direction (x direction).
On the other hand, if the angle of the third mirror is adjusted, the polarization oscillation plane can be maintained in the xz plane and the angle from the z axis can be changed. In a polarization conversion unit using a birefringent plate, if the incident angle is different, the phase difference perceived by the light is different, so the emission direction cannot be arbitrarily changed. If it deviates from the specified direction, the polarized light of the emitted light becomes elliptically polarized, and the electric field amplitude component in the same direction as the vibration direction of the incident light remains, causing interference between the monitor light and the exposure light, generating unnecessary optical interference fringes. As a result, a diffraction grating including a ghost is manufactured. However, in this configuration, the direction of the emitted light can be changed only by adjusting the rotation of the third mirror 33 and can be converted into a desired polarization state. Therefore, at least the deviation in the xz plane can be corrected.

図5は本発明の第3の実施例を説明するための図である。同図は偏光変換部のみを示している。
同図において符号50は偏光変換部、51はフレネルの菱面体をそれぞれ示す。
偏光変換部50のみ図示している。偏光変換部以外は図1と同じで良い。
偏光変換部50は位相差板としての作用をする「フレネルの菱面体」51とミラー18で構成される。入射偏光p1がy軸に平行としたときには「フレネルの菱面体」の端面の対角方向がy軸(またはx軸)となるように配置する。フレネルの菱面体で2回全反射したのち出射される光は円偏光p2となる。ミラー18で折り返され円偏光p3(p2とは逆周りの円偏光)が再度フレネルの菱面体に入射するとさらに位相差が加算され、出射光の偏光p4はx軸に平行となる。「フレネルの菱面体」については、例えば、コロナ社出版「光学の基礎」(左貝潤一著)149〜151ページに記載されている。
FIG. 5 is a diagram for explaining a third embodiment of the present invention. The figure shows only the polarization converter.
In the figure, reference numeral 50 denotes a polarization converter, and 51 denotes a Fresnel rhombohedron.
Only the polarization converter 50 is shown. Except for the polarization conversion section, it may be the same as in FIG.
The polarization conversion unit 50 includes a “Fresnel rhombohedron” 51 that acts as a retardation plate and a mirror 18. When the incident polarized light p1 is parallel to the y axis, the diagonal direction of the end face of the “Fresnel rhombohedron” is arranged to be the y axis (or the x axis). The light emitted after being totally reflected twice by the Fresnel rhombohedron becomes circularly polarized light p2. When the circularly polarized light p3 (circularly polarized light opposite to p2) which is turned back by the mirror 18 is incident on the Fresnel rhombohedron again, the phase difference is further added, and the polarized light p4 of the emitted light becomes parallel to the x axis. “Fresnel rhombohedron” is described in, for example, pages 149 to 151 of “Basics of Optics” (written by Junichi Sakai) published by Corona.

フレネルの菱面体は反射で偏光の位相を与えるため、分散による波長依存性をもつだけで、複屈折材料による位相差板に比べて非常に広い波長範囲で利用できる。このため、レーザ光源を変えた場合でも偏光変換素子は共通で利用することができる。
なお、本発明は第1の実施例と同様に、露光ビームの一方の記録材料からの透過光をモニター光に流用しているため露光光強度を犠牲にすることがない。また、モニター光と露光ビームの偏光は直交しているため、モニター光による不要な干渉縞は発生しない。このため、モニターによって記録材料部に不必要な構造が作製されることがない。本実施例では2光束干渉露光であるが、露光ビームの本数と本発明の効果には相関は無く、3光束以上の多光束干渉露光でも本発明を用いることが可能である。
Since the Fresnel rhombohedron gives the phase of polarized light by reflection, it has only a wavelength dependency due to dispersion and can be used in a very wide wavelength range compared to a retardation plate made of a birefringent material. For this reason, even when the laser light source is changed, the polarization conversion element can be used in common.
In the present invention, as in the first embodiment, the transmitted light from one recording material of the exposure beam is diverted to the monitor light, so that the exposure light intensity is not sacrificed. Further, since the monitor light and the polarization of the exposure beam are orthogonal to each other, unnecessary interference fringes are not generated by the monitor light. For this reason, an unnecessary structure is not produced in the recording material portion by the monitor. In this embodiment, the two-beam interference exposure is used. However, there is no correlation between the number of exposure beams and the effect of the present invention, and the present invention can be used for multi-beam interference exposure of three or more beams.

図6は第3の実施例の変型例を説明するための図である。同図は偏光変換部のみを示している。
同図において符号52は組み合わせ菱面体、53、54はミラーをそれぞれ示す。
フレネルの菱面体を組み合わせた組み合わせ菱面体52と2枚のミラー53、54で構成される。組み合わせ菱面体52は前述のフレネルの菱面体51を2個組み合わせたものであり、4回の全反射によってλ/2の位相差が発生する。このため、組み合わせ菱面体52を通過した光の偏光振動面は入射光と直交する。ミラー2枚で折り返され所定の入射角で記録材料にモニター光として入射される。本構成によれば、入射光の偏光方向を90°変換させた後で2枚のミラーによって出射光の方向を決める。偏光変換された光はミラーのみで折り返されるため、ミラー53、54への入射面がp2に平行(または垂直)であれば出射光p3はx軸に平行な偏光成分のみとなる。
なお、組み合わせ菱面体52を通す光束は記録材料透過直後でも良いし、ミラー53、54による反射後であっても構わない。
FIG. 6 is a diagram for explaining a modification of the third embodiment. The figure shows only the polarization converter.
In the figure, reference numeral 52 denotes a combination rhombohedron, and 53 and 54 denote mirrors, respectively.
It is composed of a combined rhombohedron 52 combining two Fresnel rhombohedrons and two mirrors 53 and 54. The combination rhombohedron 52 is a combination of two Fresnel rhombohedrons 51 described above, and a phase difference of λ / 2 is generated by four total reflections. For this reason, the polarization vibration plane of the light that has passed through the combination rhombohedron 52 is orthogonal to the incident light. It is folded by two mirrors and is incident on the recording material as monitor light at a predetermined incident angle. According to this configuration, the direction of the emitted light is determined by the two mirrors after the polarization direction of the incident light is converted by 90 °. Since the polarization-converted light is folded back only by the mirror, if the incident surface to the mirrors 53 and 54 is parallel (or perpendicular) to p2, the outgoing light p3 has only a polarization component parallel to the x-axis.
Note that the light beam passing through the combination rhombohedron 52 may be immediately after passing through the recording material or after being reflected by the mirrors 53 and 54.

図7は本発明の第4の実施例を説明するための図である。同図は記録材料と偏光変換部のみについて図示している。これら以外の構成は図1と同様である。
同図において符号25はλ/2板を示す。
偏光変換部は位相差板であるλ/2板25と2枚のミラー18a、18bで構成される。露光光束B1、B2のうちB1の記録材料透過光をモニタ光として利用している。λ/2板の光軸(遅相軸)と紙面とのなす角は45°であり、このλ/2板によって紙面に平行な偏光状態に変換される。この偏光がミラー18a、18bによって所定の入射角で記録材料に再び入射される。このとき、入射角は露光光束の入射角とは異なるため、記録材料からの回折光を容易に受光素子に導くことが可能となる。位相差板を透過する光束は記録材料からの透過光直接でも良いし、ミラー18a、18bによって反射された後でも良い。
本構成では、λ/2板25を偏光変換素子に用いるため、モニター光の記録材料への入射角を任意に変更できる。
FIG. 7 is a diagram for explaining a fourth embodiment of the present invention. This figure shows only the recording material and the polarization converter. Other configurations are the same as those in FIG.
In the figure, reference numeral 25 denotes a λ / 2 plate.
The polarization conversion unit includes a λ / 2 plate 25 that is a phase difference plate and two mirrors 18a and 18b. Of the exposure light beams B1 and B2, B1 recording material transmitted light is used as monitor light. The angle formed by the optical axis (slow axis) of the λ / 2 plate and the paper surface is 45 °, and the λ / 2 plate converts the polarization state into a polarization state parallel to the paper surface. This polarized light is again incident on the recording material at a predetermined incident angle by the mirrors 18a and 18b. At this time, since the incident angle is different from the incident angle of the exposure light beam, the diffracted light from the recording material can be easily guided to the light receiving element. The light beam passing through the phase difference plate may be transmitted directly from the recording material or may be reflected by the mirrors 18a and 18b.
In this configuration, since the λ / 2 plate 25 is used as the polarization conversion element, the incident angle of the monitor light to the recording material can be arbitrarily changed.

図8は本発明の第5の実施例を説明するための図である。
同図において符号81は偏光ビームスプリッタを示す。
本実施例では、図1に示した第1の実施例のミラー15aを偏光ビームスプリッタ81に置き換える。この偏光ビームスプリッタ81はs偏光(振動面が紙面に垂直)を反射させ、p偏光(振動面が紙面に平行)を透過させる。露光光束はs偏光であるため、偏光ビームスプリッタ81で反射し記録材料に向かう。一方、モニター光はλ/4板17とミラー18からなる偏光変換部でp偏光に変換されているため、記録材料で回折された回折光は偏光ビームスプリッタを透過する。
本構成では、偏光変換部で折り返された光の記録材料への入射角は露光光束の入射角と同じである。このため、記録材料で回折された光はもう一方の露光ビームの光路を逆にたどるように進む。偏光ビームスプリッタを用いることによって露光光とモニター光を分離することができる。モニター光を一方の露光光と同じ入射角とすることによって、モニター光の光強度を大きくすることが可能になる。
FIG. 8 is a diagram for explaining a fifth embodiment of the present invention.
In the figure, reference numeral 81 denotes a polarization beam splitter.
In this embodiment, the mirror 15a of the first embodiment shown in FIG. This polarizing beam splitter 81 reflects s-polarized light (vibration plane perpendicular to the paper surface) and transmits p-polarized light (vibration surface parallel to the paper surface). Since the exposure light beam is s-polarized light, it is reflected by the polarization beam splitter 81 and travels toward the recording material. On the other hand, since the monitor light is converted into p-polarized light by the polarization conversion unit including the λ / 4 plate 17 and the mirror 18, the diffracted light diffracted by the recording material passes through the polarization beam splitter.
In this configuration, the incident angle of the light reflected by the polarization converter to the recording material is the same as the incident angle of the exposure light beam. For this reason, the light diffracted by the recording material proceeds so as to follow the optical path of the other exposure beam. By using a polarization beam splitter, the exposure light and the monitor light can be separated. By making the monitor light have the same incident angle as that of one of the exposure lights, the light intensity of the monitor light can be increased.

本発明の第1の実施例を説明するための図である。It is a figure for demonstrating the 1st Example of this invention. ホログラフィックPDLCの構成を説明するための図である。It is a figure for demonstrating the structure of holographic PDLC. 本発明の第2の実施例を説明するための図である。It is a figure for demonstrating the 2nd Example of this invention. 偏光変換素子部の構成を示す図である。It is a figure which shows the structure of a polarization conversion element part. 本発明の第3の実施例を説明するための図である。It is a figure for demonstrating the 3rd Example of this invention. 第3の実施例の変型例を説明するための図である。It is a figure for demonstrating the modification of a 3rd Example. 本発明の第4の実施例を説明するための図である。It is a figure for demonstrating the 4th Example of this invention. 本発明の第5の実施例を説明するための図である。It is a figure for demonstrating the 5th Example of this invention.

符号の説明Explanation of symbols

11 レーザ光源
16 記録材料
17 λ/4板
19 受光素子
20 制御部
22 ポリマー層
23 液晶層
25 ホログラフィックPDLC
30、50、52 偏光変換素子部
DESCRIPTION OF SYMBOLS 11 Laser light source 16 Recording material 17 (lambda) / 4 board 19 Light receiving element 20 Control part 22 Polymer layer 23 Liquid crystal layer 25 Holographic PDLC
30, 50, 52 Polarization conversion element section

Claims (11)

可干渉性の光束を出射する光源と、前記光束を複数の光束に分岐する光束分岐手段と、前記複数の光束を記録材料に所定の方位、所定の入射角で照射する偏向手段とを有し、前記記録材料に所望の回折格子を作製する干渉露光装置において、前記複数の光束のうち、前記記録材料を透過した所定の1光束のみ偏光振動面を90°変換して再度前記記録材料に戻り入射させる偏光変換部と、前記戻り入射した光束が前記記録材料で回折された光束をモニターするための受光素子とを有することを特徴とする干渉露光装置。   A light source that emits a coherent light beam, a light beam branching unit that branches the light beam into a plurality of light beams, and a deflecting unit that irradiates the plurality of light beams to a recording material at a predetermined direction and a predetermined incident angle. In the interference exposure apparatus for producing a desired diffraction grating on the recording material, only one predetermined light beam that has passed through the recording material out of the plurality of light beams is converted into a polarization vibration plane by 90 ° and returned to the recording material again. An interference exposure apparatus comprising: a polarization conversion unit that makes an incident; and a light receiving element that monitors the light beam that is diffracted by the recording material. 請求項1に記載の干渉露光装置において、前記偏光変換部がλ/4の位相を与える位相差板と、ミラーで構成されることを特徴とする干渉露光装置。   The interference exposure apparatus according to claim 1, wherein the polarization conversion unit includes a phase difference plate that gives a phase of λ / 4 and a mirror. 請求項2に記載の干渉露光装置において、前記1光束とその戻り光が共に前記位相差板を通過することを特徴とする干渉露光装置。   3. The interference exposure apparatus according to claim 2, wherein both the one light beam and its return light pass through the retardation plate. 請求項3に記載の干渉露光装置において、前記位相差板はλ/4板であることを特徴とする干渉露光装置。   4. The interference exposure apparatus according to claim 3, wherein the retardation plate is a λ / 4 plate. 請求項3に記載の干渉露光装置において、前記位相差板は1個のフレネルの菱面体であることを特徴とする干渉露光装置。   4. The interference exposure apparatus according to claim 3, wherein the retardation plate is a Fresnel rhomboid. 請求項2に記載の干渉露光装置において、前記1光束とその戻り光の一方のみが前記位相差板を通過することを特徴とする干渉露光装置。   3. The interference exposure apparatus according to claim 2, wherein only one of the one light beam and its return light passes through the phase difference plate. 請求項6に記載の干渉露光装置において、前記位相差板はλ/2板であることを特徴とする干渉露光装置。   7. The interference exposure apparatus according to claim 6, wherein the retardation plate is a [lambda] / 2 plate. 請求項6に記載の干渉露光装置において、前記位相差板は2個のフレネルの菱面体の組み合わせであることを特徴とする干渉露光装置。   7. The interference exposure apparatus according to claim 6, wherein the retardation plate is a combination of two Fresnel rhombohedrons. 請求項1ないし8に記載の干渉露光装置において、前記モニターをするための光束の前記記録材料への入射角は、すべての露光光束の入射角のいずれとも異なることを特徴とする干渉露光装置。   9. The interference exposure apparatus according to claim 1, wherein an incident angle of a light beam for monitoring to the recording material is different from any of incident angles of all exposure light beams. 請求項1に記載の干渉露光装置において、前記偏光変換部は3枚のミラーからなることを特徴とする干渉露光装置。   The interference exposure apparatus according to claim 1, wherein the polarization conversion unit includes three mirrors. 請求項1ないし10のいずれか1つに記載の干渉露光装置において、前記偏向手段の1つは偏光ビームスプリッタであることを特徴とする干渉露光装置。   11. The interference exposure apparatus according to claim 1, wherein one of the deflecting means is a polarization beam splitter.
JP2005059229A 2005-03-03 2005-03-03 Interference exposure equipment Expired - Fee Related JP4598564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005059229A JP4598564B2 (en) 2005-03-03 2005-03-03 Interference exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005059229A JP4598564B2 (en) 2005-03-03 2005-03-03 Interference exposure equipment

Publications (2)

Publication Number Publication Date
JP2006243370A true JP2006243370A (en) 2006-09-14
JP4598564B2 JP4598564B2 (en) 2010-12-15

Family

ID=37049840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005059229A Expired - Fee Related JP4598564B2 (en) 2005-03-03 2005-03-03 Interference exposure equipment

Country Status (1)

Country Link
JP (1) JP4598564B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276660A (en) * 2009-05-26 2010-12-09 Dainippon Printing Co Ltd Method for duplicating hologram and hologram duplicated by the method
CN103064140A (en) * 2012-12-26 2013-04-24 中国科学院长春光学精密机械与物理研究所 Adjustment method of holographic variable spacing grating exposure light path
CN107632334A (en) * 2016-07-18 2018-01-26 北京灵犀微光科技有限公司 The preparation system and method for Holographically polymer dispersed liquid crystal grating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684762A (en) * 1992-09-03 1994-03-25 Nikon Corp Exposure device using total-reflection hologram
JP2005018915A (en) * 2003-06-26 2005-01-20 Tdk Corp Optical recording apparatus, optical information recording method, optical information reproducing apparatus, optical information reproducing method and optical information recording and reproducing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684762A (en) * 1992-09-03 1994-03-25 Nikon Corp Exposure device using total-reflection hologram
JP2005018915A (en) * 2003-06-26 2005-01-20 Tdk Corp Optical recording apparatus, optical information recording method, optical information reproducing apparatus, optical information reproducing method and optical information recording and reproducing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276660A (en) * 2009-05-26 2010-12-09 Dainippon Printing Co Ltd Method for duplicating hologram and hologram duplicated by the method
CN103064140A (en) * 2012-12-26 2013-04-24 中国科学院长春光学精密机械与物理研究所 Adjustment method of holographic variable spacing grating exposure light path
CN103064140B (en) * 2012-12-26 2015-02-18 中国科学院长春光学精密机械与物理研究所 Adjustment method of holographic variable spacing grating exposure light path
CN107632334A (en) * 2016-07-18 2018-01-26 北京灵犀微光科技有限公司 The preparation system and method for Holographically polymer dispersed liquid crystal grating

Also Published As

Publication number Publication date
JP4598564B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
US11366426B2 (en) Spatial light modulator device for the modulation of a wave field with complex information
US8643822B2 (en) Non-etched flat polarization-selective diffractive optical elements
JP4309419B2 (en) Light beam generation system and method using anisotropic acousto-optic modulator
TWI749073B (en) Device for combining light beams interacting with adjacent pixels of light modulator
JP6214554B2 (en) Light modulation element
US20090009668A1 (en) Non-Etched Flat Polarization-Selective Diffractive Optical Elements
CN103765329A (en) Method and device for the layered production of thin volume grid stacks, and beam combiner for a holographic display
JP2007128080A (en) System and method of generating light beam utilizing anisotropic acousto-optical modulator
JP4598564B2 (en) Interference exposure equipment
JP4658670B2 (en) Interference exposure apparatus and image forming apparatus
WO1999049339A1 (en) Hologram polarized light separator
JP4533169B2 (en) Interference exposure equipment
JPH085328A (en) Lattice-interference type displacement detector
JP2005134659A (en) Hologram multiple recording apparatus, method for hologram multiple recording and method for reproducing hologram
JPH10213486A (en) Polarization interferometer
Kuusela Methods to depolarize narrow and broad spectrum light
JPS5986010A (en) Light splitter
RU2016379C1 (en) Method of determining displacements and adaptive holographic interferometer
WO2010089548A1 (en) Optical devices and methods
JP2006012202A (en) Optical path correcting apparatus and optical pickup using the same
JPH07190715A (en) Light source device
JP2001194625A (en) Optical image processor
JP2005322302A (en) Optical path correcting device and optical pickup using the same
JP2005302082A (en) Optical path correcting apparatus and optical pickup using the same
JP2011192321A (en) Optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100924

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees