JP2006243262A - Hologram recording method, hologram recording medium, and hologram reproducing method - Google Patents

Hologram recording method, hologram recording medium, and hologram reproducing method Download PDF

Info

Publication number
JP2006243262A
JP2006243262A JP2005057599A JP2005057599A JP2006243262A JP 2006243262 A JP2006243262 A JP 2006243262A JP 2005057599 A JP2005057599 A JP 2005057599A JP 2005057599 A JP2005057599 A JP 2005057599A JP 2006243262 A JP2006243262 A JP 2006243262A
Authority
JP
Japan
Prior art keywords
recording
wavelength band
wavelength
recording medium
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005057599A
Other languages
Japanese (ja)
Inventor
Yoshihiro Someno
義博 染野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2005057599A priority Critical patent/JP2006243262A/en
Publication of JP2006243262A publication Critical patent/JP2006243262A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hologram recording method etc., capable of appropriately reading data out of a recording medium, especially, even if a proper wavelength band for reading the data varies with temperature. <P>SOLUTION: An embodiment of the present invention controls a recording wavelength in recording the data to the recording medium to a narrow wavelength band and, for example, a proper wavelength band, when a surface light emission laser is at ≥50°C is used. The surface light emission laser gradually decreases in proper wavelength band as the temperature rises, so the proper wavelength band when the surface light emission laser is at 50°C is very narrow and when the wavelength band of the recording wavelength is controlled under such a strict condition, the proper wavelength band expands at a temperature of <50°C to the short-wavelength side while including the wavelength band in the recording when the data are read during reproduction by using the surface emission laser, so that the data can appropriately and securely be read. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば参照光とデータ光とを干渉させて記録媒体にデータを記録するホログラム記録方法、ホログラム記録媒体、及びホログラム再生方法に関する。   The present invention relates to a hologram recording method, a hologram recording medium, and a hologram reproducing method for recording data on a recording medium, for example, by causing reference light and data light to interfere with each other.

ホログラムの記録は、記録参照光と、二次元のデジタル映像データを含むデータ光とを記録媒体に干渉させることで行なわれる。ホログラムによる記録では、同一記録エリア内に多重記録が可能であり、しかも高速レートで記録・再生を行なうことが出来るといった利点がある。多重記録には、様々な手法があるが、よく知られている手法に角度多重と波長多重がある。このうち波長多重では、記録波長を変動させながら記録を行なうもので角度多重のように機械的動作が不要といった利点がある。   Hologram recording is performed by causing recording reference light and data light including two-dimensional digital video data to interfere with a recording medium. Recording by hologram has the advantage that multiple recording can be performed in the same recording area and recording / reproduction can be performed at a high rate. There are various methods for multiplex recording, and well-known methods include angle multiplexing and wavelength multiplexing. Of these, wavelength multiplexing is advantageous in that recording is performed while changing the recording wavelength, and mechanical operation is unnecessary as in angle multiplexing.

一方、ホログラムの再生では、再生参照光を、前記記録媒体に入射させると、ブラッグ条件式により、前記再生参照光が記録媒体に記録されたデータの干渉縞で回折され、再生光(回折光)が発せられる。そして、前記再生光に含まれるデータの内容が、CCDやCMOSなどからなる撮像素子により読み出される。
特開2002−32001号公報
On the other hand, in hologram reproduction, when reproduction reference light is incident on the recording medium, the reproduction reference light is diffracted by the interference fringes of data recorded on the recording medium according to the Bragg conditional expression, and reproduction light (diffracted light) Is emitted. Then, the content of the data included in the reproduction light is read out by an image pickup device such as a CCD or a CMOS.
JP 2002-3001A

ところで前記再生参照光として面発光レーザ(VCSEL)を用いた場合、前記面発光レーザは温度変化(気温変化)によって適正波長帯域が変動する。図3は、前記面発光レーザの温度ごとの波長帯域と光強度比率との関係を示すグラフである。「光強度比率」とは、光強度がある値の光強度(mW)のときを基準値として比率で示したものである。   By the way, when a surface emitting laser (VCSEL) is used as the reproduction reference light, an appropriate wavelength band of the surface emitting laser varies depending on a temperature change (temperature change). FIG. 3 is a graph showing the relationship between the wavelength band and the light intensity ratio for each temperature of the surface emitting laser. The “light intensity ratio” is a ratio with a light intensity (mW) of a certain value as a reference value.

図3に示すように、温度が上昇すると光強度比率が低下するとともに前記光強度が0(mW)よりも大きくなる波長帯域も狭くなる。ここで「適正波長帯域」とは、任意に決めた所定値以上の光強度を得ることが可能な波長帯域と定義される。   As shown in FIG. 3, when the temperature rises, the light intensity ratio decreases and the wavelength band in which the light intensity is greater than 0 (mW) is also narrowed. Here, the “appropriate wavelength band” is defined as a wavelength band capable of obtaining a light intensity of an arbitrarily determined predetermined value or more.

例えば、記録参照光の波長が図3に示すλ1(nm)とλ2(nm)の間の波長λx(nm)であったとする。このとき原理的には再生参照光の入射角度を、前記記録参照光の入射角度と同じにするとともに、再生波長をλx(nm)とすれば、λx(nm)の波長で記録されたデータは、前記再生参照光を照射することで読み出されるが、再生時の温度が40℃以上の高温であると、図3に示すようにλxnmの波長では光強度が0となってしまい、再生不可能となってしまう。   For example, it is assumed that the wavelength of the recording reference light is a wavelength λx (nm) between λ1 (nm) and λ2 (nm) shown in FIG. In this case, in principle, the incident angle of the reproduction reference light is the same as the incident angle of the recording reference light, and if the reproduction wavelength is λx (nm), the data recorded at the wavelength of λx (nm) is However, if the reproduction temperature is 40 ° C. or higher, the light intensity becomes 0 at the wavelength of λxnm as shown in FIG. 3, and reproduction is impossible. End up.

このように温度が上昇すると、図3に示すように、面発光レーザの光強度のピークが長波長側にシフトするとともに、適正波長帯域が徐々に狭くなるため、短波長で記録されたデータを、再生時の温度が高温である場合、読み出すことができない可能性があった。   When the temperature rises in this way, as shown in FIG. 3, the peak of the light intensity of the surface emitting laser shifts to the long wavelength side and the appropriate wavelength band gradually narrows. When the temperature at the time of reproduction is high, there is a possibility that reading cannot be performed.

またホログラム記録媒体が温度変化によって伸縮する場合、記録媒体に記録されたデータのピッチ幅が変化することで、光の回折が生じる波長が記録参照光の波長と異なる値となってしまうため、この点も加味して、再生時に、記録されたデータを全て適切に読み出せるようにする必要があった。   Further, when the hologram recording medium expands and contracts due to a temperature change, the pitch width of the data recorded on the recording medium changes, so that the wavelength at which light is diffracted becomes different from the wavelength of the recording reference light. In consideration of the point, it is necessary to appropriately read out all recorded data during reproduction.

上記した特許文献1は、記録媒体の温度変化による寸法変化の現象に着目し、記録媒体の構造を改良して、記録されたホログラム情報の温度変化に対する影響を減少させることを発明の目的・効果としている。しかし特許文献1では、特に面発光レーザの温度依存性については何ら記載されていないから、当然、上記した本発明の課題やその課題に対する解決手段についての記述はない。   The above-mentioned Patent Document 1 focuses on the phenomenon of dimensional change due to the temperature change of the recording medium, and improves the structure of the recording medium to reduce the influence of the recorded hologram information on the temperature change. It is said. However, Patent Document 1 does not describe anything about the temperature dependency of the surface emitting laser, and therefore, naturally, there is no description of the above-described problem of the present invention and the means for solving the problem.

そこで本発明は上記従来の課題を解決するためのものであり、特に、温度変化によって記録媒体に記録されたデータを読み出すための適正波長帯域が変動しても、適切に前記データを読み出すことを可能としたホログラム記録方法、ホログラム記録媒体、及びホログラム再生方法を提供することを目的としている。   Therefore, the present invention is for solving the above-described conventional problems, and in particular, even when the appropriate wavelength band for reading data recorded on the recording medium is fluctuated due to a temperature change, the data is appropriately read. It is an object of the present invention to provide a hologram recording method, a hologram recording medium, and a hologram reproducing method that are made possible.

本発明は、記録参照光と、データ光とを干渉させて記録媒体にデータを記録するためのホログラム記録方法において、
温度が低温側から高温側に上昇するに従って適正波長帯域が狭くなる面発光レーザの高温側での前記適正波長帯域を、記録波長の波長帯域として用いることを特徴とするものである。
The present invention relates to a hologram recording method for recording data on a recording medium by causing interference between a recording reference beam and a data beam.
The proper wavelength band on the high temperature side of the surface-emitting laser whose appropriate wavelength band becomes narrower as the temperature rises from the low temperature side to the high temperature side is used as the wavelength band of the recording wavelength.

本発明では、記録媒体にデータを記録するときの記録波長を狭い波長帯域に制御するものであり、その基準として面発光レーザの高温側での適正波長帯域を用いる。図3に示すように、面発光レーザ(VCSEL)は、温度が高くなるほど、光強度のピークが長波長側にシフトしながら、適正波長帯域が徐々に狭くなっていく。「適正波長帯域」とは、任意に設定された、ある光強度以上を得ることが出来る波長帯域と定義される。   In the present invention, the recording wavelength when data is recorded on the recording medium is controlled to a narrow wavelength band, and an appropriate wavelength band on the high temperature side of the surface emitting laser is used as the reference. As shown in FIG. 3, in the surface emitting laser (VCSEL), as the temperature increases, the peak of the light intensity shifts to the longer wavelength side, and the appropriate wavelength band is gradually narrowed. The “appropriate wavelength band” is defined as an arbitrarily set wavelength band that can obtain a certain light intensity or higher.

図3に示すように、高温側の例えば50℃の適正波長帯域は非常に狭くなっており、このような厳しい条件下で、記録波長の波長帯域を制御することで、再生時に、前記面発光レーザを用いて前記データを読み取るとき、上述した50℃よりも低い再生温度では、適正波長帯域が記録時の波長帯域を包含しながら短波長側に広がるため、前記データを適切且つ確実に読み取ることが可能になる。   As shown in FIG. 3, the appropriate wavelength band of, for example, 50 ° C. on the high temperature side is very narrow. By controlling the wavelength band of the recording wavelength under such severe conditions, the surface light emission is reproduced during reproduction. When reading the data using a laser, at the reproduction temperature lower than 50 ° C. described above, the appropriate wavelength band extends to the short wavelength side while including the wavelength band at the time of recording, so the data is read appropriately and reliably. Is possible.

また本発明におけるホログラム記録媒体は、上記に記載された記録方法を用いてデータが記録されたことを特徴とするものである。このとき前記記録媒体は温度が上昇するに従って膨張することが好ましい。すなわち温度が低下すると前記記録媒体は収縮し、前記記録媒体に記録されたデータのピッチ幅は狭くなり、前記データを読み出すのに必要な光の波長は、短波長側にシフトする。このため記録時の温度を再生時の温度よりも高い温度とすることで、再生時に、上記した記録媒体の収縮が生じて、前記データを読み出すのに必要な光の波長は短波長側にシフトする。このとき上記したように再生時の適正波長帯域は記録時の波長帯域を包含しながら短波長側に広がるため、読み出すのに必要な波長が短波長側にシフトしたデータを適切且つ確実に読み出すことが可能になる。   The hologram recording medium of the present invention is characterized in that data is recorded by using the recording method described above. At this time, it is preferable that the recording medium expands as the temperature rises. That is, when the temperature is lowered, the recording medium contracts, the pitch width of the data recorded on the recording medium is narrowed, and the wavelength of light necessary for reading the data is shifted to the short wavelength side. For this reason, by setting the temperature at the time of recording to a temperature higher than the temperature at the time of reproduction, the above-mentioned shrinkage of the recording medium occurs at the time of reproduction, and the wavelength of light necessary for reading the data is shifted to the short wavelength side. To do. At this time, as described above, the appropriate wavelength band at the time of reproduction extends to the short wavelength side while including the wavelength band at the time of recording, so that the data required for reading is shifted to the short wavelength side appropriately and reliably. Is possible.

また本発明におけるホログラム再生方法は、再生参照光と、記録媒体に記録されているデータを取得する撮像手段とを有し、前記再生参照光に前記面発光レーザを用い、前記高温側よりも低い温度にて、上記に記載されたホログラム記録媒体からデータを読み出すことを特徴とするものである。上記したように、再生時に、前記面発光レーザを用いて前記データを読み取るとき、再生時の適正波長帯域は記録時の波長帯域を包含しながら短波長側に広がるため、記録された前記データ全てを適切且つ確実に読み取ることが可能になる。また記録媒体の温度低下に伴う収縮により、データを読み出すのに必要な光の波長が短波長側にシフトした場合でも、上記のように、再生時の適正波長帯域は、記録時の波長帯域を包含しながら短波長側に広がるため、適切に前記データを読み出すことが可能になる。   The hologram reproduction method according to the present invention includes a reproduction reference beam and an imaging unit that acquires data recorded on a recording medium, uses the surface emitting laser as the reproduction reference beam, and is lower than the high temperature side. Data is read from the hologram recording medium described above at a temperature. As described above, when reading the data using the surface emitting laser at the time of reproduction, the appropriate wavelength band at the time of reproduction extends to the short wavelength side while including the wavelength band at the time of recording. Can be read appropriately and reliably. Even when the wavelength of light required for reading data shifts to the short wavelength side due to shrinkage due to the temperature drop of the recording medium, as described above, the appropriate wavelength band during reproduction is the same as the wavelength band during recording. Since it spreads to the short wavelength side while being included, it becomes possible to read the data appropriately.

本発明では、記録媒体にデータを記録するときの記録波長を狭い波長帯域に制御するものであり、その基準として面発光レーザの高温側での適正波長帯域を用いる。面発光レーザ(VCSEL)は、温度が高くなるほど、光強度のピークが長波長側にシフトしながら、適正波長帯域が徐々に狭くなっていく。このため面発光レーザの高温側での適正波長帯域は非常に狭くなっており、このような厳しい条件下で、記録波長の波長帯域を制御することで、再生時に、前記面発光レーザを用いて前記データを読み取るとき、高温側よりも低い再生温度では、適正波長帯域が記録時の波長帯域を包含しながら短波長側に広がり、前記データを適切且つ確実に読み取ることが可能になる。   In the present invention, the recording wavelength when data is recorded on the recording medium is controlled to a narrow wavelength band, and an appropriate wavelength band on the high temperature side of the surface emitting laser is used as the reference. In the surface emitting laser (VCSEL), as the temperature increases, the peak of the light intensity shifts to the long wavelength side, and the appropriate wavelength band is gradually narrowed. For this reason, the appropriate wavelength band on the high temperature side of the surface-emitting laser is very narrow. By controlling the wavelength band of the recording wavelength under such severe conditions, the surface-emitting laser is used during reproduction. When reading the data, at a reproduction temperature lower than the high temperature side, the appropriate wavelength band extends to the short wavelength side while including the wavelength band at the time of recording, and the data can be read appropriately and reliably.

図1は、本発明の実施形態として、ホログラム記録装置によって記録媒体にデジタル映像データを記録する概念図、図2は、ホログラム再生装置によって記録媒体からデジタル映像データを再生する概念図、である。   FIG. 1 is a conceptual diagram for recording digital video data on a recording medium by a hologram recording device as an embodiment of the present invention, and FIG. 2 is a conceptual diagram for reproducing digital video data from the recording medium by a hologram reproducing device.

図1に示すホログラム記録装置では、光源20から発せられた光(コヒーレント光)は、図示しないビームスプリッタによって2方向に分割される。分割された光のうち、一方は参照光(記録参照光)28として、他方はデータ光21として、それぞれ記録媒体27上の一定の地点に入射される。図1に示すように前記データ光21は、空間光変調器23に入射される。前記空間光変調器23には、例えば物体等の画像データが2値(0,1)のデジタル信号(記録信号)として入力される。前記空間光変調器23では、前記デジタル信号を「明,暗」の二次元のデジタル映像データに変換する。例えば″0″信号を、「明」のデジタル映像データに変換し、″1″信号を、「暗」のデジタル映像データに変換する。前記「明」のデジタル映像データは、光を透過するが、「暗」のデジタル映像データは光を遮断する。前記空間光変調器23は例えば液晶素子である。   In the hologram recording apparatus shown in FIG. 1, light (coherent light) emitted from a light source 20 is divided in two directions by a beam splitter (not shown). One of the divided lights is incident as a reference light (recording reference light) 28 and the other as data light 21 at a certain point on the recording medium 27. As shown in FIG. 1, the data light 21 is incident on a spatial light modulator 23. For example, image data of an object or the like is input to the spatial light modulator 23 as a binary (0, 1) digital signal (recording signal). The spatial light modulator 23 converts the digital signal into “bright, dark” two-dimensional digital video data. For example, a “0” signal is converted into “bright” digital video data, and a “1” signal is converted into “dark” digital video data. The “bright” digital video data transmits light, while the “dark” digital video data blocks light. The spatial light modulator 23 is a liquid crystal element, for example.

データ光21の光強度は、前記空調光変調器23を透過することで空間変調されて前記記録媒体27上の一定の地点に入射される。   The light intensity of the data light 21 is spatially modulated by passing through the air conditioning light modulator 23 and is incident on a certain point on the recording medium 27.

図1に示すように、前記参照光28とデータ光21が記録媒体27に照射されると、前記参照光28とデータ光21とが重なる領域に、多数のデジタル映像データ30が記録される(図4,図5)。記録された前記デジタル映像データ30は記録媒体27内に干渉縞(ホログラム)として現われる。   As shown in FIG. 1, when the reference light 28 and the data light 21 are irradiated onto the recording medium 27, a large number of digital video data 30 is recorded in an area where the reference light 28 and the data light 21 overlap ( 4 and 5). The recorded digital video data 30 appears in the recording medium 27 as interference fringes (holograms).

ホログラム記録装置では、記録媒体27の同一領域に多数の前記デジタル映像データ30を記録できる。いわゆる多重記録が可能であり、多重記録の手法としては、記録波長を一定にし、前記参照光28の記録媒体27の表面27aに対する入射角度θ1を変化させて記録する角度多重や、入射角度θ1を一定にし記録波長を変化させて記録する波長多重等がある。   In the hologram recording apparatus, a large number of the digital video data 30 can be recorded in the same area of the recording medium 27. So-called multiplex recording is possible. As a multiplex recording method, recording is performed by changing the incident angle θ1 of the reference light 28 with respect to the surface 27a of the recording medium 27 while keeping the recording wavelength constant, or by changing the incident angle θ1. There are wavelength multiplexing, etc., in which recording is performed by changing the recording wavelength while keeping it constant.

次に図2に示すホログラム再生装置を用いて、前記記録媒体27に記録されたデジタル映像データ30を再生するとき、図2に示すように、光源41から参照光(再生参照光)40を前記記録媒体27に照射する。このとき、上記した波長多重で前記デジタル映像データ30を記録媒体27に記録したとき、前記参照光40の記録媒体27の表面27aに対する入射角度θ2は、図1の記録時の参照光28の入射角度θ1と同じ値である。一方、前記参照光40の波長を変化させながら、前記参照光40を前記記録媒体27に照射すると、ブラッグ条件式を満たす干渉縞では光が回折して、再生光(回折光)43に前記デジタル映像データ30が現われ、そして前記再生光43上にCCDやCMOSなどからなる撮像素子42を配置しておくことにより、記録媒体27に記録されているデジタル映像データ30の内容を読み出すことが可能とされている。原理的には、再生時、記録波長と同じ波長帯域内で波長を変化させながら上記した光の回折を起こすことで、全てのデジタル映像データ30を読み出すことが可能である。   Next, when the digital video data 30 recorded on the recording medium 27 is reproduced using the hologram reproducing apparatus shown in FIG. 2, the reference light (reproduced reference light) 40 is emitted from the light source 41 as shown in FIG. The recording medium 27 is irradiated. At this time, when the digital video data 30 is recorded on the recording medium 27 by wavelength multiplexing as described above, the incident angle θ2 of the reference light 40 with respect to the surface 27a of the recording medium 27 is the incidence of the reference light 28 at the time of recording in FIG. It is the same value as the angle θ1. On the other hand, when the recording medium 27 is irradiated with the reference light 40 while changing the wavelength of the reference light 40, the light is diffracted by the interference fringes satisfying the Bragg conditional expression, and the reproduced light (diffracted light) 43 becomes the digital light. The video data 30 appears, and the image sensor 42 such as a CCD or CMOS is arranged on the reproduction light 43, whereby the contents of the digital video data 30 recorded on the recording medium 27 can be read. Has been. In principle, at the time of reproduction, it is possible to read out all the digital video data 30 by causing the above-mentioned light diffraction while changing the wavelength within the same wavelength band as the recording wavelength.

図2に示す光源41は、VCSEL(面発光レーザ)アレイであり、前記光源41からは再生参照光40として面発光レーザが照射される。図3に面発光レーザの温度変化による波長と光強度との関係の一例を示す。   The light source 41 shown in FIG. 2 is a VCSEL (surface emitting laser) array, and a surface emitting laser is irradiated from the light source 41 as reproduction reference light 40. FIG. 3 shows an example of the relationship between the wavelength and the light intensity due to the temperature change of the surface emitting laser.

図3に示すように、温度が徐々に高くなっていくと適正波長帯域が徐々に狭くなっていくことがわかる。図3に示す「光強度比率」とは、ある光強度を基準値として「1」と示し、その基準値に対する比率である。「適正波長帯域」とは、任意に設定された所定値以上の光強度比率(本実施形態では0.5に設定)を有する波長帯域と定義される。   As can be seen from FIG. 3, the appropriate wavelength band gradually narrows as the temperature gradually increases. The “light intensity ratio” shown in FIG. 3 is “1” with a certain light intensity as a reference value, and is a ratio to the reference value. The “appropriate wavelength band” is defined as a wavelength band having a light intensity ratio (set to 0.5 in the present embodiment) that is not less than a predetermined value set arbitrarily.

図3に示すように、光強度比率のピークは、温度が高くなるほど徐々に小さくなる。しかも前記ピークは温度が上昇するほど長波長側にシフトすることがわかる。図3に示すように50℃での適正波長帯域は、20℃、30℃、40℃のいずれの適正波長帯域よりも狭いとともに、20℃、30℃、40℃の各適正波長帯域内に包含される。40℃、30℃、20℃の順で各適正波長帯域は、50℃の適正波長帯域よりも短波長側に広がりを見せる。   As shown in FIG. 3, the peak of the light intensity ratio gradually decreases as the temperature increases. Moreover, it can be seen that the peak shifts to the longer wavelength side as the temperature increases. As shown in FIG. 3, the appropriate wavelength band at 50 ° C. is narrower than any of the appropriate wavelength bands of 20 ° C., 30 ° C., and 40 ° C., and is included in each of the appropriate wavelength bands of 20 ° C., 30 ° C., and 40 ° C. Is done. Each appropriate wavelength band in the order of 40 ° C., 30 ° C., and 20 ° C. spreads toward the shorter wavelength side than the appropriate wavelength band of 50 ° C.

本発明では、図1に示すホログラム記録装置を用いて行なうホログラム記録方法において、図3に示す面発光レーザの50℃以上のときの適正波長帯域を、記録波長の波長帯域として用いている。よって記録波長の波長帯域は、λy1(nm)〜λy2(nm)の範囲内(概ね2〜3nmの幅がある)である。従って図1に示す光源20から発せられる光の波長は、λy1(nm)〜λy2(nm)の範囲内であり、この範囲内において、記録媒体27に対しデジタル映像データ30の記録を例えば波長多重にて行なう。前記ホログラム記録装置に用いられる光源20は、固定レーザやガスレーザ等、特に限定されない。   In the present invention, in the hologram recording method performed using the hologram recording apparatus shown in FIG. 1, the appropriate wavelength band at 50 ° C. or higher of the surface emitting laser shown in FIG. 3 is used as the wavelength band of the recording wavelength. Therefore, the wavelength band of the recording wavelength is in the range of λy1 (nm) to λy2 (nm) (has a width of about 2 to 3 nm). Therefore, the wavelength of the light emitted from the light source 20 shown in FIG. 1 is in the range of λy1 (nm) to λy2 (nm), and the digital video data 30 is recorded on the recording medium 27 within this range, for example, wavelength multiplexing. At. The light source 20 used in the hologram recording apparatus is not particularly limited, such as a fixed laser or a gas laser.

次に図2に示すホログラム再生装置を用いてホログラムを再生するとき、上記したように光源41にVCSELアレイを用い、前記光源41から再生参照光40として面発光レーザを照射する。このとき、特に温度調整を行なわず、そのときの気温下にて、ホログラムの再生を行なう。例えば気温が20℃であると、図3に示すように、面発光レーザの適正波長帯域は、λz1(nm)〜λz2(nm)の範囲内(概ね3〜5nmの幅がある)になり、記録時の波長帯域であるλy1(nm)〜λy2(nm)を包含する。このため、ホログラムの再生時に、投入電流を変化させながら面発光レーザの波長をλz1(nm)〜λz2(nm)の範囲内で変化させれば、必ず、全てのデジタル映像データ30を読み出すことが出来る。気温が50℃以下であれば、上記のように、記録時の波長帯域は、再生時の適正波長帯域内に包含されるため、全てのデジタル映像データ30を適切に読み出すことが可能になる。仮に再生時の温度が50℃よりも高くなるような場合でも、図2に示すホログラム再生装置内に、冷却手段を設けておき、前記冷却手段により再生時の温度を50℃以下となるように温度調整すれば、図3のように、再生時の適正波長帯域が変動し、面発光レーザが50℃のときの適正波長帯域内で調整された記録時の波長帯域を包含しながら広がるため、全てのデジタル映像データ30を適切且つ確実に読み出すことが可能である。   Next, when reproducing a hologram using the hologram reproducing apparatus shown in FIG. 2, a VCSEL array is used for the light source 41 as described above, and a surface emitting laser is irradiated from the light source 41 as the reproduction reference light 40. At this time, the temperature is not adjusted and the hologram is reproduced at the temperature. For example, when the temperature is 20 ° C., as shown in FIG. 3, the appropriate wavelength band of the surface emitting laser is in the range of λz1 (nm) to λz2 (nm) (approximately 3 to 5 nm in width), It includes λy1 (nm) to λy2 (nm) which is a wavelength band at the time of recording. Therefore, at the time of reproducing the hologram, if the wavelength of the surface emitting laser is changed within the range of λz1 (nm) to λz2 (nm) while changing the input current, all the digital video data 30 can be read out without fail. I can do it. If the temperature is 50 ° C. or lower, as described above, the wavelength band at the time of recording is included in the appropriate wavelength band at the time of reproduction, so that all the digital video data 30 can be read out appropriately. Even if the temperature at the time of reproduction becomes higher than 50 ° C., a cooling means is provided in the hologram reproducing apparatus shown in FIG. 2 so that the temperature at the time of reproduction is 50 ° C. or less by the cooling means. If the temperature is adjusted, the appropriate wavelength band at the time of reproduction fluctuates as shown in FIG. 3, and the surface emitting laser spreads while including the wavelength band at the time of recording adjusted within the appropriate wavelength band when the surface emitting laser is 50 ° C., All digital video data 30 can be read appropriately and reliably.

ところで、ホログラムを記録媒体27に記録するときの温度は、図3に示すグラフに基づき50℃で行なう必要性はない。図3は、面発光レーザの波長の温度特性を示すもので、記録時に重要なことは、記録するときの温度ではなくて、波長帯域にある。すなわち面発光レーザが50℃のときの適正波長帯域であるλy1(nm)〜λy2(nm)の範囲内にてホログラムの記録を行なえば、そのときの温度は別に50℃である必要はない。しかし、以下に説明するように、記録時の温度は再生時の温度よりも高いほうが好ましい。具体的には前記記録時の温度を50℃以上に設定することがより好ましい。   By the way, the temperature at which the hologram is recorded on the recording medium 27 need not be 50 ° C. based on the graph shown in FIG. FIG. 3 shows the temperature characteristics of the wavelength of the surface emitting laser, and what is important at the time of recording is not the temperature at the time of recording but the wavelength band. That is, if hologram recording is performed within the range of λy1 (nm) to λy2 (nm) which is an appropriate wavelength band when the surface emitting laser is 50 ° C., the temperature at that time does not need to be 50 ° C. separately. However, as described below, the temperature during recording is preferably higher than the temperature during reproduction. Specifically, it is more preferable to set the temperature during recording to 50 ° C. or higher.

記録媒体27は温度が上昇するにつれて膨張する性質を有し、図4は、ある温度のときにある波長にて記録媒体27に記録されたデジタル映像データ30の記録状態を示す。図5は、温度を上昇させて、記録媒体27を膨張させたときの前記デジタル映像データ30の記録状態を示し、図5におけるデジタル映像データ30間のピッチ幅Bは、図4におけるデジタル映像データ30間のピッチ幅Aよりも大きくなっており、図5に記録されたデジタル映像データ30を読み出すのに必要な波長は、図4に記録されたデジタル映像データ30を読み出すのに必要な波長よりも長くなる。このように、記録媒体27に記録されたデジタル映像データ30は、温度変化によってピッチ幅が変動するため、温度が変化したときに、前記デジタル映像データ30を読み出すのに必要な波長が記録時の波長と異なってしまう。   The recording medium 27 has a property of expanding as the temperature rises, and FIG. 4 shows a recording state of the digital video data 30 recorded on the recording medium 27 at a certain wavelength at a certain temperature. FIG. 5 shows the recording state of the digital video data 30 when the temperature is increased and the recording medium 27 is expanded. The pitch width B between the digital video data 30 in FIG. 5 is the digital video data in FIG. The wavelength required to read the digital video data 30 recorded in FIG. 5 is larger than the wavelength required to read the digital video data 30 recorded in FIG. Also gets longer. As described above, since the pitch width of the digital video data 30 recorded on the recording medium 27 fluctuates due to temperature change, when the temperature changes, the wavelength necessary for reading the digital video data 30 is the same as that at the time of recording. It will be different from the wavelength.

しかし図3に示すように、記録時の波長帯域を、面発光レーザが50℃のときの適正波長帯域に一致させ、λy1(nm)〜λy2(nm)の範囲内に設定すれば、再生時の気温が20℃のとき、面発光レーザの適正波長帯域は、50℃のときの前記適正波長帯域を包含するとともに、短波長側に広がりを見せ、λz1(nm)〜λz2(nm)の範囲内になる。このとき、記録時の温度を再生時の温度よりも高い温度にしておけば、例えばあるデジタル映像データ30が図3に示すC点の波長λy1(nm)にて記録されていると仮定すると、再生時に温度が下がることで記録媒体27が収縮し、図5の記録状態から図4の記録状態に変態する。このため、λy1(nm)の波長にて記録されたデジタル映像データ30を再生するときの波長は、λy1(nm)よりも短波長側のD点での波長となるが、上記したように、再生時の面発光レーザの適正波長帯域は、50℃のときの前記適正波長帯域を包含するとともに、短波長側に広がるため、記録媒体27の収縮によって読み出すための波長が短波長側にシフトしたデジタル映像データ30も適切に読み取ることが出来る。逆に、記録時の温度が再生時の温度よりも低い状態であると、記録波長を、面発光レーザの50℃のときの適正波長帯域であるλy1(nm)〜λy2(nm)の範囲内に設定しても、図3に示すE点の波長λy2(nm)にて記録されたデジタル映像データ30は、再生時の温度が記録時の温度よりも高いことで、図4の記録状態から図5の記録状態に変動し、λy2(nm)の波長にて記録されたデジタル映像データ30は、λy2(nm)よりも高い波長Fにて再生されることになる。このとき図3に示すように、再生時の面発光レーザの適正波長帯域を、20℃のときのλz1(nm)〜λz2(nm)の範囲内に設定しても、再生時の前記適正波長帯域は、記録波長の波長帯域よりも、ほとんど長波長側に広がりを見せないため、波長λy2(nm)にて記録されたデジタル映像データ30を適切に再生できない場合が出てくる。このため、記録時の温度は再生時の温度よりも高いほうが好ましい。具体的には前記記録時の温度を図3に基づいて50℃以上に設定しておけば、再生時の気温が50℃よりも高くならない限り、全てのデジタル映像データ30を適切に再生することが出来る。ホログラム記録装置内には温度調整手段を設けておき、記録時の温度が50℃以上となるように調整する。また再生時の温度が50℃よりも高くなる雰囲気下であれば、上記したように、ホログラム再生装置内に冷却手段等を設けておき、前記冷却手段等により再生時の温度が50℃よりも低い温度になるように調整すればよい。   However, as shown in FIG. 3, when the wavelength band at the time of recording is set to the appropriate wavelength band when the surface emitting laser is 50 ° C. and set within the range of λy1 (nm) to λy2 (nm), When the temperature of the surface emitting laser is 20 ° C., the appropriate wavelength band of the surface emitting laser includes the appropriate wavelength band at 50 ° C. and spreads to the short wavelength side, and ranges from λz1 (nm) to λz2 (nm). Be inside. At this time, if the temperature at the time of recording is set higher than the temperature at the time of reproduction, for example, it is assumed that a certain digital video data 30 is recorded at the wavelength λy1 (nm) at the point C shown in FIG. As the temperature decreases during reproduction, the recording medium 27 contracts and changes from the recording state of FIG. 5 to the recording state of FIG. For this reason, the wavelength when reproducing the digital video data 30 recorded at the wavelength of λy1 (nm) is the wavelength at the point D on the shorter wavelength side than λy1 (nm). The appropriate wavelength band of the surface emitting laser at the time of reproduction includes the appropriate wavelength band at 50 ° C. and spreads to the short wavelength side, so that the wavelength for reading is shifted to the short wavelength side due to the shrinkage of the recording medium 27. The digital video data 30 can also be read appropriately. On the other hand, if the temperature at the time of recording is lower than the temperature at the time of reproduction, the recording wavelength is within the range of λy1 (nm) to λy2 (nm) which is an appropriate wavelength band when the surface emitting laser is 50 ° C. 3, the digital video data 30 recorded at the wavelength λy2 (nm) at the point E shown in FIG. 3 is recorded in the recording state of FIG. 4 because the temperature at the time of reproduction is higher than the temperature at the time of recording. The digital video data 30 that has changed to the recording state of FIG. 5 and has been recorded at a wavelength of λy2 (nm) is reproduced at a wavelength F higher than λy2 (nm). At this time, as shown in FIG. 3, even if the appropriate wavelength band of the surface emitting laser at the time of reproduction is set within the range of λz1 (nm) to λz2 (nm) at 20 ° C., the appropriate wavelength at the time of reproduction is set. Since the band hardly spreads to the longer wavelength side than the wavelength band of the recording wavelength, the digital video data 30 recorded at the wavelength λy2 (nm) may not be properly reproduced. For this reason, the temperature during recording is preferably higher than the temperature during reproduction. Specifically, if the temperature at the time of recording is set to 50 ° C. or higher based on FIG. 3, all the digital video data 30 is appropriately reproduced unless the temperature at the time of reproduction is higher than 50 ° C. I can do it. A temperature adjusting means is provided in the hologram recording device, and the temperature during recording is adjusted to 50 ° C. or higher. If the temperature during reproduction is higher than 50 ° C., as described above, a cooling means or the like is provided in the hologram reproducing device, and the temperature during reproduction is higher than 50 ° C. by the cooling means or the like. What is necessary is just to adjust so that it may become low temperature.

上記のように、波長Cで記録されたデジタル映像データ30が再生のとき、記録媒体27の収縮によって、読み出すのに必要な波長が短波長側のD点に変動しても、λz1(nm)〜λz2(nm)(面発光レーザが20℃のときの適正波長帯域)内にて波長を変化させながら、再生を行なえば、D点での短波長の再生参照光40を照射することで、C点での波長で記録された前記デジタル映像データ30を読み出すことが出来る。このとき、地点Dでの波長で読み出されたデジタル映像データ30が、記録時、C点での波長で記録されたデジタル映像データ30と同じものであるか否かを調べる必要はなく、λz1(nm)〜λz2(nm)の波長帯域内で波長を変化させながら、全てのデジタル映像データ30を読み出す。デジタル映像データ30には番地データも含まれており、この番地データに基づいて、前記デジタル映像データ30の並び替えや不必要なデジタル映像データ30の消去等を行って、撮像素子42により物体等の画像データを再生する。
本発明におけるホログラムの記録方法は特に波長多重のときに有効である。
As described above, when the digital video data 30 recorded at the wavelength C is reproduced, even if the wavelength necessary for reading varies due to the shrinkage of the recording medium 27 to the point D on the short wavelength side, λz1 (nm) If reproduction is performed while changing the wavelength within ~ λz2 (nm) (appropriate wavelength band when the surface emitting laser is 20 ° C.), the reproduction reference light 40 having a short wavelength at the point D is irradiated. The digital video data 30 recorded with the wavelength at the point C can be read out. At this time, it is not necessary to check whether or not the digital video data 30 read at the wavelength at the point D is the same as the digital video data 30 recorded at the wavelength at the point C at the time of recording. All the digital video data 30 is read while changing the wavelength within the wavelength band of (nm) to λz2 (nm). The digital video data 30 also includes address data. Based on the address data, the digital video data 30 is rearranged, unnecessary digital video data 30 is erased, and the like. Play back image data.
The hologram recording method of the present invention is particularly effective for wavelength multiplexing.

ホログラム記録装置によって記録媒体にデジタル映像データを記録する概念図(部分断面図)、Conceptual diagram (partial cross-sectional view) of recording digital video data on a recording medium by a hologram recording device, ホログラム再生装置によって記録媒体からデジタル映像データを再生する概念図(部分断面図)、Conceptual diagram (partial sectional view) of reproducing digital video data from a recording medium by a hologram reproducing device, 面発光レーザ(VCSEL)の温度ごとの波長と光強度との関係を示すグラフ、A graph showing a relationship between a wavelength and a light intensity at each temperature of a surface emitting laser (VCSEL); 記録媒体に記録されたデジタル映像データの記録状態を説明するための概念図、A conceptual diagram for explaining a recording state of digital video data recorded on a recording medium, 図4のときよりも高温時であって、記録媒体に記録されたデジタル映像データの記録状態を説明するための概念図、FIG. 4 is a conceptual diagram for explaining a recording state of digital video data recorded on a recording medium at a higher temperature than in FIG.

符号の説明Explanation of symbols

20、41 光源
21 データ光
27 記録媒体
28 記録参照光
30 デジタル映像データ
40 再生参照光
43 再生光
42 撮像素子
A、B ピッチ幅
20, 41 Light source 21 Data light 27 Recording medium 28 Recording reference light 30 Digital video data 40 Reproduction reference light 43 Reproduction light 42 Image sensor A, B Pitch width

Claims (4)

記録参照光と、データ光とを干渉させて記録媒体にデータを記録するためのホログラム記録方法において、
温度が低温側から高温側に上昇するに従って適正波長帯域が狭くなる面発光レーザの高温側での前記適正波長帯域を、記録波長の波長帯域として用いることを特徴とするホログラム記録方法。
In a hologram recording method for recording data on a recording medium by causing interference between a recording reference beam and a data beam,
A hologram recording method characterized in that the appropriate wavelength band on the high temperature side of the surface emitting laser, whose appropriate wavelength band becomes narrower as the temperature rises from the low temperature side to the high temperature side, is used as the wavelength band of the recording wavelength.
請求項1に記載された記録方法を用いてデータが記録されたことを特徴とするホログラム記録媒体。   A hologram recording medium on which data is recorded using the recording method according to claim 1. 前記記録媒体は温度が上昇するに従って膨張する性質を有する請求項2記載のホログラム記録媒体。   The hologram recording medium according to claim 2, wherein the recording medium has a property of expanding as the temperature rises. 再生参照光と、記録媒体に記録されているデータを取得する撮像手段とを有し、前記再生参照光に前記面発光レーザを用い、前記高温側よりも低い温度にて、請求項2あるいは請求項3に記載されたホログラム記録媒体からデータを読み出すことを特徴とするホログラム再生方法。   3. A reproduction reference beam, and an imaging unit that acquires data recorded on a recording medium, wherein the surface emitting laser is used for the reproduction reference beam, and the temperature is lower than the high temperature side. 4. A hologram reproducing method comprising reading data from the hologram recording medium according to item 3.
JP2005057599A 2005-03-02 2005-03-02 Hologram recording method, hologram recording medium, and hologram reproducing method Withdrawn JP2006243262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057599A JP2006243262A (en) 2005-03-02 2005-03-02 Hologram recording method, hologram recording medium, and hologram reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057599A JP2006243262A (en) 2005-03-02 2005-03-02 Hologram recording method, hologram recording medium, and hologram reproducing method

Publications (1)

Publication Number Publication Date
JP2006243262A true JP2006243262A (en) 2006-09-14

Family

ID=37049747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057599A Withdrawn JP2006243262A (en) 2005-03-02 2005-03-02 Hologram recording method, hologram recording medium, and hologram reproducing method

Country Status (1)

Country Link
JP (1) JP2006243262A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228465A (en) * 2012-04-24 2013-11-07 Dainippon Printing Co Ltd Optical module, illumination device, projection device and projection type image display device
JP2013228461A (en) * 2012-04-24 2013-11-07 Dainippon Printing Co Ltd Optical element, optical module, illumination device, projection device and projection type image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228465A (en) * 2012-04-24 2013-11-07 Dainippon Printing Co Ltd Optical module, illumination device, projection device and projection type image display device
JP2013228461A (en) * 2012-04-24 2013-11-07 Dainippon Printing Co Ltd Optical element, optical module, illumination device, projection device and projection type image display device

Similar Documents

Publication Publication Date Title
JP2008097704A (en) Hologram recorder, hologram recording medium and hologram recording method
EP2124226A1 (en) Optical information recording apparatus, optical information recording method, optical information recording/reproducing apparatus and optical information recording/reproducing method
KR20080112569A (en) Holographic recording/reproducing apparatus employing variable size aperture
JP2006243262A (en) Hologram recording method, hologram recording medium, and hologram reproducing method
JP4614790B2 (en) Hologram information recording medium and hologram information recording / reproducing apparatus
JP2006216148A (en) Holographic recording apparatus, holographic reproducing apparatus, its method and holographic medium
JP2006078942A (en) Hologram recording apparatus
US7446916B2 (en) Holographic recording and reproduction apparatus, and method with temperature adjustment device for semiconductor laser
JP2008527453A (en) Optical devices, especially holographic devices
JP2010067285A (en) Recording/playback apparatus, recording apparatus, playback apparatus, recording/playback method, recording method, and playback method
JP2006235261A (en) Hologram information regenerative apparatus
JP2006259519A (en) Hologram recording apparatus
JP2008130137A (en) Information recording device and information reproducing device
JP4361503B2 (en) Holographic recording apparatus, reproducing apparatus and method, and holographic medium
JP2006267803A (en) Hologram information recording and reproducing device
KR100750265B1 (en) Optical information recorder and system for processing optical information
JP2006024248A (en) Optical information recording device and pickup device
JP2006209613A (en) Holography recorder, reproducing device and method thereof, and holography medium
JP2009163779A (en) Light emitting device and hologram reproducing device using the same
JP2006350080A (en) Recording device, recording medium, method for manufacturing recording medium, and reproducing device
US7821692B2 (en) Method of and apparatus for recording/reproducing data on/from holographic storage medium
JP2010008504A (en) Hologram recording and reproducing device and hologram recording and reproducing method
JP2005032376A (en) Optical information recording method
JP2009176349A (en) Reproducing device, reproducing method, recording medium
KR100707681B1 (en) Apparatus and method for recording in holographic rom

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070925

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20081202

Free format text: JAPANESE INTERMEDIATE CODE: A761