JP2006242791A - Voc concentration meter and voc removing system - Google Patents

Voc concentration meter and voc removing system Download PDF

Info

Publication number
JP2006242791A
JP2006242791A JP2005059997A JP2005059997A JP2006242791A JP 2006242791 A JP2006242791 A JP 2006242791A JP 2005059997 A JP2005059997 A JP 2005059997A JP 2005059997 A JP2005059997 A JP 2005059997A JP 2006242791 A JP2006242791 A JP 2006242791A
Authority
JP
Japan
Prior art keywords
voc
air flow
adsorption
air
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005059997A
Other languages
Japanese (ja)
Inventor
Tasuku Miyake
翼 三宅
Nobuhiro Shono
信浩 庄野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2005059997A priority Critical patent/JP2006242791A/en
Publication of JP2006242791A publication Critical patent/JP2006242791A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

<P>PROBLEM TO BE SOLVED: To provide a VOC concentration meter for accurately measuring the concentration even when the VOC concentration in indoor air is low, and to provide a VOC removing system for accurately measuring the concentration and exhausting VOC outdoors even when the VOC concentration in indoor air is low. <P>SOLUTION: The VOC concentration meter comprises a reproducible VOC adsorbing means; a blowing means for generating an airstream passing the VOC concentration meter; a reproducing means that is arranged on the upstream side of the VOC adsorbing means with respect to the airstream and reproduces the VOC adsorbing means; and a VOC sensor arranged on the downstream side of the VOC adsorbing means with respect to the airstream. When the reproducing means reproduces the VOC adsorbing means, the VOC sensor measures the concentration of the concentrated VOC exhausted from the VOC adsorbing means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、VOC濃度測定装置及びVOC除去システムに関するものである。 The present invention relates to a VOC concentration measuring apparatus and a VOC removal system.

揮発性有機化合物(以下VOCと書く)の一種であるホルムアルデヒドの空気中濃度を常温で高精度に計測できるホルムアルデヒド濃度計が特許文献1に開示されている。特許文献1のホルムアルデヒド濃度計は、常温でホルムアルデヒドが酸化分解する際に発生する反応熱に基づいて濃度計測を行なうように構成されている。
特開2003−240744
Patent Document 1 discloses a formaldehyde concentration meter that can measure the concentration of formaldehyde, which is a kind of volatile organic compound (hereinafter referred to as VOC), in the air with high accuracy at room temperature. The formaldehyde densitometer of Patent Document 1 is configured to perform concentration measurement based on reaction heat generated when formaldehyde is oxidatively decomposed at room temperature.
JP 2003-240744 A

特許文献1の濃度計を使用しても、空気中のホルムアルデヒド濃度が低い場合には、常温でホルムアルデヒドが酸化分解する際に発生する反応熱が低下するので、高精度の計測は難しい。屋内空気中のVOC濃度を規定値以下に制御するVOC除去システムを構築する際に、屋内空気中のVOC濃度が低い場合に、如何にしてVOC濃度を高精度に計測するかが問題となる。
本発明は上記課題に鑑みてなされたものであり、屋内空気中のVOC濃度が低い場合でも、当該濃度を高精度に計測するVOC濃度測定装置と、屋内空気中のVOC濃度が低い場合でも、当該濃度を高精度に計測しつつ、VOCを屋外に排出するVOC除去システムとを提供することを目的とする。
Even if the densitometer of Patent Document 1 is used, if the formaldehyde concentration in the air is low, the reaction heat generated when the formaldehyde is oxidatively decomposed at room temperature decreases, so that high-precision measurement is difficult. When constructing a VOC removal system that controls the VOC concentration in the indoor air to a specified value or less, when the VOC concentration in the indoor air is low, how to measure the VOC concentration with high accuracy becomes a problem.
The present invention has been made in view of the above problems, and even when the VOC concentration in indoor air is low, the VOC concentration measuring device that measures the concentration with high accuracy, and even when the VOC concentration in indoor air is low, An object of the present invention is to provide a VOC removal system that discharges VOCs outdoors while measuring the concentration with high accuracy.

上記課題を解決するために、本発明においては、再生可能なVOC吸着手段と、VOC吸着手段を通過する空気流を発生させる送風手段と、前記空気流に関してVOC吸着手段の上流に配設されVOC吸着手段を再生させる再生手段と、前記空気流に関してVOC吸着手段の下流に配設されたVOCセンサーとを備え、VOCセンサーは前記再生手段が前記VOC吸着手段を再生する際に前記VOC吸着手段から放出される濃縮されたVOCの濃度を計測することを特徴とするVOC濃度測定装置を提供する。
吸着作動時にVOC吸着手段を通過する空気の流量を、再生作動時にVOC吸着手段を通過する空気の流量よりも大にしておけば、再生作動時にVOC吸着手段の下流を流れる空気流中のVOCを、吸着作動時にVOC吸着手段を通過する前の空気流中のVOCよりも濃縮することができる。本発明においては、VOCセンサーは前記再生手段が前記VOC吸着手段を再生する際に前記VOC吸着手段から放出される濃縮されたVOC濃度を計測するので、当該濃度を高精度に計測することができる。吸着作動時にVOC吸着手段を通過する前の空気流中のVOC濃度は、当該濃度が低い場合でも、VOCセンサーが計測したVOC濃度から逆算することにより、間接的に高精度に計測することができる。
In order to solve the above problems, in the present invention, a reproducible VOC adsorption means, a blower means for generating an air flow passing through the VOC adsorption means, and a VOC disposed upstream of the VOC adsorption means with respect to the air flow. A regenerating unit for regenerating the adsorbing unit; and a VOC sensor disposed downstream of the VOC adsorbing unit with respect to the air flow. The VOC sensor is connected to the VOC adsorbing unit when the regenerating unit regenerates the VOC adsorbing unit. There is provided a VOC concentration measuring apparatus characterized by measuring a concentration of concentrated VOC released.
If the flow rate of air passing through the VOC adsorption means during the adsorption operation is set to be larger than the flow rate of air passing through the VOC adsorption means during the regeneration operation, the VOC in the air flow flowing downstream of the VOC adsorption means during the regeneration operation is reduced. Further, it is possible to concentrate more than the VOC in the air flow before passing through the VOC adsorption means during the adsorption operation. In the present invention, since the VOC sensor measures the concentrated VOC concentration released from the VOC adsorption unit when the regeneration unit regenerates the VOC adsorption unit, the concentration can be measured with high accuracy. . The VOC concentration in the airflow before passing through the VOC adsorption means during the adsorption operation can be indirectly measured with high accuracy by calculating backward from the VOC concentration measured by the VOC sensor even when the concentration is low. .

本発明の好ましい態様においては、VOCセンサーはVOC吸着手段を通過した空気流の速度分布が均一化した位置に配設されている。
VOC吸着手段を通過して乱れた空気流の速度分布が均一化し、ひいてはVOC濃度分布が均一化した位置に、VOCセンサーを配設することにより、VOC濃度計測の精度を向上させることができる。
In a preferred embodiment of the present invention, the VOC sensor is disposed at a position where the velocity distribution of the air flow that has passed through the VOC adsorption means is uniform.
By arranging the VOC sensor at a position where the velocity distribution of the turbulent air flow passing through the VOC adsorption means is made uniform and the VOC concentration distribution is made uniform, the accuracy of VOC concentration measurement can be improved.

本発明においては、再生可能なVOC吸着手段と、VOC吸着手段を通過する空気流を発生させる送風手段と、前記空気流に関してVOC吸着手段の上流に配設されVOC吸着手段を再生させる再生手段と、前記空気流に関してVOC吸着手段の下流に配設されたVOCセンサーと、吸着動作中のVOC吸着手段に屋内空気を導きVOC吸着手段を通過した屋内空気を屋内へ戻す第1空気案内装置と、再生中のVOC吸着手段に屋外空気又は屋内空気を導きVOC吸着手段を通過した屋外空気又は屋内空気を屋外へ排出する第2空気案内装置とを備え、VOCセンサーは前記再生手段が前記VOC吸着手段を再生する際に前記VOC吸着手段から放出される濃縮されたVOCの濃度を計測することを特徴とするVOC除去システムを提供する。
吸着作動時にVOC吸着手段を通過する空気の流量を、再生作動時にVOC吸着手段を通過する空気の流量よりも大にしておけば、再生作動時にVOC吸着手段の下流を流れる空気流中のVOCを、吸着作動時にVOC吸着手段を通過する前の空気流中のVOCよりも濃縮することができる。本発明においては、VOCセンサーは前記再生手段が前記VOC吸着手段を再生する際に前記VOC吸着手段から放出される濃縮されたVOCの濃度を計測するので、当該濃度を高精度に計測することができる。吸着作動時にVOC吸着手段を通過する前の空気流中のVOC濃度は、当該濃度が低い場合でも、VOCセンサーが計測したVOC濃度から逆算することにより、間接的に高精度に計測することができる。吸着動作中のVOC吸着手段に屋内空気を導きVOC吸着手段を通過した屋内空気を屋内へ戻し、再生中のVOC吸着手段に屋外空気又は屋内空気を導きVOC吸着手段を通過した屋外空気又は屋内空気を屋外へ排出することにより、屋内空気からVOCを除去して、屋内空気中のVOC濃度を規定値以下まで低下させることができる。
VOC吸着手段を通過して乱れた空気流の速度分布が均一化し、ひいてはVOC濃度分布が均一化した位置に、VOCセンサーを配設することにより、VOC濃度計測の精度を向上させることができる。
In the present invention, a reproducible VOC adsorbing means, an air blowing means for generating an air flow passing through the VOC adsorbing means, and a regenerating means disposed upstream of the VOC adsorbing means with respect to the air flow and regenerating the VOC adsorbing means. A VOC sensor disposed downstream of the VOC adsorption means with respect to the air flow, a first air guide device for introducing indoor air to the VOC adsorption means during the adsorption operation and returning the indoor air that has passed through the VOC adsorption means to the indoors; A second air guide device for guiding outdoor air or indoor air to the VOC adsorption means that is being regenerated and discharging the outdoor air or indoor air that has passed through the VOC adsorption means to the outside, and the VOC sensor includes the VOC adsorption means. A VOC removal system for measuring the concentration of concentrated VOC released from the VOC adsorption means when regenerating
If the flow rate of air passing through the VOC adsorption means during the adsorption operation is set to be larger than the flow rate of air passing through the VOC adsorption means during the regeneration operation, the VOC in the air flow flowing downstream of the VOC adsorption means during the regeneration operation is reduced. Further, it is possible to concentrate more than the VOC in the air flow before passing through the VOC adsorption means during the adsorption operation. In the present invention, the VOC sensor measures the concentration of the concentrated VOC released from the VOC adsorption unit when the regeneration unit regenerates the VOC adsorption unit, so that the concentration can be measured with high accuracy. it can. The VOC concentration in the airflow before passing through the VOC adsorption means during the adsorption operation can be indirectly measured with high accuracy by calculating backward from the VOC concentration measured by the VOC sensor even when the concentration is low. . Indoor air is introduced into the VOC adsorption means during the adsorption operation and the indoor air that has passed through the VOC adsorption means is returned to the indoors, and outdoor air or indoor air is introduced into the VOC adsorption means that is being reproduced and passed through the VOC adsorption means. Can be removed from the indoor air, and the VOC concentration in the indoor air can be lowered to a specified value or less.
By arranging the VOC sensor at a position where the velocity distribution of the turbulent air flow passing through the VOC adsorption means is made uniform and the VOC concentration distribution is made uniform, the accuracy of VOC concentration measurement can be improved.

本発明においては、回転する再生可能なVOC吸着ロータと、回転するVOC吸着ロータの正面視投影上で第1の領域を形成するVOC吸着ロータの吸着領域に屋内空気を流して屋内へ戻すための第1空気流路と、第1空気流路内に配設された第1送風手段と、回転するVOC吸着ロータの正面視投影上で残余の領域を形成するVOC吸着ロータの再生領域に屋外空気又は屋内空気を流して屋外へ排出するための第2空気流路と、第2空気流路内に配設された第2送風手段と、第2空気流路内に且つ第2空気流路内の空気流に関してVOC吸着ロータよりも上流に配設した加熱手段と、第2空気流路内に且つ第2空気流路内の空気流に関してVOC吸着ロータよりも下流に配設したVOCセンサーとを備え、VOCセンサーは前記第2送風手段と前記加熱手段とが作動して前記VOC吸着ロータを再生する際に当該VOC吸着ロータの前記再生領域から放出される濃縮されたVOCの濃度を計測することを特徴とするVOC除去システムを提供する。
本発明に係るVOC除去システムにおいては、第1空気流路を流れる屋内空気中のVOCが回転するVOC吸着ロータの吸着領域に吸着され、回転するVOC吸着ロータの再生領域から第2空気流路を流れる屋外空気又は屋内空気中に放出され、屋外へ排出される。再生領域においてVOCを放出して再生されたVOC吸着ロータは、吸着領域において再びVOCを吸着する。VOC吸着ロータによるVOCの吸着と放出とが繰り返されて、屋内空気中のVOC濃度が規定値以下まで低下する。
第1空気流路内の空気流の流量を第2空気流路内の空気流の流量よりも大に設定しておけば、屋内空気中のVOCが濃縮されて第2空気流路を流れる空気中に放出される。屋内空気中のVOC濃度が低い場合でも、吸着ロータよりも下流の第2空気流路を流れる空気中のVOC濃度は高いので高精度に計測可能である。従って当該計測値から逆算することにより間接的に屋内空気中のVOC濃度を高精度に計測し、屋内空気中のVOC濃度を規定値以下に制御することができる。
第2空気流路内の空気流の速度分布が均一化し、ひいてはVOC濃度分布が均一化した位置に、VOCセンサーを配設することにより、VOC濃度計測の精度を向上させることができる。
VOC吸着ロータのVOC吸着効率は、VOC吸着ロータの吸着領域を流れる屋内空気の温度と湿度とに影響を受けるので、VOCセンサーが計測したVOC濃度から屋内空気中のVOC濃度を正確に逆算するために、第1空気流路内に第1湿度センサーと第1温度センサーとを配設してVOC吸着効率を正確に把握するのが望ましい。
In the present invention, the indoor air is caused to flow indoors through the adsorption area of the rotating VOC adsorption rotor that rotates and the VOC adsorption rotor that forms the first area on the front projection of the rotating VOC adsorption rotor. Outdoor air in the regeneration area of the VOC adsorption rotor that forms a remaining area on the front view projection of the first air flow path, the first air blowing means disposed in the first air flow path, and the rotating VOC adsorption rotor Or the 2nd air flow path for flowing indoor air and discharging | emitting outside, the 2nd ventilation means arrange | positioned in the 2nd air flow path, in the 2nd air flow path and in the 2nd air flow path Heating means disposed upstream of the VOC adsorption rotor with respect to the air flow of the VOC, and a VOC sensor disposed downstream of the VOC adsorption rotor in the second air flow path and with respect to the air flow in the second air flow path. And the VOC sensor is the second blower When the VOC adsorption rotor is regenerated by operating the heating means, the concentration of concentrated VOC released from the regeneration region of the VOC adsorption rotor is measured, and a VOC removal system is provided. .
In the VOC removal system according to the present invention, the VOC in the indoor air flowing through the first air flow path is adsorbed by the adsorption area of the rotating VOC adsorption rotor, and the second air flow path is moved from the regeneration area of the rotating VOC adsorption rotor. It is discharged into flowing outdoor air or indoor air and discharged to the outside. The VOC adsorption rotor that has been regenerated by releasing VOC in the regeneration region again adsorbs VOC in the adsorption region. The adsorption and release of VOC by the VOC adsorption rotor are repeated, and the VOC concentration in the indoor air is reduced to a specified value or less.
If the flow rate of the air flow in the first air flow path is set larger than the flow rate of the air flow in the second air flow path, the air flowing through the second air flow path after the VOC in the indoor air is concentrated Released into. Even when the VOC concentration in the indoor air is low, the VOC concentration in the air flowing through the second air flow path downstream from the adsorption rotor is high, so that it can be measured with high accuracy. Therefore, the VOC concentration in the indoor air can be indirectly measured with high accuracy by calculating backward from the measured value, and the VOC concentration in the indoor air can be controlled to a specified value or less.
By arranging the VOC sensor at a position where the velocity distribution of the air flow in the second air flow path is made uniform and the VOC concentration distribution is made uniform, the accuracy of VOC concentration measurement can be improved.
Since the VOC adsorption efficiency of the VOC adsorption rotor is affected by the temperature and humidity of the indoor air flowing through the adsorption region of the VOC adsorption rotor, the VOC concentration in the indoor air is accurately back-calculated from the VOC concentration measured by the VOC sensor. In addition, it is desirable that the first humidity sensor and the first temperature sensor are disposed in the first air flow path to accurately grasp the VOC adsorption efficiency.

本発明の好ましい態様においては、VOC除去システムは回転する再生可能な水分吸着ロータを備え、第1空気流路は回転する水分吸着ロータの正面視投影上で第1の領域を形成する水分吸着ロータの吸着領域とVOC吸着ロータの吸着領域とに且つ水分吸着ロータからVOC吸着ロータへ向けて屋内空気を流し、第2空気流路は回転する水分吸着ロータの正面視投影上で残余の領域を形成する水分吸着ロータの再生領域とVOC吸着ロータの再生領域とに且つ水分吸着ロータからVOC吸着ロータへ向けて屋外空気又は屋内空気を流して屋外へ排出する。
VOC吸着ロータのVOC吸着領域のVOC吸着性能は当該領域を通過する空気の湿度が高いと低下する。従って、第1空気流路を流れる空気流に関してVOC吸着ロータの吸着領域の上流に水分吸着ロータの吸着領域を配設してVOC吸着ロータの吸着領域を通過する空気の湿度を低下させるのが望ましい。
In a preferred embodiment of the present invention, the VOC removal system includes a rotating and regenerating moisture adsorption rotor, and the first air flow path forms a first region on a front view projection of the rotating moisture adsorption rotor. Indoor air is allowed to flow between the adsorption area of the VOC adsorption rotor and the adsorption area of the VOC adsorption rotor and from the moisture adsorption rotor to the VOC adsorption rotor, and the second air flow path forms a remaining area on the front view projection of the rotating moisture adsorption rotor. The outdoor air or indoor air is allowed to flow through the regeneration region of the moisture adsorption rotor and the regeneration region of the VOC adsorption rotor and from the moisture adsorption rotor to the VOC adsorption rotor and is discharged to the outdoors.
The VOC adsorption performance of the VOC adsorption area of the VOC adsorption rotor decreases when the humidity of the air passing through the area is high. Therefore, it is desirable to reduce the humidity of the air passing through the adsorption region of the VOC adsorption rotor by arranging the adsorption region of the moisture adsorption rotor upstream of the adsorption region of the VOC adsorption rotor with respect to the air flow flowing through the first air flow path. .

本発明の好ましい態様においては、VOC除去システムは、VOCセンサーの検知情報に基づいて第1送風手段及び/又は加熱手段及び/又は第2送風手段の作動を制御する制御手段を備える。
VOCセンサーの検知情報に基づいて第1送風手段及び/又は加熱手段及び/又は第2送風手段の作動を制御することにより、消費エネルギーの無駄を排除しつつ屋内空気のVOC濃度を制御することができる。
In a preferred aspect of the present invention, the VOC removal system includes a control unit that controls the operation of the first blowing unit and / or the heating unit and / or the second blowing unit based on detection information of the VOC sensor.
By controlling the operation of the first blowing means and / or the heating means and / or the second blowing means based on the detection information of the VOC sensor, it is possible to control the VOC concentration of indoor air while eliminating waste of energy consumption. it can.

本発明の好ましい態様においては、制御手段は、VOCセンサーが検知したVOC濃度が規定値以下の場合に、第1送風手段の出力及び/又は加熱手段の出力及び/又は第2送風手段の出力を低下させ、或いは第1送風手段及び/又は加熱手段及び/又は第2送風手段を停止させる。
屋内空気のVOC濃度が規定値以下になれば、それ以上VOCを除去する必要性が低下し或いは無くなるので、第1送風手段の出力及び/又は加熱手段の出力及び/又は第2送風手段の出力を低下させ、或いは第1送風手段及び/又は加熱手段及び/又は第2送風手段を停止させて、消費エネルギーの無駄を排除するのが望ましい。
In a preferred aspect of the present invention, when the VOC concentration detected by the VOC sensor is equal to or less than a specified value, the control unit outputs the output of the first blowing unit and / or the output of the heating unit and / or the output of the second blowing unit. The first blowing unit and / or the heating unit and / or the second blowing unit are stopped.
If the VOC concentration in the indoor air falls below the specified value, the need to remove the VOC further decreases or disappears, so the output of the first blower means and / or the output of the heating means and / or the output of the second blower means It is desirable to reduce wasteful energy consumption by stopping the first air blowing means and / or the heating means and / or the second air blowing means.

本発明の好ましい態様においては、VOC除去シテスムは、第1空気流路内に且つ第1空気流路内の空気流に関して水分吸着ロータよりも上流に配設した第2湿度センサーを備え、制御手段は第2湿度センサーの検知情報に基づいて第1送風手段及び/又は加熱手段及び/又は第2送風手段の作動を制御する。
屋内空気の湿度が適正範囲に在る時には、水分吸着ロータを作動させることにより、VOC吸着ロータの吸着領域を通過する屋内空気の湿度を十分に低下させて、VOC吸着ロータのVOC吸着性能を適正値に維持することができる。従ってこの場合には、第1送風手段及び/又は加熱手段及び/又は第2送風手段の作動を促進して、VOC除去を促進するのが望ましい。一方、屋内空気の湿度が極度に高い場合には、水分吸着ロータを作動させても、VOC吸着ロータの吸着領域を通過する屋内空気の湿度を十分に低下させることができず、VOC吸着ロータのVOC吸着性能は低下する。従ってこの場合には、第1送風手段及び/又は加熱手段及び/又は第2送風手段を作動させても、VOC除去を促進することはできない。従って、水分吸着ロータを配設する場合には、第1空気流路内の空気流に関して水分吸着ロータよりも上流に第2湿度センサーを配設し、第2湿度センサーの検知情報に基づいて第1送風手段及び/又は加熱手段及び/又は第2送風手段の作動を制御して、消費エネルギーの無駄を排除するのが望ましい。
In a preferred aspect of the present invention, the VOC removal system includes a second humidity sensor disposed in the first air flow path and upstream of the moisture adsorption rotor with respect to the air flow in the first air flow path. Controls the operation of the first blowing means and / or the heating means and / or the second blowing means based on the detection information of the second humidity sensor.
When the humidity of the indoor air is within the appropriate range, operating the moisture adsorption rotor will sufficiently reduce the humidity of the indoor air that passes through the adsorption area of the VOC adsorption rotor, so that the VOC adsorption performance of the VOC adsorption rotor is appropriate. Value can be maintained. Therefore, in this case, it is desirable to promote the VOC removal by promoting the operation of the first air blowing means and / or the heating means and / or the second air blowing means. On the other hand, when the humidity of the indoor air is extremely high, even if the moisture adsorption rotor is operated, the humidity of the indoor air passing through the adsorption region of the VOC adsorption rotor cannot be sufficiently reduced. VOC adsorption performance decreases. Therefore, in this case, the VOC removal cannot be promoted even if the first blowing unit and / or the heating unit and / or the second blowing unit are operated. Therefore, when the moisture adsorption rotor is arranged, the second humidity sensor is arranged upstream of the moisture adsorption rotor with respect to the air flow in the first air flow path, and the second humidity sensor is detected based on the detection information of the second humidity sensor. It is desirable to eliminate waste of energy consumption by controlling the operation of the first blowing means and / or the heating means and / or the second blowing means.

本発明の好ましい態様においては、制御手段は、第2湿度センサーが検知した湿度が規定値を超える場合に、第1送風手段の出力及び/又は加熱手段の出力及び/又は第2送風手段の出力を低下させ、或いは第1送風手段及び/又は加熱手段及び/又は第2送風手段を停止させる。
屋内空気の湿度が極度に高い場合には、水分吸着ロータを作動させても、VOC吸着ロータの吸着領域を通過する屋内空気の湿度を十分に低下させることができず、VOC吸着ロータのVOC吸着性能は低下する。この場合には、第1送風手段及び/又は加熱手段及び/又は第2送風手段の作動を促進しても、VOC除去を促進することはできないので、第1送風手段の出力及び/又は加熱手段の出力及び/又は第2送風手段の出力を低下させ、或いは第1送風手段及び/又は加熱手段及び/又は第2送風手段を停止させて、消費エネルギーの無駄を排除するのが望ましい。
In a preferred aspect of the present invention, when the humidity detected by the second humidity sensor exceeds a specified value, the control means outputs the first air blowing means and / or the heating means and / or the second air blowing means. Or the first blowing means and / or the heating means and / or the second blowing means are stopped.
When the humidity of the indoor air is extremely high, even if the moisture adsorption rotor is operated, the humidity of the indoor air passing through the adsorption region of the VOC adsorption rotor cannot be sufficiently reduced, and the VOC adsorption of the VOC adsorption rotor Performance is degraded. In this case, since the VOC removal cannot be promoted even if the operation of the first air blowing means and / or the heating means and / or the second air blowing means is promoted, the output of the first air blowing means and / or the heating means. It is desirable to reduce the output of power and / or the output of the second air blowing means, or stop the first air blowing means and / or the heating means and / or the second air blowing means to eliminate waste of energy consumption.

本発明の好ましい態様においては、制御手段は、第2湿度センサーが検知した湿度が規定値を超える場合に、第1送風手段の出力及び/又は加熱手段の出力及び/又は第2送風手段の出力を低下させ、或いは第1送風手段及び/又は加熱手段及び/又は第2送風手段を停止させ、次いでVOCセンサーが検知したVOC濃度が規定値以下の場合に、第1送風手段の出力及び/又は加熱手段の出力及び/又は第2送風手段の出力を低下させ、或いは第1送風手段及び/又は加熱手段及び/又は第2送風手段を停止させる。
屋内空気の湿度が極度に高い場合には、水分吸着ロータを作動させても、VOC吸着ロータの吸着領域を通過する屋内空気の湿度を十分に低下させることができず、VOC吸着ロータのVOC吸着性能が低下することを勘案すると、屋内空気の湿度に基づく制御と、屋内空気のVOC濃度に基づく制御とを、両方行なう場合には、前者を後者よりも優先的に行なうのが望ましい。
In a preferred aspect of the present invention, when the humidity detected by the second humidity sensor exceeds a specified value, the control means outputs the first air blowing means and / or the heating means and / or the second air blowing means. If the VOC concentration detected by the VOC sensor is equal to or lower than the specified value and / or the first blowing means and / or the heating means and / or the second blowing means is stopped, and / or the output of the first blowing means and / or The output of the heating means and / or the output of the second air blowing means is reduced, or the first air blowing means and / or the heating means and / or the second air blowing means are stopped.
When the humidity of the indoor air is extremely high, even if the moisture adsorption rotor is operated, the humidity of the indoor air passing through the adsorption region of the VOC adsorption rotor cannot be sufficiently reduced, and the VOC adsorption of the VOC adsorption rotor Considering that the performance deteriorates, when both the control based on the humidity of the indoor air and the control based on the VOC concentration of the indoor air are performed, it is desirable to perform the former with priority over the latter.

本発明の好ましい態様においては、VOC除去システムは、第2空気流路内に且つ第2空気流路内の空気流に関してVOC吸着ロータよりも下流に配設した第2温度センサーを備え、制御手段はVOCセンサーの検知情報と第2温度センサーの検知情報とに基づいて加熱手段及び/又は第2送風手段の作動を制御する。
VOC吸着ロータの再生領域のVOC放出性能は、当該部位を流れる空気流の温度に依存する。従って、第2空気流路内に且つ第2空気流路内の空気流に関して加熱手段よりも下流に第2温度センサーを配設し、第2温度センサーの検知情報に基づいて加熱手段及び/又は第2送風手段の作動を制御して、VOC吸着ロータの再生領域を流れる空気流の温度を適正化し、当該領域のVOC放出性能を適正化するのが望ましい。
第2温度センサーの配設位置をVOC吸着ロータよりも下流に且つ第2空気流路内の空気流の速度分布が均一化した位置にすれば、当該位置では空気流の温度分布も均一化していると考えられるので、VOC吸着ロータの再生領域を流れる空気流の平均温度を検知できると考えられる。
In a preferred aspect of the present invention, the VOC removal system includes a second temperature sensor disposed in the second air flow path and downstream of the VOC adsorption rotor with respect to the air flow in the second air flow path. Controls the operation of the heating means and / or the second air blowing means based on the detection information of the VOC sensor and the detection information of the second temperature sensor.
The VOC release performance in the regeneration region of the VOC adsorption rotor depends on the temperature of the air flow flowing through the part. Accordingly, the second temperature sensor is disposed in the second air flow path and downstream of the heating means with respect to the air flow in the second air flow path, and the heating means and / or the It is desirable to control the operation of the second blowing means to optimize the temperature of the air flow flowing through the regeneration region of the VOC adsorption rotor and to optimize the VOC release performance in that region.
If the position where the second temperature sensor is disposed is a position downstream of the VOC adsorption rotor and the velocity distribution of the air flow in the second air flow path is uniform, the temperature distribution of the air flow is also uniform at that position. Therefore, it is considered that the average temperature of the airflow flowing through the regeneration region of the VOC adsorption rotor can be detected.

本発明に係るVOC濃度測定装置においては、VOCセンサーは再生手段がVOC吸着手段を再生する際にVOC吸着手段から放出される濃縮されたVOC濃度を計測するので、当該濃度を高精度に計測することができる。VOC吸着手段を通過する前の空気流中のVOC濃度は、当該濃度が低い場合でも、VOCセンサーが計測したVOC濃度から逆算することにより、間接的に高精度に計測することができる。
本発明に係るVOC除去システムにおいては、VOCセンサーは再生手段がVOC吸着手段を再生する際にVOC吸着手段から放出される濃縮されたVOCの濃度を計測するので、当該濃度を高精度に計測することができる。吸着動作中のVOC吸着手段を通過する屋内空気中のVOC濃度は、当該濃度が低い場合でも、再生手段がVOC吸着手段を再生する際にVOC吸着手段から放出される濃縮されたVOCの濃度から逆算することにより、間接的に高精度に計測することができる。吸着動作中のVOC吸着手段に屋内空気を導きVOC吸着手段を通過した屋内空気を屋内へ戻し、再生中のVOC吸着手段に屋外空気又は屋内空気を導きVOC吸着手段を通過した屋外空気又は屋内空気を屋外へ排出することにより、屋内空気からVOCを除去して、屋内空気中のVOC濃度を規定値以下まで低下させることができる。
In the VOC concentration measuring apparatus according to the present invention, the VOC sensor measures the concentrated VOC concentration released from the VOC adsorption means when the regeneration means regenerates the VOC adsorption means, and thus measures the concentration with high accuracy. be able to. Even when the concentration is low, the VOC concentration in the airflow before passing through the VOC adsorption means can be indirectly measured with high accuracy by calculating backward from the VOC concentration measured by the VOC sensor.
In the VOC removal system according to the present invention, the VOC sensor measures the concentration of the concentrated VOC released from the VOC adsorption unit when the regeneration unit regenerates the VOC adsorption unit, and thus measures the concentration with high accuracy. be able to. The VOC concentration in the indoor air passing through the VOC adsorption means during the adsorption operation is determined from the concentration of the concentrated VOC released from the VOC adsorption means when the regeneration means regenerates the VOC adsorption means even when the concentration is low. By calculating backwards, it is possible to indirectly measure with high accuracy. Indoor air is introduced into the VOC adsorption means during the adsorption operation and the indoor air that has passed through the VOC adsorption means is returned to the indoors, and outdoor air or indoor air is introduced into the VOC adsorption means that is being reproduced and passed through the VOC adsorption means. Can be removed from the indoor air, and the VOC concentration in the indoor air can be lowered to a specified value or less.

本発明の実施例を説明する。 Examples of the present invention will be described.

図1に示すように、VOC除去システムは、図示しないモータにより駆動されて回転する再生可能なVOC吸着ロータ1を備えている。VOC吸着ロータ1は、セラミックペーパーをハニカム状に形成し、この上に疎水性ゼオライト、活性炭等の疎水性吸着剤を担持した素材等の、VOC吸着可能な且つ吸着したVOCを放出してVOC吸着可能状態に再生可能な素材により構成されている。VOC吸着ロータ1に担持される吸着剤は疎水性吸着剤に限定されず、除去したいVOC成分に応じて、親水性ゼオライト、活性アルミナ、シリカゲル等の親水性吸着剤であっても良い。
VOC除去システムは更に、VOC吸着ロータ1の正面視投影上で第1の扇形部分を形成するVOC吸着ロータの吸着領域1aに屋内空気αを流し、吸着領域1aを通過した後の屋内空気α’を屋内へ戻すための第1空気流路2と、第1空気流路2内に配設された第1送風機3と、VOC吸着ロータ1の正面視投影上で残余の扇形部分を形成するVOC吸着ロータの再生領域1bに屋外空気βを流し、再生領域1bを通過した後の屋外空気β’を屋外へ排出するための第2空気流路4と、第2空気流路4内に配設された第2送風機5と、第2空気流路4内に且つ第2空気流路4内の空気流に関してVOC吸着ロータ1よりも上流に配設したVOC吸着ロータ再生用のヒータ6と、第2空気流路4内に且つ第2空気流路4内の空気流に関してVOC吸着ロータ1よりも下流に且つ回転するVOC吸着ロータ1を通過して乱された第2空気流路4内の空気流の速度分布が均一化した位置に配設したVOCセンサー7と、VOCセンサー7の検知情報に基づいて第1送風機3及び/又はヒータ6及び/又は第2送風機5の作動を制御する図示しない制御装置とを備えている。
As shown in FIG. 1, the VOC removal system includes a reproducible VOC adsorption rotor 1 that is rotated by being driven by a motor (not shown). The VOC adsorption rotor 1 is formed by forming ceramic paper in a honeycomb shape, and releasing VOC adsorbable and adsorbed VOC such as a material carrying a hydrophobic adsorbent such as hydrophobic zeolite and activated carbon on the VOC adsorption. It is composed of materials that can be reproduced in a possible state. The adsorbent supported on the VOC adsorption rotor 1 is not limited to a hydrophobic adsorbent, and may be a hydrophilic adsorbent such as hydrophilic zeolite, activated alumina, or silica gel depending on the VOC component to be removed.
The VOC removal system further causes indoor air α to flow through the adsorption region 1a of the VOC adsorption rotor that forms the first fan-shaped portion on the front view projection of the VOC adsorption rotor 1, and the indoor air α ′ after passing through the adsorption region 1a. The first air flow path 2 for returning the air to the indoor, the first blower 3 disposed in the first air flow path 2, and the VOC that forms the remaining fan-shaped portion on the front view projection of the VOC adsorption rotor 1 Arranged in the second air flow path 4 and the second air flow path 4 for flowing outdoor air β through the regeneration area 1 b of the adsorption rotor and discharging the outdoor air β ′ after passing through the regeneration area 1 b to the outside The second air blower 5, the VOC adsorption rotor regeneration heater 6 disposed in the second air flow path 4 and upstream of the VOC adsorption rotor 1 with respect to the air flow in the second air flow path 4; 2 VOC suction in the air flow path 4 and the air flow in the second air flow path 4 A VOC sensor 7 arranged at a position where the velocity distribution of the air flow in the second air flow path 4 disturbed by passing through the rotating VOC adsorption rotor 1 downstream of the landing rotor 1 is made uniform, and the VOC sensor 7 and a control device (not shown) for controlling the operation of the first blower 3 and / or the heater 6 and / or the second blower 5 based on the detection information 7.

本実施例に係るVOC除去システムにおいては、第1空気流路2を流れる屋内空気α中のVOCが、VOC吸着ロータ1の吸着領域1aに吸着され、VOC吸着ロータ1の再生領域1bを通過する加熱された屋外空気β中に放出される。VOCが除去された屋内空気α’は第1空気流路2を通って屋内に戻され、VOCが付加された屋外空気β’は第2空気流路4を通って屋外に排出される。再生領域1bにおいてVOCを放出してVOC吸着可能状態に再生されたVOC吸着ロータ1は、吸着領域1aにおいて再びVOCを吸着する。VOC吸着ロータ1によるVOCの吸着と放出とが繰り返されて、屋内空気α中のVOC濃度が規定値以下まで低下する。 In the VOC removal system according to the present embodiment, the VOC in the indoor air α flowing through the first air flow path 2 is adsorbed by the adsorption region 1a of the VOC adsorption rotor 1 and passes through the regeneration region 1b of the VOC adsorption rotor 1. Released into heated outdoor air β. The indoor air α ′ from which the VOC has been removed is returned indoors through the first air flow path 2, and the outdoor air β ′ to which the VOC has been added is discharged to the outside through the second air flow path 4. The VOC adsorption rotor 1 that has been regenerated in a VOC adsorbable state by releasing VOC in the regeneration area 1b again adsorbs VOC in the adsorption area 1a. The adsorption and release of VOC by the VOC adsorption rotor 1 are repeated, and the VOC concentration in the indoor air α decreases to a specified value or less.

第1空気流路2を流れる屋内空気αの流量を、第2空気流路4を流れる屋外空気βの流量よりも大に設定しておけば、屋外空気β’中のVOCは屋内空気α中のVOCよりも濃縮されている。屋内空気α中のVOC濃度が高精度の計測が不可能な低レベルであっても、屋外空気β’中の濃縮されたVOCの濃度を高精度に計測し、当該濃度から逆算して、間接的に屋内空気α中のVOC濃度を高精度に計測することができる。
間接的に高精度に計測された屋内空気α中のVOC濃度に基づいて、第1送風機3及び/又はヒータ6及び/又は第2送風機5の作動を制御することにより、屋内空気α中のVOC濃度を規定値以下に制御することができる。
If the flow rate of the indoor air α flowing through the first air flow path 2 is set larger than the flow rate of the outdoor air β flowing through the second air flow path 4, the VOC in the outdoor air β ′ is in the indoor air α. It is more concentrated than VOC. Even if the VOC concentration in the indoor air α is at a low level where high-precision measurement is impossible, the concentration of the concentrated VOC in the outdoor air β ′ is measured with high accuracy, and the back-calculation from the concentration is performed indirectly. In particular, the VOC concentration in the indoor air α can be measured with high accuracy.
By controlling the operation of the first blower 3 and / or the heater 6 and / or the second blower 5 based on the VOC concentration in the indoor air α that is indirectly measured with high precision, the VOC in the indoor air α is controlled. The concentration can be controlled below a specified value.

VOCの吸着のみを行なった後に再生のみを行なう場合と、VOCを吸着しつつ再生を行なう場合とに分けて、VOCセンサー7が計測したVOC濃度から屋内空気α中のVOC濃度を逆算する式を以下に示す。
(1)VOC吸着ロータ1と第1送風機3とを作動させ、第2送風機5とヒータ6とを停止させて、屋内空気α中のVOCの吸着のみを所定時間行い、次いで、第1送風機3を停止させ、VOC吸着ロータ1と第2送風機5とヒータ6とを作動させて、VOC吸着ロータ1が吸着したVOCの全量が屋外空気β中へ放出されるまでVOCの放出のみを継続して行なう場合
C1=A×Q2/Q1×η×a・・・・・1
C1:屋内空気α中のVOC濃度
A:VOCセンサー7が計測した屋外空気β’中の濃縮されたVOCの濃度の時間変化曲線が囲む面積(図2参照)
Q1:第1空気流路2を流れる屋内空気αの流量
Q2:第2空気流路4を流れる屋外空気βの流量
η:VOC吸着ロータのVOC吸着効率
a:吸着工程の継続時間
逆算式1を用いて、屋内空気αのVOC濃度を逆算する場合には、屋内空気αのVOC濃度が高いと、VOC吸着工程中にVOC吸着ロータ1が飽和し、逆算した屋内空気αの濃度が不正確になる場合があることに留意する必要がある。この場合、VOC吸着工程の継続時間aを短くすることにより、VOC吸着工程中にVOC吸着ロータ1が飽和する事態の発生を防止し、逆算した屋内空気αの濃度の正確性を維持することができる。
(2)VOC吸着ロータ1と第1送風機3と第2送風機5とヒータ6とを作動させて、VOCの吸着と再生とを同時に行なう場合。但し、吸着領域1aで吸着したVOCが再生領域1bで屋外空気β中に完全に放出されるものとする。
C1=Q2×C2/Q1×η・・・・・2
C1:屋内空気α中のVOC濃度
C2:VOCセンサーが計測した屋外空気β’中の濃縮されたVOC濃度の時間変化曲線の勾配が略零になった時点での濃度値(図3参照)
Q1:第1空気流路2を流れる屋内空気αの流量
Q2:第2空気流路4を流れる屋外空気βの流量
η:VOC吸着ロータのVOC吸着効率
An equation for back-calculating the VOC concentration in the indoor air α from the VOC concentration measured by the VOC sensor 7 is divided into a case where only the regeneration is performed after the adsorption of the VOC and a case where the regeneration is performed while adsorbing the VOC. It is shown below.
(1) The VOC adsorption rotor 1 and the first blower 3 are operated, the second blower 5 and the heater 6 are stopped, and only the VOC in the indoor air α is adsorbed for a predetermined time, and then the first blower 3 The VOC adsorption rotor 1, the second blower 5, and the heater 6 are operated, and only the release of the VOC is continued until the entire amount of VOC adsorbed by the VOC adsorption rotor 1 is released into the outdoor air β. When performing C1 = A × Q2 / Q1 × η × a... 1
C1: VOC concentration in indoor air α A: Area surrounded by a time-varying curve of the concentration of concentrated VOC in outdoor air β ′ measured by the VOC sensor 7 (see FIG. 2)
Q1: Flow rate of indoor air α flowing through the first air flow path 2 Q2: Flow rate of outdoor air β flowing through the second air flow path 4 η: VOC adsorption efficiency of the VOC adsorption rotor a: Inverse calculation time 1 of the adsorption process When the VOC concentration of the indoor air α is calculated backward, if the VOC concentration of the indoor air α is high, the VOC adsorption rotor 1 is saturated during the VOC adsorption process, and the calculated indoor air α concentration is incorrect. It should be noted that sometimes In this case, by shortening the duration a of the VOC adsorption process, it is possible to prevent the situation where the VOC adsorption rotor 1 is saturated during the VOC adsorption process, and to maintain the accuracy of the back-calculated indoor air α concentration. it can.
(2) When the VOC adsorption rotor 1, the first blower 3, the second blower 5, and the heater 6 are operated to simultaneously perform VOC adsorption and regeneration. However, it is assumed that the VOC adsorbed in the adsorption region 1a is completely released into the outdoor air β in the regeneration region 1b.
C1 = Q2 × C2 / Q1 × η 2
C1: VOC concentration in indoor air α C2: Concentration value at the time when the gradient of the time-varying curve of the concentrated VOC concentration in outdoor air β ′ measured by the VOC sensor becomes substantially zero (see FIG. 3)
Q1: Flow rate of indoor air α flowing through first air flow path 2 Q2: Flow rate of outdoor air β flowing through second air flow path 4 η: VOC adsorption efficiency of VOC adsorption rotor

第2空気流路4内の空気流の速度分布が均一化し、ひいてはVOC濃度分布が均一化した位置にVOCセンサー7を配設することにより、VOC濃度計測の精度を高めることができる。一般的に、VOC吸着ロータ1から少なくとも1m程度離してVOCセンサー7を配設するのが望ましい。 By arranging the VOC sensor 7 at a position where the velocity distribution of the air flow in the second air flow path 4 is made uniform and the VOC concentration distribution is made uniform, the accuracy of the VOC concentration measurement can be improved. In general, it is desirable to dispose the VOC sensor 7 at least about 1 m away from the VOC adsorption rotor 1.

VOCセンサー7の検知情報に基づいて第1送風機3及び/又はヒータ6及び/又は第2送風機5の作動を制御することにより、屋内空気α中のVOC濃度が規定値以下に低下しているのにも関わらずVOCの除去を継続することによる消費エネルギーの無駄を排除しつつ、屋内空気α中のVOC濃度を制御することができる。 By controlling the operation of the first blower 3 and / or the heater 6 and / or the second blower 5 based on the detection information of the VOC sensor 7, the VOC concentration in the indoor air α is reduced to a specified value or less. Nevertheless, it is possible to control the VOC concentration in the indoor air α while eliminating waste of energy consumed by continuing the removal of VOC.

屋内空気α中のVOC濃度が規定値以下になれば、それ以上VOCを除去する必要は無くなるので、第1送風機3の出力及び/又はヒータ6の出力及び/又は第2送風機5の出力を低下させ、或いは第1送風機3及び/又はヒータ6及び/又は第2送風機5を停止させて、消費エネルギーの無駄を排除するのが望ましい。 If the VOC concentration in the indoor air α is lower than the specified value, it is not necessary to remove the VOC any more, so the output of the first blower 3 and / or the output of the heater 6 and / or the output of the second blower 5 is reduced. Alternatively, it is desirable to eliminate the waste of energy consumption by stopping the first blower 3 and / or the heater 6 and / or the second blower 5.

VOC吸着ロータ1のVOC吸着効率ηは、吸着領域1aを流れる屋内空気αの温度と湿度とに影響を受けるので、VOCセンサー7が計測した屋外空気β’のVOC濃度から屋内空気αのVOC濃度を正確に逆算するために、図1に一点鎖線で示すように、第1空気流路2内に第1湿度センサー8と第1温度センサー9とを配設してVOC吸着効率を正確に把握するのが望ましい。 Since the VOC adsorption efficiency η of the VOC adsorption rotor 1 is affected by the temperature and humidity of the indoor air α flowing through the adsorption region 1a, the VOC concentration of the indoor air α is determined from the VOC concentration of the outdoor air β ′ measured by the VOC sensor 7. 1 is accurately calculated, the first humidity sensor 8 and the first temperature sensor 9 are arranged in the first air flow path 2 to accurately grasp the VOC adsorption efficiency, as shown by a one-dot chain line in FIG. It is desirable to do.

VOC吸着ロータの吸着領域1aと再生領域1bの形状は、扇形に限定されない。円形、長方形、台形等でも良い。
図1では、第1送風機3、第2送風機5を、空気流に関してVOC吸着ロータ1の上流側に配設したが、第1送風機3、第2送風機5の配設位置は、第1空気流路2、第2空気流路4の中であれば、どこでも良い。
VOCセンサー7の構成は、特許文献1に開示されたものに限定されない。
VOC吸着ロータ1の回転は、連続回転でも良く、所定角度毎のステップ状の回転でも良い。
屋外空気βに代えて屋内空気αを第2空気流路4に流しても良い。この場合は、屋内空気α中のVOC濃度の逆算式は上述の式とは若干異なるものになる。
The shapes of the adsorption region 1a and the regeneration region 1b of the VOC adsorption rotor are not limited to the sector shape. It may be circular, rectangular, trapezoidal or the like.
In FIG. 1, the first blower 3 and the second blower 5 are arranged on the upstream side of the VOC adsorption rotor 1 with respect to the air flow, but the arrangement positions of the first blower 3 and the second blower 5 are the first air flow. Any place in the path 2 and the second air flow path 4 may be used.
The configuration of the VOC sensor 7 is not limited to that disclosed in Patent Document 1.
The rotation of the VOC adsorption rotor 1 may be continuous rotation or stepwise rotation for each predetermined angle.
Instead of the outdoor air β, the indoor air α may flow through the second air flow path 4. In this case, the reverse calculation formula of the VOC concentration in the indoor air α is slightly different from the above formula.

図4に示すように、第1実施例のVOC除去システムに、回転する再生可能な水分吸着ロータ10を付加し、第1空気流路2は回転する水分吸着ロータ10の正面視投影上で第1の扇形部分を形成する水分吸着ロータの吸着領域10aとVOC吸着ロータ1の吸着領域1aとに且つ水分吸着ロータ10からVOC吸着ロータ1へ向けて屋内空気αを流し、第2空気流路4は回転する水分吸着ロータ10の正面視投影上で残余の扇形部分を形成する水分吸着ロータの再生領域10bとVOC吸着ロータ1の再生領域1bとに且つ水分吸着ロータ10からVOC吸着ロータ1へ向けて屋外空気βを流して屋外へ排出するように構成しても良い。水分吸着ロータ10は、セラミックペーパーをハニカム状に形成し、この上に親水性ゼオライト、活性アルミナ、シリカゲルなどの親水性吸着剤を担持した素材等により構成する。
一般に、VOC吸着ロータ1のVOC吸着領域1aのVOC吸着性能は当該領域を通過する空気の湿度が高いと低下するので、第1空気流路2を流れる屋内空気αの流れに関して、VOC吸着ロータ1の吸着領域1aの上流に、水分吸着ロータ10の吸着領域10aを配設して、VOC吸着ロータ1の吸着領域1aを通過する屋内空気αの湿度を低下させるのが望ましい。
As shown in FIG. 4, a recyclable moisture adsorption rotor 10 is added to the VOC removal system of the first embodiment, and the first air flow path 2 is the first on the front view projection of the rotating moisture adsorption rotor 10. The indoor air α is allowed to flow from the moisture adsorption rotor 10 toward the VOC adsorption rotor 1 through the adsorption region 10a of the moisture adsorption rotor and the adsorption region 1a of the VOC adsorption rotor 1 that form one fan-shaped portion. Is the regeneration region 10b of the moisture adsorption rotor and the regeneration region 1b of the VOC adsorption rotor 1 that form the remaining fan-shaped portion on the front view projection of the rotating moisture adsorption rotor 10, and from the moisture adsorption rotor 10 to the VOC adsorption rotor 1. The outdoor air β may be allowed to flow and discharged to the outdoors. The moisture adsorption rotor 10 is made of a material or the like in which ceramic paper is formed in a honeycomb shape and a hydrophilic adsorbent such as hydrophilic zeolite, activated alumina, or silica gel is supported thereon.
In general, the VOC adsorption performance of the VOC adsorption region 1a of the VOC adsorption rotor 1 decreases when the humidity of the air passing through the region is high. Therefore, with respect to the flow of the indoor air α flowing through the first air flow path 2, the VOC adsorption rotor 1 It is desirable to dispose the adsorption region 10a of the moisture adsorption rotor 10 upstream of the adsorption region 1a to reduce the humidity of the indoor air α passing through the adsorption region 1a of the VOC adsorption rotor 1.

屋内空気αの湿度が適正範囲に在る時には、水分吸着ロータ10を作動させることにより、VOC吸着ロータ1の吸着領域1aを通過する屋内空気αの湿度を十分に低下させて、VOC吸着ロータ1のVOC吸着性能を適正値に維持することができる。従ってこの場合には、第1送風機3及び/又はヒータ6及び/又は第2送風機5の作動を促進して、VOC除去を促進するのが望ましい。一方、屋内空気αの湿度が極度に高い場合には、水分吸着ロータ10を作動させても、VOC吸着ロータ1の吸着領域1aを通過する屋内空気αの湿度を十分に低下させることができず、VOC吸着ロータ1のVOC吸着性能は低下する。従ってこの場合には、第1送風機3及び/又はヒータ6及び/又は第2送風機5を作動させても、VOC除去を促進することはできない。従って、水分吸着ロータ10を配設する場合には、図4に一点鎖線で示すように、第1空気流路内2の空気流に関して水分吸着ロータ10よりも上流に第2湿度センサー11を配設し、第2湿度センサー11の検知情報に基づいて第1送風機3及び/又はヒータ6及び/又は第2送風機5の作動を制御して、消費エネルギーの無駄を排除するのが望ましい。 When the humidity of the indoor air α is within an appropriate range, the humidity of the indoor air α passing through the adsorption region 1a of the VOC adsorption rotor 1 is sufficiently lowered by operating the moisture adsorption rotor 10, and the VOC adsorption rotor 1. The VOC adsorption performance can be maintained at an appropriate value. Therefore, in this case, it is desirable to promote the operation of the first blower 3 and / or the heater 6 and / or the second blower 5 to promote VOC removal. On the other hand, when the humidity of the indoor air α is extremely high, the humidity of the indoor air α passing through the adsorption region 1a of the VOC adsorption rotor 1 cannot be sufficiently reduced even if the moisture adsorption rotor 10 is operated. The VOC adsorption performance of the VOC adsorption rotor 1 is reduced. Therefore, in this case, even if the first blower 3 and / or the heater 6 and / or the second blower 5 are operated, VOC removal cannot be promoted. Therefore, when the moisture adsorption rotor 10 is disposed, the second humidity sensor 11 is arranged upstream of the moisture adsorption rotor 10 with respect to the air flow in the first air flow path 2 as shown by a one-dot chain line in FIG. It is desirable to control the operation of the first blower 3 and / or the heater 6 and / or the second blower 5 based on the detection information of the second humidity sensor 11 to eliminate waste of energy consumption.

屋内空気αの湿度が極度に高い場合には、水分吸着ロータ10を作動させても、VOC吸着ロータ1の吸着領域1aを通過する屋内空気αの湿度を十分に低下させることができず、VOC吸着ロータ1のVOC吸着性能は低下する。この場合には、第1送風機3及び/又はヒータ6及び/又は第2送風機5の作動を促進しても、VOC除去を促進することはできないので、第1送風機3の出力及び/又はヒータ6の出力及び/又は第2送風機5の出力を低下させ、或いは第1送風機3及び/又はヒータ6及び/又は第2送風機5を停止させて、消費エネルギーの無駄を排除するのが望ましい。 When the humidity of the indoor air α is extremely high, even if the moisture adsorption rotor 10 is operated, the humidity of the indoor air α passing through the adsorption region 1a of the VOC adsorption rotor 1 cannot be sufficiently reduced, and the VOC The VOC adsorption performance of the adsorption rotor 1 decreases. In this case, even if the operation of the first blower 3 and / or the heater 6 and / or the second blower 5 is promoted, the VOC removal cannot be promoted, so the output of the first blower 3 and / or the heater 6 And / or the output of the second blower 5 is reduced, or the first blower 3 and / or the heater 6 and / or the second blower 5 are stopped to eliminate waste of energy consumption.

屋内空気αの湿度が極度に高い場合には、水分吸着ロータ10を作動させても、VOC吸着ロータ1の吸着領域1aを通過する屋内空気αの湿度を十分に低下させることができず、VOC吸着ロータ1のVOC吸着性能が低下することを勘案すると、屋内空気αの湿度に基づく制御と、屋内空気αのVOC濃度に基づく制御とを、両方行なう場合には、前者を後者よりも優先的に行なうのが望ましい。 When the humidity of the indoor air α is extremely high, even if the moisture adsorption rotor 10 is operated, the humidity of the indoor air α passing through the adsorption region 1a of the VOC adsorption rotor 1 cannot be sufficiently reduced, and the VOC Considering that the VOC adsorption performance of the adsorption rotor 1 is lowered, when both the control based on the humidity of the indoor air α and the control based on the VOC concentration of the indoor air α are performed, the former is given priority over the latter. It is desirable to do this.

第2実施例に係るVOC除去システムを、常時連続運転する場合の当該システムの作動を図5のフローチャートに基づいて説明する。
システムの主電源をONするとシステムが作動開始する。制御装置は、第1送風機3、第2送風機5、ヒータ6の出力を規定出力にして、VOC除去を開始する(S1)。
制御装置は、第1空気流路2を流れる屋内空気αの湿度が基準値を超える場合には、VOC除去の実効性が期待できないと判断して第1送風機3及び/又はヒータ6及び/又は第2送風機5の出力を低下させ、或いは第1送風機3及び/又ヒータ6及び/又は第2送風機5を停止させ(S2〜S3)、第1空気流路2を流れる屋内空気αの湿度が基準値以内の場合には、VOC除去の実効性が期待できると判断して第1送風機3、第2送風機5、ヒータ6の出力を規定値に維持する(S2)。
制御装置は、第2空気流路4を流れる屋外空気β’中のVOC濃度から逆算した屋内空気α中のVOC濃度が第1基準値を超えている間は、VOC濃度に基づく第1送風機3、第2送風機5、ヒータ6の出力制御を行なうことなくVOC除去を続行し(S4、S1〜S4)、屋外空気β’中のVOC濃度から逆算した屋内空気α中のVOC濃度が第1基準値以下になると、消費電力の節約のために、第1送風機3及び/又はヒータ6及び/又は第2送風機5の出力を低下させる(S4〜S5)。
制御装置は、第2空気流路4を流れる屋外空気β’中のVOC濃度から逆算した屋内空気α中のVOC濃度が第1基準値以下で第2基準値を超えている間は、第1送風機3及び/又はヒータ6及び/又は第2送風機5の出力を更に低下させることなく、VOC除去を続行し(S6、S1〜S6)、屋外空気β’中のVOC濃度から逆算した屋内空気α中のVOC濃度が第2基準値以下になると消費電力の節約のために、第1送風機3及び/又はヒータ6及び/又は第2送風機5の出力を更に低下させ、或いは第1送風機3及び/又はヒータ6及び/又は第2送風機5を停止させる(S6〜S7)。
上記作動が維持されることにより、屋内空気α中のVOC濃度は第2基準値以下に維持される。
第2実施例に係るVOC除去システムの作動は、上記のフローに限定されない。常時連続運転に代えて、屋内空気αの湿度が所定値以下の場合にのみ、システムを運転しても良い。
The operation of the VOC removal system according to the second embodiment when the system is continuously operated will be described with reference to the flowchart of FIG.
When the main power supply of the system is turned on, the system starts operating. The control device sets the outputs of the first blower 3, the second blower 5, and the heater 6 as specified outputs, and starts VOC removal (S1).
When the humidity of the indoor air α flowing through the first air flow path 2 exceeds the reference value, the control device determines that the effectiveness of VOC removal cannot be expected and determines the first blower 3 and / or the heater 6 and / or The output of the second blower 5 is reduced, or the first blower 3 and / or the heater 6 and / or the second blower 5 are stopped (S2 to S3), and the humidity of the indoor air α flowing through the first air flow path 2 is increased. If it is within the reference value, it is determined that the effectiveness of VOC removal can be expected, and the outputs of the first blower 3, the second blower 5, and the heater 6 are maintained at specified values (S2).
While the VOC concentration in the indoor air α calculated backward from the VOC concentration in the outdoor air β ′ flowing through the second air flow path 4 exceeds the first reference value, the control device 1st fan 3 based on the VOC concentration. The VOC removal is continued without controlling the output of the second blower 5 and the heater 6 (S4, S1 to S4), and the VOC concentration in the indoor air α calculated backward from the VOC concentration in the outdoor air β ′ is the first reference. If it becomes below a value, in order to save power consumption, the output of the 1st air blower 3 and / or the heater 6 and / or the 2nd air blower 5 will be reduced (S4-S5).
While the VOC concentration in the indoor air α calculated backward from the VOC concentration in the outdoor air β ′ flowing through the second air flow path 4 is below the first reference value and exceeds the second reference value, the control device VOC removal is continued without further reducing the output of the blower 3 and / or the heater 6 and / or the second blower 5 (S6, S1 to S6), and the indoor air α calculated backward from the VOC concentration in the outdoor air β ′. If the VOC concentration in the medium becomes equal to or lower than the second reference value, the output of the first blower 3 and / or the heater 6 and / or the second blower 5 is further reduced or the first blower 3 and / or Or the heater 6 and / or the 2nd air blower 5 are stopped (S6-S7).
By maintaining the above operation, the VOC concentration in the indoor air α is maintained below the second reference value.
The operation of the VOC removal system according to the second embodiment is not limited to the above flow. Instead of continuous operation at all times, the system may be operated only when the humidity of the indoor air α is equal to or lower than a predetermined value.

VOC吸着ロータ1の再生領域1bのVOC放出性能は、当該部位を流れる屋外空気βの温度に依存する。前記温度が上昇するとVOC放出性能は上昇し、前記温度が下降するとVOC放出性能も下降する。従って、図1、4に一点鎖線で示すように、第2空気流路4内に且つ第2空気流路4内の空気流に関してヒータ6よりも下流に第2温度センサー12を配設し、第2温度センサー12の検知情報に基づいてヒータ6及び/又は第2送風機5の作動を制御して、VOC吸着ロータ1の再生領域1bを流れる屋外空気βの温度を適正化し、再生領域1bのVOC放出性能を適正化するのが望ましい。
第2温度センサー12の配設位置をVOC吸着ロータ1よりも下流に且つ第2空気流路4内の空気流の速度分布が均一化した位置にすれば、当該位置では空気流の温度分布も均一化していると考えられるので、VOC吸着ロータ1の再生領域1bを流れる空気流の平均温度を検知できると考えられる。
The VOC release performance of the regeneration region 1b of the VOC adsorption rotor 1 depends on the temperature of the outdoor air β flowing through the part. When the temperature rises, the VOC release performance rises, and when the temperature falls, the VOC release performance falls. Accordingly, as shown by the one-dot chain line in FIGS. 1 and 4, the second temperature sensor 12 is disposed in the second air flow path 4 and downstream of the heater 6 with respect to the air flow in the second air flow path 4. Based on the detection information of the second temperature sensor 12, the operation of the heater 6 and / or the second blower 5 is controlled to optimize the temperature of the outdoor air β flowing in the regeneration region 1b of the VOC adsorption rotor 1, and It is desirable to optimize VOC release performance.
If the position where the second temperature sensor 12 is disposed is a position downstream of the VOC adsorption rotor 1 and the velocity distribution of the air flow in the second air flow path 4 is uniform, the temperature distribution of the air flow is also at that position. Since it is considered that the temperature is uniform, it is considered that the average temperature of the airflow flowing through the regeneration region 1b of the VOC adsorption rotor 1 can be detected.

実施例1において、回転するVOC吸着ロータ1に代えて、図6に示すように、回転しない再生可能なVOC吸着装置1’を第1空気流路2と第2空気流路4との間で移動可能に配設しても良い。
VOC吸着装置1’を第1空気流路2中に置き、所定時間に亙って第1送風機3を作動させ、第1空気流路2に屋内空気αを流して屋内空気α中のVOCをVOC吸着装置1’に吸着させ、VOC吸着装置1’を通過した屋内空気α’を屋内へ戻す。次いでVOC吸着装置1’を第2空気流路4へ移動させ、第2送風機5とヒータ6とを作動させて、第2空気流路4に屋外空気βを流し、VOC吸着装置1’を再生しつつVOC吸着装置1’を通過した屋外空気β’中のVOC濃度をVOCセンサー7で計測し、計測済の屋外空気β’を屋外に排出する。VOCセンサー7で計測しVOC濃度の時間変化曲線が囲む面積に基づいて、実施例1に記載した逆算式1を用いて屋内空気α中のVOC濃度を逆算する。
屋内空気αの流量を屋外空気βの流量よりも大にしておけば、屋外空気β’中のVOCは、屋内空気α中のVOCよりも濃縮されている。従って、屋内空気αのVOC濃度が低い場合でも、屋外空気β’中の高濃度のVOCの濃度を正確に計測し、当該濃度から逆算して、間接的に屋内空気αのVOC濃度を正確に計測することができる。
VOC吸着装置1’によるVOCの吸着とVOC吸着装置1’の再生とを交互に繰り返すことにより、屋内空気αのVOC濃度を規定値以下まで低下させることができる。
In the first embodiment, instead of the rotating VOC adsorption rotor 1, as shown in FIG. 6, a recyclable VOC adsorption device 1 ′ that does not rotate is interposed between the first air flow path 2 and the second air flow path 4. You may arrange | position so that a movement is possible.
The VOC adsorption device 1 ′ is placed in the first air flow path 2, the first blower 3 is operated for a predetermined time, and the indoor air α is caused to flow through the first air flow path 2 so that the VOC in the indoor air α is The indoor air α ′ that has been adsorbed by the VOC adsorption device 1 ′ and passed through the VOC adsorption device 1 ′ is returned indoors. Next, the VOC adsorption device 1 ′ is moved to the second air flow path 4, the second blower 5 and the heater 6 are operated, the outdoor air β is caused to flow through the second air flow path 4, and the VOC adsorption device 1 ′ is regenerated. However, the VOC concentration in the outdoor air β ′ that has passed through the VOC adsorption device 1 ′ is measured by the VOC sensor 7, and the measured outdoor air β ′ is discharged outdoors. Based on the area measured by the VOC sensor 7 and surrounded by the time variation curve of the VOC concentration, the VOC concentration in the indoor air α is calculated backward using the inverse calculation formula 1 described in the first embodiment.
If the flow rate of the indoor air α is made larger than the flow rate of the outdoor air β, the VOC in the outdoor air β ′ is more concentrated than the VOC in the indoor air α. Therefore, even when the VOC concentration of the indoor air α is low, the concentration of the high concentration VOC in the outdoor air β ′ is accurately measured, and the VOC concentration of the indoor air α is accurately calculated indirectly by calculating back from the concentration. It can be measured.
By alternately repeating the adsorption of VOC by the VOC adsorption device 1 ′ and the regeneration of the VOC adsorption device 1 ′, the VOC concentration of the indoor air α can be lowered to a specified value or less.

実施例1において、回転するVOC吸着ロータ1に代えて、図7に示すように、回転しない再生可能なVOC吸着装置1’を第2空気流路4内に配設し、第1空気流路2を第2空気流路4に併設するのに代えて、第2空気流路4の空気流に関してのVOC吸着装置1’よりも下流の部位から、第1空気流路2を分岐させ、第1空気流路2の分岐点に流路切り替えダンパー13を配設しても良い。
ダンパー13を第2流路4側へ回動させて第1空気流路2の分岐点よりも下流側の第1空気流路4への空気流の流入を阻止した上で、所定時間に亙って第2空気流路4から第1空気流路2へ向けて屋内空気αを流して屋内空気α中のVOCをVOC吸着装置1’に吸着させ、VOC吸着装置1’を通過した屋内空気α’を屋内へ戻す。次いでダンパー13を第1流路2側へ回動させて第1空気流路2への空気流の流入を阻止した上で、ヒータ6を作動させると共第2空気流路4に屋外空気βを流し、VOC吸着装置1’を再生しつつVOC吸着装置1’を通過した屋外空気β’中のVOC濃度をVOCセンサー7で計測し、計測済の屋外空気β’を屋外に排出する。VOCセンサー7で計測しVOC濃度の時間変化曲線が囲む面積に基づいて、実施例1に記載した逆算式1を用いて屋内空気α中のVOC濃度を逆算する。
屋内空気αの流量を屋外空気βの流量よりも大にしておけば、屋外空気β’中のVOCは、屋内空気α中のVOCよりも濃縮されている。従って、屋内空気αのVOC濃度が低い場合でも、屋外空気β’中の高濃度のVOCの濃度を正確に計測し、当該濃度から逆算して、間接的に屋内空気αのVOC濃度を正確に計測することができる。
VOC吸着装置1’によるVOCの吸着とVOC吸着装置1’の再生とを交互に繰り返すことにより、屋内空気αのVOC濃度を規定値以下まで低下させることができる。
In the first embodiment, instead of the rotating VOC adsorption rotor 1, as shown in FIG. 7, a recyclable VOC adsorption device 1 ′ that does not rotate is disposed in the second air flow path 4, and the first air flow path 2 is provided along with the second air flow path 4, the first air flow path 2 is branched from a portion downstream of the VOC adsorption device 1 ′ with respect to the air flow of the second air flow path 4, A flow path switching damper 13 may be disposed at a branch point of the 1 air flow path 2.
The damper 13 is rotated to the second flow path 4 side to prevent the air flow from flowing into the first air flow path 4 downstream from the branch point of the first air flow path 2 and then, after a predetermined time, Thus, the indoor air α flows from the second air flow path 4 toward the first air flow path 2 so that the VOC in the indoor air α is adsorbed by the VOC adsorption device 1 ′, and the indoor air that has passed through the VOC adsorption device 1 ′. Return α 'to indoors. Next, when the damper 13 is rotated to the first flow path 2 side to prevent the air flow from flowing into the first air flow path 2 and the heater 6 is operated, the outdoor air β is brought into the second air flow path 4 together. The VOC concentration in the outdoor air β ′ that has passed through the VOC adsorption device 1 ′ is measured by the VOC sensor 7 while the VOC adsorption device 1 ′ is regenerated, and the measured outdoor air β ′ is discharged outdoors. Based on the area measured by the VOC sensor 7 and surrounded by the time variation curve of the VOC concentration, the VOC concentration in the indoor air α is calculated backward using the inverse calculation formula 1 described in the first embodiment.
If the flow rate of the indoor air α is made larger than the flow rate of the outdoor air β, the VOC in the outdoor air β ′ is more concentrated than the VOC in the indoor air α. Therefore, even when the VOC concentration of the indoor air α is low, the concentration of the high concentration VOC in the outdoor air β ′ is accurately measured, and the VOC concentration of the indoor air α is accurately calculated indirectly by calculating back from the concentration. It can be measured.
By alternately repeating the adsorption of VOC by the VOC adsorption device 1 ′ and the regeneration of the VOC adsorption device 1 ′, the VOC concentration of the indoor air α can be lowered to a specified value or less.

本発明は、VOC除去システムに広く利用可能である。   The present invention is widely applicable to VOC removal systems.

本発明の第1実施例に係るVOC除去システムの機器構成図である。(a)は側面図であり、(b)は(a)のb−b矢視図である。It is an apparatus block diagram of the VOC removal system which concerns on 1st Example of this invention. (A) is a side view, (b) is a bb arrow line view of (a). 再生中のVOC吸着ロータを通過した屋外空気中のVOC濃度の時間変化曲線である。It is a time change curve of the VOC density | concentration in the outdoor air which passed the VOC adsorption | suction rotor during reproduction | regeneration. 再生中のVOC吸着ロータを通過した屋外空気中のVOC濃度の時間変化曲線である。It is a time change curve of the VOC density | concentration in the outdoor air which passed the VOC adsorption | suction rotor during reproduction | regeneration. 本発明の第2実施例に係るVOC除去システムの機器構成図である。It is an apparatus block diagram of the VOC removal system which concerns on 2nd Example of this invention. 本発明の第2実施例に係るVOC除去システムを、常時連続運転する場合の当該システムの作動のフローチャートである。It is a flowchart of the operation | movement of the said system in the case of always operating continuously the VOC removal system which concerns on 2nd Example of this invention. 本発明の第4実施例に係るVOC除去システムの機器構成図である。It is an apparatus block diagram of the VOC removal system which concerns on 4th Example of this invention. 本発明の第5実施例に係るVOC除去システムの機器構成図である。It is an apparatus block diagram of the VOC removal system which concerns on 5th Example of this invention.

符号の説明Explanation of symbols

1 VOC吸着ロータ
1a 吸着領域
1b 再生領域
2、4 空気流路
3、5 送風機
6 ヒータ
7 VOCセンサー
8、11 湿度センサー
9、12 温度センサー
10 水分吸着ロータ
10a 吸着領域
10b 再生領域
α 屋内空気
α’ VOCを除去された屋内空気
β 屋外空気
β’ VOCを付加された屋外空気
DESCRIPTION OF SYMBOLS 1 VOC adsorption | suction rotor 1a Adsorption area | region 1b Regeneration area | region 2, 4 Air flow path 3, 5 Blower 6 Heater 7 VOC sensor 8, 11 Humidity sensor 9, 12 Temperature sensor 10 Moisture adsorption rotor 10a Adsorption area | region 10b Reproduction area | region alpha Indoor air alpha ' Indoor air β with VOC removed Outdoor air β 'Outdoor air with VOC added

Claims (17)

再生可能なVOC吸着手段と、VOC吸着手段を通過する空気流を発生させる送風手段と、前記空気流に関してVOC吸着手段の上流に配設されVOC吸着手段を再生させる再生手段と、前記空気流に関してVOC吸着手段の下流に配設されたVOCセンサーとを備え、VOCセンサーは前記再生手段が前記VOC吸着手段を再生する際に前記VOC吸着手段から放出される濃縮されたVOCの濃度を計測することを特徴とするVOC濃度測定装置。 A reproducible VOC adsorbing means, a blowing means for generating an air flow passing through the VOC adsorbing means, a regenerating means disposed upstream of the VOC adsorbing means with respect to the air flow and regenerating the VOC adsorbing means, and the air flow A VOC sensor disposed downstream of the VOC adsorption means, and the VOC sensor measures the concentration of the concentrated VOC released from the VOC adsorption means when the regeneration means regenerates the VOC adsorption means. VOC concentration measuring device characterized by the above. VOCセンサーはVOC吸着手段を通過した空気流の速度分布が均一化した位置に配設されていることを特徴とする請求項1に記載のVOC濃度測定装置。 2. The VOC concentration measuring apparatus according to claim 1, wherein the VOC sensor is disposed at a position where the velocity distribution of the air flow that has passed through the VOC adsorption means is uniform. 再生可能なVOC吸着手段と、VOC吸着手段を通過する空気流を発生させる送風手段と、前記空気流に関してVOC吸着手段の上流に配設されVOC吸着手段を再生させる再生手段と、前記空気流に関してVOC吸着手段の下流に配設されたVOCセンサーと、吸着動作中のVOC吸着手段に屋内空気を導きVOC吸着手段を通過した屋内空気を屋内へ戻す第1空気案内装置と、再生中のVOC吸着手段に屋外空気又は屋内空気を導きVOC吸着手段を通過した屋外空気又は屋内空気を屋外へ排出する第2空気案内装置とを備え、VOCセンサーは前記再生手段が前記VOC吸着手段を再生する際に前記VOC吸着手段から放出される濃縮されたVOCの濃度を計測することを特徴とするVOC除去システム。 A reproducible VOC adsorbing means, a blowing means for generating an air flow passing through the VOC adsorbing means, a regenerating means disposed upstream of the VOC adsorbing means with respect to the air flow and regenerating the VOC adsorbing means, and the air flow A VOC sensor disposed downstream of the VOC adsorption means, a first air guide device for introducing indoor air to the VOC adsorption means during adsorption operation and returning the indoor air that has passed through the VOC adsorption means to the indoors, and the VOC adsorption being regenerated A second air guide device for guiding outdoor air or indoor air to the means and discharging outdoor air or indoor air that has passed through the VOC adsorption means to the outside, and the VOC sensor is used when the regeneration means regenerates the VOC adsorption means. A VOC removal system that measures the concentration of concentrated VOC released from the VOC adsorption means. VOCセンサーはVOC吸着手段を通過した空気流の速度分布が均一化した位置に配設されていることを特徴とする請求項3に記載のVOC除去システム。 4. The VOC removal system according to claim 3, wherein the VOC sensor is disposed at a position where the velocity distribution of the air flow that has passed through the VOC adsorption means is made uniform. 回転する再生可能なVOC吸着ロータと、回転するVOC吸着ロータの正面視投影上で第1の領域を形成するVOC吸着ロータの吸着領域に屋内空気を流して屋内へ戻すための第1空気流路と、第1空気流路内に配設された第1送風手段と、回転するVOC吸着ロータの正面視投影上で残余の領域を形成するVOC吸着ロータの再生領域に屋外空気又は屋内空気を流して屋外へ排出するための第2空気流路と、第2空気流路内に配設された第2送風手段と、第2空気流路内に且つ第2空気流路内の空気流に関してVOC吸着ロータよりも上流に配設した加熱手段と、第2空気流路内に且つ第2空気流路内の空気流に関してVOC吸着ロータよりも下流に配設したVOCセンサーとを備え、VOCセンサーは前記第2送風手段と前記加熱手段とが作動して前記VOC吸着ロータを再生する際に当該VOC吸着ロータの前記再生領域から放出される濃縮されたVOCの濃度を計測することを特徴とするVOC除去システム。 A recyclable VOC adsorption rotor that rotates, and a first air flow path for flowing indoor air back into the adsorption area of the VOC adsorption rotor that forms a first area on a front view projection of the rotating VOC adsorption rotor Outdoor air or indoor air is allowed to flow in the regeneration area of the VOC adsorption rotor that forms the remaining area on the front view projection of the rotating VOC adsorption rotor and the first air blowing means disposed in the first air flow path. The second air flow path for discharging to the outdoors, the second air blowing means disposed in the second air flow path, and the VOC in the second air flow path and the air flow in the second air flow path A heating means disposed upstream of the adsorption rotor and a VOC sensor disposed in the second air flow path and downstream of the VOC adsorption rotor with respect to the air flow in the second air flow path, The second blowing means and the heating means; VOC removal system, characterized in that for measuring the concentration of the concentrated VOC emitted from the regeneration zone of the VOC adsorption rotor when operating to reproduce the VOC adsorption rotor. VOCセンサーを第2空気流路内の空気流の速度分布が均一化した位置に配設したことを特徴とする請求項5に記載のVOC除去システム。 6. The VOC removal system according to claim 5, wherein the VOC sensor is disposed at a position where the velocity distribution of the air flow in the second air flow path is uniform. 第1空気流路内に配設した第1湿度センサーと第1温度センサーとを備えることを特徴とする請求項5又は6に記載のVOC除去システム。 The VOC removal system according to claim 5 or 6, further comprising a first humidity sensor and a first temperature sensor disposed in the first air flow path. 回転する再生可能な水分吸着ロータを備え、第1空気流路は回転する水分吸着ロータの正面視投影上で第1の領域を形成する水分吸着ロータの吸着領域とVOC吸着ロータの吸着領域とに且つ水分吸着ロータからVOC吸着ロータへ向けて屋内空気を流し、第2空気流路は回転する水分吸着ロータの正面視投影上で残余の領域を形成する水分吸着ロータの再生領域とVOC吸着ロータの再生領域とに且つ水分吸着ロータからVOC吸着ロータへ向けて屋外空気又は屋内空気を流して屋外へ排出し、前記加熱手段は第2空気流路内の空気流に関して水分吸着ロータよりも上流に配設されていることを特徴とする請求項5乃至7の何れか1項に記載のVOC除去システム。 A rotating moisture adsorption rotor is provided, and the first air flow path is divided into an adsorption region of the moisture adsorption rotor and an adsorption region of the VOC adsorption rotor that form a first region on a front view projection of the rotating moisture adsorption rotor. In addition, indoor air flows from the moisture adsorption rotor to the VOC adsorption rotor, and the second air flow path forms a remaining area on the front view projection of the rotating moisture adsorption rotor, and the regeneration region of the moisture adsorption rotor and the VOC adsorption rotor Outdoor air or indoor air is allowed to flow to the regeneration area and from the moisture adsorption rotor to the VOC adsorption rotor and is discharged to the outside. The heating means is arranged upstream of the moisture adsorption rotor with respect to the air flow in the second air flow path. The VOC removal system according to claim 5, wherein the VOC removal system is provided. VOCセンサーの検知情報に基づいて第1送風手段及び/又は加熱手段及び/又は第2送風手段の作動を制御する制御手段を備えることを特徴とする請求項5乃至8の何れか1項に記載のVOC除去システム。 9. The control device according to claim 5, further comprising a control unit that controls the operation of the first blowing unit and / or the heating unit and / or the second blowing unit based on detection information of the VOC sensor. VOC removal system. 制御手段は、VOCセンサーが検知したVOC濃度が規定値以下の場合に、第1送風手段の出力及び/又は加熱手段の出力及び/又は第2送風手段の出力を低下させ、或いは第1送風手段及び/又は加熱手段及び/又は第2送風手段を停止させることを特徴とする請求項9に記載のVOC除去システム。 When the VOC concentration detected by the VOC sensor is equal to or less than a specified value, the control unit reduces the output of the first blowing unit and / or the output of the heating unit and / or the output of the second blowing unit, or the first blowing unit. The VOC removal system according to claim 9, wherein the heating means and / or the second air blowing means are stopped. VOCセンサーの検知情報に基づいて第1送風手段及び/又は加熱手段及び/又は第2送風手段の作動を制御する制御手段を備えることを特徴とする請求項8に記載のVOC除去システム。 The VOC removal system according to claim 8, further comprising a control unit that controls the operation of the first blowing unit and / or the heating unit and / or the second blowing unit based on detection information of the VOC sensor. 制御手段は、VOCセンサーが検知したVOC濃度が規定値以下の場合に、第1送風手段の出力及び/又は加熱手段の出力及び/又は第2送風手段の出力を低下させ、或いは第1送風手段及び/又は加熱手段及び/又は第2送風手段を停止させることを特徴とする請求項11に記載のVOC除去システム。 When the VOC concentration detected by the VOC sensor is equal to or less than a specified value, the control unit reduces the output of the first blowing unit and / or the output of the heating unit and / or the output of the second blowing unit, or the first blowing unit. 12. The VOC removal system according to claim 11, wherein the heating means and / or the second air blowing means are stopped. 第1空気流路内に且つ第1空気流路内の空気流に関して水分吸着ロータよりも上流に配設した第2湿度センサーを備え、制御手段は第2湿度センサーの検知情報に基づいて第1送風手段及び/又は加熱手段及び/又は第2送風手段の作動を制御することを特徴とする請求項11又は12に記載のVOC除去システム。 A second humidity sensor is provided in the first air flow path and upstream of the moisture adsorption rotor with respect to the air flow in the first air flow path, and the control means performs the first based on the detection information of the second humidity sensor. 13. The VOC removal system according to claim 11, wherein the operation of the blowing unit and / or the heating unit and / or the second blowing unit is controlled. 制御手段は、第2湿度センサーが検知した湿度が規定値を超える場合に、第1送風手段の出力及び/又は加熱手段の出力及び/又は第2送風手段の出力を低下させ、或いは第1送風手段及び/又は加熱手段及び/又は第2送風手段を停止させることを特徴とする請求項13に記載のVOC除去システム。 When the humidity detected by the second humidity sensor exceeds a specified value, the control unit decreases the output of the first blowing unit and / or the output of the heating unit and / or the output of the second blowing unit, or the first blowing unit. 14. The VOC removal system according to claim 13, wherein the means and / or the heating means and / or the second air blowing means are stopped. 制御手段は、第2湿度センサーが検知した湿度が規定値を超える場合に、第1送風手段の出力及び/又は加熱手段の出力及び/又は第2送風手段の出力を低下させ、或いは第1送風手段及び/又は加熱手段及び/又は第2送風手段を停止させ、次いでVOCセンサーが検知したVOC濃度が規定値以下の場合に、第1送風手段の出力及び/又は加熱手段の出力及び/又は第2送風手段の出力を低下させ、或いは第1送風手段及び/又は加熱手段及び/又は第2送風手段を停止させることを特徴とする請求項13に記載のVOC除去システム。 When the humidity detected by the second humidity sensor exceeds a specified value, the control unit decreases the output of the first blowing unit and / or the output of the heating unit and / or the output of the second blowing unit, or the first blowing unit. When the VOC concentration detected by the VOC sensor is equal to or less than a specified value, the output of the first blowing means and / or the output of the heating means and / or the second 14. The VOC removal system according to claim 13, wherein the output of the two air blowing means is reduced, or the first air blowing means and / or the heating means and / or the second air blowing means are stopped. 第2空気流路内に且つ第2空気流路内の空気流に関してVOC吸着ロータよりも下流に配設した第2温度センサーを備え、制御手段はVOCセンサーの検知情報と第2温度センサーの検知情報とに基づいて加熱手段及び/又は第2送風手段の作動を制御することを特徴とする請求項5乃至15の何れか1項に記載のVOC除去システム。 A second temperature sensor is provided in the second air flow path and downstream of the VOC adsorption rotor with respect to the air flow in the second air flow path, and the control means detects the detection information of the VOC sensor and the detection of the second temperature sensor. The VOC removal system according to any one of claims 5 to 15, wherein the operation of the heating means and / or the second air blowing means is controlled based on the information. 第2温度センサーを第2空気流路中の空気流の速度分布が均一化した位置に配設したことを特徴とする請求項16に記載のVOC除去システム。 The VOC removal system according to claim 16, wherein the second temperature sensor is disposed at a position where the velocity distribution of the air flow in the second air flow path is uniform.
JP2005059997A 2005-03-04 2005-03-04 Voc concentration meter and voc removing system Pending JP2006242791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005059997A JP2006242791A (en) 2005-03-04 2005-03-04 Voc concentration meter and voc removing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005059997A JP2006242791A (en) 2005-03-04 2005-03-04 Voc concentration meter and voc removing system

Publications (1)

Publication Number Publication Date
JP2006242791A true JP2006242791A (en) 2006-09-14

Family

ID=37049358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005059997A Pending JP2006242791A (en) 2005-03-04 2005-03-04 Voc concentration meter and voc removing system

Country Status (1)

Country Link
JP (1) JP2006242791A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100823316B1 (en) 2007-07-12 2008-04-17 주식회사 대일냉각기 Condensation apparatus for recycling organic solvent
KR20140130359A (en) * 2013-04-30 2014-11-10 고신대학교 산학협력단 Treatment system for absorbing-desorbing volatile organic compounds and the method therefor
KR20150068552A (en) * 2013-12-11 2015-06-22 고신대학교 산학협력단 Treatment system for absorbing-desorbing volatile organic compounds and the method therefor
CN107362653A (en) * 2016-05-11 2017-11-21 中微惠创科技(上海)有限公司 A kind of purification of air processing equipment and method with online VOC apparatus for measuring concentration
CN107362652A (en) * 2016-05-11 2017-11-21 中微惠创科技(上海)有限公司 Can on-line measurement VOC concentration VOC adsorption plants and its method
KR20210138881A (en) * 2020-05-13 2021-11-22 주식회사 신성이엔지 VOC removal system and its control method thereof
KR20220150104A (en) * 2021-05-03 2022-11-10 한국전력공사 Multi air pollutant cleaning system for mass coal treatment plant
EP4227591A4 (en) * 2020-11-19 2024-03-27 Gd Midea Air Conditioning Equipment Co Ltd Air purification method, air purifying device, and storage medium

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100823316B1 (en) 2007-07-12 2008-04-17 주식회사 대일냉각기 Condensation apparatus for recycling organic solvent
KR20140130359A (en) * 2013-04-30 2014-11-10 고신대학교 산학협력단 Treatment system for absorbing-desorbing volatile organic compounds and the method therefor
KR101582724B1 (en) 2013-04-30 2016-01-06 고신대학교 산학협력단 Treatment system for absorbing-desorbing volatile organic compounds and the method therefor
KR20150068552A (en) * 2013-12-11 2015-06-22 고신대학교 산학협력단 Treatment system for absorbing-desorbing volatile organic compounds and the method therefor
KR101582725B1 (en) 2013-12-11 2016-01-06 고신대학교 산학협력단 Treatment system for absorbing-desorbing volatile organic compounds and the method therefor
CN107362653A (en) * 2016-05-11 2017-11-21 中微惠创科技(上海)有限公司 A kind of purification of air processing equipment and method with online VOC apparatus for measuring concentration
CN107362652A (en) * 2016-05-11 2017-11-21 中微惠创科技(上海)有限公司 Can on-line measurement VOC concentration VOC adsorption plants and its method
KR20210138881A (en) * 2020-05-13 2021-11-22 주식회사 신성이엔지 VOC removal system and its control method thereof
KR102434675B1 (en) * 2020-05-13 2022-08-19 주식회사 신성이엔지 VOC removal system and its control method thereof
EP4227591A4 (en) * 2020-11-19 2024-03-27 Gd Midea Air Conditioning Equipment Co Ltd Air purification method, air purifying device, and storage medium
KR20220150104A (en) * 2021-05-03 2022-11-10 한국전력공사 Multi air pollutant cleaning system for mass coal treatment plant
KR102541125B1 (en) 2021-05-03 2023-06-12 한국전력공사 Multi air pollutant cleaning system for mass coal treatment plant

Similar Documents

Publication Publication Date Title
JP2006242791A (en) Voc concentration meter and voc removing system
JP4798492B2 (en) Dehumidifier
JP2006007200A (en) Air purifier and its control method
JP2012117683A (en) Desiccant air conditioning system and its operation method
KR20130096165A (en) Sorption dryer
JP2008302347A (en) Exhaust gas treating device/method
JP4438959B2 (en) Dehumidifying device and dehumidifying method
JP2013146418A (en) Air cleaner
JP2012166128A5 (en)
JP2011069541A (en) Air purifying air conditioner
JPH11169644A (en) Dehumidifying device
JP2009125606A (en) Adsorbent regenerator used by being incorporated in waste gas treatment apparatus, waste gas treatment apparatus, and adsorbent regeneration method
JP2006266607A (en) Bathroom dryer
JP4781886B2 (en) Air conditioner
JP2006242775A (en) Voc concentration meter
JP2012034780A (en) Decontamination device
JP2010110736A (en) Method for operating dry dehumidifier
JP2006263171A (en) Voc removing device
JP6219632B2 (en) Desiccant air conditioner
JP2009090266A (en) Adsorption dehumidification type dry air generator with self-regeneration function of adsorbent
JP2017116130A (en) Dehumidifying and humidifying device
JP4300983B2 (en) Dehumidifier
JP5681379B2 (en) Operation method of dry dehumidifier
JP2006242482A (en) Voc removing system
JPH08178399A (en) Dehumidifying/humidifying apparatus