JP2006242548A - Stationary condenser lens - Google Patents

Stationary condenser lens Download PDF

Info

Publication number
JP2006242548A
JP2006242548A JP2005092715A JP2005092715A JP2006242548A JP 2006242548 A JP2006242548 A JP 2006242548A JP 2005092715 A JP2005092715 A JP 2005092715A JP 2005092715 A JP2005092715 A JP 2005092715A JP 2006242548 A JP2006242548 A JP 2006242548A
Authority
JP
Japan
Prior art keywords
light
omnidirectional
light beam
condensing
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005092715A
Other languages
Japanese (ja)
Inventor
Yozo Oko
洋三 大古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005092715A priority Critical patent/JP2006242548A/en
Publication of JP2006242548A publication Critical patent/JP2006242548A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stationary condenser lens receiving solar light by an omnidirectional light receiver, and condensing the light at a lower given position. <P>SOLUTION: This stationary condenser lens is composed of a light ray direction converting element for allowing the light ray entering from the upper multi-direction with an angle of incident of a certain range, to reach a lower transparent light emitting plate while repeating total reflection inside of an upper transparent light receiving plate, and to be radiated to the direction of a lower limited-angular range from a position where the total reflection can not be achieved, the omnidirectional light receiver constituted by tightly storing the light ray direction converging elements inside of a box having approximately equilateral light ray permeable surfaces on its upper face and lower face and a reflecting film on an inner surface of a side face, and capable of receiving the solar light of incidence angle which can not be captured by a single light ray direction converting element, and an omnidirectional light condensing mechanism formed by arranging a number of omnidirectional light receivers on a stationary supporting frame hemispherically projecting in the airspace direction, condensing the solar light coming from the upper omni-direction within a certain range inside of the supporting frame, and being simultaneously operated as a converging lens to the omni-direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、太陽光線を集光し、その光エネルギーを光電変換器または光熱変換器によって、電気エネルギーや熱エネルギーに変換して有効利用できるようにするための、静止型集光レンズに関するものである。          The present invention relates to a stationary condensing lens for concentrating sunlight and converting the light energy into electric energy or heat energy by a photoelectric converter or a photothermal converter so that it can be used effectively. is there.

技術背景Technical background

太陽光線の光エネルギーを、光電変換器や光熱変換器によって電気エネルギーや熱エネルギーに変換して利用すべく、太陽光を収集するための集光装置が存在する。従来、この集光装置としては、レンズや反射鏡を利用したものや、太陽電池パネルや集熱パネルを利用したものがある。          There is a light collecting device for collecting sunlight so that the light energy of sunlight is converted into electric energy or heat energy by a photoelectric converter or a photothermal converter. Conventionally, as this condensing device, there are one using a lens and a reflecting mirror, and one using a solar cell panel and a heat collecting panel.

しかし、従来のレンズや反射鏡を利用した集光装置は、受光角が小さく太陽光を一定の角度で正確に入射させる必要があるため、複雑・高精度な移動機構を持った太陽追尾装置が必要であり、高価なものとなっている。また、この集光装置は曇天時において、太陽光線の入射方向が不明確な場合は集光効率が著しく低下するという問題もある。          However, a conventional light collecting device using a lens or a reflecting mirror has a small light receiving angle and it is necessary to accurately enter sunlight at a certain angle. Therefore, a solar tracking device having a complicated and highly accurate moving mechanism is not available. It is necessary and expensive. In addition, this condensing device also has a problem that the condensing efficiency is remarkably lowered when the incident direction of sunlight is unclear during cloudy weather.

また、太陽電池パネルや集熱パネルを利用したものは、多方向から入射する太陽光線を集光することができ、屋根上に設置できるものの、一般的に固定して使用するので、太陽の運行に追随して集光できないための損失を見込んだ大きな受光面積のパネルを必要とし、高価である。          In addition, solar cell panels and heat collector panels that can collect sunlight from multiple directions and can be installed on the roof, but are generally fixed and used. Therefore, a panel having a large light receiving area in consideration of a loss due to the fact that the light cannot be collected is required and expensive.

本発明はこうした問題に鑑み創案されたもので、上方の全方向から太陽の運行に伴い光線方向が変化しながら入射する太陽光を、上空方向に膨出した半球状支持枠に多数配置した全方向性受光器により受光し、その下方より支持枠内の常に一定な位置に放射して、静止していながら、太陽からの直接光だけでなく周辺からの反射光も含め年中通して高効率で集光できる安価で量産可能な静止型集光レンズを提供することを課題とする。          The present invention has been devised in view of these problems, and all the sunlight that is incident while changing the direction of light rays from the upper direction in all directions is arranged on a hemispherical support frame that bulges upward. Highly efficient throughout the year, including not only direct light from the sun but also reflected light from the surroundings, while receiving light with a directional receiver and radiating to a fixed position in the support frame from below, always standing still. It is an object to provide a low-cost, mass-produced stationary condensing lens that can condense at a low speed.

第一の発明は、太陽光を静止して受光する集光レンズであって、上部に、略台形状の側面を有し略ひし形の断面を有する透明な受光板と、下部に略剣形状の側面を有し、上部と同じ略ひし形の断面を有する透明な放光板を接続し、上方の多方向から、ある範囲の入射角度を持って入射した光線を、内部にて全反射させて捕捉し、全反射を繰り返しながら下部に伝達し、全反射条件が成り立たなくなる位置から、下方のある限定された角度範囲の方向に放射する光線方向変換素子を有する静止型集光レンズからなる。          A first invention is a condensing lens for stationaryly receiving sunlight, a transparent light receiving plate having a substantially trapezoidal side surface and a substantially rhombic cross section at an upper portion, and a substantially sword shaped lower portion. A transparent light-emitting plate with a side face and the same roughly rhombic cross section as the upper part is connected, and incident light with a certain range of incident angles from multiple directions above is totally reflected inside and captured. It consists of a stationary condensing lens having a light beam direction changing element that transmits to the lower part while repeating total reflection and radiates in the direction of a limited angle range below from a position where the total reflection condition is not satisfied.

第二の発明は、太陽光を静止して受光する集光レンズであって、上面および下面に透明にして略正三角形の光線透過面を、側面の内面に反射膜を有した箱の内部に、請求項1に記載の光線方向変換素子を密集収納し、単独の光線方向変換素子では捕捉できない入射角度の太陽光も捕捉できるようにして、上面の全方向から受光し下面のほぼ垂直下方に放射する全方向性受光器を有する静止型集光レンズからなる。          The second invention is a condensing lens that receives sunlight stationary and has a transparent surface on the upper and lower surfaces and a substantially equilateral triangular light transmission surface inside a box having a reflective film on the inner surface of the side surface. The light beam direction conversion elements according to claim 1 are closely packed, so that sunlight having an incident angle that cannot be captured by a single light beam direction conversion element can be captured, and light is received from all directions on the upper surface and is substantially vertically below the lower surface. It consists of a stationary condenser lens with an omnidirectional light receiver.

第三の発明は、太陽光を静止して受光する集光レンズであって
請求項2に記載の全方向性受光器を、上空方向に半球状に膨出し静止した支持枠上に多数配置し、その重量を支えるとともに、支持枠上方の全方向から来る太陽光を全方向性受光器により受光し、支持枠内部のある一定な範囲に放射することにより集光して、全方向に対し同時に凸レンズとして動作をすることができるようにする全方向性集光機構を有する静止型集光レンズからなる。
A third invention is a condensing lens for stationaryly receiving sunlight, wherein a large number of omnidirectional light receivers according to claim 2 are arranged on a stationary support frame that swells in a hemispherical shape in the sky. In addition to supporting its weight, sunlight coming from all directions above the support frame is received by an omnidirectional light receiver and condensed by radiating it to a certain range inside the support frame, and simultaneously in all directions It consists of a stationary type condensing lens having an omnidirectional condensing mechanism that can operate as a convex lens.

内部に、請求項1に記載の光線方向変換素子を多数密集させて収納した請求項2に記載の全方向性受光器は、上方の全方向から入射する光線を、受光面の中心を通る垂直軸に対しある限定された角度範囲の下方に放射することができる。
また、全方向性受光器の略正三角形の上下面の中心を通る垂直軸は、その外接球のほぼ中心を通るため、外接球の面上に多数配置した全方向性受光器を通過した太陽光は、通過した球面上の位置に無関係に外接球の中心付近に集光する。
このため、請求項3に記載の全方向性集光機構により、この静止型集光レンズは複雑・高精度な移動機構による光線追尾を必要とすることなく、太陽の運行に伴い方向が変化する受光光線を常時一定の位置に高効率で集光する。
The omnidirectional light-receiving device according to claim 2, in which a large number of light-direction-changing elements according to claim 1 are housed densely inside, is perpendicular to the center of the light-receiving surface for light incident from all directions above. It can radiate below a limited angular range with respect to the axis.
Also, since the vertical axis passing through the center of the upper and lower surfaces of the substantially equilateral triangle of the omnidirectional receiver passes through the center of the circumscribed sphere, the sun that has passed through the omnidirectional receiver arranged in large numbers on the surface of the circumscribed sphere The light is collected near the center of the circumscribed sphere regardless of the position on the spherical surface that has passed.
For this reason, according to the omnidirectional light collecting mechanism according to claim 3, the stationary type condensing lens changes its direction with the operation of the sun without requiring light beam tracking by a complicated and highly accurate moving mechanism. Received light is always focused at a certain position with high efficiency.

請求項2に記載の全方向性受光器は、太陽光の受光可能入射角度範囲を広げるため、光線方向変換素子を略正三角形の比較的小さい箱の内部に密集収納しており、小さい受光面積でも外縁の制限を受けることなく、あたかも無限の受光面積を有しているかのように動作させる反射膜を側面に備えた構造にしている。このため、同じ形状でアクリル等のプラスチックにより射出成型など大量生産が可能となり、安価に製造することができる。適当に並べ方を変えることにより、平面にも曲面にも構成でき、受光面積も自由に変えられる。また、既存の太陽電池パネルなどに簡単に取り付け効率改善をはかることができる。          In the omnidirectional light receiver according to claim 2, in order to widen the incident angle range in which sunlight can be received, the light direction conversion elements are densely housed in a relatively small box of a substantially equilateral triangle, and the light receiving area is small. However, the structure is provided with a reflection film on the side surface that operates as if it has an infinite light receiving area without being limited by the outer edge. For this reason, mass production such as injection molding is possible with a plastic such as acrylic having the same shape, and it can be manufactured at low cost. By appropriately changing the arrangement, it can be configured as a flat surface or a curved surface, and the light receiving area can be freely changed. In addition, it is possible to easily improve the mounting efficiency to an existing solar cell panel.

請求項3に記載の全方向性集光機構は略球面であるため、その高さを活かして太陽から直接入射する光線のみでなく、周囲の雲などで反射した光線も、平板の太陽電池パネル以上に効率良く集光できる。また、この静止型集光レンズに入射した光線は、大部分が空間内を伝送し、または光媒体内を全反射して集光するため、極めて低損失である。さらに、これらの部材は、射出成型等で量産することができ、基本的に無保守のため安価である。          Since the omnidirectional light collecting mechanism according to claim 3 is substantially spherical, not only the light directly incident from the sun but also the light reflected by surrounding clouds or the like is utilized for the flat solar cell panel. It can collect light more efficiently than above. In addition, most of the light rays incident on the stationary condensing lens are transmitted through the space or totally reflected inside the optical medium to be condensed, so that the loss is extremely low. Furthermore, these members can be mass-produced by injection molding or the like, and are basically maintenance-free and inexpensive.

本発明に係る静止型集光レンズの実施形態を、図1乃至図4にしめす。この静止型集光レンズは、下部に太陽電池や、水の加熱器など取り付けて使用できるように全方向性集光機構11の形状を用途に応じて変更する。半球面の集光機構の大きさに制限はないので、太陽電池などの形状に合わせて効率的なものとする。また、常時太陽光や風雨にさらされるため、耐光劣化性、耐候性に優れた部材で構成する。
光線方向変換素子2はできるだけ小さいものが全方向性受光器9や全方向性集光機構11を薄く、軽く製作できるので望ましいが、射出成型上の制限も考慮して効率的なものとする。また、光線方向変換素子2や無方向性受光器9は、透過損失や反射損失を低減するため、必要な表面処理をする。
An embodiment of a stationary condenser lens according to the present invention is shown in FIGS. This static condensing lens changes the shape of the omnidirectional condensing mechanism 11 according to the application so that it can be used with a solar cell or a water heater attached to the lower part. Since there is no limitation on the size of the hemispherical light collecting mechanism, it is efficient according to the shape of the solar cell or the like. Moreover, since it is always exposed to sunlight and wind and rain, it is comprised with the member excellent in light resistance deterioration property and a weather resistance.
It is desirable that the light beam direction conversion element 2 is as small as possible because the omnidirectional light receiver 9 and the omnidirectional light collecting mechanism 11 can be made thin and light. Further, the light beam direction conversion element 2 and the non-directional light receiver 9 perform necessary surface treatment in order to reduce transmission loss and reflection loss.

光線方向変換素子2の実施形態を、図1を参照して説明する。光線方向変換素子2は透明プラスチック製で、上部に略台形状の側面を有し略ひし形の断面4を有する受光板1と、下部に略剣形状の側面を有し、上部と同じ略ひし形の断面5を有する放光板3を接続した形状とする。上部の側面から入射した光線Aは、上部の略台形状の下方に広がった斜面によって光線方向変換素子2内部に捕捉され、全反射を繰り返しながら下部に到達する。下部の略剣形状の側面は略台形状の上部と斜面の傾きが逆になっているため、捕捉されていた光線は全反射を繰り返すうち全反射条件を満たさなくなり、その位置から光線方向変換素子2の外部のある一定な方向に放射される。          An embodiment of the light beam direction conversion element 2 will be described with reference to FIG. The light beam redirecting element 2 is made of transparent plastic and has a light receiving plate 1 having a substantially trapezoidal side surface at the top and a substantially diamond-shaped cross section 4, and has a substantially sword-shaped side surface at the bottom, The light emitting plate 3 having a cross section 5 is connected. The light beam A incident from the upper side surface is trapped inside the light beam direction conversion element 2 by the inclined surface extending downward in the upper trapezoidal shape, and reaches the lower portion while repeating total reflection. The lower sword-shaped side surface has a substantially trapezoidal upper part and the slope of the slope is reversed, so the captured light beam does not satisfy the total reflection condition as it repeats total reflection, and from that position the light beam redirecting element 2 is emitted in a certain direction outside.

上部の上面から入射した光線Bは、光線Aと同様に、略台形状上部斜面によって光線方向変換素子2の内部に捕捉され、全反射を繰り返しながら下部に到達し、ある一定な方向に放射される。上部の側面から入射した光線Cは、斜面に対する入射角が大きいため、上部の略台形状斜面によって光線方向変換素子内部に捕捉されず、反対側の略台形状斜面を透過して光線方向変換素子2から放射される。          Like the light beam A, the light beam B incident from the upper upper surface is captured inside the light beam direction conversion element 2 by the substantially trapezoidal upper slope, reaches the lower part while repeating total reflection, and is emitted in a certain direction. The The light ray C incident from the upper side surface has a large incident angle with respect to the inclined surface, so that it is not trapped inside the light beam direction conversion element by the upper substantially trapezoidal inclined surface, and passes through the opposite substantially trapezoidal inclined surface to transmit the light beam direction converting element. 2 is emitted.

光線方向変換素子2は上部も下部も略ひし形の断面を持たせ、内部に捕捉され全反射を繰り返す光線を下方に誘導しやすくしている。下部の略剣形状の側面の角度は放射光の放射角度を小さくするため、てきるだけ鋭角とする。          The light beam redirecting element 2 has a substantially rhombic cross section at both the upper and lower portions, so that it is easy to guide a light beam trapped inside and repeating total reflection downward. The angle of the side of the lower substantially sword shape is as acute as possible in order to reduce the radiation angle of the emitted light.

全方向性受光器9の実施形態を、図2を参照して説明する。全方向性受光器9の外箱は、透明プラスチック製で略正三角形の上下面6,7を持ち、側面8には反射膜10を備える。略正三角形の形状は、球面に内接する正二十面体の正三角形の各辺の中点を球の中心から球面に投影した点と、もとの正三角形の各点を結んでできる4枚の小さい略正三角形をもとにきめる。側面8の高さは光線方向変換素子2の大きさによって決める。このため、全方向性受光器9を多数並べる時は支持枠の形状を調整して、目的の受光面積を確保する。全方向性受光器9の側面反射膜10は金属反射するので反射効率の高いものとする。          An embodiment of the omnidirectional light receiver 9 will be described with reference to FIG. The outer box of the omnidirectional light receiver 9 is made of transparent plastic, has upper and lower surfaces 6 and 7 of a substantially equilateral triangle, and includes a reflective film 10 on the side surface 8. The shape of a substantially equilateral triangle is four pieces that are formed by connecting the midpoint of each side of the regular triangle of the regular icosahedron inscribed in the sphere onto the sphere from the center of the sphere and each point of the original equilateral triangle. Determine based on a small equilateral triangle. The height of the side surface 8 is determined by the size of the light beam direction conversion element 2. For this reason, when many omnidirectional light receivers 9 are arranged, the shape of the support frame is adjusted to secure a target light receiving area. Since the side reflection film 10 of the omnidirectional light receiver 9 reflects metal, it is assumed that the reflection efficiency is high.

全方向性受光器9の実施形態の入射光線の経路状況を、図3を参照して説明する。上面上方から入射した入射角の小さい光線Dは光線方向変換素子2に入射し捕捉され、全反射を繰り返しながら下部に到達する。下部の略剣形状の側面からある一定な方向に放射される。
全方向性受光器9の上面右方から入射した入射角の大きい光線Eはその光線方向変換素子2に捕捉されることなく透過し、隣接の光線方向変換素子2に入射する。ここでも、入射角が大きいため捕捉されることなく透過する。同様な動作を繰り返すことになるが、光線方向変換素子2の略台形状の側面傾斜角度により、透過した光線方向変換素子2の数に比例した角度だけ、だんだん入射角が小さくなり、最後にはいづれかの光線方向変換素子2に捕捉され、光線Dと同様に全反射を繰り返しながら下部に到達し、下部の略剣形状の側面からある一定な方向に放射される。
全方向性受光器9の上面右方から入射した入射角のやや大きい光線Fはその光線方向変換素子2に捕捉されることなく透過し、側面反射膜に達する。ここで反射後、光線Dと同様に光線方向変換素子2に捕捉され、全反射を繰り返しながら下部に到達し、下部の略剣形状の側面からある一定な方向に放射される。
The path state of the incident light beam in the embodiment of the omnidirectional light receiver 9 will be described with reference to FIG. A light beam D having a small incident angle incident from above the upper surface is incident on and is captured by the light direction conversion element 2 and reaches the lower portion while repeating total reflection. Radiated in a certain direction from the side of the lower sword shape.
A light beam E having a large incident angle incident from the upper right side of the omnidirectional light receiver 9 is transmitted without being captured by the light beam direction conversion element 2 and is incident on the adjacent light beam direction conversion element 2. Here, too, the incident angle is large and the light is transmitted without being captured. The same operation is repeated, but the incident angle becomes gradually smaller by an angle proportional to the number of transmitted light beam direction conversion elements 2 due to the substantially trapezoidal side surface inclination angle of the beam direction conversion element 2. It is captured by any one of the light beam direction conversion elements 2, reaches the lower part while repeating total reflection in the same manner as the light beam D, and is emitted in a certain direction from the lower side surface of the substantially sword shape.
A light beam F having a slightly large incident angle incident from the right side of the upper surface of the omnidirectional light receiver 9 is transmitted without being captured by the light beam direction conversion element 2 and reaches the side reflection film. After the reflection, the light is redirected by the light beam direction conversion element 2 in the same manner as the light beam D, reaches the lower part while repeating the total reflection, and is emitted in a certain direction from the lower side surface of the substantially sword shape.

全方向性集光機構11の実施形態を、図4を参照して説明する。全方向性集光機構11は、透明プラスチック製または薄い金属板製の上空方向に膨出した半球状の支持枠であり、表面に全方向性受光器9を多数配置し、その重量を支える。
全方向から来る太陽光を全方向性受光器9を通過した後支持枠の中心付近の集光位置13に集光して、凸レンズの如き動作をする。集光位置13の被照射面積は光線方向変換素子2の放射光の分散角度と全方向性受光器9の受光面積によって決定される。放射光の分散角度が小さいほど面積が小さくなるが、光線方向変換素子2の製作に精度を必要とする。全方向性集光機構11は、一般的には地上の平面に設置するが、家屋の屋根上にも設置できる。太陽の運行に合わせて全方向性受光器9の配置、集光位置などを決定する。
An embodiment of the omnidirectional light collecting mechanism 11 will be described with reference to FIG. The omnidirectional light collecting mechanism 11 is a hemispherical support frame that is made of a transparent plastic or a thin metal plate and bulges upward, and supports a large number of omnidirectional light receivers 9 on the surface.
Sunlight coming from all directions passes through the omnidirectional light receiver 9 and then is condensed at a condensing position 13 near the center of the support frame to behave like a convex lens. The irradiated area at the condensing position 13 is determined by the dispersion angle of the radiated light from the light beam direction changing element 2 and the light receiving area of the omnidirectional light receiver 9. The smaller the dispersion angle of the emitted light, the smaller the area, but the production of the light beam direction conversion element 2 requires accuracy. The omnidirectional light collecting mechanism 11 is generally installed on a ground plane, but can also be installed on the roof of a house. The arrangement of the omnidirectional light receiver 9, the condensing position, etc. are determined according to the operation of the sun.

全方向性集光機構11上の全方向性受光器12aに上面右方向から入射した光線Gは全方向性受光器12aを通過後、集光位置13に達する。同じ方向から入射した光線Hは全方向性受光器12aを通過後、光線方向変換素子2の放射光の分散角度のちがいによって光線Gから少し離れた集光位置13に達する。同じ方向で光線G、光線Hから離れた箇所に入射した光線Iは全方向性受光器12bを通過後、集光位置13に達する。全方向性受光器12bに上面右方向から入射した光線Jは全方向性受光器12bを通過後、集光位置13に達する。          The light beam G incident on the omnidirectional light receiver 12a on the omnidirectional light collecting mechanism 11 from the upper right direction reaches the light condensing position 13 after passing through the omnidirectional light receiver 12a. The light beam H incident from the same direction passes through the omnidirectional light receiver 12a, and then reaches a condensing position 13 slightly away from the light beam G due to the difference in the dispersion angle of the radiated light of the light beam direction conversion element 2. The light beam I that has entered the part away from the light beam G and the light beam H in the same direction reaches the condensing position 13 after passing through the omnidirectional light receiver 12b. The light beam J incident on the omnidirectional light receiver 12b from the upper right direction reaches the condensing position 13 after passing through the omnidirectional light receiver 12b.

本発明に係る静止型集光レンズの光線方向変換素子2の実施形態を示す正面図である。    It is a front view which shows embodiment of the light beam direction conversion element 2 of the stationary type | mold condenser lens which concerns on this invention. 本発明に係る静止型集光レンズの全方向性受光器9の実施形態を示す斜視図である。    It is a perspective view which shows embodiment of the omnidirectional light receiver 9 of the stationary type | mold condenser lens which concerns on this invention. 本発明に係る静止型集光レンズの全方向性受光器9の実施形態を示す側面図である。    It is a side view which shows embodiment of the omnidirectional light receiver 9 of the stationary type | mold condenser lens which concerns on this invention. 本発明に係る静止型集光レンズの全方向性集光機構11の実施形態を示す側面図である。    It is a side view which shows embodiment of the omnidirectional condensing mechanism 11 of the stationary type | mold condenser lens which concerns on this invention.

符号の説明Explanation of symbols

1 光線方向変換素子受光板
2 光線方向変換素子
3 光線方向変換素子放光板
4 光線方向変換素子上部断面
5 光線方向変換素子接続部断面
6 全方向性受光器上面
7 全方向性受光器下面
8 全方向性受光器側面
9 全方向性受光器
10 全方向性受光器側面(反射膜)
11 全方向性集光機構
12a、b全方向性受光器
13 集光位置
A〜J 太陽光線
DESCRIPTION OF SYMBOLS 1 Light beam direction conversion element light-receiving plate 2 Light beam direction conversion element 3 Light beam direction conversion element light emission board 4 Light beam direction conversion element upper cross section 5 Light beam direction conversion element connection cross section 6 Omnidirectional light receiver upper surface 7 Omnidirectional light receiver lower surface 8 All Directional receiver side 9 Omnidirectional receiver 10 Omnidirectional receiver side (reflective film)
11 omnidirectional condensing mechanism 12a, b omnidirectional light receiver 13 condensing positions A to J

Claims (3)

太陽光を静止して受光する集光レンズであって、
上部に、略台形状の側面を有し略ひし形の断面を有する透明な受光板(1)と、下部に略剣形状の側面を有し、上部と同じ略ひし形の断面を有する透明な放光板(3)を接続し、上方の多方向から、ある範囲の入射角度を持って入射する光線を、内部にて全反射させて捕捉し、全反射を繰り返しながら下部に伝達し、全反射条件が成り立たなくなる位置から、下方のある限定された角度範囲の方向に放射する光線方向変換素子(2)を有する静止型集光レンズ
A condensing lens that stops and receives sunlight,
A transparent light-receiving plate (1) having a substantially trapezoidal side surface at the top and a substantially rhombus-shaped cross section, and a transparent light-emitting plate having a substantially sword-shaped side surface at the bottom and the same rhombus-shaped cross section as the top (3) is connected, and the incident light beam with a certain range of incident angles from multiple directions above is totally reflected inside and captured and transmitted to the lower part while repeating total reflection. Stationary type condensing lens having a light beam redirecting element (2) that radiates in the direction of a limited angle range below from a position that does not hold
太陽光を静止して受光する集光レンズであって、
上面および下面に透明にして略正三角形の光線透過面(6),(7)を、側面(8)の内面に反射膜(10)を有した箱の内部に、請求項1に記載の光線方向変換素子(2)を密集収納し、単独の光線方向変換素子(2)では捕捉できない入射角度の太陽光も捕捉できるようにして、上面の全方向から受光し下面のほぼ垂直下方に放射する全方向性受光器(9)を有する静止型集光レンズ
A condensing lens that stops and receives sunlight,
The light beam according to claim 1, wherein the light transmitting surface (6), (7) is transparent on the upper surface and the lower surface, and inside the box having the reflective film (10) on the inner surface of the side surface (8). The direction conversion elements (2) are packed and stored so that sunlight having an incident angle that cannot be captured by a single light direction conversion element (2) can also be captured, and light is received from all directions on the upper surface and emitted almost vertically below the lower surface. Static condenser lens with omnidirectional light receiver (9)
太陽光を静止して受光する集光レンズであって、
請求項2に記載の全方向性受光器(9)を、上空方向に半球状に膨出した静止した支持枠上に多数配置し、その重量を支えるとともに、支持枠上方の全方向から来る太陽光を全方向性受光器(9)により受光し、支持枠内部のある一定な範囲に放射することにより集光して、全方向に対し同時に凸レンズとして動作をすることができるようにする全方向性集光機構(11)を有する静止型集光レンズ
A condensing lens that stops and receives sunlight,
A large number of omnidirectional light receivers (9) according to claim 2 are arranged on a stationary support frame that swells in a hemispherical shape in the sky direction, supports the weight thereof, and comes from all directions above the support frame. The omnidirectional light is received by the omnidirectional light receiver (9) and condensed by radiating it to a certain range inside the support frame, so that it can operate as a convex lens simultaneously in all directions. -Type condensing lens having a light condensing mechanism (11)
JP2005092715A 2005-02-28 2005-02-28 Stationary condenser lens Pending JP2006242548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005092715A JP2006242548A (en) 2005-02-28 2005-02-28 Stationary condenser lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092715A JP2006242548A (en) 2005-02-28 2005-02-28 Stationary condenser lens

Publications (1)

Publication Number Publication Date
JP2006242548A true JP2006242548A (en) 2006-09-14

Family

ID=37049138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092715A Pending JP2006242548A (en) 2005-02-28 2005-02-28 Stationary condenser lens

Country Status (1)

Country Link
JP (1) JP2006242548A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2463635A (en) * 2008-07-23 2010-03-24 Xiaodong Zhang Combined solar and LED light
CN103557617A (en) * 2013-10-15 2014-02-05 张其明 Fresnel lens installing support

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2463635A (en) * 2008-07-23 2010-03-24 Xiaodong Zhang Combined solar and LED light
CN103557617A (en) * 2013-10-15 2014-02-05 张其明 Fresnel lens installing support
CN103557617B (en) * 2013-10-15 2015-09-02 张其明 Fresnel lens mounting bracket

Similar Documents

Publication Publication Date Title
US20200208880A1 (en) Concentrating solar power with glasshouses
US7797939B2 (en) Concentrating solar energy receiver
US7295372B2 (en) Day lighting device
US7847228B2 (en) Solar energy collector with calculation of the trajectory of the sun according to the motion of a shadow of a projecting pointer
US4344417A (en) Solar energy collector
JP6092774B2 (en) Concentrating daylight concentrator
US20120160302A1 (en) Trough shaped fresnel reflector solar concentrator
CN102597652A (en) High leverage trough solar collector
AU2007100370A4 (en) Electricity generation device using solar power
US20140048117A1 (en) Solar energy systems using external reflectors
CN101420191A (en) Fresnel reflection concentration type energy production unit
AU2010246958B2 (en) Light collection system and method
JP2006242548A (en) Stationary condenser lens
US10648700B2 (en) Trough shaped Fresnel reflector solar concentrator
JP4313841B1 (en) Solar lens and solar-powered equipment
JP4978848B2 (en) Concentrating solar power generation system
KR100972424B1 (en) Multidirectional Solar Concentrator
US20200235698A1 (en) Trough shaped fresnel reflector solar concentrator
CA3030595C (en) Light collection device
JP2005062785A (en) Tracking type beam condensing unit
WO2011080831A1 (en) Light-collection photovoltaic generation system
KR20230116646A (en) Solar power generation device for vehicle
JP3508714B2 (en) Solar floodlight
US20140247498A1 (en) Compact concentrator assembly
KR20200051948A (en) Photovoltaic device, power generating system using the photovoltaic device, and building using the power genereating system