JP2006241549A - Spherical metal tin fine powder and method and device for producing the same - Google Patents

Spherical metal tin fine powder and method and device for producing the same Download PDF

Info

Publication number
JP2006241549A
JP2006241549A JP2005060258A JP2005060258A JP2006241549A JP 2006241549 A JP2006241549 A JP 2006241549A JP 2005060258 A JP2005060258 A JP 2005060258A JP 2005060258 A JP2005060258 A JP 2005060258A JP 2006241549 A JP2006241549 A JP 2006241549A
Authority
JP
Japan
Prior art keywords
metal tin
organic solvent
fine particles
fine
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005060258A
Other languages
Japanese (ja)
Inventor
Yuji Kawakami
裕二 川上
Keiji Kamata
啓嗣 鎌田
Eiji Ishida
栄治 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005060258A priority Critical patent/JP2006241549A/en
Publication of JP2006241549A publication Critical patent/JP2006241549A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal tin fine powder having a fine particle diameter, comprising no coarse grains, and suitable as electrically conductive particles for electrically conductive paste and electrically conductive resin in a multilayer wiring board, and to provide a method and a device for efficiently producing the metal tin fine powder. <P>SOLUTION: Metal tin fine particles are produced by a plasma process, and the metal tin fine particles are carried while controlling the temperature of a carrier gas by a cooling chamber 5, and are collected into an organic solvent, or are contacted with the gas in an organic solvent 6 in a coating chamber 4 while being carried, and, after coating the surface of each fine particle with the organic solvent, are recovered in a recovery chamber 2. The obtained metal tin fine powder is spherical, has the average particle diameter of 0.4 to 2 μm and the maximum particle diameter of ≤5 μm, and has a uniform particle diameter and has excellent dispersibility, and the surface of each particle is coated with the organic solvent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、IC基板などの多層配線基板に使用される導電性ペースト用及び導電樹脂用の導電性粒子などとして好適な金属錫微粉末、並びにその製造方法及び製造装置に関する。   The present invention relates to a fine metal tin powder suitable as conductive particles for conductive paste and conductive resin used for a multilayer wiring board such as an IC substrate, and a manufacturing method and manufacturing apparatus thereof.

従来から、IC基板などの多層配線基板の導電ペースト用や導電樹脂用の導電性粒子として、銀、銅、錫等の低融点金属の粉末が使用されている。これらの金属粉末の製造方法としては、一般に、アトマイズ法やアークプラズマ法等の乾式法と、湿式還元法とが知られている。   Conventionally, powders of low melting point metals such as silver, copper and tin have been used as conductive particles for conductive pastes and conductive resins for multilayer wiring boards such as IC boards. As a method for producing these metal powders, a dry method such as an atomizing method or an arc plasma method and a wet reduction method are generally known.

特に導電ペースト用の金属粉末については、近年の多層配線基板等のファインピッチ化に伴い、微小粒径で粗粒を含まないことが要求されている。しかし、一般的な水アトマイズ法で作製した金属粉末は粒径分布が広く、しかも平均粒径が5μm以下のものでは球状粉を得ることが困難であった。一方、噴霧媒体に不活性ガスを用いるガスアトマイズ法によれば、球状粉が得られるものの、平均粒径が十数μm程度と大きくなり、微細配線の導電ペースト用としては使用できない。   In particular, metal powder for conductive paste is required to have a fine particle size and no coarse particles with the recent fine pitch of multilayer wiring boards and the like. However, a metal powder produced by a general water atomization method has a wide particle size distribution, and it is difficult to obtain a spherical powder when the average particle size is 5 μm or less. On the other hand, according to the gas atomization method using an inert gas as the spray medium, although spherical powder is obtained, the average particle size becomes as large as about 10 μm and cannot be used as a conductive paste for fine wiring.

最近では、上記水アトマイズ法の改良により、平均粒径5μm以下の微粒子も作製可能になっている。しかし、微細配線の導電ペースト用として好適な粒径、例えば平均粒径2μmの微粉末を得るには、広い粒度分布から分級する必要があった。このように改良された水アトマイズ法においても、技術的に後工程の分級法を適用する必要があるうえ、分級効率も10%程度であるため、製造コストが高く、経済的に問題があった。   Recently, fine particles having an average particle diameter of 5 μm or less can be produced by improving the water atomization method. However, in order to obtain a fine powder having a particle size suitable for a conductive paste for fine wiring, for example, an average particle size of 2 μm, it is necessary to classify from a wide particle size distribution. Even in the water atomization method improved in this way, it is necessary to apply a classification method in the subsequent step technically, and the classification efficiency is about 10%, so that the manufacturing cost is high and there is an economical problem. .

また、アークプラズマ法(特許第1146170号公報)を用いて、金属粉末を作製することも知られている。しかし、アークプラズマ法で生成した微粒子は、プラズマガスが高温なため生成直後に非常に強固な凝集が起こりやすく、特に錫等の低融点金属では粒子間での焼結が進み、ぶどう房状の形状になる(H. Toku,O.W. Bende,A.C. Doring,A.C. de Cruz,P.K. Kiyohara and A.L. Silva,“KONA”,21,(2003),163−177)。このようなぶどう房状に凝集した微粒子を導電性ペースト用や導電樹脂用の導電性粒子として用いると、焼結時に凝集微粒子が粗大化して、ボイドやクラックの発生原因になるという問題があった。   It is also known to produce metal powder using the arc plasma method (Japanese Patent No. 1146170). However, the fine particles produced by the arc plasma method tend to agglomerate very quickly immediately after the production due to the high temperature of the plasma gas. (H. Toku, O.W. Bende, A.C. Doring, A.C. de Cruz, P.K. Kiyohara and A.L. Silva, “KONA”, 21, (2003), 163 -177). When such fine particles agglomerated in the shape of grapes are used as conductive particles for conductive pastes or conductive resins, there is a problem that the aggregated fine particles become coarse during sintering and cause voids and cracks. .

一方、一般的な湿式還元法では、粒径1μm以下の金属微粒子の作製が可能である。しかしながら、凝集が起こりやすく、粒子形状としても良好な球状粉を得ることができない。そのため、保護剤を添加して凝集を抑制しながら、還元する方法等が用いられている(特開2003−306707号公報)。この改良された湿式還元法によれば、平均粒径0.1μm以下の金属微粉末が得られるが、粒径が小さいために嵩密度が低く、導電ペーストとしたとき分散性が悪く、また添加した保護剤が残留するため良好な導電性が得られない等の問題があった。
特許第1146170号公報 特開2003−306707号公報 H. Toku,O.W. Bende,A.C.Doring,A.C. de Cruz,P.K. Kiyohara and A.L. Silva,“KONA”,21,(2003),163−177
On the other hand, metal particles having a particle size of 1 μm or less can be produced by a general wet reduction method. However, aggregation is likely to occur, and a spherical powder having a good particle shape cannot be obtained. For this reason, a method of reducing the amount while adding a protective agent to suppress aggregation is used (Japanese Patent Laid-Open No. 2003-306707). According to this improved wet reduction method, fine metal powder having an average particle size of 0.1 μm or less can be obtained. However, since the particle size is small, the bulk density is low. However, there was a problem that good conductivity could not be obtained because of the remaining protective agent.
Japanese Patent No. 1146170 JP 2003-306707 A H. Toku, O.W. Bende, A.C. Doring, A.C. de Cruz, P.K. Kiyohara and A.L. Silva, "KONA", 21, (2003), 163-177

本発明は、上記した従来の事情に鑑み、粒径が微小で且つ粗粒を含まず、多層配線基板の導電ペースト用や導電樹脂用の導電性粒子として好適な球状の金属錫微粉末、並びにその球状金属錫微粉末を効率よく製造する方法及び製造装置を提供することを目的とする。   In view of the above-described conventional circumstances, the present invention has a fine spherical metal tin powder that is fine and does not include coarse particles, and is suitable as a conductive particle for a conductive paste or a conductive resin of a multilayer wiring board, and It aims at providing the method and manufacturing apparatus which manufacture the spherical metal tin fine powder efficiently.

本発明者らは、導電ペースト用や導電樹脂用の金属錫微粉末を製造する方法について鋭意検討した結果、形状が球状で且つ好適な粒径の金属微粒子の製造に適したプラズマ法に着目すると共に、得られる金属微粒子の表面を有機溶剤で被覆して回収することによって、粒径が微小で且つ粗粒を含まず、分散性の良好な球状金属錫微粉末が製造できることを見出し、本発明を完成するに至ったものである。   As a result of intensive studies on a method for producing metal tin fine powders for conductive pastes and conductive resins, the present inventors pay attention to a plasma method suitable for producing metal fine particles having a spherical shape and a suitable particle size. In addition, it was found that by collecting the surface of the metal fine particles obtained by coating with an organic solvent and recovering the spherical metal tin fine powder having a fine particle size and no coarse particles, and having good dispersibility, the present invention Has been completed.

即ち、本発明が提供する球状金属錫微粉末は、形状が球状の金属錫微粒子からなり、平均粒径が0.4〜2μm及び最大粒径が5μm以下であり、粒径が均一で分散性に優れ、球状の微粒子表面が有機溶剤で被覆されていることを特徴とするものである。   That is, the spherical metallic tin fine powder provided by the present invention is composed of spherical metallic tin fine particles, the average particle diameter is 0.4-2 μm, the maximum particle diameter is 5 μm or less, the particle diameter is uniform and dispersible. The spherical fine particle surface is coated with an organic solvent.

また、上記本発明の球状金属錫微粉末を製造する方法は、生成した金属錫微粒子を有機溶剤中に捕集するか、又は生成した金属錫微粒子を搬送ガスにより搬送しながら有機溶剤のガスと接触させ、球状の微粒子表面を有機溶剤で被覆して回収することを特徴とする。   In addition, the method for producing the spherical metal tin fine powder of the present invention includes collecting the produced metal tin fine particles in an organic solvent, or carrying the produced metal tin fine particles with a carrier gas while conveying the produced metal tin fine particles with a carrier gas. It is contacted, and the surface of spherical fine particles is covered with an organic solvent and recovered.

更に、上記本発明の球状金属錫微粉末を製造する装置は、プラズマ法により金属錫微粉末を製造する装置であって、陰極及び錫原料を装着した陽極を有する蒸発室と、生成した金属錫微粒子を回収する回収室と、蒸発室と回収室を連通する搬送管に設けた温度調節手段とを備え、回収室に金属錫微粒子捕集用の有機溶剤が貯留されているか、又は回収室の上流に設けた被覆室に金属錫微粒子被覆用の有機溶剤のガスが供給されることを特徴とする。   Further, the apparatus for producing the spherical metal tin fine powder of the present invention is an apparatus for producing the metal tin fine powder by the plasma method, comprising an evaporation chamber having a cathode and an anode equipped with a tin raw material, and the produced metal tin. A recovery chamber for recovering the fine particles, and a temperature control means provided in a transport pipe that communicates the evaporation chamber and the recovery chamber. The recovery chamber stores an organic solvent for collecting metal tin fine particles, or An organic solvent gas for coating metal tin fine particles is supplied to a coating chamber provided upstream.

本発明によれば、プラズマ法を用い且つ生成した微粒子の表面を有機溶剤で被覆して回収することにより、低融点金属の錫であっても微粒子の凝集を防止することができ、粒径が均一で且つ粗粒を含まず、分散性に優れた球状の金属錫微粉末を効率的に製造することができる。   According to the present invention, the surface of fine particles produced is covered with an organic solvent and collected by using the plasma method, so that aggregation of fine particles can be prevented even with a low melting point metal tin, and the particle size is reduced. A spherical metal tin fine powder that is uniform and does not contain coarse particles and has excellent dispersibility can be efficiently produced.

しかも、この球状金属錫微粉末は、微粒子表面が有機溶剤で被覆されているので耐酸化性に優れるうえ、被覆用有機溶剤として導電ペーストの構成成分であるテルピネオール等を使用すれば、残留する有機溶剤が導電ペースト作製時に不純物にならないという利点がある。また、この球状金属錫微粉末は、平均粒径が0.4〜2μmと小さく且つ5μmを超える粗粒を含まないため、微細な配線ピッチが要求される導電ペースト及び導電樹脂の導電性粒子として、特にスルーホール用の導電ペーストの導電性粒子として好適に使用することができる。   Moreover, the spherical metal tin fine powder has excellent oxidation resistance because the surface of the fine particles is coated with an organic solvent, and the residual organic matter can be obtained by using terpineol, which is a constituent component of a conductive paste, as an organic solvent for coating. There is an advantage that the solvent does not become an impurity during the production of the conductive paste. Moreover, since this spherical metal tin fine powder has a small average particle size of 0.4 to 2 μm and does not include coarse particles exceeding 5 μm, it is a conductive paste and conductive resin conductive particles that require a fine wiring pitch. In particular, it can be suitably used as conductive particles of a conductive paste for through holes.

本発明の球状金属錫微粉末は、非酸化性雰囲気でのプラズマ法により製造される。プラズマ法による粉末の製造は、プラズマの高温により被加熱原料を溶融蒸発させることにより、微粒子を生成させるものである。一般にはアークプラズマが利用され、陰極と陽極(被加熱原料側)の間に発生するアークプラズマにより被加熱原料を溶融蒸発させて粉末を製造する。   The spherical metallic tin fine powder of the present invention is produced by a plasma method in a non-oxidizing atmosphere. In the production of powder by the plasma method, fine particles are produced by melting and evaporating a raw material to be heated at a high temperature of plasma. In general, arc plasma is used, and the raw material to be heated is melted and evaporated by the arc plasma generated between the cathode and the anode (the heated raw material side) to produce powder.

上記プラズマ法により錫原料を溶融蒸発させることによって、形状が球状で、微細な配線ピッチが要求される導電ペースト等に適した粒径の金属錫微粒子、具体的には、平均粒径が0.4〜2μmと小さく且つ最大粒径が5μm以下であり、粗粒を含まない金属錫微粒子を作製することができる。平均粒径が2μmを超えるか又は最大粒径が5μmを超えると、微細な配線ピッチ用の導電ペースト等への適用が難しくなり、また平均粒径が0.4μm未満では微粒子同士の凝集が起こりやすくなるからである。   By melting and evaporating the tin raw material by the plasma method, metal tin fine particles having a particle size suitable for a conductive paste or the like having a spherical shape and a fine wiring pitch, specifically, an average particle size of 0. Metal tin fine particles having a small particle size of 4 to 2 μm and a maximum particle size of 5 μm or less and containing no coarse particles can be produced. If the average particle size exceeds 2 μm or the maximum particle size exceeds 5 μm, it will be difficult to apply to a conductive paste for fine wiring pitch, and if the average particle size is less than 0.4 μm, aggregation of fine particles occurs. This is because it becomes easier.

錫原料を溶融蒸発させる際には、錫の酸化反応を防止するために、アークプラズマガスとして非酸化性ガスを用いる。一般的にはアルゴンなどの不活性ガスを使用するが、不活性ガスに水素ガスを混合して使用すれば、錫の酸化防止と同時に、錫の蒸発速度を向上させることができる。ただし、水素ガスの混入量が多くなると、生成した金属錫微粒子の凝集が起こりやすくなるため、特に微粒子を搬送する間の温度制御等により凝集を防止することが望ましい。   When the tin raw material is melted and evaporated, a non-oxidizing gas is used as the arc plasma gas in order to prevent the oxidation reaction of tin. In general, an inert gas such as argon is used. However, if hydrogen gas is mixed with an inert gas, the oxidation rate of tin can be improved simultaneously with the prevention of tin oxidation. However, if the amount of hydrogen gas mixed in increases, the generated metal tin fine particles tend to aggregate. Therefore, it is particularly desirable to prevent the aggregation by controlling the temperature during the transportation of the fine particles.

また、金属錫微粒子の粒径や分散性は、微粒子製造時の雰囲気温度や搬送ガス温度により変化し、製造時の電流が小さく雰囲気温度が低いほど、また搬送ガス温度が低いほど、微粒子の粒径が小さくなり且つ分散性が向上する。例えば、粒径0.4μm同士の微粒子は100℃程度で融合し、また粒径が2μmの場合には160℃程度で融合して、大きな粒子に成長しやすいか凝集を起こしやすい。従って、例えば、生成した微粒子を搬送ガスで搬送する間、搬送ガスの温度を上記の温度よりも低い温度に調節することにより、得られる金属錫微粒子の粒径及び分散性を所望の好ましい範囲に調整することが可能である。   In addition, the particle size and dispersibility of the metal tin fine particles vary depending on the atmospheric temperature and carrier gas temperature during the production of the fine particles. The smaller the current during production and the lower the ambient temperature, and the lower the carrier gas temperature, the finer the particles of the fine particles. The diameter is reduced and the dispersibility is improved. For example, fine particles having a particle size of 0.4 μm are fused at about 100 ° C., and when the particle size is 2 μm, they are fused at about 160 ° C. to easily grow into large particles or easily aggregate. Therefore, for example, while the produced fine particles are conveyed with the carrier gas, the particle diameter and dispersibility of the obtained metal tin fine particles are brought to a desired preferable range by adjusting the temperature of the carrier gas to a temperature lower than the above temperature. It is possible to adjust.

更に、本発明においては、上記プラズマ法により生成した球状の金属錫微粒子の表面を有機溶剤で被覆して回収する。例えば、生成した金属錫微粒子を有機溶剤中に捕集し、有機溶剤を濾過や蒸発等により分離して、有機溶剤で表面被覆された金属錫微粉末を回収する。また、生成した金属錫微粒子を搬送ガスにより搬送しながら、有機溶剤のガスと接触させて表面を被覆した後、その金属錫微粉末を回収することもできる。   Furthermore, in the present invention, the surface of the spherical metal tin fine particles generated by the plasma method is coated with an organic solvent and recovered. For example, the produced metal tin fine particles are collected in an organic solvent, and the organic solvent is separated by filtration, evaporation or the like, and the metal tin fine powder whose surface is coated with the organic solvent is recovered. In addition, while the produced metal tin fine particles are conveyed by a carrier gas, the metal tin fine powder can be recovered after contacting the surface with the gas of the organic solvent to cover the surface.

一般に金属微粒子は表面活性が高いうえ、錫は低融点金属であるため、粒成長・凝集などが起こりやすい。しかし、本発明においては、金属錫微粒子の生成から回収までの間に搬送ガスの温度を適切に制御すると共に、その微粒子表面を有機溶剤で被覆して回収するので、粒成長及び凝集を抑制することができる。また、微粒子の生成から有機溶剤で表面被覆して回収するまで、大気に暴露されることがないため、活性の強い微粒子でも酸化等の汚染を防ぐことができる。   In general, fine metal particles have high surface activity, and tin is a low melting point metal, so that grain growth and aggregation are likely to occur. However, in the present invention, the temperature of the carrier gas is appropriately controlled between the generation and recovery of metal tin fine particles, and the surface of the fine particles is covered with an organic solvent for recovery, thereby suppressing grain growth and aggregation. be able to. Further, since it is not exposed to the atmosphere from the generation of fine particles to the surface coating with an organic solvent and recovery, even highly active fine particles can prevent contamination such as oxidation.

上記金属錫微粒子の表面被覆に用いる有機溶剤としては、芳香族系、アルコール系、エステル系、ケトン系などの有機溶剤、例えば、テルピネオール、ジヒドロテルピネオール、エチルセルソルブ、ブチルセルソルブ、エチルカルビトール、ブチルカルビトール、又はそれらの酢酸エステル、ペンタンジオールアルキルエーテル、ジブチルフタレート、γ−ブチロラクトン等がある。   As the organic solvent used for the surface coating of the metal tin fine particles, aromatic solvents, alcohols, esters, ketones and other organic solvents such as terpineol, dihydroterpineol, ethyl cellosolve, butyl cellosolve, ethyl carbitol, Examples thereof include butyl carbitol, or acetates thereof, pentanediol alkyl ether, dibutyl phthalate, and γ-butyrolactone.

特に、表面被覆用にテルピネオール等の導電性ペーストに通常使用されている有機溶剤を使用すれば、その有機溶剤で表面被覆された金属錫微粉末で導電ペーストを作製する際に、残留している有機溶剤が不純物となることがなく極めて有利である。   In particular, if an organic solvent usually used for conductive paste such as terpineol is used for surface coating, it remains when the conductive paste is produced with metal tin fine powder surface-coated with the organic solvent. The organic solvent is extremely advantageous because it does not become an impurity.

次に、本発明による球状金属錫微粉末の製造装置を、図1により具体的に説明する。この装置は、錫原料をアークプラズマにより溶融蒸発させる蒸発室1と、生成した金属錫微粒子を回収する回収室2と、蒸発室1と回収室2の間を連通する搬送管3と、回収室2の上流側で搬送管3に設けた被覆室4と、蒸発室1の出口で搬送管3に設けた温度調節用の冷却チャンバー5とを備えている。被覆室4には有機溶剤6が入れてあり、ヒーター7により有機溶剤6を蒸発させてガス化するようになっている。   Next, the apparatus for producing spherical metal tin fine powder according to the present invention will be described in detail with reference to FIG. This apparatus includes an evaporation chamber 1 for melting and evaporating tin raw material by arc plasma, a recovery chamber 2 for recovering generated metal tin fine particles, a transport pipe 3 communicating between the evaporation chamber 1 and the recovery chamber 2, and a recovery chamber. 2 is provided with a coating chamber 4 provided in the transfer pipe 3 on the upstream side, and a temperature adjusting cooling chamber 5 provided in the transfer pipe 3 at the outlet of the evaporation chamber 1. An organic solvent 6 is placed in the coating chamber 4, and the organic solvent 6 is evaporated by a heater 7 to be gasified.

蒸発室1は直流アークの陰極8aと陽極8bを備え、陽極8bには錫原料10が取り付けてある。錫原料10として錫地金又は錫粉末を用い、バッチ式では定量を及び量産時には1〜10g/分で定量的に連続して供給する。ガス供給口9から蒸発室1にアークプラズマガス及び搬送ガスを供給しながら、陰極8aと陽極8bの間でアーク放電させることによって錫原料10を溶融蒸発させ、金属錫微粒子を生成させる。一般的に、アークプラズマガス及び搬送ガスとしてアルゴンと水素を用い、トータル流量10〜200リットル/分となるように混合して又別々に供給する。   The evaporation chamber 1 includes a DC arc cathode 8a and an anode 8b, and a tin raw material 10 is attached to the anode 8b. Tin ingot or tin powder is used as the tin raw material 10 and is supplied continuously and quantitatively at a rate of 1 to 10 g / min in batch production and in mass production. While supplying the arc plasma gas and the carrier gas from the gas supply port 9 to the evaporation chamber 1, arc discharge is performed between the cathode 8 a and the anode 8 b to melt and evaporate the tin raw material 10 to generate fine metal tin particles. In general, argon and hydrogen are used as the arc plasma gas and the carrier gas, and are mixed and supplied separately at a total flow rate of 10 to 200 liters / minute.

蒸発室1で生成した錫微粒子は、搬送ガスにより搬送管3を通って被覆室4に送られる。その際、微粒子製造時の雰囲気温度や搬送ガス温度が高いと、錫微粒子が凝集して大きな粒子になりやすい。また、搬送管3は高温の搬送ガス(アルゴン+水素)によりが加熱されて次第に温度上昇するため、一層凝集が起こりやすくなる。そこで、搬送管3に設置した熱電対(図示せず)で温度を測定しながら、冷却水等を流した冷却チャンバー5で冷却することにより搬送ガスの温度を調節する。   Tin fine particles generated in the evaporation chamber 1 are sent to the coating chamber 4 through the transfer pipe 3 by the transfer gas. At this time, if the atmospheric temperature and carrier gas temperature during the production of the fine particles are high, the tin fine particles are likely to aggregate and become large particles. Further, since the transport pipe 3 is heated by the high-temperature transport gas (argon + hydrogen) and gradually rises in temperature, aggregation is more likely to occur. Therefore, the temperature of the carrier gas is adjusted by cooling in the cooling chamber 5 in which cooling water or the like is flowed while measuring the temperature with a thermocouple (not shown) installed in the carrier pipe 3.

被覆室4に入った錫微粒子は、ヒーター7により蒸発させた有機溶剤6のガスと接触することにより、その表面に有機溶剤がコーティングされる。表面に有機溶剤の被覆層が形成された錫微粒子は、更に搬送ガスにより回収室2に運ばれて沈降堆積し、金属錫微粉末11として回収される。尚、図1の装置では有機溶剤のガスで被覆するための被覆室4を設けたが、この被覆室4の代わりに、回収室2に有機溶剤を貯留して、この有機溶剤中に錫微粒子を捕集して回収することによっても、錫微粒子の表面に有機溶剤を被覆することができる。   The tin fine particles entering the coating chamber 4 come into contact with the gas of the organic solvent 6 evaporated by the heater 7, so that the surface is coated with the organic solvent. Tin fine particles having an organic solvent coating layer formed on the surface thereof are further transported to the recovery chamber 2 by the carrier gas, settled and deposited, and recovered as metal tin fine powder 11. In the apparatus shown in FIG. 1, a coating chamber 4 for coating with an organic solvent gas is provided. Instead of the coating chamber 4, an organic solvent is stored in the recovery chamber 2, and tin fine particles are contained in the organic solvent. The organic solvent can be coated on the surface of the tin fine particles also by collecting and collecting the.

[実施例1]
活性アークプラズマ微粉製造装置(ホソカワミクロン(株)製、ARC−IE)を備えた図1の製造装置(ただし、被覆室4は設置せず)を用い、その陽極8bに錫原料10として金属錫地金約60gを取り付けた。アルゴンガス70リットル/分と水素10リットル/分を流しながら、陽極8bと陰極8a(タングステン+2%トリウム)の間に直流を供給し、電流200A、電圧30Vでアーク放電させることによって、金属錫地金を溶融蒸発させた。生成した錫微粒子は80℃に制御した搬送ガスにより回収室2に導入し、回収室2に貯留されているテルピネオール中に捕集して金属錫微粉末を回収した。
[Example 1]
1 using an active arc plasma fine powder production apparatus (ARC-IE, manufactured by Hosokawa Micron Co., Ltd.) (however, the coating chamber 4 is not provided), and a metal tin base as a tin raw material 10 for the anode 8b. About 60 g of gold was attached. By supplying a direct current between the anode 8b and the cathode 8a (tungsten + 2% thorium) while flowing an argon gas of 70 liters / minute and hydrogen of 10 liters / minute, an arc discharge is performed at a current of 200 A and a voltage of 30 V. Gold was melted and evaporated. The produced tin fine particles were introduced into the collection chamber 2 by a carrier gas controlled at 80 ° C., and collected in terpineol stored in the collection chamber 2 to collect fine metal tin powder.

回収して乾燥させた金属錫微粉末の走査電子顕微鏡(SEM)写真を図2に示す。この金属錫微粉末の粒度分布は、レーザー回折法によれば、D10=0.14μm、D50=0.49μm、D90=0.94μm、D100=2.31μmであった。また、図2のSEM写真から求めた平均粒径は、D50=0.41μmであった。この結果から、球状であって、粗粒を含まず、即ち5μm以上の粗大粒子がなく、分散性に優れた金属錫微粉末が得られたことが分かる。   A scanning electron microscope (SEM) photograph of the metal tin fine powder collected and dried is shown in FIG. According to the laser diffraction method, the particle size distribution of the metal tin fine powder was D10 = 0.14 μm, D50 = 0.49 μm, D90 = 0.94 μm, D100 = 2.31 μm. Moreover, the average particle diameter calculated | required from the SEM photograph of FIG. 2 was D50 = 0.41 micrometer. From this result, it can be seen that a fine metal tin powder having a spherical shape and no coarse particles, that is, no coarse particles of 5 μm or more and excellent dispersibility was obtained.

[実施例2]
図1の製造装置(被覆室4を設置)を用い、実施例1と同様の条件で錫原料を溶融蒸発させ、生成した錫微粒子を被覆室4でテルピネオールのガスに接触させた後、回収室2に導入して金属錫微粉末を回収した。その際、アークプラズマガス及び搬送ガスの流量は、アルゴンガス30リットル/分、水素3リットル/分とした。
[Example 2]
Using the production apparatus of FIG. 1 (installing the coating chamber 4), the tin raw material was melted and evaporated under the same conditions as in Example 1, and the generated tin fine particles were brought into contact with the terpineol gas in the coating chamber 4, and then the recovery chamber. 2 was collected to collect fine metal tin powder. At that time, the flow rates of the arc plasma gas and the carrier gas were 30 liters / minute of argon gas and 3 liters / minute of hydrogen.

回収した金属錫微粉末の粒度分布は、レーザー回折法によれば、D10=0.13μm、D50=0.53μm、D90=1.00μm、D100=1.94μmであった。また、SEM写真の観察からも、5μm以上の粗大粒子は存在しなかった。この結果から、球状であって、粗粒を含まず、即ち5μm以上の粗大粒子がなく、分散性に優れた金属錫微粉末が得られたことが分かる。   According to the laser diffraction method, the particle size distribution of the recovered metal tin fine powder was D10 = 0.13 μm, D50 = 0.53 μm, D90 = 1.00 μm, D100 = 1.94 μm. Further, from observation of the SEM photograph, coarse particles of 5 μm or more were not present. From this result, it can be seen that a fine metal tin powder having a spherical shape and no coarse particles, that is, no coarse particles of 5 μm or more and excellent dispersibility was obtained.

[実施例3]
図1の製造装置(被覆室4を設置)を用い、実施例2と同様の方法により、金属錫微粉末を製造して回収した。その際、アークプラズマガス及び搬送ガスの流量は、アルゴンガス50リットル/分、水素10リットル/分とした。
[Example 3]
Metal tin fine powder was produced and recovered by the same method as in Example 2 using the production apparatus of FIG. At that time, the flow rates of the arc plasma gas and the carrier gas were 50 liters / minute of argon gas and 10 liters / minute of hydrogen.

回収した金属錫微粉末の粒度分布は、レーザー回折法によれば、D10=0.13μm、D50=0.98μm、D90=1.80μm、D100=3.89μmであった。また、SEM写真の観察からも、5μm以上の粗大粒子は存在しなかった。この結果から、球状であって、粗粒を含まず、即ち5μm以上の粗大粒子がなく、分散性に優れた金属錫微粉末が得られたことが分かる。   According to the laser diffraction method, the particle size distribution of the recovered metal tin fine powder was D10 = 0.13 μm, D50 = 0.98 μm, D90 = 1.80 μm, D100 = 3.89 μm. Further, from observation of the SEM photograph, coarse particles of 5 μm or more were not present. From this result, it can be seen that a fine metal tin powder having a spherical shape and no coarse particles, that is, no coarse particles of 5 μm or more and excellent dispersibility was obtained.

[従来例]
上記と同じ活性アークプラズマ微粉製造装置を用い、陽極に錫原料として金属錫地金約60gを取り付けた。アルゴンガス80リットル/分を流しながら、電流150A、電圧30Vでアーク放電させることによって、金属錫地金を溶融蒸発させた。生成した錫微粒子は、そのまま搬送ガスにより回収室に導入して回収した。尚、凝集を起こり難くするため、水素を含まないアルゴンガス雰囲気を用い且つ低電流で実施し、ガス流量はトータルで実施例1と同じにした。
[Conventional example]
Using the same active arc plasma fine powder production apparatus as above, about 60 g of metal tin metal was attached to the anode as a tin raw material. The metal tin ingot was melted and evaporated by arc discharge at a current of 150 A and a voltage of 30 V while flowing argon gas of 80 liters / minute. The produced tin fine particles were directly introduced into the recovery chamber by the carrier gas and recovered. In order to make aggregation less likely to occur, an argon gas atmosphere containing no hydrogen was used at a low current, and the gas flow rate was the same as in Example 1.

回収した金属錫微粉末の走査電子顕微鏡(SEM)写真を図3に示す。この金属錫微粉末は、SEM観察による一次粒子径は0.5μm以下であるが、一次粒子の粒子間焼結が進行して、ぶどう状の凝集体を形成していた。また、レーザー回折法による粒度分布は、D10=0.69μm、D50=3.29μm、D90=14.8μm、D100=37.0μmであった。   A scanning electron microscope (SEM) photograph of the collected metal tin fine powder is shown in FIG. Although this metal tin fine powder had a primary particle size of 0.5 μm or less as observed by SEM, sintering between the primary particles proceeded to form a grape-like aggregate. The particle size distribution determined by the laser diffraction method was D10 = 0.69 μm, D50 = 3.29 μm, D90 = 14.8 μm, and D100 = 37.0 μm.

本発明による金属錫微粉末製造装置の一具体例を示す概略の断面図である。It is a schematic sectional drawing which shows one specific example of the metal tin fine powder manufacturing apparatus by this invention. 本発明の金属錫微粉末の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the metal tin fine powder of this invention. 通常のプラズマ法による金属錫微粉末の走査型電子顕微鏡写真である。It is a scanning electron micrograph of metal tin fine powder by a normal plasma method.

符号の説明Explanation of symbols

1 蒸発室
2 回収室
3 搬送管
4 被覆室
5 冷却チャンバー
6 有機溶剤
7 ヒーター
8a 陰極
8b 陽極
9 ガス供給口
10 錫原料
11 金属錫微粉末
DESCRIPTION OF SYMBOLS 1 Evaporation chamber 2 Collection | recovery chamber 3 Conveyance pipe | tube 4 Coating | covering chamber 5 Cooling chamber 6 Organic solvent 7 Heater 8a Cathode 8b Anode 9 Gas supply port 10 Tin raw material 11 Metal tin fine powder

Claims (3)

形状が球状の金属錫微粒子からなり、平均粒径が0.4〜2μm及び最大粒径が5μm以下であり、粒径が均一で分散性に優れ、微粒子表面が有機溶剤で被覆されていることを特徴とする球状金属錫微粉末。   It is composed of spherical metallic tin particles, has an average particle size of 0.4-2 μm, a maximum particle size of 5 μm or less, a uniform particle size, excellent dispersibility, and the fine particle surface is coated with an organic solvent. Spherical metal tin fine powder characterized by プラズマ法により金属錫微粉末を製造する方法であって、生成した金属錫微粒子を有機溶剤中に捕集するか、又は生成した金属錫微粒子を搬送ガスにより搬送しながら有機溶剤のガスと接触させ、球状の微粒子表面を有機溶剤で被覆して回収することを特徴とする球状金属錫微粉末の製造方法。   A method for producing metal tin fine powder by a plasma method, wherein the produced metal tin fine particles are collected in an organic solvent, or the produced metal tin fine particles are brought into contact with an organic solvent gas while being carried by a carrier gas. A method for producing fine spherical metal tin powder, wherein the surface of spherical fine particles is covered with an organic solvent and collected. プラズマ法により金属錫微粉末を製造する装置であって、陰極及び錫原料を装着した陽極を有する蒸発室と、生成した金属錫微粒子を回収する回収室と、蒸発室と回収室を連通する搬送管に設けた温度調節手段とを備え、回収室に金属錫微粒子捕集用の有機溶剤が貯留されているか、又は回収室の上流に設けた被覆室に金属錫微粒子被覆用の有機溶剤のガスが供給されることを特徴とする球状金属錫微粉末の製造装置。


An apparatus for producing metal tin fine powder by a plasma method, comprising an evaporation chamber having a cathode and an anode equipped with a tin raw material, a recovery chamber for recovering the produced metal tin fine particles, and a transport that connects the evaporation chamber and the recovery chamber A temperature adjusting means provided in the tube, and the organic solvent for collecting the metal tin fine particles is stored in the recovery chamber, or the organic solvent gas for coating the metal tin fine particles is provided in the coating chamber provided upstream of the recovery chamber. An apparatus for producing fine spherical metal tin powder, wherein:


JP2005060258A 2005-03-04 2005-03-04 Spherical metal tin fine powder and method and device for producing the same Pending JP2006241549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005060258A JP2006241549A (en) 2005-03-04 2005-03-04 Spherical metal tin fine powder and method and device for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060258A JP2006241549A (en) 2005-03-04 2005-03-04 Spherical metal tin fine powder and method and device for producing the same

Publications (1)

Publication Number Publication Date
JP2006241549A true JP2006241549A (en) 2006-09-14

Family

ID=37048242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060258A Pending JP2006241549A (en) 2005-03-04 2005-03-04 Spherical metal tin fine powder and method and device for producing the same

Country Status (1)

Country Link
JP (1) JP2006241549A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788412B1 (en) 2007-03-13 2007-12-24 호서대학교 산학협력단 Thermal plasma device
JP2012514060A (en) * 2008-12-24 2012-06-21 イントリンジック マテリアルズ リミテッド Fine particles
CN102909362A (en) * 2012-10-15 2013-02-06 江苏博迁光伏材料有限公司 Sub-micron solder alloy powder and preparation method thereof
JPWO2017154330A1 (en) * 2016-03-07 2018-11-22 株式会社村田製作所 Bonding material and method for manufacturing bonded body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788412B1 (en) 2007-03-13 2007-12-24 호서대학교 산학협력단 Thermal plasma device
JP2012514060A (en) * 2008-12-24 2012-06-21 イントリンジック マテリアルズ リミテッド Fine particles
CN102909362A (en) * 2012-10-15 2013-02-06 江苏博迁光伏材料有限公司 Sub-micron solder alloy powder and preparation method thereof
CN102909362B (en) * 2012-10-15 2015-11-18 江苏博迁新材料有限公司 Sub-micron solder alloy powder and preparation method thereof
JPWO2017154330A1 (en) * 2016-03-07 2018-11-22 株式会社村田製作所 Bonding material and method for manufacturing bonded body
US10888961B2 (en) 2016-03-07 2021-01-12 Murata Manufacturing Co., Ltd. Joining material and method for manufacturing joined body

Similar Documents

Publication Publication Date Title
TWI474882B (en) Ultrafine alloy particles, and process for producing the same
CA1301462C (en) Hydrometallurgical process for producing finely divided spherical refractory metal based powders
TWI589375B (en) Plasma device for manufacturing metallic powder and method for manufacturing metallic powder
JP5768322B2 (en) Nickel fine powder and method for producing the same
US20060162495A1 (en) Nanostructured metal powder and method of fabricating the same
JP6282648B2 (en) Method for producing cuprous oxide fine particles
KR101334156B1 (en) Fabrication method of amorphous alloy powder using gas atomization
EP2511032A1 (en) Production method for high purity copper powder using a thermal plasma
JP2011195888A5 (en)
TWI803486B (en) Copper particle and its manufacturing method
TW201332686A (en) Plasma device for manufacturing metal powder
JPH10102108A (en) Manufacture of metallic powder
KR20200062263A (en) Silver powder and its manufacturing method
JP5176060B2 (en) Method for producing silver particle dispersion
JP2006241549A (en) Spherical metal tin fine powder and method and device for producing the same
JP2004124257A (en) Metal copper particulate, and production method therefor
JP2008179851A (en) Method for manufacturing silver powder, and silver powder
JP2019508581A (en) Method of manufacturing copper nanometal powder having uniform oxygen passivation layer using thermal plasma and apparatus for manufacturing the same
JP5008377B2 (en) Method for producing true spherical tin fine powder
US20170113278A1 (en) Metal composite powder and method for producing same
JP5354398B2 (en) True spherical fine powder
TW201936935A (en) Copper fine particles
JP7194544B2 (en) Particle manufacturing method
KR102295894B1 (en) Manufacturing method of metal powder for 3D printing using granulating process
WO2021100320A1 (en) Microparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112