JP2006241037A - Method for producing fullerene derivative - Google Patents

Method for producing fullerene derivative Download PDF

Info

Publication number
JP2006241037A
JP2006241037A JP2005056937A JP2005056937A JP2006241037A JP 2006241037 A JP2006241037 A JP 2006241037A JP 2005056937 A JP2005056937 A JP 2005056937A JP 2005056937 A JP2005056937 A JP 2005056937A JP 2006241037 A JP2006241037 A JP 2006241037A
Authority
JP
Japan
Prior art keywords
fullerenes
reaction medium
fullerene
medium
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005056937A
Other languages
Japanese (ja)
Inventor
Tomoko Maeda
智子 前田
Tetsuo Kasai
鉄夫 笠井
Koichi Nagata
浩一 永田
Masahiko Hashiguchi
昌彦 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frontier Carbon Corp
Original Assignee
Frontier Carbon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frontier Carbon Corp filed Critical Frontier Carbon Corp
Priority to JP2005056937A priority Critical patent/JP2006241037A/en
Publication of JP2006241037A publication Critical patent/JP2006241037A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing fullerene derivatives, obtaining fullerene derivatives having uniform quality by promptly obtaining uniform suspension state in making fullerenes contact with a reaction medium when producing fullerene derivatives by a suspension method. <P>SOLUTION: The method for producing fullerene derivatives comprises reacting the fullerenes 12 in suspended state in a reaction medium 10, wherein the fullerenes 12 previously suspended in another medium 11 inert to the reaction medium 10 is mixed with the reaction medium 10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フラーレン類を化学修飾したフラーレン誘導体の製造方法に関する。 The present invention relates to a method for producing fullerene derivatives obtained by chemically modifying fullerenes.

1985年に発見されたフラーレンは、60個あるいはそれ以上の炭素原子が球状に結合した、バルク状態では黒色粉末の第3の炭素同素体である。その特異な分子形状から、C60、C70に代表されるフラーレン類は、電子材料部品、医薬、化粧品などの新規機能材料として高く注目されている。一方、フラーレン類に各種置換基を導入することにより新たな機能や高い溶解性を付与したフラーレン誘導体も各種合成されており、フラーレンと同様に幅広い産業分野での応用が期待されている。
フラーレン誘導体の製造方法を、原料であるフラーレン類の反応時の状態に着目して分類すると、大きく次の3つの方法に分類される。
1)懸濁法:発煙硫酸、硫酸−硝酸混合系といった酸類などの反応媒体にフラーレン類を懸濁させ、フラーレン類に酸などに由来する置換基を導入する。
2)溶解法:フラーレン類をトルエン、キシレンなどの有機溶媒に溶解させ、マロン酸エステルや有機ハロゲン化物などの有機化合物などと反応させ置換基を導入する。
3)固体法:固体状態のフラーレン類に対し、フッ素、塩素などのガスを反応させ置換基を導入する。
以上のうち、懸濁法(例えば、特許文献1に記載されている)を用いると、プロトン伝導能や生体親和性など興味深い特性を持つ水酸化フラーレン(フラーレンに複数の水酸基が付加したもの)や硫酸水素エステル化水酸化フラーレン(水酸化フラーレンの水酸基の一部が -OSO3 H基に置き換えられたもの)が得られるため、懸濁法は非常に重要なフラーレン誘導体の製造方法である。
Fullerene, discovered in 1985, is a third carbon allotrope of black powder in the bulk state in which 60 or more carbon atoms are bonded in a spherical shape. Due to its unique molecular shape, fullerenes typified by C60 and C70 are attracting a great deal of attention as new functional materials such as electronic material parts, pharmaceuticals, and cosmetics. On the other hand, various fullerene derivatives imparted with new functions and high solubility by introducing various substituents into fullerenes have been synthesized and are expected to be applied in a wide range of industrial fields in the same manner as fullerenes.
When the production methods of fullerene derivatives are classified by paying attention to the state at the time of reaction of fullerenes which are raw materials, they are roughly classified into the following three methods.
1) Suspension method: Fullerenes are suspended in a reaction medium such as fuming sulfuric acid or sulfuric acid-nitric acid mixed system, and substituents derived from acids are introduced into fullerenes.
2) Dissolution method: Fullerenes are dissolved in an organic solvent such as toluene or xylene, and reacted with an organic compound such as a malonic acid ester or an organic halide to introduce a substituent.
3) Solid method: A substituent is introduced by reacting a fullerene in a solid state with a gas such as fluorine or chlorine.
Among the above, when a suspension method (for example, described in Patent Document 1) is used, fullerene hydroxide having interesting properties such as proton conductivity and biocompatibility (a compound in which a plurality of hydroxyl groups are added to fullerene) Since a hydrogen sulfate esterified fullerene hydroxide (a hydroxyl group of the fullerene hydroxide is partially replaced with -OSO 3 H group) is obtained, the suspension method is a very important method for producing fullerene derivatives.

特開2004−168752号公報JP 2004-168752 A

しかしながら、特許文献1に記載の懸濁法によるフラーレン誘導体の製造方法は、以下に挙げる問題点を抱えていることが判明した。
即ち、特許文献1記載の方法では反応器中の発煙硫酸に固体状態のフラーレン類を直接投入した後、攪拌することによって懸濁状態を達成している。しかし、発煙硫酸の比重が非常に大きい(30%発煙硫酸で1. 92)ため、この方法では、図2に示すように、投入直後にはフラーレン類30が発煙硫酸(反応媒体)30aの液面に浮いてしまい、攪拌動力を上げてもなかなか均一な懸濁状態が得られなかった。なお、31は攪拌槽を、32は攪拌翼を示す。この問題は、反応スケールを大きくした場合さらに顕著になる。すなわち、相似系の反応器を用いた場合、反応スケールをn倍にすると、投入したフラーレン単位重量あたりの発煙硫酸の液表面積はnのマイナス1/3乗倍に減少してしまう。従って、スケールアップするに従い短時間で均一な懸濁状態を得ることは困難になり、原料の部位によって反応の進行状況にばらつきが生じるため、得られる水酸化フラーレンの品質に振れが生じる原因となった。
However, it has been found that the method for producing a fullerene derivative by the suspension method described in Patent Document 1 has the following problems.
That is, in the method described in Patent Document 1, the solid state fullerenes are directly added to the fuming sulfuric acid in the reactor, and then the suspension state is achieved by stirring. However, since the specific gravity of fuming sulfuric acid is very large (1.92 with 30% fuming sulfuric acid), as shown in FIG. 2, in this method, the fullerenes 30 are a liquid of fuming sulfuric acid (reaction medium) 30a immediately after charging. Even when the stirring power was increased, a uniform suspension state could not be obtained. In addition, 31 shows a stirring tank and 32 shows a stirring blade. This problem becomes more prominent when the reaction scale is increased. That is, when a similar reactor is used and the reaction scale is increased by n times, the liquid surface area of fuming sulfuric acid per unit weight of fullerene charged is reduced to minus 1/3 times n. Therefore, it becomes difficult to obtain a uniform suspended state in a short time as scale-up occurs, and the progress of the reaction varies depending on the site of the raw material, which causes fluctuations in the quality of the resulting fullerene hydroxide. It was.

本発明は上記問題を解決するためになされたものであり、懸濁法によるフラーレン誘導体製造において、フラーレン類を反応媒体に接触させる際に速やかに均一な懸濁状態を得ることにより、品質の揃ったフラーレン誘導体を得るフラーレン誘導体の製造方法を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems. In the production of fullerene derivatives by the suspension method, when the fullerenes are brought into contact with the reaction medium, a uniform suspension state can be obtained quickly, thereby ensuring uniform quality. Another object is to provide a method for producing a fullerene derivative to obtain a fullerene derivative.

前記目的に沿う本発明に係るフラーレン誘導体の製造方法は、フラーレン類を反応媒体中に懸濁状態で反応させるフラーレン誘導体の製造方法において、予め前記反応媒体に対して不活性な他の媒体に懸濁させた前記フラーレン類を、前記反応媒体と混合させている。
ここで、前記反応媒体としては、例えば酸、具体的には発煙硫酸、前記反応媒体に不活性な他の媒体(懸濁媒体)としては濃硫酸を使用することができるが、これら以外に、前記反応媒体にはフラーレン類と反応する液状のものが適用され、前記他の媒体としては、この反応媒体には不活性でフラーレン類と反応しにくいものが適用される。
The method for producing a fullerene derivative according to the present invention that meets the above-described object is a method for producing a fullerene derivative in which a fullerene is reacted in a suspended state in a reaction medium, and the method is previously applied to another medium that is inert to the reaction medium. The turbid fullerenes are mixed with the reaction medium.
Here, as the reaction medium, for example, acid, specifically fuming sulfuric acid, and concentrated sulfuric acid can be used as another medium (suspension medium) inert to the reaction medium. As the reaction medium, a liquid that reacts with fullerenes is applied, and as the other medium, an inert medium that does not easily react with fullerenes is applied.

本発明の詳細な説明をその経緯と共に説明すると以下の通りである。
本発明者らは、鋭意検討の結果、懸濁法によってフラーレン誘導体を製造する際、図1に示すように反応媒体10に対して不活性な他の媒体11にフラーレン類12を懸濁させた後、その懸濁液13を反応媒体10と接触させると、フラーレン類12と反応媒体10が速やかに均一な懸濁状態になり、品質の揃ったフラーレン誘導体が得られることを見出し、本発明の完成に至った。なお、15は容器を、16は攪拌槽、17は攪拌翼を示す。
まず、本発明で言う「均一な懸濁状態を速やかに得る」の「速やか」という用語について定義する。「速やか」とは、フラーレン類が反応媒体と接触を開始してから均一な懸濁状態に到達するまでの時間が、反応の完結までに所要する時間に対して十分短いことを意味する。具体的には、前者が後者の2分の1以下、望ましくは10分の1以下、さらに望ましくは100分の1以下であると良い。
A detailed description of the present invention, together with its background, is as follows.
As a result of intensive studies, the inventors of the present invention suspended fullerenes 12 in another medium 11 that is inactive to the reaction medium 10 as shown in FIG. Thereafter, when the suspension 13 is brought into contact with the reaction medium 10, the fullerenes 12 and the reaction medium 10 are rapidly brought into a uniform suspended state, and a fullerene derivative having a uniform quality can be obtained. Completed. Reference numeral 15 denotes a container, 16 denotes a stirring tank, and 17 denotes a stirring blade.
First, the term “rapidly” of “obtaining rapidly a uniform suspension state” as defined in the present invention will be defined. “Promptly” means that the time from the start of contact of the fullerenes with the reaction medium to the arrival of a uniform suspension is sufficiently shorter than the time required to complete the reaction. Specifically, the former is less than half of the latter, desirably less than one tenth, and more desirably less than one hundred.

懸濁法でフラーレン誘導体を製造する際、反応媒体としては、例えば、主に発煙硫酸、硝酸及び硫酸の混酸系などの酸が主に用いられる。中でも発煙硫酸を用いて水酸化フラーレン及び/又は硫酸水素エステル化水酸化フラーレンを得る際に本発明を適用すると好適である。
反応媒体と接触させる前にフラーレン類を懸濁させる他の媒体は、反応媒体に対して不活性なもので、フラーレン類を懸濁できるものなら何でも良い。反応媒体が発煙硫酸の場合、濃硫酸、濃硝酸などの発煙硫酸よりも酸強度が低く比重の小さな酸、ヘキサン、ヘプタン、シクロヘキサンなどの脂肪族炭化水素、鉱油などが望ましい。発煙硫酸は濃硫酸に三酸化硫黄(SO3 )が溶解したものである。そのため、濃硫酸は発煙硫酸と速やかに混合するため、フラーレン類を懸濁させる媒体として好適である。
When producing a fullerene derivative by a suspension method, for example, an acid such as fuming sulfuric acid, nitric acid and a mixed acid system of sulfuric acid is mainly used as a reaction medium. In particular, it is preferable to apply the present invention to obtain fullerene hydroxide and / or hydrogen sulfate esterified fullerene hydroxide using fuming sulfuric acid.
The other medium in which the fullerenes are suspended before contacting with the reaction medium is inert to the reaction medium, and any medium that can suspend the fullerenes may be used. When the reaction medium is fuming sulfuric acid, an acid having a lower acid strength and a smaller specific gravity than fuming sulfuric acid such as concentrated sulfuric acid and concentrated nitric acid, aliphatic hydrocarbons such as hexane, heptane, and cyclohexane, and mineral oil are desirable. Fuming sulfuric acid is obtained by dissolving sulfur trioxide (SO 3 ) in concentrated sulfuric acid. Therefore, concentrated sulfuric acid is suitable as a medium for suspending fullerenes because it is rapidly mixed with fuming sulfuric acid.

フラーレン類を懸濁させた媒体を反応媒体に混合させると、混合後の反応系中の活性成分濃度は、反応媒体単独で存在していた場合に比べ低下する。そのため、フラーレン類を懸濁させるのに使用する媒体の量は、フラーレン類を懸濁させるのに十分で、かつ混合後の反応系中の活性成分を反応に必要な濃度にする量を選ぶことが肝要である。また、反応系中の活性成分の濃度を反応に必要な濃度に保つためには、本発明で用いる反応媒体中の活性成分の濃度を、従来の技術で用いられていた反応媒体中の活性成分の濃度よりも高くしておくことも効果的である。
本発明で使用されるフラーレン類は、C60、C70、C76、C78、C82、C84など特定の分子量を持つフラーレン単体、2つ以上の成分を有するフラーレン混合物、フラーレンを含有する煤などを含む。また、酸化フラーレン、水酸化フラーレンなどのフラーレン誘導体、単層及び多層カーボンナノチューブやカーボンナノホーンなどのフラーレン類似の炭素クラスター、及びそれらとフラーレンとの混合物に本発明を適用することが可能である。
When a medium in which fullerenes are suspended is mixed with the reaction medium, the concentration of the active ingredient in the reaction system after mixing is reduced as compared with the case where the reaction medium alone is present. Therefore, the amount of the medium used to suspend the fullerenes should be selected so that the active ingredients in the reaction system after mixing are sufficient to suspend the fullerenes. Is essential. In order to maintain the concentration of the active ingredient in the reaction system at a concentration necessary for the reaction, the concentration of the active ingredient in the reaction medium used in the present invention is changed to the active ingredient in the reaction medium used in the prior art. It is also effective to keep it higher than the concentration of.
The fullerenes used in the present invention include fullerene alone having a specific molecular weight such as C60, C70, C76, C78, C82, and C84, a fullerene mixture having two or more components, and a soot containing fullerene. In addition, the present invention can be applied to fullerene derivatives such as fullerene oxide and fullerene hydroxide, fullerene-like carbon clusters such as single-walled and multi-walled carbon nanotubes and carbon nanohorns, and mixtures of these and fullerenes.

フラーレン類を懸濁させた媒体と、反応媒体を混合する方法は、反応媒体に対しフラーレン類を懸濁させた媒体を加える方法、フラーレン類を懸濁させた媒体に対し反応媒体を加える方法、両者を同時に反応器に加える方法など、両者が効率的に接触しさえすれば特には限定されない。この際、攪拌、振盪など適当な方法で両者を効率的に混合して、速やかにフラーレン類が反応媒体に均一に懸濁した状態を得ることが肝要である。
一度の反応で使用されるフラーレン類の量は特に限定されないが、前述の理由でフラーレン類の使用量が多いとき、例えば一度の反応で50g以上のフラーレン類を用いるときに本発明を適用すると好適である。
A method of mixing a reaction medium with a medium in which fullerenes are suspended is a method of adding a medium in which fullerenes are suspended in a reaction medium, a method of adding a reaction medium to a medium in which fullerenes are suspended, The method of adding both to the reactor at the same time is not particularly limited as long as both are in efficient contact. At this time, it is important to obtain a state where the fullerenes are uniformly suspended in the reaction medium by mixing them efficiently by an appropriate method such as stirring and shaking.
The amount of fullerenes used in one reaction is not particularly limited. However, when the amount of fullerenes used is large for the reasons described above, for example, when using 50 g or more of fullerenes in one reaction, it is preferable to apply the present invention. It is.

以上説明された本発明によれば、懸濁法によるフラーレン誘導体の製造において、フラーレン類が反応媒体中に速やかに均一に懸濁した状態が提供され、反応の進行を制御できるため、品質の揃ったフラーレン誘導体を大量に得ることが可能になった。 According to the present invention described above, in the production of fullerene derivatives by the suspension method, a state in which fullerenes are rapidly and uniformly suspended in the reaction medium is provided, and the progress of the reaction can be controlled. It has become possible to obtain a large amount of fullerene derivatives.

以下、本発明を実施例によって更に詳細に説明するが、本発明はその要旨を超えない限り、これらの例によって限定されるものではない。
<実施例:水酸化フラーレンの製造>
懸濁媒体として濃硫酸を、反応媒体としてSO3 濃度が60%の発煙硫酸を用いて、水酸化フラーレンの製造を行った。製品品質の再現性をみるため、同一の操作を2回繰り返した。濃硫酸270gにフラーレンC60 50gを20℃で加えマグネチックスターラーで良く攪拌したところ、C60は速やかに分散しC60と濃硫酸の懸濁液が得られた。次に、ジムロート冷却管と温度計をつけた1L3つ口フラスコにSO3 濃度が60%の発煙硫酸270gを入れ、そこに先ほどの懸濁液を1分以内で加えマグネチックスターラーで良く攪拌したところ、1分以内でC60は系内に分散し、均一に懸濁した反応液が得られた。この際、活性成分であるSO3 の濃度は30%である。この反応液を65℃で6時間加熱した後、従来知られている後処理(J.Org.Chem., 1994年、59巻、3960−3968ページ)を加えたところ、水酸化フラーレン(C60(OH)n )が得られた。
得られた2ロットの製品の赤外吸収を確認したところ、原料のC60に由来する吸収は確認されず、収量、品質共に揃った水酸化フラーレンが得られたことが分かる。
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited by these examples, unless the summary is exceeded.
<Example: Production of fullerene hydroxide>
Hydroxyl fullerene was produced using concentrated sulfuric acid as the suspending medium and fuming sulfuric acid having a SO 3 concentration of 60% as the reaction medium. To see the reproducibility of product quality, the same operation was repeated twice. When 50 g of fullerene C60 was added to 270 g of concentrated sulfuric acid at 20 ° C. and stirred well with a magnetic stirrer, C60 was quickly dispersed to obtain a suspension of C60 and concentrated sulfuric acid. Next, 270 g of fuming sulfuric acid having a SO 3 concentration of 60% was placed in a 1 L three-necked flask equipped with a Dimroth condenser and a thermometer, and the previous suspension was added thereto within 1 minute, followed by thorough stirring with a magnetic stirrer. However, within 60 minutes, C60 was dispersed in the system, and a uniformly suspended reaction solution was obtained. At this time, the concentration of SO 3 as an active ingredient is 30%. After heating this reaction liquid at 65 degreeC for 6 hours, when the post-processing conventionally known (J. Org. Chem., 1994, volume 59, 3960-3968) was added, fullerene hydroxide (C60 ( OH) n) was obtained.
When the infrared absorption of the obtained two lots of products was confirmed, the absorption derived from the raw material C60 was not confirmed, and it was found that the fullerene hydroxide having the same yield and quality was obtained.

Figure 2006241037
Figure 2006241037

<比較例:従来技術での水酸化フラーレンの製造>
比較例として、従来技術による水酸化フラーレンの製造を行った。実施例と同様、製品品質の再現性をみるため、同一の操作を2回繰り返した。
ジムロート冷却管と温度計をつけた1L3つ口フラスコにSO3 濃度が30%の発煙硫酸540gを入れ、フラーレンC60 50gを1分以内で加えマグネチックスターラーで良く攪拌した。フラーレンの発煙硫酸への分散は悪く、攪拌しても液中になかなか懸濁しなかった。均一な懸濁液が得られるまでに、Run3では1時間20分、Run4では50分要した。この反応液を65℃で6時間加熱した後、従来知られている後処理を加えたところ、実施例と同様に水酸化フラーレン(C60(OH)n )が得られたが、2つのロットで品質にばらつきが見られた。すなわち、赤外吸収を測定したところ、Run3の製品には原料のC60に由来する吸収が確認された。また、Run3の収量は他の3つのRunに比べて低く、フラーレンに水酸基が十分導入されていないことを裏付ける結果となった。
<Comparative example: Production of fullerene hydroxide by conventional technology>
As a comparative example, a fullerene hydroxide was produced by a conventional technique. Similar to the example, the same operation was repeated twice in order to see the reproducibility of the product quality.
540 g of fuming sulfuric acid having a SO 3 concentration of 30% was placed in a 1 L three-necked flask equipped with a Dimroth condenser and a thermometer, and 50 g of fullerene C60 was added within 1 minute, followed by thorough stirring with a magnetic stirrer. Dispersion of fullerene in fuming sulfuric acid was poor, and even when stirred, it was not easily suspended in the liquid. It took 1 hour and 20 minutes for Run 3 and 50 minutes for Run 4 to obtain a uniform suspension. After heating this reaction solution at 65 ° C. for 6 hours and adding a conventionally known post-treatment, hydroxylated fullerene (C60 (OH) n) was obtained in the same manner as in the Examples. There was a variation in quality. That is, when the infrared absorption was measured, the Run 3 product was confirmed to have absorption derived from the raw material C60. In addition, the yield of Run3 was lower than that of the other three Runs, confirming that hydroxyl groups were not sufficiently introduced into fullerene.

Figure 2006241037
Figure 2006241037

本発明に係るフラーレン誘導体の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the fullerene derivative which concerns on this invention. 従来例に係るフラーレン誘導体の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the fullerene derivative which concerns on a prior art example.

符号の説明Explanation of symbols

10:反応媒体、11:他の媒体、12:フラーレン類、13:懸濁液、15:容器、16:攪拌槽、17:攪拌翼 10: reaction medium, 11: other medium, 12: fullerenes, 13: suspension, 15: container, 16: stirring tank, 17: stirring blade

Claims (5)

フラーレン類を反応媒体中に懸濁状態で反応させるフラーレン誘導体の製造方法において、
予め前記反応媒体に対して不活性な他の媒体に懸濁させた前記フラーレン類を、前記反応媒体と混合させることを特徴とするフラーレン誘導体の製造方法。
In a method for producing a fullerene derivative in which fullerenes are reacted in a suspended state in a reaction medium,
A method for producing a fullerene derivative, wherein the fullerenes suspended in another medium inert to the reaction medium in advance are mixed with the reaction medium.
請求項1記載のフラーレン誘導体の製造方法において、前記反応媒体が酸であることを特徴とするフラーレン誘導体の製造方法。 2. The method for producing a fullerene derivative according to claim 1, wherein the reaction medium is an acid. 請求項2記載のフラーレン誘導体の製造方法において、前記反応媒体が発煙硫酸であることを特徴とするフラーレン誘導体の製造方法。 3. The method for producing a fullerene derivative according to claim 2, wherein the reaction medium is fuming sulfuric acid. 請求項1〜3のいずれか1項に記載のフラーレン誘導体の製造方法において、前記反応媒体に不活性な他の媒体が濃硫酸であることを特徴とするフラーレン誘導体の製造方法。 The method for producing a fullerene derivative according to any one of claims 1 to 3, wherein the other medium inert to the reaction medium is concentrated sulfuric acid. 請求項1〜4のいずれか1項に記載のフラーレン誘導体の製造方法において、一度に50g以上の前記フラーレン類を原料として使用することを特徴とするフラーレン誘導体の製造方法。 The method for producing a fullerene derivative according to any one of claims 1 to 4, wherein 50 g or more of the fullerenes are used as a raw material at a time.
JP2005056937A 2005-03-02 2005-03-02 Method for producing fullerene derivative Pending JP2006241037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005056937A JP2006241037A (en) 2005-03-02 2005-03-02 Method for producing fullerene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005056937A JP2006241037A (en) 2005-03-02 2005-03-02 Method for producing fullerene derivative

Publications (1)

Publication Number Publication Date
JP2006241037A true JP2006241037A (en) 2006-09-14

Family

ID=37047806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005056937A Pending JP2006241037A (en) 2005-03-02 2005-03-02 Method for producing fullerene derivative

Country Status (1)

Country Link
JP (1) JP2006241037A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05201911A (en) * 1991-11-27 1993-08-10 Exxon Res & Eng Co Synthesis of derivatized fullerene using superstrong acid catalyst
JPH0748302A (en) * 1993-07-30 1995-02-21 Tokyo Gas Co Ltd Method for synthesizing fullerol
JPH0789972A (en) * 1993-09-24 1995-04-04 Hamamatsu Photonics Kk Fullerene derivative and production thereof
JP2002080414A (en) * 2000-09-07 2002-03-19 Sony Corp Method for synthesizing fullerene derivative
JP2002326984A (en) * 2001-05-08 2002-11-15 Sony Corp Method for producing fullerene derivative
JP2004155674A (en) * 2002-11-05 2004-06-03 Eiichi Nakamura Method for producing hydro(alkyl)fullerene metal complex, method for producing hydro(alkyl)fullerene derivative and method for producing pentaalkylfullerene metal complex
JP2004168752A (en) * 2002-11-01 2004-06-17 Mitsubishi Chemicals Corp Method for producing hydroxylated fullerene
JP2005008564A (en) * 2003-06-19 2005-01-13 Honjo Chemical Corp Method for producing fullerene derivative
JP2005053832A (en) * 2003-08-04 2005-03-03 Nippon Telegr & Teleph Corp <Ntt> Fullerene derivative and fullerene-composite resist

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05201911A (en) * 1991-11-27 1993-08-10 Exxon Res & Eng Co Synthesis of derivatized fullerene using superstrong acid catalyst
JPH0748302A (en) * 1993-07-30 1995-02-21 Tokyo Gas Co Ltd Method for synthesizing fullerol
JPH0789972A (en) * 1993-09-24 1995-04-04 Hamamatsu Photonics Kk Fullerene derivative and production thereof
JP2002080414A (en) * 2000-09-07 2002-03-19 Sony Corp Method for synthesizing fullerene derivative
JP2002326984A (en) * 2001-05-08 2002-11-15 Sony Corp Method for producing fullerene derivative
JP2004168752A (en) * 2002-11-01 2004-06-17 Mitsubishi Chemicals Corp Method for producing hydroxylated fullerene
JP2004155674A (en) * 2002-11-05 2004-06-03 Eiichi Nakamura Method for producing hydro(alkyl)fullerene metal complex, method for producing hydro(alkyl)fullerene derivative and method for producing pentaalkylfullerene metal complex
JP2005008564A (en) * 2003-06-19 2005-01-13 Honjo Chemical Corp Method for producing fullerene derivative
JP2005053832A (en) * 2003-08-04 2005-03-03 Nippon Telegr & Teleph Corp <Ntt> Fullerene derivative and fullerene-composite resist

Similar Documents

Publication Publication Date Title
Savoskin et al. Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds
Ravula et al. Ionic liquid-assisted exfoliation and dispersion: stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions
Chen et al. Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive
Yang et al. Pd/PdO nanoparticles supported on carbon nanotubes: A highly effective catalyst for promoting Suzuki reaction in water
Jiang et al. Polypropylene as a carbon source for the synthesis of multi-walled carbon nanotubes via catalytic combustion
Elias et al. Production and characterization of single-crystal FeCo nanowires inside carbon nanotubes
Ye et al. On the growth of CdS nanowires by the evaporation of CdS nanopowders
Pulikkathara et al. Sidewall covalent functionalization of single wall carbon nanotubes through reactions of fluoronanotubes with urea, guanidine, and thiourea
Koziol et al. Carbon nanotubes with catalyst controlled chiral angle
Wang et al. PdO nanoparticles enhancing the catalytic activity of Pd/carbon nanotubes for 4-nitrophenol reduction
Liang et al. Highly exfoliated water-soluble single-walled carbon nanotubes
Krishnan et al. Polymer-assisted growth of molybdenum oxide whiskers via a sonochemical process
Zhang et al. Graphene oxide reduced and modified by environmentally friendly glycylglycine and its excellent catalytic performance
Ma et al. A practical route to the production of carbon nanocages
Murugan et al. Synthesis, characterization, and catalytic activity for hybrids of multi-walled carbon nanotube and amphiphilic poly (propyleneimine) dendrimer immobilized with silver and palladium nanoparticle
US7829055B2 (en) Functionalized nano-carbon materials and method for functionalizing nano-carbon materials thereof
Zhang et al. Graphene supported Au-Pd-Fe3O4 alloy trimetallic nanoparticles with peroxidase-like activities as mimic enzyme
CN108723385A (en) A kind of monocrystalline silver nanoparticle ball aqueous phase preparation method
KR20170112559A (en) Method of synthesizing nano-sized particles
KR20060127408A (en) Process for purifying carbon nanotubes made on refractory oxide supports
Wu et al. Recent advances in carbon-silica composites: preparation, properties, and applications
Huang et al. Self-assembly of 2D nanosheets into 3D dendrites based on the organic small molecule ANPZ and their size-dependent thermal properties
Nyamori et al. Effect of ferrocene/carbon ratio on the size and shape of carbon nanotubes and microspheres
Niu et al. Effect of temperature for synthesizing single-walled carbon nanotubes by catalytic chemical vapor deposition over Mo-Co-MgO catalyst
Dunens et al. Large-scale synthesis of double-walled carbon nanotubes in fluidized beds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Effective date: 20100824

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110125

Free format text: JAPANESE INTERMEDIATE CODE: A02