JP2006240453A - Sensor failure detector and detection method of sensor failure - Google Patents

Sensor failure detector and detection method of sensor failure Download PDF

Info

Publication number
JP2006240453A
JP2006240453A JP2005057865A JP2005057865A JP2006240453A JP 2006240453 A JP2006240453 A JP 2006240453A JP 2005057865 A JP2005057865 A JP 2005057865A JP 2005057865 A JP2005057865 A JP 2005057865A JP 2006240453 A JP2006240453 A JP 2006240453A
Authority
JP
Japan
Prior art keywords
sensor
vehicle
abnormality
impact
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005057865A
Other languages
Japanese (ja)
Inventor
Kousuke Sakagami
航介 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2005057865A priority Critical patent/JP2006240453A/en
Publication of JP2006240453A publication Critical patent/JP2006240453A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/403Antenna boresight in azimuth, i.e. in the horizontal plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To highly reliably detect sensor failure such as misalignment difficult to identify from the appearance of a vehicle outside monitoring sensor installed on a vehicle, using a configuration suitable for constant detection under an actually running environment with little processing burden. <P>SOLUTION: An impact received by a ranging radar 2a for a vehicle 1a is detected by an accelerator sensor 3. Based on impact detection of a fixed area where sensor failure such as misalignment difficult to identify from the appearance of the sensor 3 occurs, a failure judgement device detects sensor failure of the ranging radar 2a, judging that the ranging radar 2a has some failure. A judgement result processor retains the detection results of the sensor failure as failure diagnosis information and issues a warning output. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、車両に搭載された車外監視センサとしての測距レーダ、画像センサの軸ずれ等によるセンサ異常を検出するセンサ異常検出装置及びセンサ異常検出方法に関する。   The present invention relates to a distance measurement radar as an out-of-vehicle monitoring sensor mounted on a vehicle, a sensor abnormality detection device and a sensor abnormality detection method for detecting a sensor abnormality due to an axial deviation of an image sensor.

従来、ACC(Adaptive Cruise Control)の追従走行制御、被害軽減自動ブレーキ制御、ブレーキアシスト制御等を行なう車両は、車外(主に自車前方)の車両や歩行者のような障害物を検出して衝突予測時間を算出したりするため、レーザレーダ、ミリ波レーダ等の測距レーダや、CCD単眼カメラ、ステレオカメラ等の画像センサを、車外監視センサとして搭載している。   Conventionally, vehicles that perform ACC (Adaptive Cruise Control) follow-up control, damage reduction automatic brake control, brake assist control, etc., detect obstacles such as vehicles and pedestrians outside the vehicle (mainly in front of the vehicle). In order to calculate the collision prediction time, a ranging radar such as a laser radar or a millimeter wave radar, or an image sensor such as a CCD monocular camera or a stereo camera is mounted as an outside monitoring sensor.

これらの車外監視センサは、走行中に探査結果や撮影画像の軸ずれ等が発生しないようにするため、取り付けの位置や角度が所期の位置や角度になるように車両に極力正確に取り付けられる。   These out-of-vehicle monitoring sensors are attached to the vehicle as accurately as possible so that the position and angle of the mounting are the desired position and angle so as not to cause misalignment of the exploration results or captured images during traveling. .

しかしながら、車両走行中に車外監視センサに例えばボール等の物体が当たったりすると、その衝撃によっては車外監視センサに軸ずれ等のセンサ異常が発生する場合があり、また、このセンサ異常は、走行中の急制動等によっても発生する場合がある。   However, if an object such as a ball hits the outside monitoring sensor while the vehicle is running, a sensor abnormality such as a shaft misalignment may occur in the outside monitoring sensor depending on the impact. It may also occur due to sudden braking of the vehicle.

そして、これらのセンサ異常が発生すると、障害物の位置や大きさ等の認識が不正確になるため、この不正確な認識に基いて衝突予測時間等を算出し、追従走行制御、被害軽減自動ブレーキ制御、ブレーキアシスト制御等を行なうことは好ましくない。   If these sensor abnormalities occur, the position and size of the obstacles will not be recognized correctly, so the collision prediction time will be calculated based on this incorrect recognition, and follow-up driving control, damage reduction automatic It is not preferable to perform brake control, brake assist control, or the like.

そこで、車両に搭載された測距レーダについて、車両が先行車に追従して直進走行する走行条件下の複数回の探査結果から、統計処理によって先行車の中心位置とレーダ探査範囲の中心位置とのずれを前記の軸ずれとして検出したり、車両が直進する走行条件下での路側反射体の検出位置の左右移動量から前記軸ずれを検出したりすることが提案されている(例えば、特許文献1参照。)。   Therefore, for the ranging radar mounted on the vehicle, the center position of the preceding vehicle and the center position of the radar search range are determined by statistical processing from the results of multiple searches under traveling conditions in which the vehicle travels straight ahead following the preceding vehicle. It has been proposed to detect the deviation of the axis as the axis deviation or to detect the axis deviation from the amount of left-right movement of the detection position of the roadside reflector under the traveling condition in which the vehicle goes straight (for example, a patent) Reference 1).

特開平11−142520号公報(段落[0017]−[0019]、[0045]−[0070]、[0080]−[0090]、図1、図2、図6)Japanese Patent Laid-Open No. 11-142520 (paragraphs [0017]-[0019], [0045]-[0070], [0080]-[0090], FIGS. 1, 2, and 6)

前記従来提案(特許文献1記載)のセンサ異常の検出は、車両が直進する限られた走行条件下でなければ行なえず、直進するだけでなく、曲がったり、旋回したりする実走行環境下での測距レーダや画像センサの車外監視センサのセンサ異常の常時検出に適用することは困難であり、しかも、統計処理等のセンサ異常検出専用の複雑な処理が必要であり、処理負担が大きくなる問題もある。   The detection of sensor abnormality in the conventional proposal (described in Patent Document 1) can only be performed under limited driving conditions in which the vehicle goes straight, and in an actual driving environment where the vehicle is not only going straight, but also turning or turning. It is difficult to apply to the constant detection of sensor abnormalities of the ranging radar and image sensor outside the vehicle, and complicated processing dedicated to sensor abnormality detection such as statistical processing is necessary, increasing the processing burden There is also a problem.

また、前記のセンサ異常を、統計的な処理で求めたり、位置が不正確な路側反射体の検出位置の移動量から検出したりするため、確実に精度よく検出することは困難であり、検出の信頼性が低い問題もある。   In addition, since the sensor abnormality is obtained by statistical processing or is detected from the amount of movement of the detection position of the roadside reflector whose position is inaccurate, it is difficult to detect accurately and accurately. There is also a problem of low reliability.

そして、とくに軸ずれのセンサ異常については、ドライバ等が目視等しても外観からは判断がつきにくいようなものを検出することが重要であり、望まれている。   In particular, it is important and desirable to detect a sensor error of an axis deviation that is difficult to judge from the appearance even if the driver visually observes it.

本発明は、実走行環境下での常時検出に好適で処理負担が少ない構成により、車両に搭載した車外監視センサの外観からは判断がつきにくい軸ずれ等のセンサ異常の信頼性の高い検出が行なえるようにすることを目的とする。   The present invention has a configuration that is suitable for continuous detection in an actual driving environment and has a low processing load, and can detect a sensor abnormality such as an axis deviation that is difficult to judge from the appearance of an outside monitoring sensor mounted on a vehicle with high reliability. The purpose is to be able to do it.

上記した目的を達成するために、本発明のセンサ異常検出装置は、測距レーダ、画像センサの少なくともいずれか一方を車外監視センサとして搭載した車両に、前記車外監視センサが受ける衝撃を検出する衝撃センサと、前記衝撃センサの物体が衝突した時に生じる値以上で所定値以下の衝撃検出により、前記車外監視センサが異常であると判定してセンサ異常を検出する異常判定手段と、前記異常判定手段の前記センサ異常の検出結果を、故障診断情報として保持し警報出力する判定結果処理手段とを備えたことを特徴としている(請求項1)。   In order to achieve the above-described object, a sensor abnormality detection device according to the present invention is an impact detection device for detecting an impact received by an outside monitoring sensor on a vehicle equipped with at least one of a ranging radar and an image sensor as the outside monitoring sensor. An abnormality determining means for detecting a sensor abnormality by determining that the vehicle exterior monitoring sensor is abnormal by detecting an impact which is greater than or equal to a value generated when an object of the impact sensor collides with and less than a predetermined value; and the abnormality determining means The above-mentioned sensor abnormality detection result is stored as failure diagnosis information and a determination result processing means for outputting an alarm is provided (claim 1).

また、本発明のセンサ異常検出装置は、前記の異常判定手段の異常の判定を、衝撃センサの前記物体が衝突した時に生じる値以上で所定値以下の衝撃検出が所定時間継続したときに行うことを特徴としている(請求項2)。   In the sensor abnormality detection device of the present invention, the abnormality determination by the abnormality determination unit is performed when an impact detection that is greater than or equal to a value that occurs when the object of the impact sensor collides and is less than or equal to a predetermined value continues for a predetermined time. (Claim 2).

つぎに、本発明のセンサ異常検出装置は、測距レーダ、画像センサの少なくともいずれか一方を車外監視センサとして搭載した車両に、前記車外監視センサの検出結果及び自車挙動監視手段の自車の挙動監視結果に基いて自車と車外物体との衝突予測時間を算出する衝突予測演算手段と、所定の衝突予測状態で前記衝突予測時間の経過時点より設定した誤差時間経過した場合に自車の無衝突状態が持続しているとき、前記車外監視センサが異常であると判定してセンサ異常を検出する異常判定手段と、前記異常判定手段の前記センサ異常の検出結果を、故障診断情報として保持し警報出力する判定結果処理手段とを備えたことを特徴としている(請求項3)。   Next, a sensor abnormality detection device according to the present invention is provided in a vehicle in which at least one of a ranging radar and an image sensor is mounted as a vehicle outside monitoring sensor, the detection result of the vehicle outside monitoring sensor and the vehicle behavior monitoring means. Collision prediction calculation means for calculating the prediction time of collision between the own vehicle and an object outside the vehicle based on the behavior monitoring result, and when the error time set from the point of time of the collision prediction time elapses in a predetermined collision prediction state, When the collision-free state continues, an abnormality determination unit that determines that the out-of-vehicle monitoring sensor is abnormal and detects a sensor abnormality, and holds the detection result of the sensor abnormality of the abnormality determination unit as failure diagnosis information And a determination result processing means for outputting an alarm (claim 3).

さらに、本発明のセンサ異常検出装置は、前記の判定結果処理手段に、異常判定手段のセンサ異常の検出により車外監視センサの検出結果を無効にして利用禁止にする利用禁止機能を付加したことを特徴としている(請求項4)。   Furthermore, the sensor abnormality detection device according to the present invention is provided with a use prohibition function for invalidating the detection result of the vehicle monitoring sensor and prohibiting the use by detecting the sensor abnormality of the abnormality determination unit. It is characterized (claim 4).

つぎに、本発明のセンサ異常検出方法は、測距レーダ、画像センサの少なくともいずれか一方を車外監視センサとして搭載した車両に、前記車外監視センサが受ける衝撃を検出する衝撃センサを設け、前記衝撃センサの物体が衝突した時に生じる値以上で所定値以下の衝撃の検出により前記車外監視センサが異常であると判定してセンサ異常を検出し、前記センサ異常の検出結果を故障診断情報として保持し警報出力することを特徴としている(請求項5)。   Next, in the sensor abnormality detection method of the present invention, a vehicle equipped with at least one of a ranging radar and an image sensor as a vehicle outside monitoring sensor is provided with a shock sensor for detecting a shock received by the vehicle outside monitoring sensor, It is determined that the vehicle monitoring sensor is abnormal by detecting an impact that is greater than or equal to a value that occurs when the sensor object collides and is less than or equal to a predetermined value, detects the sensor abnormality, and stores the detection result of the sensor abnormality as failure diagnosis information. An alarm is output (claim 5).

また、本発明のセンサ異常検出方法は、測距レーダ、画像センサの少なくともいずれか一方を車外監視センサとして搭載した車両により、前記車外監視センサの検出結果及び自車の挙動監視結果に基づいて自車と前記車外物体との衝突予測時間を算出し、所定の衝突条件に適合した走行状態で前記衝突予測時間の経過時点より設定した予測誤差時間が経過しても自車が無衝突のときに、前記車外監視センサが異常であると判定してセンサ異常を検出し、前記センサ異常の検出結果を、故障診断情報として保持し警報出力することを特徴としている(請求項6)。   The sensor abnormality detection method according to the present invention is based on a detection result of the vehicle monitoring sensor and a behavior monitoring result of the own vehicle by a vehicle equipped with at least one of a ranging radar and an image sensor as the vehicle monitoring sensor. When a predicted collision time between the vehicle and the object outside the vehicle is calculated, and the vehicle is in a collision-free state even when the prediction error time set from the elapsed time of the predicted collision time elapses in a traveling state adapted to a predetermined collision condition The vehicle outside monitoring sensor is determined to be abnormal, a sensor abnormality is detected, and the detection result of the sensor abnormality is held as failure diagnosis information and output as an alarm (Claim 6).

まず、請求項1、5の構成によれば、測距レーダや画像センサの車外監視センサが受けた衝撃を障害物センサによって直接検出し、物体が衝突した時に生じる値以上で所定値以下の衝撃を、車外監視センサが実際に受けた場合に、衝撃センサの衝撃検出に基づいて、車外監視センサが異常であると判別し、センサ異常を検出し警報出力することができる。   First, according to the first and fifth aspects of the present invention, the impact received by the outside radar sensor of the ranging radar or the image sensor is directly detected by the obstacle sensor, and the impact which is not less than a predetermined value and not less than a value generated when the object collides. Can be determined that the outside monitoring sensor is abnormal based on the impact detection of the impact sensor, the sensor abnormality can be detected, and an alarm can be output.

そして、この出願において、「物体が衝突した時に生じる値」は、ボール等の車外物体が車外監視センサに衝突することによって外観からは判断がつきにくいが実際には車外監視センサに軸ずれが生じる下限の大きさ(レベル)の衝撃値であり、「所定値」は、見た目で明らかに車外監視センサの軸ずれが分かる寸前の大きさ(レベル)の衝撃値である。   In this application, the “value generated when an object collides” is difficult to judge from the appearance when an object outside the vehicle such as a ball collides with the vehicle outside monitoring sensor, but in reality, an axis deviation occurs in the vehicle outside monitoring sensor. The lower limit magnitude (level) impact value, and the “predetermined value” is an impact value of a magnitude (level) just before the axis deviation of the vehicle exterior monitoring sensor can be clearly seen.

そのため、車外監視センサに軸ずれが生じない極めて小さい不要衝撃によるセンサ異常の誤検出を防止しつつ、しかも、例えばレーダ取り付け部分が破損している等により見た目で明らかに軸ずれしていることが分かる衝撃を受けた場合を除き、外観からは判断がつきにくい軸ずれのセンサ異常を確実に精度よく検出することができる。   For this reason, misalignment of the sensor due to an extremely small unnecessary impact that does not cause a misalignment in the outside monitoring sensor is prevented, and the shaft is clearly misaligned due to, for example, a damaged radar mounting portion. Except for the case of receiving an impact that can be recognized, it is possible to reliably detect a sensor error of an axis deviation that is difficult to judge from the appearance.

しかも、車両の走行条件等によらずセンサ異常を検出することができるため、実走行環境下での常時検出に好適であり、統計処理等のセンサ異常検出専用の複雑な処理が不要で処理負担が少ない利点もある。   In addition, sensor abnormalities can be detected regardless of vehicle driving conditions, etc., making it suitable for continuous detection in actual driving environments, requiring no complicated processing dedicated to sensor abnormality detection such as statistical processing. There is also an advantage of less.

したがって、実走行環境下での常時検出に好適で処理負担が少ない構成により、車両に搭載した車外監視センサの外観からは判断がつきにくい軸ずれのセンサ異常の確実で信頼性の高い検出を行うことができる。   Therefore, with a configuration that is suitable for continuous detection in an actual driving environment and has a low processing load, reliable and reliable detection of an axis misalignment sensor abnormality that is difficult to judge from the appearance of an out-of-vehicle monitoring sensor mounted on a vehicle is performed. be able to.

また、請求項2の構成によれば、衝撃センサの前記の衝撃検出が所定時間継続することが、誤検出防止のフイルタとして作用するため、何らかの原因で衝撃センサに前記の車外物体が衝突した時に生じる値以上で所定値以下の衝撃の瞬時的な検出が発生しても、この検出によっては車外監視センサのセンサ異常が誤って検出されることはなく、センサ異常の検出精度が一層向上する。   Further, according to the configuration of claim 2, the fact that the impact detection of the impact sensor continues for a predetermined time acts as a filter for preventing false detection, so that when the vehicle outside object collides with the impact sensor for some reason. Even if an instantaneous detection of an impact that is greater than the generated value and less than or equal to the predetermined value occurs, this detection does not erroneously detect a sensor abnormality of the vehicle monitoring sensor, and the detection accuracy of the sensor abnormality is further improved.

つぎに、請求項3、6の構成によれば、車外監視センサの軸ずれ等のセンサ異常が発生し、衝突のおそれがないにもかかわらず、車外監視センサの検出結果及び自車の挙動監視から衝突予測時間が誤って算出された場合、回避操作等が行なわれることなく、そのまま(所定の衝突予測状態のまま)走行等して衝突予測時間より所定の誤差時間経過しても、自車の無衝突状態が持続することから、車外監視センサのセンサ異常を検出し、警報出力することができる。   Next, according to the configurations of the third and sixth aspects, the detection result of the vehicle monitoring sensor and the behavior monitoring of the own vehicle are detected even though there is no possibility of collision due to the occurrence of a sensor abnormality such as an axial deviation of the vehicle monitoring sensor. If the collision prediction time is erroneously calculated from the vehicle, even if a predetermined error time elapses from the collision prediction time by running as it is (with the predetermined collision prediction state) without performing an avoidance operation etc. Since the non-collision state continues, it is possible to detect a sensor abnormality of the outside monitoring sensor and output an alarm.

そして、この場合も車両の走行条件等によらずセンサ異常を検出することができ、実走行環境下での常時検出に好適であり、しかも、統計処理等のセンサ異常検出専用の複雑な処理は不要であり処理負担が少ない。   In this case as well, sensor abnormality can be detected regardless of the driving conditions of the vehicle, which is suitable for continuous detection under actual driving environment, and complicated processing dedicated to sensor abnormality detection such as statistical processing is also possible. Unnecessary and less processing burden.

さらに、統計処理による確率的な検出ではなく、車外監視センサの検出結果から算出した衝突予測時間の実際の経過に基いてセンサ異常を検出するため、車外監視センサの軸ずれ等のセンサ異常を、統計処理等によって検出する場合より確実に精度よく検出することができる。   Furthermore, in order to detect a sensor abnormality based on the actual progress of the collision prediction time calculated from the detection result of the outside monitoring sensor, rather than the stochastic detection by statistical processing, the sensor abnormality such as an axis deviation of the outside monitoring sensor is detected. It can be detected more reliably and accurately than when it is detected by statistical processing or the like.

したがって、実走行環境下での常時検出に好適で処理負担が少なく、検出確度及び信頼性が高い構成により、車両に搭載した車外監視センサの外観からは判断がつきにくい軸ずれ等のセンサ異常を精度よく検出することができる。   Therefore, it is suitable for continuous detection in an actual driving environment, has a low processing burden, and has high detection accuracy and reliability. It can be detected with high accuracy.

つぎに、請求項4の構成によれば、上記のようにして車外監視センサのセンサ異常が検出された後は、車外監視センサの誤った検出結果のACCの追従走行制御、被害軽減自動ブレーキ制御、ブレーキアシスト制御等への利用が禁止され、安全性を向上することができる。   Next, according to the configuration of the fourth aspect, after the sensor abnormality of the outside monitoring sensor is detected as described above, the ACC follow-up running control of the erroneous detection result of the outside monitoring sensor, the damage reduction automatic brake control. In addition, use for brake assist control or the like is prohibited, and safety can be improved.

つぎに、本発明をより詳細に説明するため、その実施形態について、図1〜図5にしたがって詳述する。   Next, in order to describe the present invention in more detail, the embodiment will be described in detail with reference to FIGS.

<第1の実施形態>
まず、衝撃センサを用いる第1の実施形態について、図1及び図2を参照して説明する。
<First Embodiment>
First, a first embodiment using an impact sensor will be described with reference to FIGS.

図1は車両(自車)1aのセンサ異常検出装置のブロック図、図2は図1の車外監視センサとしての測距レーダ2aの説明図である。   FIG. 1 is a block diagram of a sensor abnormality detection device for a vehicle (own vehicle) 1a, and FIG. 2 is an explanatory diagram of a ranging radar 2a as a vehicle exterior monitoring sensor of FIG.

そして、車両1aの前方(自車前方)を監視範囲とするこの実施形態の場合、車両1aに車外監視センサとして搭載された図1の測距レーダ2aは、例えば車両1aのフロントバンパー部の適当な個所に取り付け角度を調整して設けられたレーザレーダ、ミリ波レーダからなり、図2に示すように、衝撃センサとしての加速度センサ3が内部に組み込まれて設けらて加速度センサ内蔵型に形成され、加速度センサ3により少なくとも車両1aの車軸方向(前後方向)の衝撃力が直接検出される。   In the case of this embodiment in which the front of the vehicle 1a (the front of the host vehicle) is the monitoring range, the ranging radar 2a of FIG. 1 mounted as an out-of-vehicle monitoring sensor on the vehicle 1a is, for example, an appropriate front bumper portion of the vehicle 1a. As shown in FIG. 2, an acceleration sensor 3 as an impact sensor is built in and formed into a built-in acceleration sensor type. The acceleration sensor 3 directly detects at least the impact force in the axial direction (front-rear direction) of the vehicle 1a.

また、図1において、4a、5a、6aは車両1aの挙動を検出する車速センサ、舵角センサ、ヨーレートセンサであり、自車挙動検出手段を形成し、車速センサ4aはいわゆる車輪速センサからなり自車速の信号を出力し、舵角センサ5aはドライバのハンドル操作(操舵操作)に基く舵角の信号を出力し、ヨーレートセンサ6aは操舵操作等に基いて発生したヨーレート値の信号を出力する。   In FIG. 1, 4a, 5a, 6a are a vehicle speed sensor, a rudder angle sensor, and a yaw rate sensor for detecting the behavior of the vehicle 1a, forming own vehicle behavior detection means, and the vehicle speed sensor 4a is a so-called wheel speed sensor. The vehicle speed signal is output, the steering angle sensor 5a outputs the steering angle signal based on the steering operation (steering operation) of the driver, and the yaw rate sensor 6a outputs the signal of the yaw rate value generated based on the steering operation or the like. .

7aはマイクロコンピュータ構成のECUからなる演算処理装置であり、後述するセンサ異常判定手段、判定結果処理手段を形成する。8aは不揮発性メモリとしてのEEPROMであり、センサ異常判定手段のセンサ異常の検出結果を故障診断情報として保持する。9aは車両1aのドライバ等に前記の故障診断情報(ダイアグ情報)等を表示して警報する表示警報ユニットである。   Reference numeral 7a denotes an arithmetic processing unit composed of an ECU having a microcomputer configuration, which forms sensor abnormality determination means and determination result processing means described later. An EEPROM 8a as a nonvolatile memory holds the detection result of the sensor abnormality of the sensor abnormality determination means as failure diagnosis information. Reference numeral 9a denotes a display alarm unit that displays the failure diagnosis information (diagnostic information) or the like on the driver of the vehicle 1a and gives an alarm.

そして、車両1aが始動(エンジンスタート)すると、測距レーダ2aは、自車前方の図2の探査範囲Rを左右方向に走査することをくり返しつつレーザあるいはミリ波をパルス出力し、その反射波を受信して自車前方の車両等の障害物を探査、検出し、時々刻々の検出結果が演算処理装置7aに取り込まれる。   When the vehicle 1a is started (engine start), the ranging radar 2a repeatedly outputs a laser or a millimeter wave while repeatedly scanning the search range R in FIG. Is detected and an obstacle such as a vehicle in front of the host vehicle is searched and detected, and the detection result is taken into the arithmetic processing unit 7a every moment.

また、加速度センサ3の加速度に比例した時々刻々の衝撃力の検出信号及び、車速センサ4a、舵角センサ5a、ヨーレートセンサ6aの時々刻々の自車速、舵角、ヨーレート値の信号も演算処理装置7aに取り込まれる。   An arithmetic processing unit also detects the detection signal of the impact force that is proportional to the acceleration of the acceleration sensor 3 and the signals of the vehicle speed, the steering angle, and the yaw rate value of the vehicle speed sensor 4a, the steering angle sensor 5a, and the yaw rate sensor 6a. 7a.

そして、演算処理装置7aは、予め設定された第1のセンサ異常検出処理プログラムを実行することにより、つぎに説明する第1の異常判定手段、第1の判定結果処理手段を形成する。   Then, the arithmetic processing unit 7a executes a first sensor abnormality detection processing program set in advance, thereby forming first abnormality determination means and first determination result processing means described below.

(1)第1の異常判定手段
この手段は、加速度センサ3の物体が衝突した時に生じる値以上で所定値以下の衝撃検出により、測距レーダ2aが異常であると判定してセンサ異常を検出する手段であり、ボール等の物体が衝突することによって外観からは判断がつきにくいが実際には測距レーダ2aに軸ずれが生じる最小衝撃力値の大きさの下限しきい値と、それより大きく、見た目で明らかに車外監視センサの軸ずれが分かる寸前の大きさ(レベル)の衝撃値に相当する大きさの上限しきい値とが予め設定され、加速度センサ3の検出衝撃力、すなわち、測距レーダ2aが受けた衝撃力が、下限しきい値以上、上限しきい値以下のときに、測距レーダ2aの軸ずれのセンサ異常を検出する。
(1) First abnormality determination means This means detects the sensor abnormality by determining that the ranging radar 2a is abnormal by detecting an impact which is greater than or equal to a value generated when the object of the acceleration sensor 3 collides and less than a predetermined value. A lower threshold of the magnitude of the minimum impact force value that is difficult to judge from the appearance due to the collision of an object such as a ball but actually causes an axis shift in the ranging radar 2a; An upper limit threshold value corresponding to an impact value of a size (level) that is large and apparently clearly indicates the axial deviation of the vehicle exterior monitoring sensor is preset, and the detected impact force of the acceleration sensor 3, that is, When the impact force received by the ranging radar 2a is greater than or equal to the lower threshold and less than or equal to the upper threshold, the sensor error of the axis deviation of the ranging radar 2a is detected.

ところで、このセンサ異常の検出は、検出加速度センサ3が下限しきい値以上、上限しきい値以下の衝撃を検出したときに直ちに行なってもよいが、何らかの原因で加速度センサ3が前記の下限しきい値以上、上限しきい値以下の衝撃を誤検出したとしても、この誤検出によっては測距レーダ2aのセンサ異常を検出しないようにして、センサ異常の検出精度の向上を図ることが、より望ましいので、この実施形態の場合、この第1の異常判定手段に、加速度センサ3が下限しきい値以上、上限しきい値以下の衝撃検出を所定時間継続することが、誤検出防止のフイルタ条件として設定される。   By the way, the detection of the sensor abnormality may be performed immediately when the detected acceleration sensor 3 detects an impact that is not less than the lower limit threshold and not more than the upper limit threshold. However, the acceleration sensor 3 lowers the lower limit for some reason. Even if an impact that is greater than or equal to the threshold value and less than or equal to the upper threshold value is erroneously detected, the detection error of the ranging radar 2a is not detected by this erroneous detection, and the detection accuracy of the sensor abnormality can be improved. Therefore, in this embodiment, the filter condition for preventing false detection is that the acceleration sensor 3 continues to detect the impact of the acceleration sensor 3 not less than the lower threshold and not more than the upper threshold for a predetermined time. Set as

そして、このフイルタ条件の設定に基き、第1の異常判定手段は、実際には、加速度センサ3の下限しきい値以上、上限しきい値以下の衝撃検出が前記の所定時間継続したときに、測距レーダ2aの軸ずれのセンサ異常を検出する。   Then, based on the setting of the filter condition, the first abnormality determination means is actually when the detection of the impact that is greater than or equal to the lower threshold value and less than or equal to the upper threshold value of the acceleration sensor 3 continues for the predetermined time, A sensor abnormality of the axis deviation of the ranging radar 2a is detected.

なお、前記の所定時間は例えば投げられたボール等が衝突してその衝撃が加わる時間程度の短い時間であって、実験等に基いて設定される。   The predetermined time is a short time, such as a time when a thrown ball or the like collides and the impact is applied, and is set based on an experiment or the like.

(2)第1の判定結果処理手段
この手段は、前記第1の異常判定手段の前記軸ずれのセンサ異常の検出結果を、故障診断情報としてEEPROM8aに保持し、表示・警報ユニット9aから警報出力する。
(2) First determination result processing means This means holds the detection result of the axis deviation sensor abnormality of the first abnormality judgment means in the EEPROM 8a as failure diagnosis information, and outputs an alarm from the display / alarm unit 9a. To do.

さらに、この実施形態の場合、第1の判定結果処理手段に利用禁止機能が付加され、第1の異常判定手段のセンサ異常の検出に基き、測距レーダ2aの検出結果に無効フラグを付加し、測距レーダ2aの検出結果を無効にして測距レーダ2aの誤った検出結果のACCの追従走行制御、被害軽減自動ブレーキ制御、ブレーキアシスト制御等への利用を禁止する。   Further, in this embodiment, a use prohibition function is added to the first determination result processing means, and an invalid flag is added to the detection result of the ranging radar 2a based on the detection of the sensor abnormality of the first abnormality determination means. The detection result of the ranging radar 2a is invalidated and the erroneous detection result of the ranging radar 2a is prohibited from being used for ACC follow-up control, damage reduction automatic brake control, brake assist control, or the like.

以上の構成に基き、車両1aの走行中等に何らかの物体が測距レーダ2aに実際に衝突し、測距レーダ2aが下限しきい値以上、上限しきい値以下の衝撃力を受けて測距レーダ2aに軸ずれのセンサ異常が発生するときは、加速度センサ3の下限しきい値以上、上限しきい値以下の衝撃検出が所定時間以上継続することから、この衝撃検出の所定時間の継続に基いて、演算処理装置7aの第1の異常判定手段が、測距レーダ2aが異常であると判定してセンサ異常を検出する。   Based on the above configuration, a certain object actually collides with the ranging radar 2a while the vehicle 1a is traveling, etc., and the ranging radar 2a receives an impact force not less than the lower threshold and not more than the upper threshold. When an axis misalignment sensor abnormality occurs in 2a, the detection of the impact that is greater than or equal to the lower threshold value and less than or equal to the upper threshold value of the acceleration sensor 3 continues for a predetermined time or longer. The first abnormality determination means of the arithmetic processing unit 7a determines that the ranging radar 2a is abnormal and detects a sensor abnormality.

この場合、測距レーダ2aが受けた衝撃を加速度センサ3で直接検出することができ、さらに、この直接検出の結果から、下限しきい値より小さく測距レーダ2aに軸ずれが生じない検出不要な衝撃に基づく誤検出を防止し、測距レーダ2aの上限しきい値より大きく見た目で明らかに測距レーダ2aの軸ずれが分かるような衝撃については検出しないようにし、さらに、下限しきい値以上、上限しきい値以下の瞬時的な衝撃力による誤検出を防止して、外観に変化がなくドライバ等が目視等しても明らかでない測距センサ2の軸ずれのセンサ異常を確実に精度よく検出することができる。   In this case, the impact received by the ranging radar 2a can be directly detected by the acceleration sensor 3, and further, detection is not required from the result of the direct detection that the distance measurement radar 2a is smaller than the lower limit threshold value and no axis deviation occurs. Erroneous detection based on a large impact is prevented, and an impact that clearly shows an axis deviation of the ranging radar 2a with a larger appearance than the upper limit threshold of the ranging radar 2a is not detected. As described above, it is possible to prevent erroneous detection due to an instantaneous impact force below the upper limit threshold value, and to accurately detect the sensor error of the axis deviation of the distance measuring sensor 2 which is not apparent even when visually recognized by a driver or the like. Can be detected well.

つぎに、演算処理装置7aの第1の判定結果処理手段が、第1の異常判定手段の前記軸ずれのセンサ異常の検出結果を故障診断情報としてEEPROM8aに不揮発性記憶して保持し、保持したセンサ異常の検出結果の故障診断情報を表示・警報ユニット9aから警報出力し、検出された測距センサ2aの軸ずれのセンサ異常をドライバ等に報知することができる。   Next, the first determination result processing means of the arithmetic processing unit 7a stores and holds the detection result of the axis deviation sensor abnormality of the first abnormality determination means in the EEPROM 8a as nonvolatile diagnosis information. The failure diagnosis information of the detection result of the sensor abnormality can be output as a warning from the display / alarm unit 9a, and the detected sensor abnormality of the axis deviation of the distance measuring sensor 2a can be notified to the driver or the like.

また、測距レーダ2aの軸ずれのセンサ異常の検出後は、第1の判定結果処理手段の利用禁止機能により、測距レーダ2aの軸ずれの誤差を含む測距結果(検出結果)のACCの追従走行制御、被害軽減自動ブレーキ制御、ブレーキアシスト制御等への利用を禁止し、車両1aの走行等の安全性を向上することができる。   Further, after detecting the sensor error of the axis deviation of the ranging radar 2a, the ACC of the ranging result (detection result) including the axis deviation error of the ranging radar 2a by the use prohibition function of the first determination result processing means. Can be prohibited from being used for follow-up running control, damage-reducing automatic brake control, brake assist control, etc., and safety of the vehicle 1a can be improved.

なお、表示・警報ユニット9aの警報出力に基き、ドライバ等が車両1aを修理工場等に搬入して測距センサ2aの軸ずれを修理し、その際、EEPROM8aのセンサ異常の故障診断情報は消去されて異常発生前の状態(初期状態)に戻される。   Based on the alarm output of the display / alarm unit 9a, a driver or the like carries the vehicle 1a into a repair shop or the like to repair the axis deviation of the distance measuring sensor 2a, and at that time, the fault diagnosis information of sensor abnormality in the EEPROM 8a is deleted. Thus, the state before the occurrence of the abnormality (initial state) is restored.

この場合、車両1aの走行状態等によらず、測距レーダ2aのセンサ異常を検出することができるため、実走行環境下でのセンサ異常の常時検出に好適であり、また、統計処理等のセンサ異常検出専用の複雑な処理は不要であり、演算処理装置7aの処理負担が少なくて済む。   In this case, since the sensor abnormality of the ranging radar 2a can be detected regardless of the traveling state of the vehicle 1a, etc., it is suitable for continuous detection of the sensor abnormality in the actual traveling environment. Complex processing dedicated to sensor abnormality detection is unnecessary, and the processing load on the arithmetic processing unit 7a can be reduced.

したがって、実走行環境下での常時検出に好適で処理負担が少ない構成により、車両1aに搭載した車外監視センサとしての測距レーダ2aのドライバ等が目視等しても外観からは判断がつきにくい軸ずれのセンサ異常の確実で信頼性の高い検出を行うことができる。   Therefore, with a configuration that is suitable for continuous detection in an actual driving environment and has a small processing load, even if the driver of the ranging radar 2a as an out-of-vehicle monitoring sensor mounted on the vehicle 1a is visually checked, it is difficult to make a judgment from the appearance. A reliable and highly reliable detection of an axis misalignment sensor abnormality can be performed.

<第2の実施形態>
つぎに、第2の実施形態について、図3〜図5を参照して説明する。
<Second Embodiment>
Next, a second embodiment will be described with reference to FIGS.

図3は車両(自車)1bのセンサ異常検出装置のブロック図、図4は図3の動作説明用のフローチャート、図5は衝突予測の説明図である。   FIG. 3 is a block diagram of the sensor abnormality detection device for the vehicle (own vehicle) 1b, FIG. 4 is a flowchart for explaining the operation of FIG. 3, and FIG.

そして、車両1bは自車前方の車外監視センサとして、加速度センサ3を内蔵していない一般的なレーザレーダ、ミリ波レーダ等の測距レーダ2bを搭載し、自車挙動検出手段として、図1の各センサ4a〜6aと同様の車速センサ4b、舵角センサ5b、ヨーレートセンサ6bを備える。   The vehicle 1b is equipped with a ranging radar 2b such as a general laser radar or a millimeter wave radar that does not include the acceleration sensor 3 as a vehicle exterior monitoring sensor in front of the vehicle, and as a vehicle behavior detection means, FIG. A vehicle speed sensor 4b, a steering angle sensor 5b, and a yaw rate sensor 6b similar to the sensors 4a to 6a are provided.

また、図1の演算処理装置7aと同様のマイクロコンピュータ構成のECUからなる演算処理装置7bを備え、この演算処理装置7bは予め設定された第2のセンサ異常検出処理プログラムを実行することにより、つぎの衝突予測演算手段及び、第2の異常判定手段、第2の判定結果処理手段を形成する。   Moreover, it comprises the arithmetic processing unit 7b which consists of ECU of the same microcomputer structure as the arithmetic processing unit 7a of FIG. 1, and this arithmetic processing unit 7b executes the preset 2nd sensor abnormality detection processing program, Next, a collision prediction calculation unit, a second abnormality determination unit, and a second determination result processing unit are formed.

(1)衝突予測演算手段
この手段は、例えば追従走行制御、被害軽減自動ブレーキ制御、ブレーキアシスト制御等の衝突予測時時間の算出に兼用され、測距レーダ2bの検出結果及び自車挙動監視手段の各センサ4b〜6bの車両1bの挙動監視結果に基いて車両1bと先行車、障害物等の車外物体との衝突予測時間Tiを算出する。
(1) Collision prediction calculation means This means is also used for calculation of collision prediction time, such as follow-up running control, damage reduction automatic brake control, brake assist control, etc., and the detection result of the ranging radar 2b and own vehicle behavior monitoring means Based on the behavior monitoring result of the vehicle 1b of each of the sensors 4b to 6b, a predicted collision time Ti between the vehicle 1b and an external object such as a preceding vehicle or an obstacle is calculated.

具体的には、測距レーダ2bの送受信時間差等から求めた車両1bから車外物体までの距離Liと、この距離Liの時間変化から求めた車外物体の相対速度Viとにより、時々刻々の衝突予測時間Tiを、Ti=Li/Viの演算から算出する。   Specifically, the collision prediction is performed every moment based on the distance Li from the vehicle 1b to the object outside the vehicle obtained from the transmission / reception time difference of the ranging radar 2b and the like and the relative speed Vi of the object outside the vehicle obtained from the time change of the distance Li. Time Ti is calculated from the calculation of Ti = Li / Vi.

(2)第2の異常判定手段
この手段は、所定の衝突予測状態で衝突予測時間Tiの経過時点より0.5秒程度の設定した誤差時間Teが経過した場合に自車1bの無衝突状態が持続しているとき、測距レーダ2bが異常であると判定してそのセンサ異常を検出する。
(2) Second abnormality determination means This means is that the vehicle 1b is in a collision-free state when a set error time Te of about 0.5 seconds has elapsed from the time when the collision prediction time Ti has elapsed in a predetermined collision prediction state. Is maintained, the ranging radar 2b is determined to be abnormal and the sensor abnormality is detected.

換言すれば、測距レーダ2bの検出結果及び自車挙動監視手段の挙動監視結果から衝突予測時間Tiが算出され、自車1bと先行車、障害物等の車外物体との衝突が予測される場合に、衝突の回避操作等が行なわれることなく所定の衝突予測状態で、衝突予測時間Tiの算出時点から衝突予測時間Ti+誤差時間Teの時間が経過しても、車両1bとその車外物体との衝突が発生しなければ、測距レーダ2bが異常であると判定してそのセンサ異常を検出する。   In other words, the collision prediction time Ti is calculated from the detection result of the ranging radar 2b and the behavior monitoring result of the own vehicle behavior monitoring means, and the collision between the own vehicle 1b and an outside vehicle such as a preceding vehicle or an obstacle is predicted. In such a case, even if the collision prediction time Ti + the error time Te has elapsed from the time of calculation of the collision prediction time Ti in a predetermined collision prediction state without performing a collision avoidance operation or the like, If this collision does not occur, it is determined that the ranging radar 2b is abnormal, and the sensor abnormality is detected.

そのため、この第2の異常判定手段は、例えば追従走行制御、被害軽減自動ブレーキ制御、ブレーキアシスト制御等の衝突予測にも用いられる機能として、衝突予測時間Tiの算出時点から衝突予測時間Ti+誤差時間Teの時間を計時する機能と、測距レーダ2bの検出結果から図5に示すような各検出時点の車外物体の検出位置P1、P2、P3、P4のデータを検出保持し、衝突予測時間Tiの算出時点において保持しているデータ(過去のデータ)から最小二乗法等の推定演算で同図の実線αのような車外物体の相対移動予測軌跡を求めて図中の衝突予測時間Ti経過後の衝突予測位置Piを求める機能と、自車挙動検出手段の各センサ4b〜6bの検出結果から、自車速変化に基づく減速度、舵角、ヨーレートが所定範囲内であるか否か、すなわち、回避操作の有無を検出する機能とを有する。なお、図5のz軸、x軸は車両1bの横幅方向の自車中心βを原点とする前後方向(走行方向)、横方向の座標軸である。   For this reason, the second abnormality determination means is a function used for collision prediction such as follow-up running control, damage reduction automatic brake control, and brake assist control, for example, from the time when the collision prediction time Ti is calculated to the collision prediction time Ti + error time. A function for measuring the time of Te and the detection position P1, P2, P3, P4 of the detection object P1, P2, P3, and P4 of the outside object at each detection time as shown in FIG. After the collision prediction time Ti has elapsed in the figure, the relative movement prediction trajectory of the vehicle-like object as shown by the solid line α in the figure is obtained from the data (past data) held at the time of calculation of the object by estimation calculation such as the least square method. The deceleration based on the change in the vehicle speed, the steering angle, and the yaw rate are within a predetermined range based on the function for obtaining the predicted collision position Pi of the vehicle and the detection results of the sensors 4b to 6b of the vehicle behavior detection means. Whether, i.e., and a function of detecting the presence or absence of the avoidance operation. Note that the z axis and the x axis in FIG. 5 are coordinate axes in the front-rear direction (travel direction) and the lateral direction with the vehicle center β in the lateral width direction of the vehicle 1b as the origin.

そして、これらの機能の計時、検出等の結果から、条件「衝突予測時間Ti+誤差時間Teが経過し、かつ、過去のデータから算出した衝突予想位置Piが図5の自車中心βから所定範囲内であり、かつ、自車挙動から衝突回避操作が検出され無かった」を満たすことを検出したときに、例えば、車両1bの圧力センサ等による衝突検出がなく、車両1が走行等を継続していることから、車両1bに衝突が無いことを認識した場合に、測距センサ2bに軸ずれ等の異常が発生していると判定し、センサ異常を検出する。   Then, based on the results of timing and detection of these functions, the condition “predicted collision time Ti + error time Te has elapsed, and the predicted collision position Pi calculated from past data is within a predetermined range from the vehicle center β in FIG. Is detected, and the collision avoidance operation has not been detected from the behavior of the vehicle, for example, there is no collision detection by the pressure sensor or the like of the vehicle 1b, and the vehicle 1 continues running and the like. Therefore, when it is recognized that there is no collision in the vehicle 1b, it is determined that an abnormality such as an axis deviation has occurred in the distance measuring sensor 2b, and the sensor abnormality is detected.

(3)第2の判定結果処理手段
この手段は、第1の実施形態の第1の判定結果処理手段とほぼ同様の構成であり、第2の異常判定手段のセンサ異常の検出結果を、故障診断情報としてEEPROM8bに保持し、表示・警報ユニット9bから警報出力し、さらに、第2の異常判定手段のセンサ異常の検出に基き、付加された利用禁止機能により、測距レーダ2bの検出結果に無効フラグを付加し、測距レーダ2bの検出結果を無効にして測距レーダ2bの誤った検出結果のACCの追従走行制御、被害軽減自動ブレーキ制御、ブレーキアシスト制御等への利用を禁止する。
(3) Second determination result processing means This means has substantially the same configuration as the first determination result processing means of the first embodiment, and the sensor abnormality detection result of the second abnormality determination means is determined as a failure. It is stored in the EEPROM 8b as diagnostic information, an alarm is output from the display / alarm unit 9b, and the detection result of the ranging radar 2b is obtained by the added use prohibition function based on the detection of the sensor abnormality of the second abnormality determination means. An invalid flag is added to invalidate the detection result of the ranging radar 2b and prohibit the use of the erroneous detection result of the ranging radar 2b for ACC follow-up control, damage reduction automatic brake control, brake assist control, and the like.

以上の構成に基き、車両1bが始動(エンジンスタート)すると、演算処理装置7bが例えば図4のステップS1〜S10の処理を実行する。なお、図4のステップQ1〜Q4は後述する衝撃センサの検出を組み合わせた場合の処理である。   Based on the above configuration, when the vehicle 1b starts (engine starts), the arithmetic processing unit 7b executes, for example, the processes of steps S1 to S10 in FIG. Note that steps Q1 to Q4 in FIG. 4 are processes in the case of combining detection of an impact sensor described later.

そして、測距レーダ2bの自車前方の時々刻々の検出結果及び各センサ4b、5b、6bの時々刻々の自車速、舵角、ヨーレート値の信号が演算処理装置7bに取り込まれ、ステップS1により衝突予測演算手段が衝突予測時間Tiを算出し、ステップS2〜S5により第2の異常判定手段が衝突予測位置Pi、舵角、ヨーレート、自車速変化からの減速度等を算出する。   Then, the detection results of the distance measuring radar 2b in front of the vehicle and the signals of the vehicle speed, the steering angle, and the yaw rate value of the sensors 4b, 5b, 6b from time to time are taken into the arithmetic processing unit 7b. The collision prediction calculation means calculates the collision prediction time Ti, and the second abnormality determination means calculates the collision prediction position Pi, the steering angle, the yaw rate, the deceleration from the own vehicle speed change, etc. in steps S2 to S5.

さらに、ステップS5からステップS6に移行し、ステップS6〜S8により、衝突予測時間Ti+誤差時間Teが経過したか否か、衝突予想位置Piが自車中心βから所定範囲内か否か、減速度、舵角、ヨーレートが所定範囲内か否かが判定され、これらの判定がすべて肯定(YES)になり、前記の条件を満足するときに、ステップS9により測距センサ2bに軸ずれ等の異常が発生していると判定し、センサ異常を検出する。   Further, the process proceeds from step S5 to step S6, and in steps S6 to S8, whether or not the predicted collision time Ti + error time Te has elapsed, whether the predicted collision position Pi is within a predetermined range from the vehicle center β, deceleration It is determined whether the steering angle and the yaw rate are within a predetermined range. When all of these determinations are affirmative (YES) and the above conditions are satisfied, the distance measuring sensor 2b is abnormal such as an axis deviation in step S9. Is detected, and sensor abnormality is detected.

そして、ステップS9からステップS10に移行し、第2の判定結果処理手段により、
センサ異常の検出結果を、故障診断情報としてEEPROM8bに保持し、表示・警報ユニット9bから警報出力する。
Then, the process proceeds from step S9 to step S10, and the second determination result processing means
The sensor abnormality detection result is held in the EEPROM 8b as failure diagnosis information, and an alarm is output from the display / alarm unit 9b.

このとき、第2の異常判定手段のセンサ異常の検出に基き、付加された利用禁止機能により、測距レーダ2bの検出結果に無効フラグを付加し、測距レーダ2bの検出結果を無効にして測距レーダ2bの誤った検出結果のACCの追従走行制御、被害軽減自動ブレーキ制御、ブレーキアシスト制御等への利用を禁止する。   At this time, an invalid flag is added to the detection result of the ranging radar 2b and the detection result of the ranging radar 2b is invalidated by the added use prohibition function based on the detection of the sensor abnormality of the second abnormality determining means. Use of the erroneous detection result of the ranging radar 2b for ACC follow-up control, damage reduction automatic brake control, brake assist control, etc. is prohibited.

したがって、この実施形態の場合は、衝突予測時間Ti等を算出することにより、第1の実施形態の加速度センサ3のような衝撃センサを用いることなく、車外監視センサとしての測距レーダ2bの軸ずれ等のセンサ異常を検出することができる。   Therefore, in the case of this embodiment, by calculating the predicted collision time Ti and the like, the axis of the ranging radar 2b as the vehicle monitoring sensor is used without using an impact sensor such as the acceleration sensor 3 of the first embodiment. Sensor abnormality such as deviation can be detected.

そして、この実施形態の場合も、車両1bの走行条件等によらず測距レーダ2bのセンサ異常を検出することができ、実走行環境下での常時検出に好適であり、しかも、統計処理等のセンサ異常検出専用の複雑な処理は不要であり処理負担が少なく、統計処理による確率的な検出ではなく、測距レーダ2bの検出結果から算出した衝突予測時間Tiの実際の経過に基いてセンサ異常を検出するため、測距レーダ2bのドライバ等が目視等しても外観からは判断がつきにくい軸ずれを含むセンサ異常を、統計処理等によって検出する場合より確実に精度よく検出することができる。   Also in this embodiment, the sensor abnormality of the ranging radar 2b can be detected regardless of the traveling condition of the vehicle 1b, etc., which is suitable for continuous detection in an actual traveling environment, and statistical processing or the like. No complicated processing dedicated to sensor abnormality detection is required and the processing load is small, and the sensor is not based on stochastic detection by statistical processing, but based on the actual progress of the predicted collision time Ti calculated from the detection result of the ranging radar 2b. In order to detect an abnormality, it is possible to detect a sensor abnormality including an axis misalignment that is difficult to judge from the appearance even if the driver of the ranging radar 2b visually observes the sensor more accurately than when it is detected by statistical processing or the like. it can.

そのため、加速度センサ3のような衝突センサを設けることなく、実走行環境下での常時検出に好適で処理負担が少なく、検出確度及び信頼性が高い構成により、車両1bに搭載した車外監視センサとしての測距レーダ2bの軸ずれ含むセンサ異常を検出することができる。   Therefore, without providing a collision sensor such as the acceleration sensor 3, it is suitable for continuous detection in an actual driving environment, has a low processing load, and has a high detection accuracy and reliability. It is possible to detect a sensor abnormality including an axis deviation of the ranging radar 2b.

そして、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。   The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention.

例えば前記第2の実施形態において、衝撃センサの検出を組み合わせ、測距レーダ2bを第1の実施形態の測距レーダ2aと同様の加速度センサ3を内蔵した測距レーダ2bにより形成し、演算処理装置7bに演算処理装置7aの第1の異常判別手段等を付加し、測距レーダ2bに車外物体が実際に衝突して軸ずれが生じる場合は、加速度センサ3の衝撃検出結果からセンサ異常を検出するようにしてもよい。   For example, in the second embodiment, the detection of the impact sensor is combined, and the ranging radar 2b is formed by the ranging radar 2b including the acceleration sensor 3 similar to the ranging radar 2a of the first embodiment, and the arithmetic processing When the first abnormality determining means of the arithmetic processing unit 7a is added to the apparatus 7b, and an object outside the vehicle actually collides with the ranging radar 2b to cause a shaft misalignment, the sensor abnormality is detected from the impact detection result of the acceleration sensor 3. You may make it detect.

この場合、演算処理装置7bにより、例えば図4のステップS1〜S10及びステップQ1〜Q4の処理を行ない、ステップS5とステップS6との間に設けたステップQ1により、加速度センサ3の検出衝撃力が前記の下限しきい値以上、上限しきい値以下であると判断したときは、ステップQ2〜Q4により第1の実施形態と同様にして測距レーダ2bの軸ずれのセンサ異常を検出すればよく、このようにすることによって、第2の実施形態の効果に加えて、物体が衝突たときの測距レーダ2bのドライバ等が目視等しても判断がつきにくいような軸ずれのセンサ異常を、実際の衝撃検出によって一層確実に検出することができる効果が生じる。   In this case, the processing unit 7b performs, for example, steps S1 to S10 and steps Q1 to Q4 in FIG. 4, and the detected impact force of the acceleration sensor 3 is detected by step Q1 provided between steps S5 and S6. When it is determined that it is greater than or equal to the lower threshold value and less than or equal to the upper threshold value, it is only necessary to detect an axis deviation sensor abnormality of the ranging radar 2b through steps Q2 to Q4 in the same manner as in the first embodiment. By doing so, in addition to the effect of the second embodiment, an axis misalignment sensor abnormality that is difficult to judge even if the driver of the ranging radar 2b or the like when the object collides is visually observed. Thus, there is an effect that it can be detected more reliably by actual impact detection.

つぎに、前記両実施形態においては車外監視センサを測距レーダ2a、2bとしたが、車外監視センサがCCD単眼カメラ、ステレオカメラのような画像センサであっても同様に適用することができ、車外監視センサが測距レーダと画像センサの両方であっても同様に適用することができる。   Next, in both the embodiments, the vehicle outside monitoring sensor is the ranging radar 2a, 2b, but the vehicle outside monitoring sensor can be similarly applied even when the vehicle outside monitoring sensor is an image sensor such as a CCD monocular camera or a stereo camera. The present invention can be applied in the same manner even when the vehicle monitoring sensor is both a ranging radar and an image sensor.

なお、画像センサは、前方を監視する場合、例えば車内のセンタミラー支持部等に角度調整して設けられ、その撮影画像の周知の画像認識処理によって車外物体の位置、距離、形状等が検出される。また、車外監視センサが測距レーダと画像センサの両方の場合は、例えば測距レーダの探査結果と画像センサの撮影結果とに基く周知のセンサフュージョンで車外物体の位置、距離、形状等が検出される。   In addition, when monitoring the front, the image sensor is provided, for example, by adjusting the angle on the center mirror support portion in the vehicle, and the position, distance, shape, and the like of the object outside the vehicle are detected by well-known image recognition processing of the captured image. The In addition, when the vehicle monitoring sensor is both a ranging radar and an image sensor, the position, distance, shape, etc. of the object outside the vehicle are detected by a well-known sensor fusion based on the detection result of the ranging radar and the imaging result of the image sensor, for example. Is done.

さらに、車外監視センサは車両1a、1bの後方、側方或いは全周を監視検出するものであってもよく、これらの場合も本発明を同様に適用することができる。   Further, the vehicle outside monitoring sensor may be one that monitors and detects the rear, side, or entire circumference of the vehicles 1a and 1b, and the present invention can be similarly applied to these cases.

つぎに、例えば第1の実施形態において、加速度センサ3は、測距レーダ2aが受ける衝撃を検出すればよく、測距レーダ2aに内蔵されていなくてもよく、測距レーダ2aの近傍等に設けられていてもよい。   Next, for example, in the first embodiment, the acceleration sensor 3 only needs to detect the impact received by the ranging radar 2a, and may not be built in the ranging radar 2a, and may be in the vicinity of the ranging radar 2a. It may be provided.

また、本発明の衝撃センサは加速度センサ3に限られるものでなく、圧力センサ等の車外監視センサが受ける衝撃を検出する種々のセンサであってよいのは勿論である。さらに、車外監視センサが測距レーダと画像センサの両方の場合は、衝撃センサを個別に設けてそれぞれの受ける衝撃を個別に検出し、検出衝撃の大きいほうを優先的に採用するようにしてもよく、例えば測距レーダ側に共通の1個の衝撃センサを設け、その検出衝撃を測距レーダと画像センサが受ける衝撃として検出してもよい。   In addition, the impact sensor of the present invention is not limited to the acceleration sensor 3 and may be various sensors that detect an impact received by an external monitoring sensor such as a pressure sensor. In addition, when the vehicle monitoring sensor is both a ranging radar and an image sensor, an impact sensor is provided separately to detect each impact received, and the larger detected impact is preferentially adopted. For example, a common impact sensor may be provided on the ranging radar side, and the detected impact may be detected as an impact received by the ranging radar and the image sensor.

つぎに、演算処理装置7a、7bは図4と異なる手順で処理を行なうものであってもよいのは勿論であり、また、例えば演算処理装置7aに前記の下限値のみを設定し、測距レーダ2aの軸ずれのセンサ異常を、加速度センサ3等の衝撃センサが下限しきい値以上の衝撃力を受けることから検出するようにしてもよい。さらに、不揮発性の記憶手段としてのEEPROM8a、8bは測距レーダ2a、2bにあってもよく、不揮発性の記憶手段がEEPROM以外の記憶素子によって形成されていてもよい。   Next, it is a matter of course that the arithmetic processing devices 7a and 7b may perform processing in a procedure different from that shown in FIG. 4, and for example, only the lower limit value is set in the arithmetic processing device 7a to measure the distance. An abnormality in the sensor of the axis deviation of the radar 2a may be detected because an impact sensor such as the acceleration sensor 3 receives an impact force equal to or higher than a lower limit threshold value. Further, the EEPROMs 8a and 8b as nonvolatile storage means may be provided in the ranging radars 2a and 2b, and the nonvolatile storage means may be formed by a storage element other than the EEPROM.

ところで、車両1a、1bの装備部品数を少なくするため、例えば各センサ2a、2b、3a、3b、4a、4b等を他の制御のセンサに兼用する場合にも適用することができる。   By the way, in order to reduce the number of equipment parts of the vehicles 1a and 1b, the present invention can be applied to the case where each sensor 2a, 2b, 3a, 3b, 4a, 4b, etc. is also used as another control sensor.

この発明の第1の実施形態のブロック図である。It is a block diagram of a 1st embodiment of this invention. 図1の測距レーダの説明図である。It is explanatory drawing of the ranging radar of FIG. この発明の第2の実施形態のブロック図である。It is a block diagram of 2nd Embodiment of this invention. 図3の動作説明用のフローチャートである。It is a flowchart for operation | movement description of FIG. 衝突予測の説明図である。It is explanatory drawing of collision prediction.

符号の説明Explanation of symbols

1a、1b 車両
2a、2b 測距レーダ
3 加速度センサ
4a、4b 車速センサ
5a、5b 舵角センサ
6a、6b ヨーレートセンサ
7a、7b 演算処理装置
8a、8b EEPROM
9a、9b 表示警報ユニット
1a, 1b Vehicle 2a, 2b Ranging radar 3 Acceleration sensor 4a, 4b Vehicle speed sensor 5a, 5b Steering angle sensor 6a, 6b Yaw rate sensor 7a, 7b Arithmetic processing unit 8a, 8b EEPROM
9a, 9b Display alarm unit

Claims (6)

測距レーダ、画像センサの少なくともいずれか一方を車外監視センサとして搭載した車両に、
前記車外監視センサが受ける衝撃を検出する衝撃センサと、
前記衝撃センサの物体が衝突した時に生じる値以上で所定値以下の衝撃検出により、前記車外監視センサが異常であると判定してセンサ異常を検出する異常判定手段と、
前記異常判定手段の前記センサ異常の検出結果を、故障診断情報として保持し警報出力する判定結果処理手段とを備えたことを特徴とするセンサ異常検出装置。
In vehicles equipped with at least one of ranging radar and image sensor as a vehicle monitoring sensor,
An impact sensor for detecting an impact received by the vehicle exterior monitoring sensor;
An abnormality determining means for determining that the vehicle exterior monitoring sensor is abnormal by detecting an impact that is greater than or equal to a value that occurs when the object of the impact sensor collides and less than or equal to a predetermined value;
A sensor abnormality detection device, comprising: a determination result processing unit that holds the detection result of the sensor abnormality of the abnormality determination unit as failure diagnosis information and outputs an alarm.
請求項1記載のセンサ異常検出装置において、
異常判定手段の異常の判定を、衝撃センサの前記物体が衝突した時に生じる値以上で所定値以下の衝撃検出が所定時間継続したときに行うことを特徴とするセンサ異常検出装置。
In the sensor abnormality detection device according to claim 1,
A sensor abnormality detection device, wherein abnormality determination by an abnormality determination means is performed when an impact detection that is greater than or equal to a value generated when the object of the impact sensor collides and less than or equal to a predetermined value continues for a predetermined time.
測距レーダ、画像センサの少なくともいずれか一方を車外監視センサとして搭載した車両に、
前記車外監視センサの検出結果及び自車挙動監視手段の自車の挙動監視結果に基いて自車と車外物体との衝突予測時間を算出する衝突予測演算手段と、
所定の衝突予測状態で前記衝突予測時間の経過時点より設定した誤差時間経過した場合に自車の無衝突状態が持続しているとき、前記車外監視センサが異常であると判定してセンサ異常を検出する異常判定手段と、
前記異常判定手段の前記センサ異常の検出結果を、故障診断情報として保持し警報出力する判定結果処理手段とを備えたことを特徴とするセンサ異常検出装置。
In vehicles equipped with at least one of ranging radar and image sensor as a vehicle monitoring sensor,
A collision prediction calculation means for calculating a collision prediction time between the own vehicle and an object outside the vehicle based on the detection result of the outside monitoring sensor and the behavior monitoring result of the own vehicle behavior monitoring means;
When the error time set from the time when the collision prediction time has elapsed in a predetermined collision prediction state has elapsed and the vehicle's no-collision state continues, it is determined that the vehicle monitoring sensor is abnormal and a sensor abnormality is detected. An abnormality determination means to detect;
A sensor abnormality detection device, comprising: a determination result processing unit that holds the detection result of the sensor abnormality of the abnormality determination unit as failure diagnosis information and outputs an alarm.
請求項1〜3のいずれかに記載のセンサ異常検出装置において、
判定結果処理手段に、異常判定手段のセンサ異常の検出により車外監視センサの検出結果を無効にして利用禁止にする利用禁止機能を付加したことを特徴とするセンサ異常検出装置。
In the sensor abnormality detection device according to any one of claims 1 to 3,
A sensor abnormality detection device, wherein a use prohibition function is added to a determination result processing means to invalidate a detection result of a vehicle-external monitoring sensor by detecting a sensor abnormality of an abnormality determination means and to prohibit use.
測距レーダ、画像センサの少なくともいずれか一方を車外監視センサとして搭載した車両に、前記車外監視センサが受ける衝撃を検出する衝撃センサを設け、
前記衝撃センサの物体が衝突した時に生じる値以上で所定値以下の衝撃の検出により前記車外監視センサが異常であると判定してセンサ異常を検出し、
前記センサ異常の検出結果を故障診断情報として保持し警報出力することを特徴とするセンサ異常検出方法。
A vehicle equipped with at least one of a ranging radar and an image sensor as an outside monitoring sensor is provided with an impact sensor for detecting an impact received by the outside monitoring sensor,
A sensor abnormality is detected by determining that the vehicle exterior monitoring sensor is abnormal by detecting an impact that is greater than or equal to a value that occurs when an object of the impact sensor collides, and less than a predetermined value;
A sensor abnormality detection method, wherein the detection result of the sensor abnormality is held as failure diagnosis information and an alarm is output.
測距レーダ、画像センサの少なくともいずれか一方を車外監視センサとして搭載した車両により、
前記車外監視センサの検出結果及び自車の挙動監視結果に基づいて自車と前記車外物体との衝突予測時間を算出し、
所定の衝突条件に適合した走行状態で前記衝突予測時間の経過時点より設定した予測誤差時間が経過しても自車が無衝突のときに、前記車外監視センサが異常であると判定してセンサ異常を検出し、
前記センサ異常の検出結果を、故障診断情報として保持し警報出力することを特徴とするセンサ異常検出方法。
By a vehicle equipped with at least one of ranging radar and image sensor as a vehicle monitoring sensor,
Based on the detection result of the outside monitoring sensor and the behavior monitoring result of the own vehicle, the collision prediction time between the own vehicle and the outside object is calculated,
A sensor that determines that the outside monitoring sensor is abnormal when the vehicle is in a collision-free state even when the prediction error time set from the elapsed time of the collision prediction time elapses in a traveling state that conforms to a predetermined collision condition. Detect anomalies,
A sensor abnormality detection method, wherein the detection result of the sensor abnormality is held as failure diagnosis information and an alarm is output.
JP2005057865A 2005-03-02 2005-03-02 Sensor failure detector and detection method of sensor failure Pending JP2006240453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057865A JP2006240453A (en) 2005-03-02 2005-03-02 Sensor failure detector and detection method of sensor failure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057865A JP2006240453A (en) 2005-03-02 2005-03-02 Sensor failure detector and detection method of sensor failure

Publications (1)

Publication Number Publication Date
JP2006240453A true JP2006240453A (en) 2006-09-14

Family

ID=37047281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057865A Pending JP2006240453A (en) 2005-03-02 2005-03-02 Sensor failure detector and detection method of sensor failure

Country Status (1)

Country Link
JP (1) JP2006240453A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041686A1 (en) * 2006-10-02 2008-04-10 Calsonic Kansei Corporation Door crash detector in side collision
JP2008216213A (en) * 2007-03-07 2008-09-18 Toyota Motor Corp Crash prediction device
JP2010070129A (en) * 2008-09-19 2010-04-02 Denso Corp Collision detection device for vehicle
JP2010100075A (en) * 2008-10-21 2010-05-06 Denso Corp Collision detection device for vehicle
JP2010519545A (en) * 2007-02-21 2010-06-03 オートリブ エー・エス・ピー・インク Sensor misalignment detection and measurement system
JP2012068216A (en) * 2010-09-27 2012-04-05 Mazda Motor Corp Sensor orientation deviation detecting device
JP2013019799A (en) * 2011-07-12 2013-01-31 Denso Corp Vehicle control device
JP2013018393A (en) * 2011-07-12 2013-01-31 Denso Corp Travel support device
WO2015098715A1 (en) 2013-12-26 2015-07-02 Toyota Jidosha Kabushiki Kaisha Sensor abnormality detection device
KR20160062590A (en) * 2014-11-25 2016-06-02 현대모비스 주식회사 Error detection method of sensor for vehicle
JP2016103225A (en) * 2014-11-28 2016-06-02 株式会社デンソー Vehicle travel control device
KR20170020963A (en) * 2015-08-17 2017-02-27 주식회사 만도 Autonomous emergency braking system and control method thereof
JP2018041194A (en) * 2016-09-06 2018-03-15 株式会社Subaru Vehicle driving assist device
CN108508872A (en) * 2018-04-18 2018-09-07 鄂尔多斯市普渡科技有限公司 A kind of fault detection method of pilotless automobile information acquisition system
CN108928315A (en) * 2017-05-23 2018-12-04 本田技研工业株式会社 Periphery monitoring apparatus
CN109655796A (en) * 2017-10-10 2019-04-19 丰田自动车株式会社 Axle offset decision maker
CN109932721A (en) * 2017-12-15 2019-06-25 财团法人车辆研究测试中心 Error and detecting probability analysis method applied to the fusion of more sensors
CN110536821A (en) * 2017-04-24 2019-12-03 日立汽车系统株式会社 The electronic control unit of vehicle
US10578714B2 (en) 2015-03-31 2020-03-03 Denso Corporation Vehicle control apparatus and vehicle control method
CN111670380A (en) * 2019-01-09 2020-09-15 深圳市大疆创新科技有限公司 Abnormity recording method of distance measuring device, distance measuring device and movable platform
JP2020168948A (en) * 2019-04-03 2020-10-15 株式会社Soken Obstacle detection device for vehicle
US10830870B2 (en) 2013-12-02 2020-11-10 Denso Corporation Axial displacement judgment device
WO2021070762A1 (en) 2019-10-10 2021-04-15 京セラ株式会社 Electronic apparatus, control method for electronic apparatus, and control program for electronic apparatus
NL2031955B1 (en) * 2022-05-20 2023-11-27 Boostphysics B V A manoeuvring guidance system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138232A (en) * 1992-10-26 1994-05-20 Mazda Motor Corp Radar for vehicle
JPH09145824A (en) * 1995-11-21 1997-06-06 Fujitsu Ten Ltd Fm-cw radar failure detecting device
JPH10213650A (en) * 1997-01-30 1998-08-11 Omron Corp Object detector
JPH1114747A (en) * 1997-06-25 1999-01-22 Honda Motor Co Ltd Object detecting device for vehicle
JP2001166051A (en) * 1999-12-10 2001-06-22 Fujitsu Ten Ltd Axis deviation detection device for vehicular radar device
JP2002250770A (en) * 2001-02-26 2002-09-06 Honda Motor Co Ltd Travel controller for vehicle
JP2002357653A (en) * 2001-03-29 2002-12-13 Honda Motor Co Ltd External sensing device
JP2003182509A (en) * 2001-12-19 2003-07-03 Toyota Motor Corp Occupant protecting system
JP2004085258A (en) * 2002-08-23 2004-03-18 Hitachi Ltd Radar equipment
JP2004345518A (en) * 2003-05-22 2004-12-09 Nissan Motor Co Ltd Travel control device for vehicle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138232A (en) * 1992-10-26 1994-05-20 Mazda Motor Corp Radar for vehicle
JPH09145824A (en) * 1995-11-21 1997-06-06 Fujitsu Ten Ltd Fm-cw radar failure detecting device
JPH10213650A (en) * 1997-01-30 1998-08-11 Omron Corp Object detector
JPH1114747A (en) * 1997-06-25 1999-01-22 Honda Motor Co Ltd Object detecting device for vehicle
JP2001166051A (en) * 1999-12-10 2001-06-22 Fujitsu Ten Ltd Axis deviation detection device for vehicular radar device
JP2002250770A (en) * 2001-02-26 2002-09-06 Honda Motor Co Ltd Travel controller for vehicle
JP2002357653A (en) * 2001-03-29 2002-12-13 Honda Motor Co Ltd External sensing device
JP2003182509A (en) * 2001-12-19 2003-07-03 Toyota Motor Corp Occupant protecting system
JP2004085258A (en) * 2002-08-23 2004-03-18 Hitachi Ltd Radar equipment
JP2004345518A (en) * 2003-05-22 2004-12-09 Nissan Motor Co Ltd Travel control device for vehicle

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041686A1 (en) * 2006-10-02 2008-04-10 Calsonic Kansei Corporation Door crash detector in side collision
JP2010519545A (en) * 2007-02-21 2010-06-03 オートリブ エー・エス・ピー・インク Sensor misalignment detection and measurement system
JP2008216213A (en) * 2007-03-07 2008-09-18 Toyota Motor Corp Crash prediction device
JP2010070129A (en) * 2008-09-19 2010-04-02 Denso Corp Collision detection device for vehicle
JP2010100075A (en) * 2008-10-21 2010-05-06 Denso Corp Collision detection device for vehicle
JP2012068216A (en) * 2010-09-27 2012-04-05 Mazda Motor Corp Sensor orientation deviation detecting device
JP2013019799A (en) * 2011-07-12 2013-01-31 Denso Corp Vehicle control device
JP2013018393A (en) * 2011-07-12 2013-01-31 Denso Corp Travel support device
US10830870B2 (en) 2013-12-02 2020-11-10 Denso Corporation Axial displacement judgment device
US9731728B2 (en) 2013-12-26 2017-08-15 Toyota Jidosha Kabushiki Kaisha Sensor abnormality detection device
WO2015098715A1 (en) 2013-12-26 2015-07-02 Toyota Jidosha Kabushiki Kaisha Sensor abnormality detection device
KR20160062590A (en) * 2014-11-25 2016-06-02 현대모비스 주식회사 Error detection method of sensor for vehicle
KR102240725B1 (en) * 2014-11-25 2021-04-15 현대모비스 주식회사 Error detection method of sensor for vehicle
US10345443B2 (en) 2014-11-28 2019-07-09 Denso Corporation Vehicle cruise control apparatus and vehicle cruise control method
WO2016084506A1 (en) * 2014-11-28 2016-06-02 株式会社デンソー Drive control device for vehicle and drive control method
CN107000749A (en) * 2014-11-28 2017-08-01 株式会社电装 The travel controlling system and travel control method of vehicle
JP2016103225A (en) * 2014-11-28 2016-06-02 株式会社デンソー Vehicle travel control device
US10578714B2 (en) 2015-03-31 2020-03-03 Denso Corporation Vehicle control apparatus and vehicle control method
KR20170020963A (en) * 2015-08-17 2017-02-27 주식회사 만도 Autonomous emergency braking system and control method thereof
KR102398028B1 (en) * 2015-08-17 2022-05-17 주식회사 에이치엘클레무브 Autonomous emergency braking system and control method thereof
JP2018041194A (en) * 2016-09-06 2018-03-15 株式会社Subaru Vehicle driving assist device
CN110536821A (en) * 2017-04-24 2019-12-03 日立汽车系统株式会社 The electronic control unit of vehicle
CN110536821B (en) * 2017-04-24 2022-08-02 日立安斯泰莫株式会社 Electronic control device for vehicle
JP2018197921A (en) * 2017-05-23 2018-12-13 本田技研工業株式会社 Periphery monitoring device
CN108928315A (en) * 2017-05-23 2018-12-04 本田技研工业株式会社 Periphery monitoring apparatus
CN109655796A (en) * 2017-10-10 2019-04-19 丰田自动车株式会社 Axle offset decision maker
CN109655796B (en) * 2017-10-10 2023-03-31 丰田自动车株式会社 Shaft offset determination device
CN109932721A (en) * 2017-12-15 2019-06-25 财团法人车辆研究测试中心 Error and detecting probability analysis method applied to the fusion of more sensors
CN109932721B (en) * 2017-12-15 2023-09-29 财团法人车辆研究测试中心 Error and detection probability analysis method applied to multi-sensor fusion
CN108508872A (en) * 2018-04-18 2018-09-07 鄂尔多斯市普渡科技有限公司 A kind of fault detection method of pilotless automobile information acquisition system
CN111670380A (en) * 2019-01-09 2020-09-15 深圳市大疆创新科技有限公司 Abnormity recording method of distance measuring device, distance measuring device and movable platform
JP7243398B2 (en) 2019-04-03 2023-03-22 株式会社Soken Vehicle obstacle detection device
JP2020168948A (en) * 2019-04-03 2020-10-15 株式会社Soken Obstacle detection device for vehicle
WO2021070762A1 (en) 2019-10-10 2021-04-15 京セラ株式会社 Electronic apparatus, control method for electronic apparatus, and control program for electronic apparatus
NL2031955B1 (en) * 2022-05-20 2023-11-27 Boostphysics B V A manoeuvring guidance system

Similar Documents

Publication Publication Date Title
JP2006240453A (en) Sensor failure detector and detection method of sensor failure
US9731728B2 (en) Sensor abnormality detection device
JP6819431B2 (en) Attention device
US9896129B2 (en) Driving assistant system of vehicle and method for controlling the same
KR101965989B1 (en) Method for warning a driver of a vehicle of the presence of an object in the surroundings, driver assistance system and motor vehicle
US10940867B2 (en) Substitution of sensor measurement data
EP2923912B1 (en) Driver intention estimation arrangement
CN107179530B (en) Device for determining an offset of a detection device mounted on a vehicle
US7782179B2 (en) Obstacle detection apparatus
US8630793B2 (en) Vehicle controller
EP2302412B1 (en) System and method for evaluation of an automotive vehicle forward collision threat
US9594166B2 (en) Object detecting apparatus
JP6791032B2 (en) Pre-collision control implementation device
US20110241857A1 (en) Driver assistance method for moving a motor vehicle and driver assistance device
EP1857991A1 (en) Vehicle departure detecting device
JP2007310741A (en) Solid object recognition device
US10723347B2 (en) Vehicle control device and vehicle control method
US11194045B2 (en) Method for monitoring the surroundings of a vehicle
JP5083172B2 (en) Collision prediction device
JP5595078B2 (en) Driving assistance device
WO2016063534A1 (en) Lateral distance sensor diagnosis apparatus
JP5149658B2 (en) Driving evaluation device
CN107458337A (en) The control of motor vehicle protection device
JP4976998B2 (en) Vehicle travel safety device
JP6548147B2 (en) Vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928