JP2006239602A - Grading method for fruit and vegetable - Google Patents

Grading method for fruit and vegetable Download PDF

Info

Publication number
JP2006239602A
JP2006239602A JP2005060014A JP2005060014A JP2006239602A JP 2006239602 A JP2006239602 A JP 2006239602A JP 2005060014 A JP2005060014 A JP 2005060014A JP 2005060014 A JP2005060014 A JP 2005060014A JP 2006239602 A JP2006239602 A JP 2006239602A
Authority
JP
Japan
Prior art keywords
vegetables
fruits
grade
color
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005060014A
Other languages
Japanese (ja)
Other versions
JP4171806B2 (en
Inventor
Michihiro Amemori
道紘 雨森
Nobuyuki Yokomizu
伸行 横水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirosaki University NUC
Original Assignee
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosaki University NUC filed Critical Hirosaki University NUC
Priority to JP2005060014A priority Critical patent/JP4171806B2/en
Publication of JP2006239602A publication Critical patent/JP2006239602A/en
Application granted granted Critical
Publication of JP4171806B2 publication Critical patent/JP4171806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sorting Of Articles (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grading method for fruits and vegetables which is substituted for determination by human eyes. <P>SOLUTION: The grading method for fruits and vegetables for determining their grades by their images obtained by photographing fruits and vegetables has the process of making a two-dimensional color characterization maps peculiar to the kinds of fruit and vegetables by self-organization by an interconnecting neural network using data converted to the three primary colors of red (R), green (G) and blue (B) obtained from the respective elements of the images photographing fruits and vegetables to be subjected to the grade determination, and an HSV system, and the process of outputting the grades of the desired fruit and vegetables by deciding a plurality of amounts of two-dimensional characterization by samples obtained by sorting the fruits and vegetables to the grades from the color/position information of the object materials which are obtained using the two-dimensional characterization maps and labeling, and by acting an N layer neural network to the amounts of two-dimensional characterization for the grades. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、りんごやトマトなどの果実そ菜類の等級判別方法に関する。   The present invention relates to a method for classifying fruits and vegetables such as apples and tomatoes.

りんごやトマトなどの果実そ菜類は、色むら、傷、形状などによって等級を判別して各等級ごとに選別して出荷される。
従来の等級判別方法は、例えば果実の場合、カラーセンサーによる対象の微少量の輪切りに含まれるカラー量(1次元カラー量)を連続的に測定した総和量と、設定閾値との比較によって着色度を判定する方法であった。
カラーセンサーを用いる方法は、色づきの分布が全般に万遍にわたっている場合には問題ないが、局所的に分散した色むらがあるときには、この1次元的方法では、その色むらを判別することはできず、このような2次元的に判断を必要とする場合には、人間の判断に頼らざるを得ず、等級判別に多大な時間と労力が必要だった。
Fruits and vegetables such as apples and tomatoes are classified according to the color unevenness, scratches, shape, etc., and sorted according to each grade before shipment.
For example, in the case of fruits, for example, in the case of fruits, the color level is determined by comparing the total amount continuously measured for the amount of color (one-dimensional color amount) contained in a small amount of a circular slice of interest by a color sensor and a set threshold value. It was the method of judging.
The method using a color sensor is not a problem when the distribution of colors is universal, but when there is locally distributed color unevenness, this one-dimensional method cannot distinguish the color unevenness. However, when such a two-dimensional judgment is required, it is necessary to rely on human judgment, and much time and effort are required for class discrimination.

画像処理を用いた判定方法については、従来から種々の提案があり、例えば、特開2000−242791号公報には、照明の反射部分を減少するために特定の分光反射率を有する周波数を使用する方法が記載されている。
また、特開平9−29185号公報には、メロンなどの果皮ネットパターンの良否を判定する方法が記載されている。
さらに、特開平5−2632号公報には、撮像カメラから得られた色彩情報からニューラルネットワーク技術を使い等級判定する方法が記載されている。
しかし、これらの従来技術は、人間の目による判断に代替できるレベルに達しておらず、実用化されていなかった。
特開2000−242791号公報 特開平9−29185号公報 特開平5−2632号公報
There have been various proposals for determination methods using image processing. For example, Japanese Patent Application Laid-Open No. 2000-242791 uses a frequency having a specific spectral reflectance in order to reduce the reflection portion of illumination. A method is described.
Japanese Patent Application Laid-Open No. 9-29185 describes a method for determining the quality of a peel net pattern such as melon.
Furthermore, Japanese Patent Laid-Open No. 5-2632 describes a method for determining a grade using color information obtained from an imaging camera using a neural network technique.
However, these conventional techniques have not reached a level that can be substituted for judgment by human eyes, and have not been put into practical use.
JP 2000-242791 A JP-A-9-29185 Japanese Patent Laid-Open No. 5-2632

本発明は、前述のような従来技術の問題点を解決し、人間の目による判断に代替できる果実そ菜類の等級判別方法を提供することを課題とする。   An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a fruit and vegetable grade determination method that can be substituted for determination by human eyes.

本発明は、前述の課題を解決するために鋭意検討の結果、2次元色特徴地図とラベリング処理で得られる対象物体の色・位置情報からの2次元特徴量を用いることによって、人間の目による判断に代替できる果実そ菜類の等級判別方法を提供するを提供するものであり、その要旨とするところは特許請求の範囲に記載した通りの下記内容である。
(1)果実そ菜類を撮像した画像によって等級を判別する果実そ菜類の等級判別方法であって、
等級判別を行う果実そ菜類を撮像した画像の各画素を赤(R)、緑(G)、青(B)の3原色により表現し、または各画素の色彩をHSV方式に変換する工程と、
前記各画素から得られる赤(R)、緑(G)、青(B)の3原色、またはHSV方式に変換されたデータを用いて相互結合型ニューラルネットワークによる自己組織化を行って当該種類の果実そ菜類に特有の2次元色特徴地図を作成する工程と、
前記果実そ菜類を等級別に分類したサンプルにより複数の2次元特徴量を、前記2次元色特徴地図とラベリング処理を用いて得られる対象物体の色・位置情報を用いて決定し、前記等級別2次元特徴量にN層ニューラルネットワークを作用させた場合に各等級が定まるようにN層ニューラルネットワークを構成させる工程と、
任意の当該果実そ菜類を撮像することによって得られる2次元色特徴量に前記ニューラルネットワークを作用させて当該果実そ菜類の等級を出力する工程とを有することを特徴とする果実そ菜類の等級判別方法。
(2)前記2次元色特徴地図およびラベリング処理により得られる結果は、形状情報を含み、果実そ菜類における形状または傷選別に適用することを特徴とする(1)に記載の果実そ菜類の等級判別方法。
As a result of intensive studies in order to solve the above-described problems, the present invention uses a two-dimensional feature value from the color / position information of a target object obtained by a two-dimensional color feature map and a labeling process. The present invention provides a method for discriminating the grade of fruits and vegetables that can be substituted for judgment, and the gist thereof is as follows.
(1) A method for determining the grade of fruit and vegetables that discriminates the grade based on an image of the fruit and vegetables.
Expressing each pixel of an image obtained by imaging fruits and vegetables to be graded with the three primary colors of red (R), green (G), and blue (B), or converting the color of each pixel to the HSV system;
Using the data converted to the primary colors of red (R), green (G), and blue (B) obtained from each of the pixels, or the HSV system, self-organization is performed by an interconnection neural network, and the kind of Creating a two-dimensional color feature map specific to fruits and vegetables;
A plurality of two-dimensional feature quantities are determined by using the sample classified fruit and vegetable by grade using the color / position information of the target object obtained by using the two-dimensional color feature map and labeling process, Configuring the N-layer neural network so that each grade is determined when the N-layer neural network is applied to the dimension feature,
And a step of outputting the grade of the fruit and vegetables by causing the neural network to act on a two-dimensional color feature obtained by imaging the arbitrary fruit and vegetables. Method.
(2) The result obtained by the two-dimensional color feature map and the labeling process includes shape information, and is applied to shape or scratch selection in fruit and vegetables, and the grade of fruit and vegetables according to (1) How to determine.

本発明によれば、2次元特徴量を用いることによって、人間の目による判断に代替できる果実そ菜類の等級判別方法を提供することができる。
具体的には、本発明は従来にない全く新しい一連の知能画像処理法によって、画像の2次元的解析が可能となり、そのもとで得られる様々な2次元特徴量から、これまで人間の判断に頼っていた果実そ菜類の等級判別を自動化することができるなど、産業上有用な著しい効果を奏する。
ADVANTAGE OF THE INVENTION According to this invention, the grade discrimination method of the fruit and vegetables which can substitute for judgment by human eyes by using a two-dimensional feature-value can be provided.
Specifically, the present invention enables two-dimensional analysis of an image by a completely new series of intelligent image processing methods that have not been conventionally performed. From various two-dimensional feature values obtained based on the two-dimensional analysis, human judgment has been made so far. It is possible to automate the classification of fruits and vegetables that relied on the food.

発明を実施するための最良の形態について、図1乃至図4を用いて詳細に説明する。
図1は、本発明における果実そ菜類の等級判別方法の処理フローを例示する図である。
まず、等級判別を行う果実そ菜類を撮像した画像の各画素を赤(R)、緑(G)、青(B)の3原色により表現し、または各画素の色彩をHSV方式に変換する(S-1)。
等級別に選別しようとする一種類の果実等を無差別に2次元色特徴地図を作成するに十分な個数を撮像し、その各画素を通常の色の3原色により表示してもよいが、各画素の色彩をH(Hue:色相)、S(Saturation:彩度)、V(Value:明度)の3要素で色を表現することにより、RGB色空間よりも、人間の知覚に近い色彩モデルにすることができるうえ、画像中で光が全反射し、真っ白く見えるハイライト部分も、色相H,Sによって識別することができる。
The best mode for carrying out the invention will be described in detail with reference to FIGS.
FIG. 1 is a diagram exemplifying a processing flow of a method for discriminating fruits and vegetables according to the present invention.
First, each pixel of an image obtained by picking up fruits and vegetables to be graded is expressed by the three primary colors of red (R), green (G), and blue (B), or the color of each pixel is converted to the HSV system ( S-1).
One kind of fruit to be sorted by grade may be captured indiscriminately enough to create a two-dimensional color feature map, and each pixel may be displayed with three primary colors. By expressing colors with three elements of H (Hue: Hue), S (Saturation: Saturation), and V (Value: Lightness), the pixel color is closer to human perception than the RGB color space. In addition, a highlight portion in which light is totally reflected and appears white in the image can be identified by hues H and S.

次に、前記各画素から得られる赤(R)、緑(G)、青(B)の3原色、またはHSV方式に変換されたデータを用いて相互結合型ニューラルネットワークによる自己組織化を行って当該種類の果実そ菜類に特有の2次元色特徴地図を作成する(S-2)。
ここに、自己組織化とは、「教師なし学習」ともいい、外界からの内部構造に関する信号(教師信号)がないにもかかわらず、その内部構造を外界に適応させることをいう。
また、相互結合型ニューラルネットワークとは、特徴地図の入力層と競合層間が完全結合であり、各入力ユニットは競合層のすべてのユニットと結合しているモデルをいう。全結合は結合荷重をもち、これを入力ベクトルに応じて更新していくことで、自己組織化が行われる。
また、前記果実そ菜類を等級別に分類したサンプルにより複数の2次元特徴量を前記2次元色特徴地図とラベリング処理を用いて得られる対象物体の色・位置情報から決定し、前記等級別2次元特徴量にN層ニューラルネットワークを作用させた場合に各等級が定まるようにN層ニューラルネットワークを構成させる(S-3)。
果実そ菜類を等級別に分類したサンプルの画像を2次元特徴地図を使って認識・分類するクラスタリングを行い、次いで連結している画素をひとまとめにし、その領域ごとに異なるラベルを割り振るラベリングを行うことにより得られる対象物体の色・位置情報から複数の2次元特徴量を決める。
ここに、本発明に用いる複数の2次元特徴量とは、2次元画像から得られる複数の特徴量をいい、本発明においては、この複数の2次元特徴量を用いることによって、従来用いられていたカラー量などの1次元情報では判別できなかった、局所的に分散した色むらなどを自動的に判別することができる。
Next, self-organization is performed by an interconnected neural network using data converted into the three primary colors of red (R), green (G), and blue (B) obtained from each pixel, or the HSV method. A two-dimensional color feature map peculiar to the kind of fruit and vegetable is created (S-2).
Here, self-organization is also referred to as “unsupervised learning” and means that the internal structure is adapted to the external world even though there is no signal (teacher signal) related to the internal structure from the external world.
The interconnected neural network is a model in which the input layer of the feature map and the competitive layer are completely connected, and each input unit is connected to all the units of the competitive layer. All connections have a connection weight, and self-organization is performed by updating this according to the input vector.
In addition, a plurality of two-dimensional features are determined from the color / position information of the target object obtained by using the two-dimensional color feature map and a labeling process based on a sample obtained by classifying the fruits and vegetables according to the grade, The N-layer neural network is configured so that each grade is determined when the N-layer neural network is applied to the feature amount (S-3).
By performing clustering to recognize and classify images of fruits and vegetables by grade using a two-dimensional feature map, and then labeling the connected pixels together and assigning different labels to each area A plurality of two-dimensional feature values are determined from the obtained color / position information of the target object.
Here, the plurality of two-dimensional feature values used in the present invention means a plurality of feature values obtained from a two-dimensional image. In the present invention, the plurality of two-dimensional feature values are conventionally used by using the plurality of two-dimensional feature values. It is possible to automatically determine locally distributed color unevenness that could not be determined by one-dimensional information such as the color amount.

そして、任意の当該果実そ菜類を撮像することによって得られる2次元色特徴量に前記ニューラルネットワークを作用させて当該果実そ菜類の等級を出力する(S-4)。
さらに、前記2次元色特徴地図およびラベリング処理により得られる結果は、形状情報を含み、果実そ菜類における形状または傷選別に適用することにより、色むら以外の形状による等級判別を自動的に行うことができる。
なお、本発明を機械部品や機械製品の形状判別に応用することにより、機械分野における自動判別を実現することができる。
Then, the neural network is applied to the two-dimensional color feature obtained by imaging any of the fruits and vegetables and outputs the grade of the fruits and vegetables (S-4).
Furthermore, the results obtained by the two-dimensional color feature map and the labeling process include shape information, and by applying it to the shape or flaw selection in fruit and vegetable vegetables, it is possible to automatically perform grade discrimination based on shapes other than color unevenness. Can do.
Note that automatic discrimination in the machine field can be realized by applying the present invention to the shape discrimination of machine parts and machine products.

図2は、本発明における果実そ菜類の等級判別方法の実施形態を例示する図であり、完成時の未判別画像に対する等級判別処理過程の手順を示す図である。
これらは、果実そ菜類を撮像した画像が2次元画像データとしてコンピュータに取り込まれてから後の、コンピュータ上での一連の自動的な処理の流れを示したものである。
第1ステップは、上面撮影であのRGB表示対象画像である。第2ステップは、RGB画像からHSV色空間画像への変換である。前述のようにHSV画像は人間の色の知覚に基づいた表現方法であり、この表現により人間の知覚にあった色修正が可能となる。HSVとRGBの間には1対1の対応関係が成り立っている。
FIG. 2 is a diagram exemplifying an embodiment of the method for determining the grade of fruit and vegetable vegetables according to the present invention, and is a diagram showing a procedure of a class determination process for an unidentified image at the time of completion.
These show a flow of a series of automatic processes on a computer after an image obtained by picking fruits and vegetables is taken into the computer as two-dimensional image data.
The first step is an RGB display target image for top-surface shooting. The second step is conversion from an RGB image to an HSV color space image. As described above, the HSV image is an expression method based on human color perception, and this expression enables color correction suitable for human perception. There is a one-to-one correspondence between HSV and RGB.

第3ステップは、色クラスタリングの決定工程である。相互結合型ニューラルネットワーク(NN)自己組織化特徴地図は、HSV色空間からの入力を対象の色毎にクラスタリングする。以下にその手順を例示する。
自己組織化地図は、入力層ユニットの入力ベクトルEと、競合層ユニットの荷重ベクトルWi(t)との距離(A)式を最小にする競合層の勝者ユニットを探し、そのユニットと近傍ユニットのWを更新しながら組織化を行う手法である。

Figure 2006239602
ここで、iとjはそれぞれ競合層と入力層のユニット番号である。
勝者ユニットとその近傍の結合定数の更新の仕方は、学習率をαとして次の式で行われる。
Figure 2006239602
また、その学習率αと、勝者ユニット近傍幅dは次のように更新する。
Figure 2006239602
ここで、tは学習回数の変数であり、Tは全学習回数である。 The third step is a color clustering determination process. An interconnected neural network (NN) self-organizing feature map clusters inputs from the HSV color space for each target color. The procedure is illustrated below.
The self-organizing map searches for the winning unit in the competitive layer that minimizes the distance (A) between the input vector E of the input layer unit and the load vector Wi (t) of the competitive layer unit. This is a method of organizing while updating W.
Figure 2006239602
Here, i and j are unit numbers of the competitive layer and the input layer, respectively.
The method for updating the winning unit and the coupling constant in the vicinity thereof is performed by the following formula, where the learning rate is α.
Figure 2006239602
Further, the learning rate α and the winner unit neighborhood width d are updated as follows.
Figure 2006239602
Here, t is a variable of the number of learning times, and T is the total number of learning times.

第4ステップのラベリングは、色領域を自動的に分離確認するものであり、連結している画素をひとまとめにして、その領域ごとに異なるラベルを割り振る処理である。ここでは、対象画素を囲む8連結を考慮し、各色毎に管理して行う。ラベリングのアルゴリズムは、背景色は別として、1)対象画素の上部(3画素)と左(1画素)の既走査の4画素の全てが対象画素と異なる場合と2)既走査の4画素のどれかが対象画素と同じ場合に分けた上で、3)同じ場合には、それぞれ同色の画素のラベルを修正しながらラベリングを行う。図3にラベリング前後の画像の例を示す。
第5ステップは、確認された対象物の位置および色の2次元情報から、判別に有効な複数の2次元特徴量を求める。
例えば、りんごの色むらを判別する場合の特徴量としては、例えば、F1.赤い領域の大きさ、F2.赤い領域の彩度の平均値、F3.色むらの領域の大きさ、F4.色むらの領域の数、F5.円形度、F6〜F9.色むらの領域の飛散度(大きさに応じて4段階)とすることが好ましい。
The labeling in the fourth step is a process of automatically confirming the separation of the color area, and is a process of grouping connected pixels together and assigning a different label to each area. Here, the control is performed for each color in consideration of eight connections surrounding the target pixel. The labeling algorithm is different from the background color: 1) all of the four previously scanned pixels at the top (3 pixels) and left (1 pixel) of the target pixel are different from the target pixel; and 2) the four scanned pixels If any of them is the same as the target pixel, then 3) If they are the same, labeling is performed while correcting the labels of the pixels of the same color. FIG. 3 shows an example of images before and after labeling.
In the fifth step, a plurality of two-dimensional feature quantities effective for discrimination are obtained from the confirmed two-dimensional information of the position and color of the object.
For example, as a feature amount for discriminating color unevenness of apples, for example, F1. Red area size, F2. Average value of saturation in the red region, F3. The size of the uneven color area, F4. Number of uneven color areas, F5. Circularity, F6 to F9. It is preferable to set the degree of scattering of the uneven color region (4 steps depending on the size).

第6ステップは、複数の2次元特徴量から等級を割り出す判別工程である。
本発明における判別手段としては、N層ニューラルネットワーク(NN)を用いるが、脳を模した学習機械であって、いくつかのユニットがまとまった数段の層から成り、各層間のユニットは結合しており、各結合の持つ結合荷重を更新することで学習を行う階層型パーセプトロンを用いることが好ましい。
例えば、りんごの色むらを判別する場合には、前述のF1〜F9の特徴量を求め、その値を3層ニューラルネットワーク(NN)の入力ベクトルとし、教師信号をその対応する等級として学習を行う。
学習法としては、例えば、出力と教師信号との誤差から、最急降下法により結合荷重を更新するBP(Back Propagation:誤差逆伝播)学習法を用いることによって、入力ベクトルの符号化、線形分離不可能な入力パターンの学習が可能である。
ユニット数は、例えば、入力層9個(特徴量の数)、隠れ層14個、出力層5個(等級数)とし、学習の終了条件をε=1.0×10-5とする。
これらの過程の中で、第3、第4、第5ステップは、それぞれ目的にあった学習装置や、特徴変量をあらかじめ独立に作成しておく。
学習が終った上記の一連の判別処理システムに対して、等級未知の2次元画像を取り込めば、全自動的に等級判別を行うことができる。
The sixth step is a determination process for determining a grade from a plurality of two-dimensional feature values.
As a discriminating means in the present invention, an N-layer neural network (NN) is used, but it is a learning machine that imitates the brain, and is composed of several layers in which several units are grouped, and the units between each layer are connected. It is preferable to use a hierarchical perceptron that performs learning by updating the bond weight of each bond.
For example, when discriminating the color irregularity of an apple, the feature values of the aforementioned F1 to F9 are obtained, the value is used as an input vector of a three-layer neural network (NN), and learning is performed using a teacher signal as a corresponding grade. .
As a learning method, for example, by using the BP (Back Propagation) method that updates the connection weight by the steepest descent method from the error between the output and the teacher signal, the input vector is encoded and linearly separated. Possible input patterns can be learned.
The number of units is, for example, 9 input layers (number of features), 14 hidden layers, 5 output layers (number of classes), and the learning end condition is ε = 1.0 × 10 −5 .
Among these processes, the third, fourth, and fifth steps each independently create a learning device and feature variables suitable for each purpose.
If a two-dimensional image with an unknown grade is taken into the above-described series of discrimination processing systems after learning, the grade discrimination can be performed automatically.

本発明方法を用いてりんごの色むらについて等級判別を行った結果を図4に示す。
図4の、上段は特選、下段は無印の等級のりんごを示しており、左端は元画像、真ん中はクラスタリング後、右端はラベリング後の画像である。
本発明の等級判別方法を用いて25個の画像について等級判別を行った結果、熟練した人間の判別結果と同じく、全て正しい判別を行うことができ、本発明の効果が確認された。
FIG. 4 shows the result of the grade discrimination for the uneven color of the apple using the method of the present invention.
In FIG. 4, the upper row shows apples with special grades and the lower row shows unmarked apples. The left end is the original image, the middle is after clustering, and the right end is the image after labeling.
As a result of class discrimination for 25 images using the grade discrimination method of the present invention, all the correct discrimination can be performed as in the case of a skilled human discrimination result, and the effect of the present invention was confirmed.

本発明における果実そ菜類の等級判別方法の処理フローを例示する図である。It is a figure which illustrates the processing flow of the grade discriminating method of the fruit and vegetables in this invention. 本発明における果実そ菜類の等級判別方法の実施形態を例示する図である。It is a figure which illustrates embodiment of the grade discriminating method of the fruit and vegetables in this invention. 本発明の果実そ菜類の等級判別方法に用いるラベリングを説明する図である。It is a figure explaining the labeling used for the grade discrimination | determination method of the fruit and vegetables of this invention. 本発明の果実そ菜類の等級判別方法をりんごに適用した実施例を示す図である。It is a figure which shows the Example which applied the grade discrimination | determination method of the fruit and vegetables of this invention to the apple.

Claims (2)

果実そ菜類を撮像した画像によって等級を判別する果実そ菜類の等級判別方法であって、
等級判別を行う果実そ菜類を撮像した画像の各画素を赤(R)、緑(G)、青(B)の3原色により表現し、または各画素の色彩をHSV方式に変換する工程と、
前記各画素から得られる赤(R)、緑(G)、青(B)の3原色、またはHSV方式に変換されたデータを用いて相互結合型ニューラルネットワークによる自己組織化を行って当該種類の果実そ菜類に特有の2次元色特徴地図を作成する工程と、
前記果実そ菜類を等級別に分類したサンプルにより、複数の2次元特徴量を、前記2次元色特徴地図とラベリング処理を用いて得られる対象物体の色・位置情報を用いて決定し、前記等級別2次元特徴量にN層ニューラルネットワークを作用させた場合に各等級が定まるようにN層ニューラルネットワークを構成させる工程と、
任意の当該果実そ菜類を撮像することによって得られる前記複数の2次元色特徴量に前記ニューラルネットワークを作用させて当該果実そ菜類の等級を出力する工程とを有することを特徴とする果実そ菜類の等級判別方法。
A method for determining the grade of fruit and vegetables that discriminates the grade from an image obtained by imaging the fruit and vegetables,
Expressing each pixel of an image obtained by imaging fruits and vegetables to be graded with the three primary colors of red (R), green (G), and blue (B), or converting the color of each pixel to the HSV system;
Using the data converted to the primary colors of red (R), green (G), and blue (B) obtained from each of the pixels, or the HSV system, self-organization is performed by an interconnection neural network, and the kind of Creating a two-dimensional color feature map specific to fruits and vegetables;
A plurality of two-dimensional feature values are determined using samples classified by grade of the fruits and vegetables using the two-dimensional color feature map and color / position information of a target object obtained by using a labeling process, Configuring the N-layer neural network so that each grade is determined when the N-layer neural network is applied to the two-dimensional feature amount; and
A step of outputting the grade of the fruits and vegetables by causing the neural network to act on the plurality of two-dimensional color features obtained by imaging the fruits and vegetables. Grade discrimination method.
前記2次元色特徴地図およびラベリング処理により得られる結果は、形状情報を含み、果実そ菜類における形状または傷の判別に適用することを特徴とする請求項1に記載の果実そ菜類の等級判別方法。   2. The method according to claim 1, wherein the result obtained by the two-dimensional color feature map and the labeling process includes shape information, and is applied to discrimination of a shape or a flaw in fruit vegetables. .
JP2005060014A 2005-03-04 2005-03-04 A method for determining the grade of fruits and vegetables. Active JP4171806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005060014A JP4171806B2 (en) 2005-03-04 2005-03-04 A method for determining the grade of fruits and vegetables.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060014A JP4171806B2 (en) 2005-03-04 2005-03-04 A method for determining the grade of fruits and vegetables.

Publications (2)

Publication Number Publication Date
JP2006239602A true JP2006239602A (en) 2006-09-14
JP4171806B2 JP4171806B2 (en) 2008-10-29

Family

ID=37046524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060014A Active JP4171806B2 (en) 2005-03-04 2005-03-04 A method for determining the grade of fruits and vegetables.

Country Status (1)

Country Link
JP (1) JP4171806B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105562361A (en) * 2015-12-23 2016-05-11 西安工程大学 Independent sorting method of fabric sorting robot
CN112775032A (en) * 2020-12-25 2021-05-11 深圳市一诺维奇教育科技有限公司 Fruit sorting method and device and flexible robot

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102592076B1 (en) 2015-12-14 2023-10-19 삼성전자주식회사 Appartus and method for Object detection based on Deep leaning, apparatus for Learning thereof
US11003958B2 (en) 2018-06-26 2021-05-11 Walmart Apollo, Llc Food quality image classification
KR102259009B1 (en) * 2021-02-26 2021-06-01 아이오크롭스 주식회사 Method for determining harvest target fruit and fruits harvesting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520426A (en) * 1991-07-15 1993-01-29 Sumitomo Heavy Ind Ltd Fruit hue judgement device using neural network
JPH0929185A (en) * 1995-07-17 1997-02-04 Takaaki Satake Method for deciding grade of vegetables and fruits having net patterns intrinsic to pericarp surface
JP2003307493A (en) * 2002-04-15 2003-10-31 Glory Ltd Feature extracting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520426A (en) * 1991-07-15 1993-01-29 Sumitomo Heavy Ind Ltd Fruit hue judgement device using neural network
JPH0929185A (en) * 1995-07-17 1997-02-04 Takaaki Satake Method for deciding grade of vegetables and fruits having net patterns intrinsic to pericarp surface
JP2003307493A (en) * 2002-04-15 2003-10-31 Glory Ltd Feature extracting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105562361A (en) * 2015-12-23 2016-05-11 西安工程大学 Independent sorting method of fabric sorting robot
CN112775032A (en) * 2020-12-25 2021-05-11 深圳市一诺维奇教育科技有限公司 Fruit sorting method and device and flexible robot
CN112775032B (en) * 2020-12-25 2022-08-23 深圳市一诺维奇教育科技有限公司 Fruit sorting method and device and flexible robot

Also Published As

Publication number Publication date
JP4171806B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
Moallem et al. Computer vision-based apple grading for golden delicious apples based on surface features
AU2013347861B2 (en) Scoring and controlling quality of food products
JP4704804B2 (en) Wood section exploration method, apparatus and program
EP1977371B1 (en) Method and system for identifying illumination fields in an image
Razak¹ et al. Mango grading by using fuzzy image analysis
Zhang et al. Date maturity and quality evaluation using color distribution analysis and back projection
KR20100015628A (en) Lumber inspection method, device and program
WO2019151393A1 (en) Food inspection system, food inspection program, food inspection method and food production method
JP5085860B2 (en) Wood inspection method, apparatus and program
Eissa et al. Understanding color image processing by machine vision for biological materials
JP4171806B2 (en) A method for determining the grade of fruits and vegetables.
García-Alegre et al. Eggshell defects detection based on color processing
Alfatni et al. Recent methods and techniques of external grading systems for agricultural crops quality inspection-review
Sola-Guirado et al. A smart system for the automatic evaluation of green olives visual quality in the field
Bermúdez et al. Image analysis for automatic feature estimation of the Mangifera indica fruit
Saito et al. Eggplant classification using artificial neural network
Liu et al. Intelligent bamboo part sorting system design via machine vision
CN112115824B (en) Fruit and vegetable detection method, fruit and vegetable detection device, electronic equipment and computer readable medium
Lu et al. Detecting defects on citrus surface based on circularity threshold segmentation
AmeethaJunaina et al. A survey on fresh produce grading algorithms using machine learning and image processing techniques
JP6122655B2 (en) Agricultural crop selection apparatus and crop selection method
JP4534599B2 (en) Image processing method
Gunasekaran Computer vision systems
Mora et al. Olive Ripening Phase Estimation based on Neural Networks
Putri et al. Comparison between colour models in automatic identification of cane sugar

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150