JP2006238760A - Microreacter with immobilized enzyme and method for producing the same - Google Patents

Microreacter with immobilized enzyme and method for producing the same Download PDF

Info

Publication number
JP2006238760A
JP2006238760A JP2005057535A JP2005057535A JP2006238760A JP 2006238760 A JP2006238760 A JP 2006238760A JP 2005057535 A JP2005057535 A JP 2005057535A JP 2005057535 A JP2005057535 A JP 2005057535A JP 2006238760 A JP2006238760 A JP 2006238760A
Authority
JP
Japan
Prior art keywords
microreactor
enzyme
immobilized
microchannel
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005057535A
Other languages
Japanese (ja)
Other versions
JP4649680B2 (en
Inventor
Masaya Miyazaki
真佐也 宮崎
Takeshi Honda
健 本田
Kenichi Yamashita
健一 山下
Yoshiko Yamaguchi
佳子 山口
Masahito Uehara
雅人 上原
Hiroyuki Nakamura
浩之 中村
Hideaki Maeda
英明 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005057535A priority Critical patent/JP4649680B2/en
Publication of JP2006238760A publication Critical patent/JP2006238760A/en
Application granted granted Critical
Publication of JP4649680B2 publication Critical patent/JP4649680B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microreacter comprising hollow microchannel composed of a flexible and inactive material with immobilized enzyme molecule on an inner surface produced in a simplified producing process and enabling a microanalysis with freedom of designing. <P>SOLUTION: The invention relates to the microreacter comprising a hollow microchannel composed of the flexible and inactive material wherein the inner surface of the microchannel has enzyme molecules immobilized through a crosslinking agent and the inactive material is a fluororesin or a silicone rubber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酵素固定化されているマイクロリアクターに関するものである。   The present invention relates to a microreactor in which an enzyme is immobilized.

最近、化学分野、電気機械的分野において、径10〜100μmのキャピラリーやマイクロチャネルを利用して、微量分析、微量合成、微量微生物培養、微量電気泳動、微量電気浸透などの化学的・電気的又は機械的操作を行うことが試みられている(非特許文献参照)。
これらは、少量の試料を用いて、迅速にそれぞれの方法の結果を確認しうるという利点があるため、各方面への応用がはかられている。
Recently, in the chemical field and electromechanical field, using a capillary or microchannel having a diameter of 10 to 100 μm, chemical / electrical or microanalysis such as microanalysis, microsynthesis, microbiological culture, microelectrophoresis, microelectroosmosis Attempts have been made to perform mechanical operations (see non-patent literature).
Since these have the advantage that the results of each method can be confirmed quickly using a small amount of sample, they are applied to various fields.

ところで、これらの中で化学反応を効率的に行うための装置、いわゆるマイクロリアクターについては、流体化学反応の制御性が向上し、反応生成物の収率、純度の改善が予想される上に、リアクターの幅を狭くすることができ、普通サイズのリアクターに比べ、体積当りの表面積の比率を大きくしうるので、化学反応の効率化の手段として注目されている。   By the way, in these devices for performing chemical reactions efficiently, so-called microreactors, the controllability of fluid chemical reactions is improved, and the yield and purity of reaction products are expected to be improved. Since the width of the reactor can be narrowed and the ratio of the surface area per volume can be increased as compared with a reactor of normal size, it has been attracting attention as a means for improving the efficiency of chemical reactions.

他方、化学、生化学の分野においては、反応効率を向上させるために触媒を使用する場合が多く、この際触媒効率を向上させることが課題となっている。   On the other hand, in the fields of chemistry and biochemistry, a catalyst is often used in order to improve the reaction efficiency. In this case, improving the catalyst efficiency is a problem.

例えば光学活性化合物の不斉合成に際し、酵素や有機金属錯体などの有機分子を用いる場合、これらは無機触媒に比べコスト高になるのを免れないので、触媒効率を改善し、使用量の減少や再利用をはかることが実用化の上で必要になってくる。
したがって、マイクロリアクターについても触媒反応を効率よく行わせるためのマイクロチャネル構造を組み立てることが、これを実用化するために必要な要件となっている。
For example, in the case of asymmetric synthesis of optically active compounds, when organic molecules such as enzymes and organometallic complexes are used, these are inevitably expensive compared to inorganic catalysts, which improves catalyst efficiency and reduces the amount used. Reuse is necessary for practical use.
Accordingly, assembling a microchannel structure for efficiently performing a catalytic reaction for a microreactor is a necessary requirement for putting this into practical use.

従来のマイクロリアクターは、触媒をマイクロチャネルに固定させるまでに、特許文献1に記載のようにマイクロチャネルを刻設後、触媒と結合する特定残基を導入する等の多段階な物理的・化学的処理が必要であり、マイクロリアクターの製造過程が煩雑であった。   The conventional microreactor is a multi-step physical / chemical process such as introducing a specific residue that binds to the catalyst after engraving the microchannel as described in Patent Document 1 until the catalyst is fixed to the microchannel. Processing was necessary, and the manufacturing process of the microreactor was complicated.

「サイエンス(SCIENCE)」,第285巻,第83〜85ページ“SCIENCE”, 285, 83-85 特開2003−260351JP 2003-260351 A

本発明は、このような事情に鑑み、マイクロリアクターの製造工程を簡略化し、かつ設計的に自由度があり、微量分析を可能にする、屈曲可能なマイクロリアクターを提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a bendable microreactor that simplifies the manufacturing process of the microreactor, has flexibility in design, and enables microanalysis.

本発明者らは、従来のガラス、石英等の不活性材料からなるマイクロリアクターは、屈曲性を有しない、壊れやすい等の理由により、当該技術の応用分野が制限されていることを見出し、鋭意研究の結果、屈曲可能な不活性材料に対する酵素の固定化方法を確立し本発明をするに至った。   The present inventors have found that conventional microreactors made of an inert material such as glass and quartz have limited flexibility and are fragile, and thus have a limited field of application of the technology. As a result of the research, an enzyme immobilization method for a bendable inert material has been established and the present invention has been achieved.

すなわち、本発明は、(1)、屈曲可能な不活性材料からなる中空状マイクロチャネル内表面に、酵素分子が架橋剤を介して固定化されているマイクロリアクターに存する。   That is, the present invention resides in (1) a microreactor in which enzyme molecules are immobilized on the inner surface of a hollow microchannel made of a bendable inert material via a crosslinking agent.

また、本発明は、(2)、屈曲可能な不活性材料がフッ素樹脂またはシリコンゴムである上記(1)記載のマイクロリアクターに存する。   The present invention also resides in (2) the microreactor described in (1) above, wherein the bendable inert material is fluororesin or silicon rubber.

また、本発明は、(3)、架橋剤がグルタルアルデヒド及びパラホルムアルデヒドである上記(1)または(2)に記載のマイクロリアクターに存する。   Moreover, this invention exists in the microreactor as described in said (1) or (2) whose crosslinking agent is glutaraldehyde and paraformaldehyde (3).

また、本発明は、(4)、屈曲可能な不活性材料からなる中空状マイクロチャネル内表面に、酵素分子と架橋剤を流通し、その内表面に酵素分子を固定化する工程を含むマイクロリアクターの製造方法に存する。   The present invention also relates to (4) a microreactor comprising a step of circulating an enzyme molecule and a crosslinking agent on an inner surface of a hollow microchannel made of a bendable inert material and immobilizing the enzyme molecule on the inner surface. Exist in the manufacturing method.

また、本発明は、(5)、上記(1)〜(3)のいずれかに記載のマイクロリアクターを用いて有機化合物の酵素消化反応、縮合反応あるいは抗原抗体反応のいずれかを行う、酵素固定化マイクロリアクターの使用方法に存する。   In addition, the present invention provides (5) an enzyme immobilization that performs any one of an enzyme digestion reaction, a condensation reaction, and an antigen-antibody reaction of an organic compound using the microreactor according to any one of (1) to (3). The method of using a microreactor exists.

本発明によれば、化学的に不活性な表面に酵素を固定化できると同時に、水溶液のみならず含有機溶媒の反応液でも酵素反応を行うことができ、さらには刻設等する必要がなくなりマイクロリアクターの製造工程を簡略化することができる。   According to the present invention, an enzyme can be immobilized on a chemically inert surface, and at the same time, an enzyme reaction can be carried out not only with an aqueous solution but also with a reaction solution of a contained solvent, and further, there is no need for engraving or the like. The manufacturing process of the microreactor can be simplified.

マイクロリアクターは、マイクロチャネルリアクターとも呼ばれ、数〜数百μmの微細流路を有する微小反応器の総称をいう。
本発明においてマイクロチャネルは中空状である必要がある。
中空の形状は、円形が好ましいが、所望ならば楕円形、多角形等でも良い。
また、マイクロチャネルの内径は流通性、反応性の観点から170μm以上1mm未満が好ましく、170μm以上500μm以下がより好ましい。
The microreactor is also called a microchannel reactor, and is a general term for a microreactor having a micro flow channel of several to several hundred μm.
In the present invention, the microchannel needs to be hollow.
The hollow shape is preferably circular, but may be oval or polygonal if desired.
Further, the inner diameter of the microchannel is preferably 170 μm or more and less than 1 mm, more preferably 170 μm or more and 500 μm or less from the viewpoint of flowability and reactivity.

本発明におけるマイクロリアクターのマイクロチャネルとして用いられる不活性材料は、触媒反応の反応体や溶媒及びその生成物に対し反応性を示さず、屈曲性を有する材料である。   The inert material used as the microchannel of the microreactor in the present invention is a material that does not show reactivity with the reactant, solvent and product of the catalytic reaction and has flexibility.

上記の要件を満たす不活性材料であれば公知のものを使用できるが、好適な例としてはポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)等のフッ素樹脂、シリコンゴム、ポリエチルエーテルケトン、ポリエチルイミド、ポリプロピレン、ポリ塩化ビニル、ポリウレタンなどが挙げられ、有機溶媒への耐性の観点から、フッ素樹脂、シリコンゴムがより好ましく、フッ素樹脂がさらに好ましい。   Any known inert material that satisfies the above requirements can be used. Preferred examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene. -Fluororesin such as hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), silicone rubber, polyethyl ether ketone , Polyethylimide, polypropylene, polyvinyl chloride, polyurethane and the like. From the viewpoint of resistance to organic solvents, fluororesin and silicon rubber are more preferable, and fluororesin is more preferable.

このマイクロチャネルの外形状は、円筒状が好ましいが、所望ならば楕円筒、多角柱(例えば三角柱、四角柱、五角柱、六角柱など)等のものも用いることができる。
マイクロチャネルに酵素分子を固定化するに際し、所望ならば、該固定化反応に先立ってチャネル内を、例えば濃硫酸と過酸化水素水との混合物のような強酸化剤を用いて洗浄し、汚染物を除去しておくこともできる。
The outer shape of the microchannel is preferably a cylindrical shape, but an elliptical cylinder, a polygonal column (for example, a triangular column, a quadrangular column, a pentagonal column, a hexagonal column, etc.) can be used if desired.
When immobilizing an enzyme molecule in a microchannel, if desired, the inside of the channel is washed with a strong oxidizing agent such as a mixture of concentrated sulfuric acid and hydrogen peroxide solution before the immobilization reaction, and contaminated. Things can also be removed.

本発明において、触媒能を有する酵素分子は架橋剤を介して、中空形状のマイクロチャネルの内表面に固定化される必要がある。
マイクロチャネルの内表面には、架橋剤により酵素が重合されたことによるフィルムが形成され、これが貼りつくことで酵素が固定化される。
固定化された酵素フィルムは、強酸化剤によって可逆的に除去することが可能であるため、マイクロリアクターを再利用することもできる。
強酸化剤は例えばpiranha溶液(過酸化水素水:濃硫酸 = 3:7(体積比))等を用いることができる。
In the present invention, the enzyme molecule having catalytic ability needs to be immobilized on the inner surface of the hollow microchannel via a crosslinking agent.
On the inner surface of the microchannel, a film is formed by polymerizing the enzyme with the crosslinking agent, and the enzyme is immobilized by sticking it.
Since the immobilized enzyme film can be reversibly removed by a strong oxidizing agent, the microreactor can be reused.
As the strong oxidizing agent, for example, a piranha solution (hydrogen peroxide solution: concentrated sulfuric acid = 3: 7 (volume ratio)) or the like can be used.

架橋剤は、経済性、架橋速度、活性保持の観点から、グルタルアルデヒドとパラホルムアルデヒドを併用することが好ましいが、ある程度の鎖長をもち、一分子内に2つ以上の結合基(タンパク質中のアミノ酸等に結合できる官能基)を有する化合物、例えばポリエチレングリコールの両端に官能基を結合させた化合物なども用いることができる。   The cross-linking agent preferably uses glutaraldehyde and paraformaldehyde in combination from the viewpoints of economy, cross-linking speed, and activity retention, but has a certain chain length and contains two or more linking groups (in protein). A compound having a functional group capable of binding to an amino acid or the like, for example, a compound in which a functional group is bonded to both ends of polyethylene glycol can also be used.

グルタルアルデヒド、パラホルムアルデヒドの濃度は、グルタルアルデヒドについては0.25質量%以上1質量%以下が好ましく、パラホルムアルデヒドについては4質量%以上16質量%以下が好ましい。
グルタルアルデヒド(GA)、パラホルムアルデヒド(PA)の混合比はGA/PA=1/100〜1/1が好ましく、1/70〜1/4がより好ましく、1/16〜1/8が更に好ましい。
また、このように中空形状のマイクロチャネルの内表面に固定化できる酵素分子としては、例えばアミラーゼ、プロテアーゼ、リパーゼ、セルラーゼ、ヘミセルラーゼ、ペクチナーゼ等が挙げられる。
The concentration of glutaraldehyde and paraformaldehyde is preferably 0.25% by mass to 1% by mass for glutaraldehyde, and preferably 4% by mass to 16% by mass for paraformaldehyde.
The mixing ratio of glutaraldehyde (GA) and paraformaldehyde (PA) is preferably GA / PA = 1/100 to 1/1, more preferably 1/70 to 1/4, and even more preferably 1/16 to 1/8. .
Examples of enzyme molecules that can be immobilized on the inner surface of the hollow microchannel include amylase, protease, lipase, cellulase, hemicellulase, and pectinase.

本発明の酵素固定化マイクロリアクターは、固定化された酵素分子の種類に応じて、微量での酵素消化反応、縮合反応あるいは抗原抗体反応等に利用することができる。
特に酵素消化反応では、具体的にプロテオミクスのタンパク質同定における前処理である酵素消化で好適に利用できる。
The enzyme-immobilized microreactor of the present invention can be used for a small amount of enzyme digestion reaction, condensation reaction, antigen-antibody reaction, etc., depending on the kind of immobilized enzyme molecule.
In particular, in an enzyme digestion reaction, it can be suitably used for enzyme digestion, which is a pretreatment specifically for proteomic protein identification.

本発明の酵素固定化マイクロリアクター(内積:数μl)によれば、微量サンプルの処理に効果的なだけでなく、処理後のサンプルへの酵素自体の混入を防ぐことも可能である。
酵素固定化マイクロリアクターを、液体クロマトグラフィー等の機器に直接組み込ませることも容易であり、連続的な操作が可能となる。
According to the enzyme-immobilized microreactor (inner product: several μl) of the present invention, not only is it effective for processing a small amount of sample, but also it is possible to prevent the enzyme itself from being mixed into the sample after processing.
It is easy to directly incorporate the enzyme-immobilized microreactor into a device such as liquid chromatography, and continuous operation is possible.

次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.

<収率測定>
酵素固定化マイクロリアクターに基質溶液を一定流速(1〜10μl/min)で流入し、マイクロリアクターの先端から流出液を回収した。(37℃で実施)
その後、液体クロマトグラフィーでサンプル中に含まれる基質の量を解析した。
A:マイクロリアクターに流入前の基質溶液
B:マイクロリアクターに流出後の回収溶液
液体クロマトグラフィーで、Aの基質のピーク面積:aと、Bの基質のピーク面積:bとを比較し、以下の式で収率を計算した。
収率={(a−b)/a}×100
<Yield measurement>
The substrate solution was flowed into the enzyme-immobilized microreactor at a constant flow rate (1 to 10 μl / min), and the effluent was collected from the tip of the microreactor. (Implemented at 37 ° C)
Thereafter, the amount of the substrate contained in the sample was analyzed by liquid chromatography.
A: Substrate solution before flowing into the microreactor
B: Recovery solution after flowing out into microreactor In liquid chromatography, the peak area of the substrate of A: a and the peak area of the substrate of B: b were compared, and the yield was calculated by the following formula.
Yield = {(a−b) / a} × 100

〔実施例1〕
<試薬の調製>
1.アルデヒド溶液の調製
16質量%のパラホルムアルデヒド水溶液750μlおよび25質量%のグルタルアルデヒド水溶液30μlを0.1Mリン酸緩衝液(pH7.5)1500μlに混合し、水720μlを添加しアルデヒド溶液を調製した。
2.酵素溶液の調製
キモトリプシン20mgを0.05Mリン酸緩衝液(pH7.5)1000μlに溶解し、酵素溶液を調製した。
[Example 1]
<Preparation of reagent>
1. Preparation of Aldehyde Solution 750 μl of a 16% by weight paraformaldehyde aqueous solution and 30 μl of a 25% by weight glutaraldehyde aqueous solution were mixed with 1500 μl of 0.1M phosphate buffer (pH 7.5), and 720 μl of water was added to prepare an aldehyde solution.
2. Preparation of enzyme solution 20 mg of chymotrypsin was dissolved in 1000 μl of 0.05 M phosphate buffer (pH 7.5) to prepare an enzyme solution.

<酵素の固定化>
アルデヒド溶液および酵素溶液を、二本のdisposable syringe(内積:1ml)にそれぞれ充填した。
次に図1のように三方コックを用いて、2液を1本のテフロン(米国デュポン社製;登録商標)チューブに流入させた。
その際の条件は、流速1〜5μl/min(2液とも同速度)、4℃、6〜12時間であった。
その後、未反応の酵素やアルデヒド試薬を0.05Mリン酸緩衝液(pH7.5)1000μlで流速10μl/min、4℃、100分で洗浄することで、キモトリプシンが固定化されたマイクロリアクターを得た。
保存には、0.05Mリン酸緩衝液(pH7.5)でチューブ内を満たすことで行った。
<Immobilization of enzyme>
The aldehyde solution and the enzyme solution were each filled into two disposable syringes (inner product: 1 ml).
Next, using the three-way cock as shown in FIG. 1, the two liquids were allowed to flow into one Teflon (DuPont, USA; registered trademark) tube.
The conditions at that time were a flow rate of 1 to 5 μl / min (same rate for both liquids), 4 ° C., and 6 to 12 hours.
Thereafter, unreacted enzyme or aldehyde reagent is washed with 1000 μl of 0.05M phosphate buffer (pH 7.5) at a flow rate of 10 μl / min at 4 ° C. for 100 minutes to obtain a microreactor with immobilized chymotrypsin. It was.
The preservation was performed by filling the tube with 0.05M phosphate buffer (pH 7.5).

〔実施例2〕
酵素にトリプシンを使用した以外は実施例1と同様の操作を行ったところ、同様にトリプシンが固定化されたマイクロリアクターを得た。
[Example 2]
Except that trypsin was used as the enzyme, the same operation as in Example 1 was performed, and a microreactor in which trypsin was similarly immobilized was obtained.

〔実施例3〕
実施例1で得られたキモトリプシン固定化マイクロリアクターを用いて、ペプチドの消化反応を行った。
基質はN−Glutar−Phe−pNA(グルタリル フェニルアラニル パラニトロアニリド)を用い、リン酸緩衝液(pH7.5)に1mMになるように溶解し基質溶液とした。
この分子にはペプチド結合が一カ所あり、酵素は当該ペプチド部分を切断してGlutar−PheとpNAの2分子を生じるため、液体クロマトグラフィーにおいて、分解産物は元の基質分子とは異なる部位にピークとして検出できる。
この時の収率は98%であった。
また、0.05Mリン酸緩衝液(pH7.5)を充填して7日間保存後に上記と同様の実験を行ったところ収率96%と高い値を示した。
Example 3
Using the chymotrypsin-immobilized microreactor obtained in Example 1, a peptide digestion reaction was performed.
As a substrate, N-Glutar-Phe-pNA (glutaryl phenylalanyl paranitroanilide) was used and dissolved in a phosphate buffer (pH 7.5) to 1 mM to obtain a substrate solution.
This molecule has one peptide bond, and the enzyme cleaves the peptide part to produce two molecules, Glutar-Phe and pNA. Therefore, in liquid chromatography, the degradation product peaks at a different site from the original substrate molecule. Can be detected as
The yield at this time was 98%.
Further, when the same experiment as described above was performed after filling with 0.05 M phosphate buffer (pH 7.5) and stored for 7 days, the yield was as high as 96%.

〔実施例4〕
実施例1で得られたキモトリプシン固定化マイクロリアクターを用いて、タンパク質の消化反応を行った。
基質はミオグロビンを用い、リン酸緩衝液(pH7.5)に70μg/mlになるように溶解したものを基質溶液とした。
基質溶液をキモトリプシン固定化マイクロリアクターに流入し、10分間反応させた後に流出液を回収、逆相液体クロマトグラフィーによる解析を行ったところ、ミオグロビンが酵素消化された際に生じるペプチドのピークが検出された。
この時の収率は68%であった。
Example 4
Using the chymotrypsin-immobilized microreactor obtained in Example 1, protein digestion reaction was performed.
Myoglobin was used as the substrate, and the substrate solution was dissolved in a phosphate buffer (pH 7.5) so as to be 70 μg / ml.
The substrate solution was flowed into the chymotrypsin-immobilized microreactor, reacted for 10 minutes, and then the effluent was collected and analyzed by reverse phase liquid chromatography. As a result, the peptide peak generated when the myoglobin was enzymatically digested was detected. It was.
The yield at this time was 68%.

〔実施例5〕
実施例1で得られたキモトリプシン固定化マイクロリアクター用いて、有機物質の縮合反応を行った。
50mMのアセチルフェニルアラニンエチルエステル(Ac−L−Phe−OEt)と200mMのリジンエチルエステル(L−Lys−OEt)を20%のN,N−ジメチルホルムアミド(DMF)に混合した後、該混合液をキモトリプシン固定化マイクロリアクターに流入し、1分間反応させた後に流出液を回収、液体クロマトグラフィーによる解析を行ったところ、縮合産物である甘味物質前駆体(Ac−L−Phe−L−Lys−OEt)が得られた。
この時の収率は44%であった。
Example 5
Using the chymotrypsin-immobilized microreactor obtained in Example 1, a condensation reaction of organic substances was performed.
After 50 mM acetylphenylalanine ethyl ester (Ac-L-Phe-OEt) and 200 mM lysine ethyl ester (L-Lys-OEt) were mixed with 20% N, N-dimethylformamide (DMF), the mixture was added. After flowing into the chymotrypsin-immobilized microreactor and reacting for 1 minute, the effluent was collected and analyzed by liquid chromatography. As a result, a sweet substance precursor (Ac-L-Phe-L-Lys-OEt) that is a condensation product was analyzed. )was gotten.
The yield at this time was 44%.

本発明の酵素固定化マイクロリアクターは、固定化された酵素分子の種類に応じて、微量での酵素消化反応、縮合反応あるいは抗原抗体反応等に好適に利用することができる。   The enzyme-immobilized microreactor of the present invention can be suitably used for an enzyme digestion reaction, a condensation reaction, an antigen-antibody reaction, or the like in a very small amount, depending on the kind of immobilized enzyme molecule.

図1は、マイクロリアクター作成過程を説明する概略図である。FIG. 1 is a schematic diagram for explaining a microreactor production process.

Claims (5)

屈曲可能な不活性材料からなる中空状マイクロチャネル内表面に、酵素分子が架橋剤を介して固定化されていることを特徴とするマイクロリアクター。   A microreactor characterized in that enzyme molecules are immobilized on a hollow microchannel inner surface made of a bendable inert material via a crosslinking agent. 屈曲可能な不活性材料がフッ素樹脂またはシリコンゴムであることを特徴とする請求項1記載のマイクロリアクター。   The microreactor according to claim 1, wherein the bendable inert material is fluororesin or silicon rubber. 架橋剤がグルタルアルデヒド及びパラホルムアルデヒドであることを特徴とする請求項1または2に記載のマイクロリアクター。   The microreactor according to claim 1 or 2, wherein the crosslinking agent is glutaraldehyde and paraformaldehyde. 屈曲可能な不活性材料からなる中空状マイクロチャネル内表面に、酵素分子と架橋剤を流通し、その内表面に酵素分子を固定化する工程を含むことを特徴とするマイクロリアクターの製造方法。   A method for producing a microreactor comprising a step of circulating an enzyme molecule and a crosslinking agent on an inner surface of a hollow microchannel made of a bendable inert material and immobilizing the enzyme molecule on the inner surface. 請求項1〜3のいずれかに記載のマイクロリアクターを用いて有機化合物の酵素消化反応、縮合反応あるいは抗原抗体反応のいずれかを行うことを特徴とする、酵素固定化マイクロリアクターの使用方法。   A method for using an enzyme-immobilized microreactor, wherein the microreactor according to any one of claims 1 to 3 is used to perform any one of an enzyme digestion reaction, a condensation reaction, and an antigen-antibody reaction of an organic compound.
JP2005057535A 2005-03-02 2005-03-02 Enzyme-immobilized microreactor and method for producing the same Expired - Fee Related JP4649680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057535A JP4649680B2 (en) 2005-03-02 2005-03-02 Enzyme-immobilized microreactor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057535A JP4649680B2 (en) 2005-03-02 2005-03-02 Enzyme-immobilized microreactor and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006238760A true JP2006238760A (en) 2006-09-14
JP4649680B2 JP4649680B2 (en) 2011-03-16

Family

ID=37045782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057535A Expired - Fee Related JP4649680B2 (en) 2005-03-02 2005-03-02 Enzyme-immobilized microreactor and method for producing the same

Country Status (1)

Country Link
JP (1) JP4649680B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176329A (en) * 2013-03-14 2014-09-25 Daicel Corp Cross-linked enzyme aggregates and microreactor provided therewith
JP2015136313A (en) * 2014-01-21 2015-07-30 株式会社ダイセル Cross-linked enzyme aggregate and microreactor comprising the same
WO2024082328A1 (en) * 2022-10-21 2024-04-25 湖南祥民制药有限公司 Biological catalysis method for preparing acetyl phosphoric acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070585A (en) * 1973-10-27 1975-06-12
JPS5635987A (en) * 1979-09-03 1981-04-08 Matsushita Electric Ind Co Ltd Immobilization of enzyme
JPS615782A (en) * 1984-06-20 1986-01-11 Hitachi Ltd Method of stabilizing immobilized enzyme
JP2004533238A (en) * 2001-04-14 2004-11-04 コグニス・ドイッチュランド・ゲゼルシヤフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト A method for immobilizing biomolecules on chemically inert surfaces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070585A (en) * 1973-10-27 1975-06-12
JPS5635987A (en) * 1979-09-03 1981-04-08 Matsushita Electric Ind Co Ltd Immobilization of enzyme
JPS615782A (en) * 1984-06-20 1986-01-11 Hitachi Ltd Method of stabilizing immobilized enzyme
JP2004533238A (en) * 2001-04-14 2004-11-04 コグニス・ドイッチュランド・ゲゼルシヤフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト A method for immobilizing biomolecules on chemically inert surfaces

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176329A (en) * 2013-03-14 2014-09-25 Daicel Corp Cross-linked enzyme aggregates and microreactor provided therewith
JP2015136313A (en) * 2014-01-21 2015-07-30 株式会社ダイセル Cross-linked enzyme aggregate and microreactor comprising the same
WO2024082328A1 (en) * 2022-10-21 2024-04-25 湖南祥民制药有限公司 Biological catalysis method for preparing acetyl phosphoric acid

Also Published As

Publication number Publication date
JP4649680B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
Gruber et al. Conscious coupling: The challenges and opportunities of cascading enzymatic microreactors
Asanomi et al. Enzyme-immobilized microfluidic process reactors
Hsieh et al. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care
Bhattacharyya et al. Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics
Spahn et al. Enzyme immobilization in biotechnology
Wohlgemuth et al. Microscale technology and biocatalytic processes: opportunities and challenges for synthesis
Chabert et al. Automated microdroplet platform for sample manipulation and polymerase chain reaction
Zeng et al. High-performance single cell genetic analysis using microfluidic emulsion generator arrays
Matosevic et al. Fundamentals and applications of immobilized microfluidic enzymatic reactors
Lloret et al. Improving the catalytic performance of laccase using a novel continuous-flow microreactor
Honda et al. Immobilization of enzymes on a microchannel surface through cross-linking polymerization
Hajba et al. Continuous-flow biochemical reactors: Biocatalysis, bioconversion, and bioanalytical applications utilizing immobilized microfluidic enzyme reactors
McCalla et al. Microfluidic reactors for diagnostics applications
Lee et al. Multienzyme catalysis in microfluidic biochips
Miyazaki et al. Preparation of functionalized nanostructures on microchannel surface and their use for enzyme microreactors
Honda et al. Integrated microreaction system for optical resolution of racemic amino acids
Witek et al. 96-well polycarbonate-based microfluidic titer plate for high-throughput purification of DNA and RNA
Miyazaki et al. Enzymatic processing in microfluidic reactors
Cunha et al. Sample preparation for lab-on-a-chip systems in molecular diagnosis: a review
CN1791509A (en) Methods and apparatus for pathogen detection and analysis
JP4649680B2 (en) Enzyme-immobilized microreactor and method for producing the same
Yamaguchi et al. Application of enzyme-immobilization technique for microflow reactor
Rainer et al. 3D-printed high-pressure-resistant immobilized enzyme microreactor (ΜIMER) for protein analysis
KR101875471B1 (en) Substrate for biosensor, method for preparing the same, and biosensor comprising the same
Lee et al. 3D Porous sol–gel matrix incorporated microdevice for effective large volume cell sample pretreatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees