JP2006235411A - Method of manufacturing optical element - Google Patents

Method of manufacturing optical element Download PDF

Info

Publication number
JP2006235411A
JP2006235411A JP2005052215A JP2005052215A JP2006235411A JP 2006235411 A JP2006235411 A JP 2006235411A JP 2005052215 A JP2005052215 A JP 2005052215A JP 2005052215 A JP2005052215 A JP 2005052215A JP 2006235411 A JP2006235411 A JP 2006235411A
Authority
JP
Japan
Prior art keywords
substrate
optical element
film
sacrificial layer
multilayer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005052215A
Other languages
Japanese (ja)
Inventor
Masaaki Sato
正聡 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005052215A priority Critical patent/JP2006235411A/en
Publication of JP2006235411A publication Critical patent/JP2006235411A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing optical elements, with which the thickness of a multilayered film formed on the surface of a substrate is made uniform and optical elements becoming defective products can be reduced. <P>SOLUTION: A sacrifice layer 2 is formed on a substrate 1 for holding (a), and a multilayered film 3 is formed on the sacrifice layer 2 (b), and an adhesive layer 4 is formed on the multilayered film 3 (c), and the multilayered film 3 and the substrate 5 are adhered to each other across the adhesive layer(d), and then cuts 6 of prescribed shapes are provided on a laminated body formed by these steps, from the side of the substrate 5 up to the sacrifice layer 2 (e), and the sacrifice layer 2 is dissolved to obtain an optical element 7 (f). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光通信分野で使用されるフィルタ素子等、基板の上に多層膜が形成された光学素子の製造方法に関するものである。   The present invention relates to a method of manufacturing an optical element in which a multilayer film is formed on a substrate, such as a filter element used in the field of optical communication.

光通信分野で使用されるフィルタ素子等の光学素子には、反射防止を行ったり、波長ごとの透過率や反射率を所定の特性にしたり、波長ごとの位相特性を所定の特性にしたりするために、基板の表面に多層膜を成膜し、膜間の干渉により所定の光学特性を持たせたものがある。   For optical elements such as filter elements used in the optical communication field, in order to prevent reflection, to set the transmittance and reflectance for each wavelength to predetermined characteristics, and to set the phase characteristics for each wavelength to predetermined characteristics. In some cases, a multilayer film is formed on the surface of a substrate and given optical characteristics are provided by interference between the films.

図2に、このような多層膜を成膜する方法の例を示す。図2において、(a)は回転テーブルを下から見た図、(b)はA−A位置での装置の端面図を示す。真空チャンバ21の中には基板ホルダ22が設けられ、回転軸23を中心として回転している。基板ホルダ22の下面には、表面に成膜を施す基板24が同心円状に取り付けられているが、基板24を取り付ける場所の1ヶ所にはモニタ基板25が取り付けられている。   FIG. 2 shows an example of a method for forming such a multilayer film. 2A is a view of the rotary table as viewed from below, and FIG. 2B is an end view of the apparatus at the AA position. A substrate holder 22 is provided in the vacuum chamber 21 and rotates about the rotation shaft 23. A substrate 24 on which a film is formed is concentrically attached to the lower surface of the substrate holder 22, but a monitor substrate 25 is attached to one place where the substrate 24 is attached.

真空チャンバ21の下部にはターゲット26が設けられ、そこから膜を構成するスパッタリング原子が飛び出して、基板24とモニタ基板25の表面に当たって膜を形成する。また、真空チャンバ21の一部には、上下面に窓27が設けられており、投光器28より照射された光が、光学素子24又はモニタ基板25を透過して受光器29で受光され、分光透過率が測定できるようになっている。この分光透過率の測定は、膜厚測定のために行なわれるものである。   A target 26 is provided in the lower part of the vacuum chamber 21, and sputtering atoms constituting the film jump out of the target 26 and hit the surfaces of the substrate 24 and the monitor substrate 25 to form a film. Further, a part of the vacuum chamber 21 is provided with windows 27 on the upper and lower surfaces, and the light irradiated from the projector 28 is transmitted through the optical element 24 or the monitor substrate 25 and received by the light receiver 29 to be spectrally separated. The transmittance can be measured. The measurement of the spectral transmittance is performed for film thickness measurement.

図2に示すような装置を用いた多層膜の成膜は、以下のようにして行なわれる。まず、所定の光学特性(反射率、透過率、位相特性等)が得られるように、計算により膜の材質、層数、各層の厚さが決定される。このようにして設計が終了すると、まず、第1層の成膜が行なわれる。モニタ基板25が投光器28と受光器29の位置を通り過ぎる毎に分光透過率の測定を行い、膜厚を測定する。   Formation of the multilayer film using the apparatus as shown in FIG. 2 is performed as follows. First, the material of the film, the number of layers, and the thickness of each layer are determined by calculation so that predetermined optical characteristics (reflectance, transmittance, phase characteristics, etc.) can be obtained. When the design is completed in this way, the first layer is first formed. Each time the monitor substrate 25 passes the position of the projector 28 and the light receiver 29, the spectral transmittance is measured and the film thickness is measured.

このようにして、膜厚を測定しながら成膜を続け、測定光学特性が参照光学特性に等しくなったところで第1層目の成膜を終了する。そして、スパッタリングに用いる材料を変更して、第2層目の成膜を行う。以下、同様にして最終膜までの成膜を行う。なお、一般には、その後、成膜が完了した基板24を切断し、複数の光学素子を得る。   In this way, the film formation is continued while measuring the film thickness, and when the measured optical characteristic becomes equal to the reference optical characteristic, the film formation of the first layer is finished. Then, the second layer is formed by changing the material used for sputtering. Thereafter, film formation up to the final film is similarly performed. In general, after that, the substrate 24 on which film formation has been completed is cut to obtain a plurality of optical elements.

しかしながら、上記のようにスパッタリングにより基板24の表面に多層膜を形成する場合、成膜途中で、それまでに成膜された多層膜の膜応力により、基板24が反るという問題点がある。通常の場合、この反りは、多層膜が形成された側に凸となるような反り方となる。   However, when a multilayer film is formed on the surface of the substrate 24 by sputtering as described above, there is a problem that the substrate 24 is warped during the film formation due to the film stress of the multilayer film formed so far. In a normal case, this warp is a warp that protrudes toward the side on which the multilayer film is formed.

このような反りが発生すると、基板24の成膜側の表面とターゲット26との距離が、基板24の成膜面内で異なるようになり、その結果、それ以後成膜される膜厚の分布が基板24の成膜面内で不均一になる。そのため、多層膜とその多層膜が成膜された基板24からなる光学素子の特性が、所定のものとならないという問題が発生する。   When such a warp occurs, the distance between the surface of the substrate 24 on the film forming side and the target 26 becomes different within the film forming surface of the substrate 24. As a result, the distribution of the film thickness to be formed thereafter. Becomes nonuniform within the film formation surface of the substrate 24. Therefore, there arises a problem that the characteristics of the optical element including the multilayer film and the substrate 24 on which the multilayer film is formed are not predetermined.

本発明はこのような事情に鑑みてなされたもので、基板の表面に成膜される多層膜の膜厚を一様な厚さにし、不良品となる光学素子を少なくすることができる光学素子の製造方法を提供することを課題とする。   The present invention has been made in view of such circumstances, and an optical element capable of reducing the number of defective optical elements by making the thickness of the multilayer film formed on the surface of the substrate uniform. It is an object to provide a manufacturing method.

前記課題を解決するための第1の手段は、基板上に多層膜を成膜する工程を有する光学素子の製造方法であって、保持用基板の上に犠牲層を形成し、当該犠牲層の上に前記多層膜を成膜し、前記多層膜の上に接着層を形成し、当該接着層を介して前記多層膜と前記基板とを接着した後、これらの工程により形成された積層体に、前記基板側から前記犠牲層に達するまで、所定の形状の切り込みを入れ、その後、前記犠牲層を溶解して光学素子を得ることを特徴とする光学素子の製造方法である。   A first means for solving the above problem is a method of manufacturing an optical element including a step of forming a multilayer film on a substrate, wherein a sacrificial layer is formed on a holding substrate, and the sacrificial layer The multilayer film is formed thereon, an adhesive layer is formed on the multilayer film, the multilayer film and the substrate are bonded through the adhesive layer, and then the laminate formed by these steps is formed. The optical element manufacturing method is characterized in that a predetermined shape is cut from the substrate side to the sacrificial layer, and then the sacrificial layer is dissolved to obtain an optical element.

本手段においては、多層膜は、犠牲層を介して保持用基板の上に形成されるので、保持用基板を強固なものにしておけば、成膜途中において膜応力により反りが発生することがなく、よって、均一な膜厚の薄膜を成膜することができる。成膜が完了した後に、接着層を介して基板を接着する。   In this means, since the multilayer film is formed on the holding substrate through the sacrificial layer, if the holding substrate is made strong, warping may occur due to film stress during the film formation. Therefore, a thin film having a uniform thickness can be formed. After the film formation is completed, the substrate is bonded through an adhesive layer.

このようにして形成された積層体に、基板側から前記犠牲層に達するまで、所定の形状の切り込みを入れ、その後、前記犠牲層を溶解すれば、基板上に多層膜が形成された所定形状の光学素子が、保持用基板から分離される。   The laminated body thus formed is cut into a predetermined shape from the substrate side until it reaches the sacrificial layer, and then the sacrificial layer is dissolved to form a predetermined shape in which a multilayer film is formed on the substrate The optical element is separated from the holding substrate.

前記課題を解決するための第2の手段は、前記第1の手段であって、前記多層膜、前記接着層、前記基板のいずれもが、前記犠牲層を溶解する溶解液に溶解しないものであることを特徴とするものである。   A second means for solving the problem is the first means, in which none of the multilayer film, the adhesive layer, and the substrate is dissolved in a solution for dissolving the sacrificial layer. It is characterized by being.

本手段においては、溶解液に溶解するのは犠牲層と保持用基板のみであるので、得られる光学基材が溶解液で損傷を受けることがない。なお、保持用基板を溶解液に溶解しない材料で形成しても問題なく、このようなものも本手段に含まれる。   In this means, since only the sacrificial layer and the holding substrate are dissolved in the solution, the obtained optical base material is not damaged by the solution. Note that there is no problem even if the holding substrate is formed of a material that does not dissolve in the dissolving solution, and such a substrate is also included in this means.

前記課題を解決するための第3の手段は、前記第1の手段であって、前記接着層が樹脂であり、前記基板がガラス又は石英であって、前記犠牲層がアルカリに溶解する金属であることを特徴とするものである。   A third means for solving the problem is the first means, wherein the adhesive layer is a resin, the substrate is glass or quartz, and the sacrificial layer is a metal that dissolves in an alkali. It is characterized by being.

多層膜は、通常アルカリ溶液に溶解しないので本手段においては、溶解液としてアルカリ溶液を使用すれば、基板と接着層、多層膜に影響を与えずに、犠牲層を溶解し、光学素子を得ることができる。   Since the multilayer film does not normally dissolve in an alkaline solution, in this means, if an alkaline solution is used as the solution, the sacrificial layer is dissolved without affecting the substrate, the adhesive layer, and the multilayer film, and an optical element is obtained. be able to.

本発明によれば、基板の表面に成膜される多層膜の膜厚を一様な厚さにし、不良品となる光学素子を少なくすることができる光学素子の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the optical element which can make the film thickness of the multilayer film formed into the surface of a board | substrate uniform thickness, and can reduce the optical element used as a defect product can be provided. .

以下、本発明の実施の形態の例を、図を用いて説明する。図1は、本発明の実施の形態の1例である光学素子の製造方法の工程を示す図である。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a process of an optical element manufacturing method which is an example of an embodiment of the present invention.

まず、十分な強度を有する保持用基板1の上に、犠牲層2であるアルミニウム薄膜を成膜する(a)。アルミニウム薄膜の厚さは10nmとしているが、適宜適当な値を選ぶことができる。なお、以下の成膜においては、接着剤である樹脂層の成膜を除いてスパッタリング装置を使用しているが、別の使用可能な成膜方法を任意に選択して使用可能である。   First, an aluminum thin film that is a sacrificial layer 2 is formed on a holding substrate 1 having sufficient strength (a). Although the thickness of the aluminum thin film is 10 nm, an appropriate value can be selected as appropriate. In the following film formation, a sputtering apparatus is used except for the formation of a resin layer as an adhesive, but other usable film formation methods can be arbitrarily selected and used.

続いて、犠牲層2の上に従来技術の説明において説明したように、多層光学薄膜3を成膜する(b)。例えば、100〜200nm程度の厚さのNbと、50〜100nm程度の厚さのSiOとを、交互に合計181層成膜して多層光学薄膜3とする。この多層光学薄膜3に使用される物質と厚さ、膜数は、所望の光学特性が得られるように光学設計により決定される。 Subsequently, a multilayer optical thin film 3 is formed on the sacrificial layer 2 as described in the description of the prior art (b). For example, a total of 181 layers of Nb 2 O 5 having a thickness of about 100 to 200 nm and SiO 2 having a thickness of about 50 to 100 nm are alternately formed to form the multilayer optical thin film 3. The material, thickness, and number of films used for the multilayer optical thin film 3 are determined by optical design so that desired optical characteristics can be obtained.

続いて、多層光学薄膜3の上に紫外線硬化型樹脂からなる接着剤4を塗布する(c)。続いてその上に基板5となる厚さ0.2mmのBK7ガラスを載置し、基板5を通して紫外線を照射し、接着剤4を硬化させて多層光学薄膜3と基板5を接着する(d)。基板5としては、石英、その他、公知のものを適宜使用することができる。又、接着剤4は、多層光学薄膜3と基板5を接着でき、光学特性に影響を与えないものであれば、特に限定されない。   Subsequently, an adhesive 4 made of an ultraviolet curable resin is applied on the multilayer optical thin film 3 (c). Subsequently, BK7 glass having a thickness of 0.2 mm to be the substrate 5 is placed thereon, and ultraviolet rays are irradiated through the substrate 5 to cure the adhesive 4 and bond the multilayer optical thin film 3 and the substrate 5 (d). As the substrate 5, quartz or other known materials can be used as appropriate. The adhesive 4 is not particularly limited as long as it can adhere the multilayer optical thin film 3 and the substrate 5 and does not affect the optical characteristics.

このようにして形成された積層体に、基板5側から所望の形の切り込み6を入れる(e)。この切り込みの深さは、犠牲層2に達するだけの深さがあればよいが、通常、犠牲層2の厚さは薄いので、図に示すように、保持用基板1の中間まで達するようにする。   Cuts 6 having a desired shape are made from the substrate 5 side into the laminated body thus formed (e). The depth of the cut may be sufficient to reach the sacrificial layer 2. However, since the thickness of the sacrificial layer 2 is usually thin, as shown in the figure, it reaches the middle of the holding substrate 1. To do.

その後、この積層体を水酸化ナトリウム水溶液に浸漬すると、犠牲層2であるアルミニウム薄膜が溶解し、保持用基板1が剥離して、目的とする形状の光学素子7が得られる(f)。   Thereafter, when this laminate is immersed in an aqueous sodium hydroxide solution, the aluminum thin film that is the sacrificial layer 2 is dissolved, and the holding substrate 1 is peeled off to obtain the optical element 7 having a desired shape (f).

犠牲層2としてアルミニウムを使用しているが、少なくとも、多層光学薄膜3、接着剤4、基板5を損傷しにくい溶解液に溶解するものであれば、適当なものを選択することができる。一般に、多層光学薄膜3、基板5には、アルカリに溶解しない材料が使用されるので、犠牲層2としては、アルカリに溶解し易い金属を使用するのが適当である。又、接着剤4も、犠牲層2を溶解する溶解液に溶けないものであることが望ましく、この意味からも、溶解液はアルカリ水溶液を用いることが好ましく、従って、犠牲層2としては、アルカリに溶解し易い金属を使用するのが適当である。   Although aluminum is used as the sacrificial layer 2, an appropriate material can be selected as long as at least the multilayer optical thin film 3, the adhesive 4, and the substrate 5 are dissolved in a solution that is difficult to damage. In general, since the multilayer optical thin film 3 and the substrate 5 are made of a material that does not dissolve in alkali, it is appropriate to use a metal that is easily dissolved in alkali as the sacrificial layer 2. The adhesive 4 is also preferably insoluble in a solution that dissolves the sacrificial layer 2. From this point of view, the solution is preferably an alkaline aqueous solution. It is appropriate to use a metal that is easily dissolved in the material.

本発明の実施の形態の1例である光学素子の製造方法の工程を示す図である。It is a figure which shows the process of the manufacturing method of the optical element which is an example of embodiment of this invention. 多層膜を成膜する方法の例を示す方法の例を示す図である。It is a figure which shows the example of the method which shows the example of the method of forming a multilayer film.

符号の説明Explanation of symbols

1…保持用基板、2…犠牲層、3…多層光学薄膜、4…接着剤、5…基板、6…切り込み、7…光学素子
DESCRIPTION OF SYMBOLS 1 ... Holding substrate, 2 ... Sacrificial layer, 3 ... Multilayer optical thin film, 4 ... Adhesive, 5 ... Substrate, 6 ... Cut, 7 ... Optical element

Claims (3)

基板上に多層膜を成膜する工程を有する光学素子の製造方法であって、保持用基板の上に犠牲層を形成し、当該犠牲層の上に前記多層膜を成膜し、前記多層膜の上に接着層を形成し、当該接着層を介して前記多層膜と前記基板とを接着した後、これらの工程により形成された積層体に、前記基板側から前記犠牲層に達するまで、所定の形状の切り込みを入れ、その後、前記犠牲層を溶解して光学素子を得ることを特徴とする光学素子の製造方法。 An optical element manufacturing method including a step of forming a multilayer film on a substrate, wherein a sacrificial layer is formed on a holding substrate, the multilayer film is formed on the sacrificial layer, and the multilayer film An adhesive layer is formed on the substrate, and the multilayer film and the substrate are bonded to each other through the adhesive layer, and then the laminate formed by these steps is predetermined until reaching the sacrificial layer from the substrate side. A method of manufacturing an optical element, wherein the optical element is obtained by dissolving the sacrificial layer. 請求項1に記載の光学素子の製造方法であって、前記保持用基板、前記多層膜、前記接着層、前記基板のいずれもが、前記犠牲層を溶解する溶解液に溶解しないものであることを特徴とする光学素子の製造方法。 2. The method of manufacturing an optical element according to claim 1, wherein none of the holding substrate, the multilayer film, the adhesive layer, and the substrate is dissolved in a solution for dissolving the sacrificial layer. A method for producing an optical element characterized by the above. 請求項2に記載の光学素子の製造方法であって、前記接着層が樹脂であり、前記基板がガラス又は石英であって、前記犠牲層がアルカリに溶解する金属であることを特徴とする光学素子の製造方法。 3. The optical element manufacturing method according to claim 2, wherein the adhesive layer is a resin, the substrate is glass or quartz, and the sacrificial layer is a metal dissolved in an alkali. Device manufacturing method.
JP2005052215A 2005-02-28 2005-02-28 Method of manufacturing optical element Pending JP2006235411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005052215A JP2006235411A (en) 2005-02-28 2005-02-28 Method of manufacturing optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005052215A JP2006235411A (en) 2005-02-28 2005-02-28 Method of manufacturing optical element

Publications (1)

Publication Number Publication Date
JP2006235411A true JP2006235411A (en) 2006-09-07

Family

ID=37043098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005052215A Pending JP2006235411A (en) 2005-02-28 2005-02-28 Method of manufacturing optical element

Country Status (1)

Country Link
JP (1) JP2006235411A (en)

Similar Documents

Publication Publication Date Title
US7084073B2 (en) Method of forming a via hole through a glass wafer
JPH10209533A (en) Reflective protection film for replica diffraction grating
JP6812977B2 (en) Manufacturing method of glass tube, manufacturing method of glass article, manufacturing device of glass tube, glass article, and glass article
KR20150139520A (en) Cutting method and cutting device
JP6417849B2 (en) Piezoelectric resonator and manufacturing method of piezoelectric resonator
JP2009276691A (en) Optical element and manufacturing method
JP2022529692A (en) Systems and methods for manufacturing flexible electronics
WO2016165247A1 (en) Preparation method for mask plate and mask plate
WO2015105164A1 (en) End-face protective layer-equipped glass substrate manufacturing method and end-face protective layer-equipped glass substrate
JP6080684B2 (en) Infrared optical film, circular polarizing mirror, laser processing machine provided with circular polarizing mirror, and method of manufacturing infrared optical film
JP2017128493A (en) Manufacturing method of glass plate, manufacturing method of glass article, glass plate, glass article and manufacturing device for glass article
JP2006235411A (en) Method of manufacturing optical element
JP2019204121A5 (en)
JP4419958B2 (en) Multilayer optical element manufacturing method
JP4443425B2 (en) Optical multilayer device
JP2009292699A (en) Method for cutting glass substrate, method for cutting substrate for display panel and method for manufacturing substrate for display panel
JP2006235410A (en) Manufacturing method of optical element
JP2006281328A (en) Method for manufacturing workpiece
FR3042649B1 (en) METHOD FOR MANUFACTURING A HYBRID STRUCTURE
JP4273945B2 (en) Manufacturing method of composite prism
JP2005234346A (en) Beam splitter
JP5994686B2 (en) Optical glass
JP2007210836A (en) Method for cutting glass substrate, and optical glass
JP4244410B2 (en) Etalon filter and manufacturing method thereof
JP2006171047A (en) Manufacturing method for optical element