JP2006234761A - Ultrasonic measurement device - Google Patents

Ultrasonic measurement device Download PDF

Info

Publication number
JP2006234761A
JP2006234761A JP2005053550A JP2005053550A JP2006234761A JP 2006234761 A JP2006234761 A JP 2006234761A JP 2005053550 A JP2005053550 A JP 2005053550A JP 2005053550 A JP2005053550 A JP 2005053550A JP 2006234761 A JP2006234761 A JP 2006234761A
Authority
JP
Japan
Prior art keywords
ultrasonic
frame
carriage
measurement
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005053550A
Other languages
Japanese (ja)
Other versions
JP4441421B2 (en
Inventor
Ryota Kajiki
良太 梶木
Houkan Nakagawa
峰寛 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Nondestructive Inspection Co Ltd
Original Assignee
Shin Nippon Nondestructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Nondestructive Inspection Co Ltd filed Critical Shin Nippon Nondestructive Inspection Co Ltd
Priority to JP2005053550A priority Critical patent/JP4441421B2/en
Publication of JP2006234761A publication Critical patent/JP2006234761A/en
Application granted granted Critical
Publication of JP4441421B2 publication Critical patent/JP4441421B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic measurement device capable of measuring with an ultrasonic probe even for a small pipe diameter without correction of center distance for every pipe diameter. <P>SOLUTION: The ultrasonic measurement device for measuring the damaged state by moving the plurality of ultrasonic probes 11-22 along the circumferential direction of the tube 23 comprises: the master truck 43 provided with the truck frame 26 with a central space K; the front and rear rotation shafts 29 and 30 provided with the respective rotation adjusting mechanisms 27 and 28 provided at the rear and back of the truck frame 26; the front rotation frame 35 provided with the left and right symmetric front wheels 33 and 34; the rear turning frame 40 provided with the left and right symmetric rear wheels 38 and 39 at the tips of the same and the base fixed to the both side of the rear turning shaft 30; and the permanent magnets 41 and 42 provided with a gap G between the bottom of the front turning frame 35 and the rear turning frame 40 and the pipe 23. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、千鳥状又は階段状に並べて配置された複数の超音波探触子を配管の円周方向に沿って移動させて配管の損傷等を測定する超音波測定装置に関する。 The present invention relates to an ultrasonic measurement device that measures damage or the like of a pipe by moving a plurality of ultrasonic probes arranged in a staggered or staircase pattern along the circumferential direction of the pipe, for example.

従来、大径管の板厚を測定する超音波測定装置として、例えば、特許文献1に記載の形態のものが知られている。特許文献1に記載の装置は、大径管の内面を走行可能な4つの走行車輪を有する親台車と、親台車の進行方向に2列かつ千鳥状に並べて配置され、しかも親台車に上下動かつ前後に首振り可能に設けられて大径管に常時付勢され、それぞれが親台車と同一方向を向いて4つの倣い車輪を備えた4個以上の子台車とを備えており、それぞれの子台車には大径管の内面との間に少しの隙間を有して超音波探触子が設けられている。更に、親台車には親台車の走行距離を測定する距離計が設けられており、距離計の出力並びに超音波探触子の出力から、大径管の内周方向の測定位置に対する所定幅の肉厚分布を出力するように構成されている。なお、親台車及び子台車は大径管の内周を走査するようになっているが、大径管の外周及び平板を走査することもできる。
このような形態の装置において、図12(A)、(B)にそれぞれ示すように、測定対象物が平板170、管171である場合の表面の凸凹に対する子台車172、173の倣いは、親台車(図示せず)及び進行方向に2列に並べて配置された子台車172、173にそれぞれ設けられた上下倣い機構174と、子台車172、173にそれぞれ設けられた回転倣い機構175とによって行っている。なお、回転倣い機構175の回転中心高さHは、測定対象物の表面から、例えば、20mm程度である。
2. Description of the Related Art Conventionally, as an ultrasonic measurement apparatus that measures the plate thickness of a large-diameter tube, for example, an apparatus described in Patent Document 1 is known. The apparatus described in Patent Document 1 is arranged in a staggered manner in two rows and staggered in the traveling direction of the main carriage, and a main carriage having four traveling wheels capable of traveling on the inner surface of the large-diameter pipe, and moving up and down on the main carriage. It is provided with four or more child carts each provided with four copying wheels facing each other in the same direction as the main cart. The child carriage is provided with an ultrasonic probe with a small gap between the inner surface of the large-diameter tube. In addition, the main carriage is provided with a distance meter for measuring the travel distance of the main carriage. From the output of the distance meter and the output of the ultrasonic probe, a predetermined width with respect to the measurement position in the inner circumferential direction of the large-diameter tube is provided. It is configured to output the wall thickness distribution. In addition, although the main trolley | bogie and the sub trolley | bogie scan the inner periphery of a large diameter tube, the outer periphery and flat plate of a large diameter tube can also be scanned.
In the apparatus of this type, as shown in FIGS. 12 (A) and 12 (B), the copying of the child carriages 172 and 173 with respect to the surface irregularities when the measurement object is the flat plate 170 and the pipe 171 It is carried out by a vertical scanning mechanism 174 provided on each of a cart (not shown) and slave carts 172, 173 arranged in two rows in the traveling direction, and a rotational scanning mechanism 175 provided on each of the slave carts 172, 173. ing. The rotational center height H of the rotational copying mechanism 175 is, for example, about 20 mm from the surface of the measurement object.

特開2004−144710号公報(図1〜図4)JP 2004-144710 A (FIGS. 1 to 4)

しかしながら、前記従来の超音波測定装置は未だ解決すべき以下のような問題があった。
管の走査において管径が大きい(例えば、2000mm以上)場合には、管径の変化に対応して、子台車が上下動かつ前後に首振りして走査可能であるが、管径が小さい (例えば、300〜1500mm)場合には、親台車の4つの走行車輪は台車本体に対して固定されているので、子台車の倣い車輪が管に倣うことができないため、子台車に取付けられた探触子により測定できないという問題があった。
更に、従来の超音波測定装置を使用する際、図12に示すように、子台車172、173の回転倣い機構175の取付間隔である回転中心間距離Lを一定(例えば、50mm)にした状態で、装置を管171に取付けた場合、探触子が倣い車輪を介して管171に倣うため、管外面における探触子中心間距離Tは、平板170の場合の探触子中心間距離(=L)より短くなり、この結果、管径毎に探触子中心間距離を補正する必要があるので、補正の為の機器や手間を要するという問題もあった。
However, the conventional ultrasonic measuring apparatus still has the following problems to be solved.
When the tube diameter is large in scanning the tube (for example, 2000 mm or more), the child carriage can be swung up and down and swung back and forth in response to the change in the tube diameter, but the tube diameter is small ( For example, in the case of 300 to 1500 mm), since the four traveling wheels of the parent carriage are fixed to the carriage body, the copying wheels of the child carriage cannot follow the pipe. There was a problem that it could not be measured by the tentacles.
Furthermore, when using a conventional ultrasonic measurement device, as shown in FIG. 12, the distance L between the rotation centers, which is the mounting interval of the rotation copying mechanism 175 of the child carriages 172 and 173, is constant (for example, 50 mm). When the device is attached to the tube 171, the probe follows the tube 171 via the copying wheel, and therefore, the probe center distance T on the outer surface of the tube is the probe center distance in the case of the flat plate 170 ( = L), and as a result, it is necessary to correct the distance between the centers of the probes for each tube diameter.

本発明はかかる事情に鑑みてなされたもので、小さい管径でも超音波探触子による測定が可能で、管径毎に探触子の中心間距離を補正する必要のない超音波測定装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an ultrasonic measurement apparatus that can measure with an ultrasonic probe even with a small tube diameter and does not need to correct the center-to-center distance of the probe for each tube diameter. The purpose is to provide.

前記目的に沿う本発明に係る超音波測定装置は、千鳥状又は階段状に並べて配置された複数の超音波探触子を測定対象物の円周方向に沿って移動させ、前記各超音波探触子を同時に作動させる多チャンネル型超音波探傷器、並びに前記超音波探触子の出力及び距離計からの出力を基準にして、前記測定対象物の位置毎の損傷状況を出力する演算部を有する制御装置を備え、前記測定対象物の損傷状況を測定する超音波測定装置であって、(1)中央に空間部を有する台車フレームと、該台車フレームの前後に設けられそれぞれ回動調整機構を備えた前側及び後ろ側回動軸と、該前側回動軸の両側に基部が取付けられ、先部には左右対となる前側車輪が設けられた前側回動フレームと、前記後ろ側回動軸の両側に基部が取付けられ、先部には左右対となる後ろ側車輪が設けられた後ろ側回動フレームと、前記前側回動フレーム及び後ろ側回動フレームの底部に前記測定対象物とは一定の隙間を有して設けられた永久磁石とを有する親台車と、(2)前記台車フレームの空間部を幅方向に跨ぐ複数の支持部材にそれぞれ自在継手機構を介して取付けられた複数の子台車と、(3)それぞれの前記子台車に搭載され、前記測定対象物とは僅少の隙間を有して配置された前記超音波探触子と、(4)前記超音波探触子と前記測定対象物との間に形成された前記隙間に媒質水を供給する水供給手段と、(5)前記親台車に取付けられて、該親台車の走行距離を測定する前記距離計とを備えている。 The ultrasonic measurement apparatus according to the present invention that meets the above-mentioned object moves a plurality of ultrasonic probes arranged in a staggered pattern or a staircase pattern along the circumferential direction of the object to be measured. A multi-channel ultrasonic flaw detector that simultaneously activates the probe, and a calculation unit that outputs a damage status for each position of the measurement object on the basis of the output of the ultrasonic probe and the output from the distance meter An ultrasonic measurement apparatus for measuring a damage state of the measurement object, comprising: (1) a carriage frame having a space in the center; and a rotation adjustment mechanism provided before and after the carriage frame. Front and rear pivot shafts, a front pivot frame having bases attached to both sides of the front pivot shaft, and a pair of front wheels on the left and right sides, and the rear pivot shaft. The base is attached to both sides of the shaft and the tip is left A rear rotating frame provided with a pair of rear wheels, and a permanent magnet provided with a certain gap from the measurement object at the bottom of the front rotating frame and the rear rotating frame; (2) a plurality of sub-carts attached to a plurality of support members across the space of the cart frame in the width direction via universal joint mechanisms, and (3) each of the sub-carts The ultrasonic probe mounted and disposed with a slight gap from the measurement object; and (4) the gap formed between the ultrasonic probe and the measurement object. Water supply means for supplying medium water, and (5) the distance meter attached to the base carriage for measuring the travel distance of the base carriage.

本発明に係る超音波測定装置において、前記複数の支持部材は前記台車フレームの空間部の両側に設けられた側壁部材に長孔を貫通するねじを介して取付けられ、しかも、前記長孔は、前記測定対象物の直径に応じて前記支持部材の取付け位置を変えても前記支持部材及び子台車を介して取付けられる隣り合う前記各超音波探触子の測定位置が一定の範囲にあるように形成されてもよい。 In the ultrasonic measurement device according to the present invention, the plurality of support members are attached to side wall members provided on both sides of the space portion of the carriage frame via screws that penetrate the long holes, and the long holes are Even if the mounting position of the support member is changed according to the diameter of the measurement object, the measurement positions of the adjacent ultrasonic probes that are mounted via the support member and the child carriage are within a certain range. It may be formed.

本発明に係る超音波測定装置において、前記回動調整機構は、前記前側回動軸及び後ろ側回動軸に設けられたウォームホイールと、該ウォームホイールに噛合して回転駆動されるウォームシャフトとを有してもよい。
本発明に係る超音波測定装置において、前記前側車輪及び後ろ側車輪のタイヤは軟質材からなってもよい。
In the ultrasonic measurement apparatus according to the present invention, the rotation adjustment mechanism includes a worm wheel provided on the front rotation shaft and the rear rotation shaft, and a worm shaft that meshes with the worm wheel and is driven to rotate. You may have.
In the ultrasonic measurement apparatus according to the present invention, the tires of the front wheel and the rear wheel may be made of a soft material.

請求項1〜4記載の超音波測定装置においては、親台車は中央に空間部を有する台車フレームの前後に設けられそれぞれ回動調整機構を備えた前側及び後ろ側回動軸と、前側回動軸の両側に基部が取付けられ、先部には左右対となる前側車輪が設けられた前側回動フレームと、後ろ側回動軸の両側に基部が取付けられ、先部には左右対となる後ろ側車輪が設けられた後ろ側回動フレームと、前側回動フレーム及び後ろ側回動フレームの底部に測定対象物とは一定の隙間を有して設けられた永久磁石とを有するので、測定対象物の管径が小さい場合でも、親台車は測定対象物の円周方向に沿って移動することができ、この結果、千鳥状又は階段状に並べて配置された複数の超音波探触子及び親台車に設けた距離計を測定対象物の円周方向に沿って移動させ、測定対象物の損傷状況を測定することができる。 5. The ultrasonic measuring apparatus according to claim 1, wherein the main carriage is provided in front of and behind a carriage frame having a space portion in the center, and the front and rear turning shafts each provided with a turning adjustment mechanism, and the front turning. The base is attached to both sides of the shaft, the front part is attached to the front part of the front turning frame provided with the front wheels that are paired left and right, and the base part is attached to both sides of the rear part of the turning part. Since it has a rear rotating frame provided with a rear wheel, and a permanent magnet provided with a certain clearance from the measurement object at the bottom of the front rotating frame and the rear rotating frame Even when the tube diameter of the object is small, the main carriage can move along the circumferential direction of the object to be measured. As a result, a plurality of ultrasonic probes arranged in a staggered or stepwise manner and A distance meter provided on the main carriage is placed along the circumferential direction of the measurement object. The moved, it is possible to measure the damage status of the measurement object.

特に、請求項2記載の超音波測定装置においては、複数の支持部材が台車フレームの空間部の両側に設けられた側壁部材に長孔を貫通するねじを介して取付けられ、しかも、長孔は、測定対象物の直径に応じて支持部材の取付け位置を変えても支持部材及び子台車を介して取付けられる隣り合う各超音波探触子の測定位置が一定の範囲にあるように形成されているので、管径毎に超音波探触子の中心間距離を補正する必要がないため、測定の作業性が向上する。 In particular, in the ultrasonic measurement apparatus according to claim 2, the plurality of support members are attached to the side wall members provided on both sides of the space portion of the carriage frame via screws that penetrate the long holes, and the long holes are Even if the mounting position of the support member is changed according to the diameter of the measurement object, the measurement positions of the adjacent ultrasonic probes mounted via the support member and the child carriage are in a certain range. Therefore, it is not necessary to correct the distance between the centers of the ultrasonic probes for each tube diameter, so that the measurement workability is improved.

請求項3記載の超音波測定装置においては、前側回動軸及び後ろ側回動軸にはウォームホイールが設けられ、ウォームホイールに噛合するウォームシャフトが回転駆動されるので、台車フレームに前側回動フレーム及び後ろ側回動フレームを固定する手段を別途必要としない。 In the ultrasonic measuring apparatus according to claim 3, since the worm wheel is provided on the front side rotation shaft and the rear side rotation shaft, and the worm shaft meshing with the worm wheel is driven to rotate, the front frame rotates to the carriage frame. No separate means for fixing the frame and the rear rotating frame is required.

請求項4記載の超音波測定装置においては、前側車輪及び後ろ側車輪のタイヤは軟質材からなっているので、測定対象物の外面への損傷を低減することができると共に、前側車輪及び後ろ側車輪への錆や鉄粉等の巻き込みを防止でき、このため、走行性が向上する。 In the ultrasonic measurement apparatus according to claim 4, since the tires of the front wheel and the rear wheel are made of a soft material, damage to the outer surface of the measurement object can be reduced, and the front wheel and the rear side can be reduced. It is possible to prevent rust, iron powder and the like from being caught in the wheel, and thus the traveling performance is improved.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る超音波測定装置の正面図、図2は同超音波測定装置の平面図、図3は同超音波測定装置の上部台車フレームを備えた親台車の正面図、図4は同超音波測定装置の上部台車フレームを備えた親台車の平面図、図5は同超音波測定装置の下部台車フレーム及び子台車の正面図、図6は同超音波測定装置の下部台車フレーム及び子台車の平面図、図7(A)、(B)はそれぞれ、同超音波測定装置の自在継手機構が設けられた子台車の平面図、正面図、図8は同超音波測定装置の自在継手機構が設けられた子台車の側面図、図9(A)、(B)、(C)はそれぞれ、平面、曲率半径が大きい曲面、曲率半径が小さい曲面を走行する3列の子台車の取付け状態を示す説明図、図10(A)、(B)は、本発明及び従来例における探触子中心間距離を比較した説明図、図11は本発明及び従来例における探触子中心間距離を管径で比較した説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is a front view of an ultrasonic measurement apparatus according to an embodiment of the present invention, FIG. 2 is a plan view of the ultrasonic measurement apparatus, and FIG. 3 is provided with an upper carriage frame of the ultrasonic measurement apparatus. FIG. 4 is a plan view of the main carriage provided with the upper carriage frame of the ultrasonic measurement apparatus, FIG. 5 is a front view of the lower carriage frame and the child carriage of the ultrasonic measurement apparatus, and FIG. FIG. 7A and FIG. 7B are a plan view, a front view, and a drawing of a child carriage provided with a universal joint mechanism of the ultrasonic measurement device, respectively. 8 is a side view of a child carriage provided with the universal joint mechanism of the ultrasonic measurement apparatus, and FIGS. 9A, 9B, and 9C are a plane, a curved surface having a large curvature radius, and a curved surface having a small curvature radius, respectively. FIGS. 10A and 10B are explanatory views showing the mounting state of the three rows of child carriages traveling on the road. And explanatory diagram comparing the probe center distance probe in the conventional example, FIG. 11 is an explanatory view of the present invention and the probe center distance in the conventional example were compared with the pipe diameter.

図1及び図2に示すように、本発明の一実施の形態に係る超音波測定装置10は、前後方向に3列かつ階段状に並べて配置された複数(本実施の形態では12個)の超音波探触子11〜22を測定対象物の一例である管23の円周方向に沿って移動させ、その損傷状況を測定する装置である。 As shown in FIGS. 1 and 2, the ultrasonic measurement apparatus 10 according to an embodiment of the present invention includes a plurality of (12 in this embodiment) arranged in three rows and steps in the front-rear direction. This is an apparatus that moves the ultrasonic probes 11 to 22 along the circumferential direction of a tube 23 that is an example of an object to be measured, and measures the damage state.

図1〜図4に示すように、超音波測定装置10は、中央に空間部Kを有する上部台車フレーム24及び上部台車フレーム24の下端部にねじ締結された下部台車フレーム25からなる台車フレーム26と、台車フレーム26の前後に設けられそれぞれ回動調整機構27、28を備えた前側及び後ろ側回動軸29、30と、前側回動軸29の両側に基部31、32が取付けられ、先部には左右対となる前側車輪33、34が設けられた前側回動フレーム35と、後ろ側回動軸30の両側に基部36、37が取付けられ、先部には左右対となる後ろ側車輪38、39が設けられた後ろ側回動フレーム40と、前側回動フレーム35及び後ろ側回動フレーム40の底部に管23とは一定の隙間Gを有して設けられた永久磁石41、42とを有する親台車43を有している。 As shown in FIGS. 1 to 4, the ultrasonic measurement apparatus 10 includes a carriage frame 26 including an upper carriage frame 24 having a space K at the center and a lower carriage frame 25 screwed to the lower end of the upper carriage frame 24. And front and rear rotation shafts 29, 30 provided on the front and rear sides of the carriage frame 26 and provided with rotation adjustment mechanisms 27, 28, respectively, and base portions 31, 32 are attached to both sides of the front rotation shaft 29, The front side rotating frame 35 provided with the front wheels 33 and 34 that are paired to the left and right is attached to the part, and the bases 36 and 37 are attached to both sides of the rear side turning shaft 30, and the rear part that is the left and right pair is attached to the front part. A rear rotating frame 40 provided with wheels 38 and 39, and a permanent magnet 41 provided with a certain gap G between the tube 23 and the bottom of the front rotating frame 35 and the rear rotating frame 40, Parent with 42 Have a car 43.

超音波測定装置10は、更に、図5〜図8に示すように、下部台車フレーム25の空間部Kを幅(左右)方向に跨ぐ複数(本実施の形態では3個)の支持部材44〜46にそれぞれ自在継手機構47を介して取付けられた複数(本実施の形態では12台)の子台車48〜59と、それぞれの子台車48〜59に搭載され、管23とは僅少の隙間gを有して配置された超音波探触子11〜22とを有している。 As shown in FIGS. 5 to 8, the ultrasonic measurement apparatus 10 further includes a plurality of (three in this embodiment) support members 44 to straddle the space K of the lower carriage frame 25 in the width (left and right) direction. 46, which are mounted on each of the slave carriages 48 to 59 and attached to each of the slave carriages 48 to 59, with a small gap g between the pipe 23 and the pipe 23. The ultrasonic probes 11 to 22 are arranged.

超音波測定装置10は、また、超音波探触子11〜22と管23との間に形成された隙間gに媒質水60を供給する水供給手段61と、親台車43の前側回動フレーム35に取付けられて、親台車43の走行距離を測定する距離計62と、各超音波探触子11〜22を同時に作動させる図示しない多チャンネル型超音波探傷器、並びに超音波探触子11〜22の出力及び距離計62からの出力を基準にして、管23の位置毎の損傷状況を出力する演算部を有する制御装置(図示せず)とを備えている。以下、これらについて詳細に説明する。 The ultrasonic measurement apparatus 10 includes a water supply unit 61 that supplies medium water 60 to a gap g formed between the ultrasonic probes 11 to 22 and the tube 23, and a front rotating frame of the main carriage 43. 35, a distance meter 62 that measures the travel distance of the main carriage 43, a multi-channel ultrasonic flaw detector (not shown) that operates the ultrasonic probes 11 to 22 at the same time, and the ultrasonic probe 11 And a control device (not shown) having a calculation unit that outputs a damage status for each position of the tube 23 based on the output of ˜22 and the output from the distance meter 62. Hereinafter, these will be described in detail.

図3及び図4に示すように、上部台車フレーム24は前後方向に平行間隔をあけて対向して水平に配置された矩形状の前板63及び後ろ板64と、前板63及び後ろ板64の下面の左右方向両端部を連結し、左右方向に平行間隔をあけて対向して垂直に配置された略矩形状の右板65及び左板66とにより略矩形枠状に形成されている。右板65及び左板66には、上下方向中間位置に、前後に2ヶ所トラック形状の切欠き孔67、68が形成されており、切欠き孔67、68を介して内部を観察でき、かつ、上部台車フレーム24の軽量化を図っている。右板65及び左板66の前後方向両端部の下部には、前側及び後ろ側回動軸29、30が貫通しており、前側及び後ろ側回動軸29、30の両端部は右板65及び左板66に設けられた軸受69、70により回転可能に支持されている。 As shown in FIGS. 3 and 4, the upper carriage frame 24 includes a rectangular front plate 63 and a rear plate 64 that are horizontally disposed opposite to each other with a parallel interval in the front-rear direction, and a front plate 63 and a rear plate 64. Are formed in a substantially rectangular frame shape by a substantially rectangular right plate 65 and a left plate 66 which are vertically arranged opposite to each other in the left-right direction with a parallel interval therebetween. The right plate 65 and the left plate 66 are formed with two track-shaped cutout holes 67 and 68 at the front and rear at an intermediate position in the vertical direction, and the inside can be observed through the cutout holes 67 and 68. The upper bogie frame 24 is reduced in weight. Front and rear rotating shafts 29 and 30 pass through lower portions of both ends of the right plate 65 and the left plate 66 in the front-rear direction, and both ends of the front and rear rotating shafts 29 and 30 are located on the right plate 65. The bearings 69 and 70 provided on the left plate 66 are rotatably supported.

前側回動軸29及び後ろ側回動軸30の長さ方向中央部にはウォームホイール71、72が設けられており、ウォームホイール71、72に噛合するウォームシャフト73、74が曲率調整ノブ75、76により回転駆動されるようになっている。ウォームシャフト73、74の両端部は前板63及び後ろ板64にそれぞれ取付けられた軸受73a及び73b、74a及び74bにより回転支持されている。 Worm wheels 71, 72 are provided at the center in the longitudinal direction of the front rotation shaft 29 and the rear rotation shaft 30, and the worm shafts 73, 74 meshing with the worm wheels 71, 72 are curvature adjusting knobs 75, Rotation drive is performed by 76. Both end portions of the worm shafts 73 and 74 are rotatably supported by bearings 73a and 73b, 74a and 74b attached to the front plate 63 and the rear plate 64, respectively.

前側回動フレーム35及び後ろ側回動フレーム40は、上部台車フレーム24の右板65及び左板66の外側に配置され、前側回動軸29及び後ろ側回動軸30の両端部に固定されたアーム部材77、78と、アーム部材77、78の先端部を連結する連結部材79と、連結部材79の前後方向外側に設けられた車輪取付け部材80、81とを備えている。
車輪取付け部材80、81の底部で前側車輪33、34、後ろ側車輪38、39の近傍には、矩形板状の複数枚の永久磁石41、42が図示しないケースを介して取付けられている。前側車輪33、34、後ろ側車輪38、39と永久磁石41、42の走行(前後)方向の中心位置は略一致しており、前側車輪33、34、後ろ側車輪38、39が走行面に対して上下しても、永久磁石41、42は管23と僅少の隙間Gを維持することができる。
The front rotation frame 35 and the rear rotation frame 40 are disposed outside the right plate 65 and the left plate 66 of the upper carriage frame 24 and are fixed to both ends of the front rotation shaft 29 and the rear rotation shaft 30. Arm members 77, 78, a connecting member 79 that connects the distal ends of the arm members 77, 78, and wheel mounting members 80, 81 provided outside the connecting member 79 in the front-rear direction.
In the vicinity of the front wheels 33 and 34 and the rear wheels 38 and 39 at the bottom of the wheel mounting members 80 and 81, a plurality of rectangular plate-like permanent magnets 41 and 42 are mounted via a case (not shown). The front wheels 33 and 34, the rear wheels 38 and 39, and the permanent magnets 41 and 42 have substantially the same center position in the traveling (front-rear) direction, and the front wheels 33 and 34 and the rear wheels 38 and 39 are on the traveling surface. Even if it moves up and down, the permanent magnets 41 and 42 can maintain a slight gap G with the tube 23.

車輪取付け部材80、81には前側車輪33、34及び後ろ側車輪38、39が取付けられており,前側車輪33、34及び後ろ側車輪38、39のタイヤは、軟質材の一例であるウレタンゴムからなっている。前側車輪33、34、後ろ側車輪38、39の外径は約70mmである。 Front wheels 33 and 34 and rear wheels 38 and 39 are attached to the wheel mounting members 80 and 81, and the tires of the front wheels 33 and 34 and the rear wheels 38 and 39 are urethane rubber which is an example of a soft material. It is made up of. The outer diameters of the front wheels 33 and 34 and the rear wheels 38 and 39 are about 70 mm.

図1、図2、図5及び図6に示すように、上部台車フレーム24の下端部には前後、左右に設けられた4個の取付けブラケット86を介して下部台車フレーム25がねじ締結により取付けられている。
図5及び図6に示すように、下部台車フレーム25は左右方向に平行間隔をあけて対向して垂直に配置された略矩形板状の側壁部材87、88と、側壁部材87、88の前後方向両端部をねじ締結によって連結する矩形板状の連結部材89、90とを有して、矩形枠状に形成されている。側壁部材87、88には、前後方向に略矩形状の切欠き孔91a〜91cが形成されており、切欠き孔91a〜91cを介して内部を観察でき、かつ、下部台車フレーム25の軽量化を図っている。
As shown in FIGS. 1, 2, 5, and 6, the lower carriage frame 25 is attached to the lower end portion of the upper carriage frame 24 by screw fastening through four mounting brackets 86 provided at the front, rear, and left and right. It has been.
As shown in FIGS. 5 and 6, the lower cart frame 25 has substantially rectangular plate-like side wall members 87, 88 arranged in parallel and spaced apart from each other in the left-right direction, and front and rear sides of the side wall members 87, 88. It has rectangular plate-shaped connecting members 89 and 90 that connect both ends in the direction by screw fastening, and is formed in a rectangular frame shape. The side wall members 87 and 88 are formed with substantially rectangular cutout holes 91a to 91c in the front-rear direction, the inside can be observed through the cutout holes 91a to 91c, and the weight of the lower carriage frame 25 can be reduced. I am trying.

下部台車フレーム25の側壁部材87、88間には、一列目の子台車48〜51がピッチPで取付けられた矩形板状の支持部材44、二列目の子台車52〜55がピッチPで取付けられた矩形板状の支持部材45、及び三列目の子台車56〜59がピッチPで取付けられた矩形板状の支持部材46が前後方向に平行間隔をあけて取付けられている。二列目の子台車52〜55は一列目の子台車48〜51に対してそれぞれ、左側に(1/3)Pずれて配置され、一方、三列目の子台車56〜59は一列目の子台車48〜51に対して、右側に(1/3)Pずれて配置されている。一列目の子台車48〜51と二列目の子台車52〜55との、また、二列目の子台車52〜55と三列目の子台車56〜59との前後方向のピッチはWとしている。なお、子台車間のピッチWは、各列の子台車に搭載された超音波探触子のピッチと同一である。 Between the side wall members 87 and 88 of the lower cart frame 25, a rectangular plate-like support member 44 to which the first row of child carts 48 to 51 are attached at a pitch P, and a rectangle to which the second row of child carts 52 to 55 are attached at a pitch P. A plate-like support member 45 and a rectangular plate-like support member 46 to which the third row of child carts 56 to 59 are attached at a pitch P are attached at a parallel interval in the front-rear direction. The second-row child carriages 52 to 55 are arranged to be shifted to the left by (1/3) P with respect to the first-row child carriages 48 to 51, while the third-row child carriages 56 to 59 are arranged with respect to the first-row child carriages 48 to 51. Thus, they are shifted to the right by (1/3) P. The pitch in the front-rear direction between the first-row child trolleys 48 to 51 and the second-row child trolleys 52 to 55, and the second-row child trolleys 52-55 and the third-row child trolleys 56-59 is W. Note that the pitch W between the child carriages is the same as the pitch of the ultrasonic probes mounted on the child carriages in each row.

図5及び図6に示すように、支持部材44は側壁部材87、88に対向して形成された2つの円弧状の長孔92、93を貫通する片側2個のねじSを介して着脱可能に取付けられ、支持部材45は側壁部材87、88に対向して形成された1つの直線状の長孔94を貫通する片側2個のねじSを介して着脱可能に取付けられ、支持部材46は側壁部材87、88に対向して形成された2つの円弧状の長孔95、96を貫通する片側2個のねじSを介して着脱可能に取付けられている。 As shown in FIGS. 5 and 6, the support member 44 can be attached and detached via two screws S on one side passing through the two arc-shaped elongated holes 92 and 93 formed facing the side wall members 87 and 88. The support member 45 is detachably attached via two screws S on one side passing through one straight elongated hole 94 formed opposite to the side wall members 87 and 88, and the support member 46 is The side wall members 87 and 88 are detachably attached via two screws S on one side passing through the two arc-shaped elongated holes 95 and 96 formed facing the side wall members 87 and 88.

長孔92、93、長孔94及び長孔95、96はそれぞれ、図9(A)、(B)、(C)に示すように、各列の子台車48〜51、52〜55、56〜59が曲率半径∞(無限大)の平板F、曲率半径Rの管23a、曲率半径rの管23の外面に倣うことができるように、基準となる二列目の子台車52〜55は上下移動のみ、一列目の子台車48〜51及び三列目の子台車56〜59は二列目の子台車52〜55を挟んで対称に傾斜するように形成されている。ここで、R=800mm、r=300mmとしている。 As shown in FIGS. 9A, 9B, and 9C, the long holes 92 and 93, the long holes 94, and the long holes 95 and 96, respectively, are the child carriages 48 to 51, 52 to 55, and 56 in each row. The second row sub-carts 52 to 55 move up and down so that .about.59 can follow the outer surface of the flat plate F having the radius of curvature infinity (infinity), the tube 23a having the radius of curvature R, and the tube 23 having the radius of curvature r. However, the first-row child carts 48 to 51 and the third-row child carts 56 to 59 are formed so as to be symmetrically inclined with respect to the second-row child carts 52 to 55. Here, R = 800 mm and r = 300 mm.

即ち、支持部材45は、図9(A)に示す平板F上では、長孔94に対して最下位置にあり、図9(B)に示す曲率半径Rの管23a上では、長孔94に対して中間位置にあり、図9(C)に示す曲率半径rの管23上では、長孔94に対して最上位置にあるように構成されている。
支持部材44は、図9(A)に示す平板F上では、長孔92、93に対して最後位置にあり、図9(B)に示す管23a上では、長孔92、93に対して中間位置にあり、図9(C)に示す管23上では、長孔92、93に対して最前位置にあるように構成されている。
支持部材46は、図9(A)に示す平板F上では、長孔95、96に対して最前位置にあり、図9(B)に示す管23a上では、長孔95、96に対して中間位置にあり、図9(C)に示す管23上では、長孔95、96に対して最後位置にあるように構成されている。
That is, the support member 45 is at the lowest position with respect to the long hole 94 on the flat plate F shown in FIG. 9A, and the long hole 94 on the tube 23a having the curvature radius R shown in FIG. 9B. The tube 23 having the radius of curvature r shown in FIG. 9C is configured to be at the uppermost position with respect to the long hole 94.
The support member 44 is at the last position on the flat plate F shown in FIG. 9A with respect to the long holes 92 and 93, and on the tube 23a shown in FIG. At the intermediate position, the tube 23 shown in FIG. 9C is configured to be at the foremost position with respect to the long holes 92 and 93.
The support member 46 is at the forefront position with respect to the long holes 95 and 96 on the flat plate F shown in FIG. 9A, and is on the long holes 95 and 96 on the tube 23a shown in FIG. At the intermediate position, on the tube 23 shown in FIG. 9C, it is configured to be at the last position with respect to the long holes 95 and 96.

なお、図5に示すように、長孔92、93の形状はそれぞれ、子台車48〜51の超音波探触子11〜14と平板Fとの実質的な接触部分の中心Nに対して半径X、Yに形成されている。また、長孔95、96の形状もそれぞれ、子台車56〜59の超音波探触子19〜22と平板Fとの実質的な接触部分の中心Mに対して半径X、Yに形成されている。
かかる構成により、管の径(曲率半径)に応じて支持部材44〜46の取付け位置を変えても支持部材44〜46及び子台車48〜59を介して取付けられる隣り合う各超音波探触子11〜22の測定位置が一定の範囲にある(即ち、探触子中心間距離Qが一定)ようになっている(図10(A)及び図11参照)。
In addition, as shown in FIG. 5, the shape of the long holes 92 and 93 is a radius with respect to the center N of the substantial contact part of the ultrasonic probes 11 to 14 of the child carriages 48 to 51 and the flat plate F, respectively. X and Y are formed. Further, the shapes of the long holes 95 and 96 are also formed with radii X and Y with respect to the center M of the substantial contact portion between the ultrasonic probes 19 to 22 and the flat plate F of the child carriages 56 to 59, respectively. Yes.
With this configuration, even if the attachment positions of the support members 44 to 46 are changed according to the diameter (curvature radius) of the tube, the adjacent ultrasonic probes attached via the support members 44 to 46 and the slave carriages 48 to 59 are used. The measurement positions 11 to 22 are in a certain range (that is, the distance Q between the probe centers is constant) (see FIGS. 10A and 11).

図7(A)、(B)及び図8に示すように、超音波探触子11(12〜22も同じ)が設けられた子台車48(49〜59も同じ)はそれぞれ、自在継手機構47を介して支持部材44(45、46)に取付けられており、これにより、走行面の凸凹に基づく上下動、左右動に関係なく、子台車48の下部に設けられた4つの倣い車輪97a〜97dが常時管23の外面に接して走行できるようになっている。従って、子台車48に設けられた超音波探触子11は親台車43の移動時、管23の外面との間に常に一定の隙間gを維持することができる。なお、倣い車輪97a〜97dの外径は約12mmである。 As shown in FIGS. 7A, 7 </ b> B, and 8, each of the slave carts 48 (49 to 59 is the same) provided with the ultrasonic probe 11 (12 to 22 is also the same) is a universal joint mechanism. 47, which are attached to the support member 44 (45, 46), so that the four copying wheels 97a provided at the lower part of the child carriage 48 irrespective of the vertical movement and the horizontal movement based on the unevenness of the running surface. ˜97d can always travel in contact with the outer surface of the pipe 23. Therefore, the ultrasonic probe 11 provided in the child carriage 48 can always maintain a constant gap g between the ultrasonic probe 11 and the outer surface of the tube 23 when the parent carriage 43 moves. The outer diameter of the copying wheels 97a to 97d is about 12 mm.

図7(A)、(B)及び図8に示すように、子台車48の前方には、支持部材44の後面に矩形板状のホルダーベース98が上下方向にねじ締結されており、ホルダーベース98の上端部に上下方向に間隔を開けて形成された2個の掛合突起99、100が支持部材44の後面に形成された掛合凹部に掛合されている。
ホルダーベース98の下部の後側には、左右方向に平行間隔をあけて凹部を有するガイド部材101、102が設けられている。ガイド部材101、102の凹部内を摺動するスライドボール103が下端部の前端に設けられており、上下方向に移動するスライド部材104の上下方向の中間部と、ホルダーベース98の掛合突起100付近の後面105に設けられたバネストッパー106との間には、コイルスプリング107が設けられている。コイルスプリング107を介してスライド部材104は常時下方に付勢されている。
As shown in FIGS. 7A, 7B, and 8, a rectangular plate-like holder base 98 is screwed up and down in the vertical direction on the rear surface of the support member 44 in front of the child carriage 48. Two hooking protrusions 99 and 100 formed at an upper end portion of 98 with a space in the vertical direction are hooked into a hooking recess formed on the rear surface of the support member 44.
On the rear side of the lower portion of the holder base 98, guide members 101 and 102 having concave portions with a parallel interval in the left-right direction are provided. A slide ball 103 that slides in the recesses of the guide members 101 and 102 is provided at the front end of the lower end portion, and an intermediate portion in the vertical direction of the slide member 104 that moves in the vertical direction and the vicinity of the engaging projection 100 of the holder base 98 A coil spring 107 is provided between the spring stopper 106 provided on the rear surface 105. The slide member 104 is always biased downward via the coil spring 107.

図7(A)、(B)及び図8に示すように、スライド部材104の下端部には、前後方向に直列に配置された2個の軸受(図示せず)に回転可能に支持されたボルト状の回転軸108が設けられており、回転軸108の後端部には平面視して後方に開口を有するコ字状(二股状)のアーム109が固定されている。アーム109の後側両端部には軸受メタル(図示せず)が取付けられ、この軸受メタルの内周面に摺動する取付ボルト110、111を介して、平面視して後方に開口を有するコ字状の子台車48が設けられている。子台車48の下端部の前後、左右方向の4隅には、倣い車輪97a〜97dが軸受部を介して回転可能に設けられている。 As shown in FIGS. 7A, 7B and 8, the lower end of the slide member 104 is rotatably supported by two bearings (not shown) arranged in series in the front-rear direction. A bolt-shaped rotating shaft 108 is provided, and a U-shaped (bifurcated) arm 109 having an opening in the rear in plan view is fixed to the rear end portion of the rotating shaft 108. A bearing metal (not shown) is attached to both rear ends of the arm 109, and a screw having an opening on the rear side in plan view via mounting bolts 110 and 111 that slide on the inner peripheral surface of the bearing metal. A character-shaped child carriage 48 is provided. Copy wheels 97a to 97d are rotatably provided through bearings at the front and rear, and at the four corners in the left-right direction of the lower end of the child carriage 48.

かかる構成により、子台車48は取付ボルト110、111と共に軸受メタル回りにアーム109に対して角度α(約10°)の範囲で回動でき、一方、アーム109はスライド部材104に対して回転軸108回りに角度β(約10°)の範囲で回動することができ、さらに、回転軸108が取付けられたスライド部材104は、ガイド部材101、102に対して上下方向にスライドするようになっている。即ち、子台車48は自在継手機構47を介して支持部材44に対して上下動可能、かつ前後、左右方向に首振り可能に設けられている。 With such a configuration, the child carriage 48 can be rotated together with the mounting bolts 110 and 111 around the bearing metal in the range of an angle α (about 10 °) with respect to the arm 109, while the arm 109 is a rotation shaft with respect to the slide member 104. The slide member 104 to which the rotary shaft 108 is attached can slide in the vertical direction with respect to the guide members 101 and 102. ing. That is, the child carriage 48 can be moved up and down with respect to the support member 44 via the universal joint mechanism 47 and can swing in the front-rear and left-right directions.

図7(A)、(B)及び図8に示すように、子台車48の後端部の上側には、超音波探触子11を固定するための探触子押えブロック113がねじ締結により取付けられており、探触子押えブロック113の上部には、超音波探触子11の下方に媒質水60を供給するためのホースニップル114がねじ込まれ、さらに、ホースニップル114の下端に連通する垂直な流路が探触子押えブロック113及び子台車48の下端面115まで形成されている。 As shown in FIGS. 7A, 7B, and 8, a probe holding block 113 for fixing the ultrasonic probe 11 is screwed to the upper side of the rear end portion of the child carriage 48. The hose nipple 114 for supplying the medium water 60 to the lower part of the ultrasonic probe 11 is screwed into the upper part of the probe holding block 113 and further communicates with the lower end of the hose nipple 114. A vertical flow path is formed up to the probe pressing block 113 and the lower end surface 115 of the child carriage 48.

子台車48の下端面115には、矩形枠状の水止め116がねじ締結により設けられており、かかる構成により、ホースニップル114を経由して供給される媒質水60を超音波探触子11の下面と管23の外面との隙間gに充填することができる。これによって、超音波探触子11から発振される超音波を確実に管23の外面に伝搬すると共に、管23の外面及び内面からの反射波も確実に超音波探触子11に伝搬される。 A rectangular frame-shaped water stopper 116 is provided on the lower end surface 115 of the slave carriage 48 by screw fastening. With such a configuration, the medium probe 60 supplied via the hose nipple 114 is supplied to the ultrasonic probe 11. The gap g between the lower surface of the tube and the outer surface of the tube 23 can be filled. Thereby, the ultrasonic wave oscillated from the ultrasonic probe 11 is reliably propagated to the outer surface of the tube 23, and the reflected waves from the outer surface and the inner surface of the tube 23 are also reliably propagated to the ultrasonic probe 11. .

図5及び図6に示すように、下部台車フレーム25の側壁部材87、88の上端で、しかも、超音波探触子15〜18、19〜22間には、略直方体状のマニホールド117がねじ締結により設けられている。マニホールド117の右端部の上面には、供給側の1個の大きなホースニップル118が取付けられており、マニホールド117内には、ホースニップル118に連通する流路及び該流路から分岐した12個の分岐流路が形成され、12個の分岐流路の下流端はそれぞれマニホールド117の上面に設けられた吐出側の12個の小さいホースニップル119に連通されている。各ホースニップル119と、各子台車48〜59に設けられたホースニップル114とをビニールホース(図示せず)により連結することにより、ホースニップル118を介して供給される媒質水60をホースニップル114を経由して超音波探触子11〜22直下に供給することができる。 As shown in FIGS. 5 and 6, a substantially rectangular parallelepiped manifold 117 is screwed at the upper ends of the side wall members 87 and 88 of the lower carriage frame 25 and between the ultrasonic probes 15 to 18 and 19 to 22. It is provided by fastening. One large hose nipple 118 on the supply side is attached to the upper surface of the right end portion of the manifold 117, and a flow path communicating with the hose nipple 118 and 12 branches branched from the flow path are provided in the manifold 117. A branch channel is formed, and the downstream ends of the twelve branch channels are respectively communicated with twelve small hose nipples 119 on the discharge side provided on the upper surface of the manifold 117. By connecting each hose nipple 119 and the hose nipple 114 provided in each of the child carriages 48 to 59 by a vinyl hose (not shown), the medium water 60 supplied via the hose nipple 118 is supplied to the hose nipple 114. Can be supplied directly below the ultrasonic probes 11-22.

図1〜図4に示すように、距離計62は、前側回動フレーム35の前側車輪33付近に設けられており、子台車48〜59に取付けられた超音波探触子11〜22とは別位置に設けられている。
距離計62は親台車43の前側車輪33、34及び後ろ側車輪38、39と同様、走行時には、管23の外面に常に接触して転動しており、ナイロン製の軟質材からなる測長ローラー120を備えている。距離計62は、取付ボルトを介して前側回動フレーム35の車輪取付け部材80に固定される取付ブラケット(図示せず)の先端部に設けられた固定軸の回りに回動する回動アーム121と、回動アーム121の先端部に取付けられたロータリーエンコーダ122とを有しており、ロータリーエンコーダ122の出力軸は、マグネットカップリングを介して測長ローラー120の回転軸123に取付けられている。
As shown in FIGS. 1 to 4, the distance meter 62 is provided in the vicinity of the front wheel 33 of the front rotation frame 35, and is an ultrasonic probe 11 to 22 attached to the child carriages 48 to 59. It is provided in another position.
The distance meter 62, like the front wheels 33 and 34 and the rear wheels 38 and 39 of the main carriage 43, always rolls in contact with the outer surface of the pipe 23 during traveling, and is a length measurement made of a soft material made of nylon. A roller 120 is provided. The distance meter 62 is a rotating arm 121 that rotates around a fixed shaft provided at the tip of a mounting bracket (not shown) fixed to the wheel mounting member 80 of the front rotating frame 35 via a mounting bolt. And a rotary encoder 122 attached to the tip of the rotating arm 121, and the output shaft of the rotary encoder 122 is attached to the rotating shaft 123 of the length measuring roller 120 via a magnet coupling. .

なお、図示しないが、前記取付ブラケットの上部と回動アーム121の基端部との間には、親台車43の走行時に測長ローラー120が管23の外面に常に接触して転動するように、回動アーム121を前記固定軸の反時計回りに付勢するため、コイルバネが設けられている。かかる構成によって、親台車43の走行時、測長ローラー120はコイルバネの付勢力により、管23の外面の変動に関係なく、常に外面に押し付けられて転動することにより、測長ローラー120の回転を回転軸123を介してロータリーエンコーダ122に伝達することができる。ロータリーエンコーダ122により走行位置の測定を行い、進行方向の前方に階段状に配置された12個の超音波探触子11〜22と測長ローラー120との距離を考慮して、測定位置と測定板厚を対応させている。 Although not shown, between the upper part of the mounting bracket and the base end of the rotating arm 121, the length measuring roller 120 always rolls while contacting the outer surface of the pipe 23 when the main carriage 43 is traveling. Further, a coil spring is provided to urge the rotating arm 121 counterclockwise of the fixed shaft. With this configuration, when the main carriage 43 is traveling, the length measuring roller 120 is always pressed against the outer surface and rolls by the biasing force of the coil spring regardless of the outer surface fluctuation of the tube 23, thereby rotating the length measuring roller 120. Can be transmitted to the rotary encoder 122 via the rotary shaft 123. The travel position is measured by the rotary encoder 122, and the distance between the 12 ultrasonic probes 11 to 22 and the length measuring roller 120 arranged stepwise in the forward direction is taken into account and the measurement position and measurement. Corresponds to the plate thickness.

図2及び図4に示すように、前側回動フレーム35の車輪取付け部材80の前端部には、12個の超音波探触子11〜22それぞれの信号線、多チャンネル型超音波探傷器へ接続する信号線及び電源線、ロータリーエンコーダ122の信号線等を束ねたケーブル124がケーブルコネクタ125を介して固定されている。 As shown in FIGS. 2 and 4, at the front end of the wheel mounting member 80 of the front rotating frame 35, signal lines of the 12 ultrasonic probes 11 to 22, to the multichannel ultrasonic flaw detector A cable 124 in which signal lines and power lines to be connected, signal lines of the rotary encoder 122, and the like are bundled is fixed via a cable connector 125.

図6に示すマニホールド117に設けられたホースニップル118には、図示しない水タンクに溜められた媒質水60をポンプによって供給するためのビニールホースが継手により連結されている。ケーブル124及び前記ビニールホースは両端部を除いて束ねられている。なお、水供給手段61は水タンク、ポンプ、ビニールホース及びマニホールド117以降の親台車43内の配管等を有して構成されている。 The hose nipple 118 provided in the manifold 117 shown in FIG. 6 is connected with a vinyl hose for supplying medium water 60 stored in a water tank (not shown) by a pump. The cable 124 and the vinyl hose are bundled except for both ends. The water supply means 61 includes a water tank, a pump, a vinyl hose, a pipe in the main carriage 43 after the manifold 117, and the like.

図10(A)、(B)及び図11を参照して、本発明、従来例における探触子中心間距離と管径(300〜1600mm)との関係を説明する。なお、図10(A)、(B)において、符号Lは平板F上を走行する場合の回転中心間距離(探触子取付間隔)を、符号Hは管23の外面と子台車の回転中心Oとの距離を、符号Qは本発明の管外面における探触子中心間距離を、また、符号Tは従来例の管外面における探触子中心間距離を表している。ここで、L=50mm、H=20mmとしている。 With reference to FIG. 10 (A), (B) and FIG. 11, the relationship between the probe center distance and a pipe diameter (300-1600 mm) in this invention and a prior art example is demonstrated. In FIGS. 10A and 10B, the symbol L indicates the distance between the rotation centers (probe mounting interval) when traveling on the flat plate F, and the symbol H indicates the rotation center of the outer surface of the tube 23 and the child carriage. The symbol Q represents the distance between the probe centers on the outer surface of the tube of the present invention, and the symbol T represents the distance between the probe centers on the outer surface of the tube of the conventional example. Here, L = 50 mm and H = 20 mm.

図10(A)に示す本発明では、前側の子台車48の回転中心Oは、管23の曲率半径(管径)に応じて超音波探触子11と管23との実質的に接触部分の中心Nに対して反時計廻りに回転しているので、管外面における探触子中心間距離Qは回転中心間距離Lとほとんど変わらない。一方、図10(B)に示す従来例では、前後の子台車172、173の回転中心O間の水平距離は、管23の曲率半径に関係なく、回転中心間距離Lで固定されているので、管外面における探触子中心間距離Tは回転中心間距離Lより短くなる。
従って、図11に示すように、本発明における探触子中心間距離Q、従来例における探触子中心間距離Tはそれぞれ管径によって変化するが、本発明ではQとLは略等しく、一方、従来例では、T<Lであり、特に、管径が小さくなるに従い、(L−T)が大きくなる。このため、従来例の場合には、探触子中心間距離を補正する必要があったが、本発明では補正が不要となる。
In the present invention shown in FIG. 10A, the rotation center O of the front child carriage 48 is a substantially contact portion between the ultrasonic probe 11 and the tube 23 in accordance with the radius of curvature (tube diameter) of the tube 23. Therefore, the distance Q between the probe centers on the outer surface of the tube is almost the same as the distance L between the rotation centers. On the other hand, in the conventional example shown in FIG. 10B, the horizontal distance between the rotation centers O of the front and rear child carriages 172 and 173 is fixed at the distance L between the rotation centers regardless of the radius of curvature of the tube 23. The distance T between the probe centers on the outer surface of the tube is shorter than the distance L between the rotation centers.
Accordingly, as shown in FIG. 11, the probe center distance Q in the present invention and the probe center distance T in the conventional example vary depending on the tube diameter, but in the present invention, Q and L are substantially equal. In the conventional example, T <L, and in particular, (LT) increases as the tube diameter decreases. For this reason, in the case of the conventional example, it is necessary to correct the distance between the centers of the probes. However, in the present invention, correction is not necessary.

次いで、本発明の一実施の形態に係る超音波測定装置10を用いた管23の板厚測定方法について、図を参照しながら説明する。
事前に、親台車43及び子台車48〜59内において、媒質水60を供給するための水配管、及びケーブル124と超音波探触子11〜22、ロータリーエンコーダ122との配線等を行う。また、パソコン、多チャンネル型超音波探傷器、ポンプ等を所定の場所に設置し、親台車43及び子台車48〜59と多チャンネル型超音波探傷器及びポンプとの間のケーブル124やビニールホースの結線、配管や、パソコン、多チャンネル型超音波探傷器間の配線等、必要な配線及び測定前の調整作業を行う。
Next, a method for measuring the thickness of the tube 23 using the ultrasonic measurement apparatus 10 according to an embodiment of the present invention will be described with reference to the drawings.
In advance, in the master carriage 43 and the slave carriages 48 to 59, water piping for supplying the medium water 60, wiring between the cable 124, the ultrasonic probes 11 to 22, the rotary encoder 122, and the like are performed. In addition, a personal computer, a multi-channel ultrasonic flaw detector, a pump, etc. are installed in a predetermined place, and a cable 124 and a vinyl hose between the main cart 43 and the sub-carts 48 to 59 and the multi-channel ultrasonic flaw detector and pump. Necessary wiring and adjustment work before measurement, such as wiring, piping, wiring between personal computers and multi-channel ultrasonic flaw detectors.

図9(C)に示すように、測定する管23の曲率半径rに応じて、それぞれ4個の超音波探触子11〜14、15〜18、19〜22を取付けた支持部材44〜46を、長孔92、93、長孔94、長孔95、96を介して下部台車フレーム25に位置決めしてねじSにより固定する。
曲率調整ノブ75、76によりウォームシャフト73、74を回転して、測定する管23の曲率半径rに応じて、前側回動フレーム35、後ろ側回動フレーム40を回動し、走行方向が円周方向になるように親台車43及び子台車48〜59を、例えば、管23の円周方向の最高位置を基準として配置する。
As shown in FIG. 9C, the support members 44 to 46 to which the four ultrasonic probes 11 to 14, 15 to 18, and 19 to 22 are attached according to the curvature radius r of the tube 23 to be measured. Are positioned on the lower carriage frame 25 through the long holes 92 and 93, the long holes 94, and the long holes 95 and 96, and fixed with screws S.
The worm shafts 73 and 74 are rotated by the curvature adjusting knobs 75 and 76, and the front rotating frame 35 and the rear rotating frame 40 are rotated in accordance with the curvature radius r of the tube 23 to be measured. For example, the parent carriage 43 and the child carriages 48 to 59 are arranged so as to be in the circumferential direction with reference to the highest position of the pipe 23 in the circumferential direction.

永久磁石41、42によって親台車43を管23の外面に吸着させ、水供給手段61を作動して、子台車48〜59の下部に設けられた水止め116に媒質水60を供給することにより、各超音波探触子11〜22と管23の外面との隙間gに媒質水60を常時充填する。
親台車43を管23の外面を円周方向に走行させる(測定速度は2m/分程度)。
By attracting the main carriage 43 to the outer surface of the pipe 23 by the permanent magnets 41 and 42, the water supply means 61 is operated to supply the medium water 60 to the water stopper 116 provided at the lower part of the child carriages 48 to 59. The medium water 60 is always filled in the gap g between each of the ultrasonic probes 11 to 22 and the outer surface of the tube 23.
The main carriage 43 is caused to travel in the circumferential direction on the outer surface of the pipe 23 (measurement speed is about 2 m / min).

親台車43の走行中、子台車48〜59に取付けられている超音波探触子11〜22及び親台車43に取付けられているロータリーエンコーダ122によって、それぞれ管23の測定位置の板厚及び測定位置に対応する親台車43の走行位置を、実質的に連続して円周方向に1周分、測定幅J(=150mm)で測定する(図6参照)。この際、各超音波探触子11〜22と管23の外面との隙間gには媒質水60が常時充填されているので、各超音波探触子11〜22からの超音波を確実に内面に伝搬すると共に、管23の外面からの反射波も確実に各超音波探触子11〜22に伝搬され、これにより正確な測定をすることができる。 While the main carriage 43 is traveling, the plate thickness and measurement of the measurement position of the pipe 23 are measured by the ultrasonic probes 11 to 22 attached to the child carriages 48 to 59 and the rotary encoder 122 attached to the parent carriage 43, respectively. The travel position of the main carriage 43 corresponding to the position is measured substantially continuously for one round in the circumferential direction with a measurement width J (= 150 mm) (see FIG. 6). At this time, since the gap water between the ultrasonic probes 11 to 22 and the outer surface of the tube 23 is always filled with the medium water 60, the ultrasonic waves from the ultrasonic probes 11 to 22 are surely received. While propagating to the inner surface, the reflected wave from the outer surface of the tube 23 is also reliably propagated to each of the ultrasonic probes 11 to 22, thereby enabling accurate measurement.

各超音波探触子11〜22の出力に基づいて多チャンネル型超音波探傷器によって測定された板厚、距離計62のロータリーエンコーダ122によって測定された走行位置をパソコンの演算処理手段(制御装置の演算部)によりデータ処理して、演算結果(管23の測定位置毎の損傷状況等)を、例えば、パソコンのディスプレイに同時に表示する。
親台車43を管23の円周方向に1周させると、親台車43の走行を停止し、親台車43を、測定幅Jに、例えば、ラップ代R=30mmを設けて下流側で、しかも、円周方向の基準位置に配置し直す。従って、有効測定幅U(=測定幅J−ラップ代R)は120mmとなる(図6参照)。以降、前記を繰り返して、管23の管軸方向に所定の長さについて測定を行う。
The plate thickness measured by the multi-channel ultrasonic flaw detector based on the outputs of the ultrasonic probes 11 to 22 and the travel position measured by the rotary encoder 122 of the distance meter 62 are calculated by computer processing means (control device). The data is processed by the calculation unit), and the calculation result (damage status at each measurement position of the tube 23) is simultaneously displayed on, for example, a personal computer display.
When the main carriage 43 is rotated once in the circumferential direction of the pipe 23, the travel of the main carriage 43 is stopped, and the main carriage 43 is provided on the downstream side with a measurement width J of, for example, a lap allowance R = 30 mm. , Reposition at the reference position in the circumferential direction. Accordingly, the effective measurement width U (= measurement width J−lap margin R) is 120 mm (see FIG. 6). Thereafter, the above is repeated, and measurement is performed for a predetermined length in the tube axis direction of the tube 23.

本発明は前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲での変更は可能であり、例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の超音波測定装置を構成する場合も本発明の権利範囲に含まれる。
前記実施の形態では、管23の管径(曲率半径)に応じて支持部材44〜46の取付け位置を変えても、隣り合う各超音波探触子11〜22の測定位置(探触子中心間距離Q)が一定の範囲にあるようにしたが、これに限定されず、必要に応じて、従来例のように支持部材の取付け位置を固定することもできる。
The present invention is not limited to the above-described embodiments, and can be changed without departing from the gist of the present invention. For example, some or all of the above-described embodiments and modifications are included. The case where the ultrasonic measurement device of the present invention is configured in combination is also included in the scope of the right of the present invention.
In the embodiment, even if the mounting positions of the support members 44 to 46 are changed according to the tube diameter (curvature radius) of the tube 23, the measurement positions (probe centers) of the adjacent ultrasonic probes 11 to 22 are changed. Although the distance Q) is in a certain range, the present invention is not limited to this, and the mounting position of the support member can be fixed as in the prior art as needed.

前側回動軸29及び後ろ側回動軸30に設けられたウォームホイール71、72と、ウォームホイール71、72に噛合して回転駆動されるウォームシャフト73、74により回動調整機構27、28を構成したが、これに限定されず、必要に応じて、その他の回動調整機構により前側回動軸及び後ろ側回動軸を駆動することもできる。
前側車輪33、34及び後ろ側車輪38、39のタイヤはウレタンゴムからなる軟質材を用いたが、これに限定されず、必要に応じて、その他の軟質材を使用することもでき、更に、金属等の硬質材を用いることもできる。
Rotation adjusting mechanisms 27 and 28 are provided by worm wheels 71 and 72 provided on the front rotation shaft 29 and the rear rotation shaft 30 and worm shafts 73 and 74 engaged with the worm wheels 71 and 72 and driven to rotate. Although it comprised, it is not limited to this, A front side rotation axis | shaft and a back side rotation axis | shaft can also be driven with another rotation adjustment mechanism as needed.
The tires of the front wheels 33 and 34 and the rear wheels 38 and 39 are made of a soft material made of urethane rubber. However, the present invention is not limited to this, and other soft materials can be used if necessary. A hard material such as metal can also be used.

手動で親台車を移動させることができ、必要に応じて、前側車輪33、34及び後ろ側車輪38、39を独立に減速電動機を設けて走行させることもでき、また、その他の構造の駆動手段を設けることもできる。
台車フレーム26を上部台車フレーム24と下部台車フレーム25で構成したが、これに限定されず、必要に応じて、上部台車フレームと下部台車フレームとを一体で構成することもできる。
The main carriage can be moved manually, and if necessary, the front wheels 33 and 34 and the rear wheels 38 and 39 can be independently driven by a reduction motor, and driving means of other structures can be used. Can also be provided.
Although the cart frame 26 is composed of the upper cart frame 24 and the lower cart frame 25, the present invention is not limited to this, and the upper cart frame and the lower cart frame can be integrally configured as necessary.

超音波探触子11〜22を1列に4個で3列に階段状に配置したが、これに限定されず、必要に応じて、超音波探触子を1列に2、3個又は5個以上で、2列(千鳥状)又は4列以上(階段状)に配置することもできる。
ロータリーエンコーダ122を前側回動フレーム35に取付けたが、これに限定されず、必要に応じて、後ろ側回動フレームに取付けることもできる。
親台車43は前方向に移動するように説明したが、これに限定されず、必要に応じて、後ろ方向にも移動することができる。
Although the ultrasonic probes 11 to 22 are arranged in four rows in one row and in three rows in a staircase shape, the invention is not limited to this, and as required, two, three or three ultrasonic probes are arranged in one row. It can be arranged in 5 rows or more, 2 rows (staggered shape), or 4 rows or more (step shape).
Although the rotary encoder 122 is attached to the front turning frame 35, the present invention is not limited to this, and can be attached to the rear turning frame as necessary.
Although the master carriage 43 has been described as moving in the forward direction, the present invention is not limited to this, and can be moved in the backward direction as necessary.

本発明の一実施の形態に係る超音波測定装置の正面図である。1 is a front view of an ultrasonic measurement apparatus according to an embodiment of the present invention. 同超音波測定装置の平面図である。It is a top view of the same ultrasonic measuring device. 同超音波測定装置の上部台車フレームを備えた親台車の正面図である。It is a front view of the main trolley | bogie provided with the upper trolley | bogie frame of the same ultrasonic measuring device. 同超音波測定装置の上部台車フレームを備えた親台車の平面図である。It is a top view of the main trolley | bogie provided with the top trolley | bogie frame of the same ultrasonic measuring device. 同超音波測定装置の下部台車フレーム及び子台車の正面図である。It is a front view of a lower trolley frame and a child trolley of the same ultrasonic measuring device. 同超音波測定装置の下部台車フレーム及び子台車の平面図である。It is a top view of a lower trolley frame and a child trolley of the same ultrasonic measuring device. (A)、(B)はそれぞれ、同超音波測定装置の自在継手機構が設けられた子台車の平面図、正面図である。(A) and (B) are respectively a plan view and a front view of a child carriage provided with a universal joint mechanism of the same ultrasonic measurement apparatus. 同超音波測定装置の自在継手機構が設けられた子台車の側面図である。It is a side view of the sub trolley | bogie provided with the universal joint mechanism of the same ultrasonic measuring device. (A)、(B)、(C)はそれぞれ、平面、曲率半径が大きい曲面、曲率半径が小さい曲面を走行する3列の子台車の取付け状態を示す説明図である。(A), (B), (C) is explanatory drawing which shows the attachment state of the 3 rows | row child trolley | bogie which drive | works a plane, a curved surface with a large curvature radius, and a curved surface with a small curvature radius, respectively. (A)、(B)は、本発明及び従来例における探触子中心間距離を比較した説明図である。(A), (B) is explanatory drawing which compared the distance between probe centers in this invention and a prior art example. 本発明及び従来例における探触子中心間距離を管径で比較した説明図である。It is explanatory drawing which compared the distance between probe centers in this invention and a prior art example by the pipe diameter. (A)、(B)は、従来例に係る超音波測定装置の探触子中心間距離を示す説明図である。(A), (B) is explanatory drawing which shows the distance between probe centers of the ultrasonic measuring apparatus which concerns on a prior art example.

符号の説明Explanation of symbols

10:超音波測定装置、11〜22:超音波探触子、23、23a:管、24:上部台車フレーム、25:下部台車フレーム、26:台車フレーム、27、28:回動調整機構、29:前側回動軸、30:後ろ側回動軸、31、32:基部、33、34:前側車輪、35:前側回動フレーム、36、37:基部、38、39:後ろ側車輪、40:後ろ側回動フレーム、41、42:永久磁石、43:親台車、44〜46:支持部材、47:自在継手機構、48〜59:子台車、60:媒質水、61:水供給手段、62:距離計、63:前板、64:後ろ板、65:右板、66:左板、67、68:切欠き孔、69、70:軸受、71、72:ウォームホイール、73:ウォームシャフト、73a、73b:軸受、74:ウォームシャフト、74a、74b:軸受、75、76:曲率調整ノブ、77、78:アーム部材、79:連結部材、80、81:車輪取付け部材、86:取付けブラケット、87、88:側壁部材、89、90:連結部材、91a〜91c:切欠き孔、92、93:長孔、94:長孔、95、96:長孔、97a〜97d:倣い車輪、98:ホルダーベース、99、100:掛合突起、101、102:ガイド部材、103:スライドボール、104:スライド部材、105:後面、106:バネストッパー、107:コイルスプリング、108:回転軸、109:アーム、110、111:取付ボルト、113:探触子押えブロック、114:ホースニップル、115:下端面、116:水止め、117:マニホールド、118:ホースニップル、119:ホースニップル、120:測長ローラー、121:回動アーム、122:ロータリーエンコーダ、123:回転軸、124:ケーブル、125:ケーブルコネクタ 10: Ultrasonic measuring device, 11-22: Ultrasonic probe, 23, 23a: Tube, 24: Upper bogie frame, 25: Lower bogie frame, 26: Bogie frame, 27, 28: Rotation adjustment mechanism, 29 : Front rotation shaft, 30: Rear rotation shaft, 31, 32: Base, 33, 34: Front wheel, 35: Front rotation frame, 36, 37: Base, 38, 39: Rear wheel, 40: Back side rotation frame, 41, 42: permanent magnet, 43: master carriage, 44 to 46: support member, 47: universal joint mechanism, 48 to 59: slave carriage, 60: medium water, 61: water supply means, 62 : Distance meter, 63: Front plate, 64: Rear plate, 65: Right plate, 66: Left plate, 67, 68: Notch hole, 69, 70: Bearing, 71, 72: Worm wheel, 73: Worm shaft, 73a, 73b: bearing, 74: worm shaft, 7 a, 74b: Bearing, 75, 76: Curvature adjustment knob, 77, 78: Arm member, 79: Connecting member, 80, 81: Wheel mounting member, 86: Mounting bracket, 87, 88: Side wall member, 89, 90: Connecting member, 91a to 91c: Notch hole, 92, 93: Long hole, 94: Long hole, 95, 96: Long hole, 97a to 97d: Copy wheel, 98: Holder base, 99, 100: Engaging protrusion, 101 , 102: guide member, 103: slide ball, 104: slide member, 105: rear surface, 106: spring stopper, 107: coil spring, 108: rotating shaft, 109: arm, 110, 111: mounting bolt, 113: probe Child presser block, 114: Hose nipple, 115: Lower end surface, 116: Water stopper, 117: Manifold, 118: Hose nipple, 119: E Sunippuru, 120: measurement roller 121: rotary arm, 122: rotary encoder 123: rotary shaft, 124: Cable, 125: cable connector

Claims (4)

千鳥状又は階段状に並べて配置された複数の超音波探触子を測定対象物の円周方向に沿って移動させ、前記各超音波探触子を同時に作動させる多チャンネル型超音波探傷器、並びに前記超音波探触子の出力及び距離計からの出力を基準にして、前記測定対象物の位置毎の損傷状況を出力する演算部を有する制御装置を備え、前記測定対象物の損傷状況を測定する超音波測定装置であって、
(1)中央に空間部を有する台車フレームと、該台車フレームの前後に設けられそれぞれ回動調整機構を備えた前側及び後ろ側回動軸と、該前側回動軸の両側に基部が取付けられ、先部には左右対となる前側車輪が設けられた前側回動フレームと、前記後ろ側回動軸の両側に基部が取付けられ、先部には左右対となる後ろ側車輪が設けられた後ろ側回動フレームと、前記前側回動フレーム及び後ろ側回動フレームの底部に前記測定対象物とは一定の隙間を有して設けられた永久磁石とを有する親台車と、
(2)前記台車フレームの空間部を幅方向に跨ぐ複数の支持部材にそれぞれ自在継手機構を介して取付けられた複数の子台車と、
(3)それぞれの前記子台車に搭載され、前記測定対象物とは僅少の隙間を有して配置された前記超音波探触子と、
(4)前記超音波探触子と前記測定対象物との間に形成された前記隙間に媒質水を供給する水供給手段と、
(5)前記親台車に取付けられて、該親台車の走行距離を測定する前記距離計とを備えたことを特徴とする超音波測定装置。
A multi-channel ultrasonic flaw detector that moves a plurality of ultrasonic probes arranged in a staggered or stepwise manner along the circumferential direction of the measurement object, and simultaneously operates the ultrasonic probes, And a control device having a calculation unit that outputs a damage state for each position of the measurement object on the basis of the output of the ultrasonic probe and the output from the distance meter, the damage state of the measurement object An ultrasonic measuring device for measuring,
(1) A carriage frame having a space in the center, front and rear turning shafts provided on the front and rear sides of the carriage frame, each having a turning adjustment mechanism, and bases attached to both sides of the front turning shaft. The front part is provided with a front turning frame provided with a pair of left and right front wheels, and a base part is attached to both sides of the rear turning shaft, and the front part is provided with a pair of left and right rear wheels. A main carriage having a rear rotation frame, and a permanent magnet provided at a bottom of the front rotation frame and the rear rotation frame with a certain gap from the measurement object;
(2) a plurality of child carriages each attached to a plurality of support members straddling the space portion of the carriage frame in the width direction via universal joint mechanisms;
(3) the ultrasonic probe mounted on each of the child carriages and disposed with a slight gap from the measurement object;
(4) water supply means for supplying medium water to the gap formed between the ultrasonic probe and the measurement object;
(5) An ultrasonic measurement apparatus comprising: the distance meter attached to the parent carriage for measuring a travel distance of the parent carriage.
請求項1記載の超音波測定装置において、前記複数の支持部材は前記台車フレームの空間部の両側に設けられた側壁部材に長孔を貫通するねじを介して取付けられ、しかも、前記長孔は、前記測定対象物の直径に応じて前記支持部材の取付け位置を変えても前記支持部材及び子台車を介して取付けられる隣り合う前記各超音波探触子の測定位置が一定の範囲にあるように形成されていることを特徴とする超音波測定装置。 The ultrasonic measurement apparatus according to claim 1, wherein the plurality of support members are attached to side wall members provided on both sides of the space portion of the carriage frame via screws that penetrate the long holes, and the long holes are Even if the mounting position of the support member is changed according to the diameter of the measurement object, the measurement positions of the adjacent ultrasonic probes mounted via the support member and the slave carriage are within a certain range. An ultrasonic measurement device characterized in that the ultrasonic measurement device is formed. 請求項1及び2のいずれか1項に記載の超音波測定装置において、前記回動調整機構は、前記前側回動軸及び後ろ側回動軸に設けられたウォームホイールと、該ウォームホイールに噛合して回転駆動されるウォームシャフトとを有していることを特徴とする超音波測定装置。 3. The ultrasonic measurement apparatus according to claim 1, wherein the rotation adjustment mechanism is engaged with a worm wheel provided on the front rotation shaft and a rear rotation shaft, and the worm wheel. And a worm shaft that is rotationally driven. 請求項1〜3のいずれか1項に記載の超音波測定装置において、前記前側車輪及び後ろ側車輪のタイヤは軟質材からなっていることを特徴とする超音波測定装置。 The ultrasonic measurement apparatus according to claim 1, wherein tires of the front wheel and the rear wheel are made of a soft material.
JP2005053550A 2005-02-28 2005-02-28 Ultrasonic measuring device Expired - Fee Related JP4441421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053550A JP4441421B2 (en) 2005-02-28 2005-02-28 Ultrasonic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005053550A JP4441421B2 (en) 2005-02-28 2005-02-28 Ultrasonic measuring device

Publications (2)

Publication Number Publication Date
JP2006234761A true JP2006234761A (en) 2006-09-07
JP4441421B2 JP4441421B2 (en) 2010-03-31

Family

ID=37042555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053550A Expired - Fee Related JP4441421B2 (en) 2005-02-28 2005-02-28 Ultrasonic measuring device

Country Status (1)

Country Link
JP (1) JP4441421B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130710A (en) * 2005-11-09 2007-05-31 Jfe Steel Kk Self-propelled truck for inspection instrument
JP2007132713A (en) * 2005-11-08 2007-05-31 Shin Nippon Hihakai Kensa Kk Ultrasonic thickness-measuring device
WO2009123035A1 (en) * 2008-03-31 2009-10-08 住友金属工業株式会社 Method and device for ulatrasonic flaw probing
JP2009236613A (en) * 2008-03-26 2009-10-15 Asahi Kasei Chemicals Corp Inspection apparatus of piping and inspection method of the same
JP2010018158A (en) * 2008-07-10 2010-01-28 Taihei Kogyo Co Ltd Inspection apparatus of piping or the like
JP2010096779A (en) * 2010-02-04 2010-04-30 Sumitomo Metal Ind Ltd Ultrasonic flaw detection device
JP2011027506A (en) * 2009-07-23 2011-02-10 Shin Nippon Hihakai Kensa Kk Piping thickness reduction measuring apparatus and piping thickness reduction measuring method using the same
JP2012173068A (en) * 2011-02-18 2012-09-10 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detection apparatus
JP2013124891A (en) * 2011-12-14 2013-06-24 Mitsubishi Heavy Ind Ltd Ultrasonic flaw inspection device
JP2014505247A (en) * 2011-01-04 2014-02-27 サウジ アラビアン オイル カンパニー Ultrasonic corrosion monitoring sensor assembly and system
JP2017104954A (en) * 2015-12-11 2017-06-15 住友重機械工業株式会社 Working robot
CN111896554A (en) * 2020-07-23 2020-11-06 山东特种设备检验检测集团有限公司 A atmospheric pressure storage tank wall climbing robot for miniature physiognomy in surface detects
WO2021194811A1 (en) * 2020-03-24 2021-09-30 Baker Hughes Holdings Llc Vehicle suspension with coupled, pivoting, opposing support legs
CN114414661A (en) * 2022-03-29 2022-04-29 江苏凤坡工程机械有限公司 Debugging device of welding seam detection equipment of mining equipment conveying pipeline

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101279405B1 (en) * 2012-01-10 2013-07-05 케이엔디이주식회사 The nondestructive testing apparatus for tower flange
CN108333254B (en) * 2017-12-29 2020-07-17 上海天阳钢管有限公司 Ultrasonic probe system for detecting delamination defect of double-metal seamless composite steel pipe bonding layer

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132713A (en) * 2005-11-08 2007-05-31 Shin Nippon Hihakai Kensa Kk Ultrasonic thickness-measuring device
JP4740718B2 (en) * 2005-11-08 2011-08-03 新日本非破壊検査株式会社 Ultrasonic thickness measuring device
JP4670599B2 (en) * 2005-11-09 2011-04-13 Jfeスチール株式会社 Self-propelled cart for inspection equipment
JP2007130710A (en) * 2005-11-09 2007-05-31 Jfe Steel Kk Self-propelled truck for inspection instrument
JP2009236613A (en) * 2008-03-26 2009-10-15 Asahi Kasei Chemicals Corp Inspection apparatus of piping and inspection method of the same
CN101983334B (en) * 2008-03-31 2013-10-02 新日铁住金株式会社 Method and device for ulatrasonic flaw probing
US8544329B2 (en) 2008-03-31 2013-10-01 Nippon Steel & Sumitomo Metal Corporation Ultrasonic testing method and equipment therefor
JP4524764B2 (en) * 2008-03-31 2010-08-18 住友金属工業株式会社 Ultrasonic flaw detection method and apparatus
US9335301B2 (en) 2008-03-31 2016-05-10 Nippon Steel & Sumitomo Metal Corporation Ultrasonic testing method and equipment therefor
CN101983334A (en) * 2008-03-31 2011-03-02 住友金属工业株式会社 Method and device for ulatrasonic flaw probing
WO2009123035A1 (en) * 2008-03-31 2009-10-08 住友金属工業株式会社 Method and device for ulatrasonic flaw probing
JP2009244060A (en) * 2008-03-31 2009-10-22 Sumitomo Metal Ind Ltd Ultrasonic flaw detection method and device
JP2010018158A (en) * 2008-07-10 2010-01-28 Taihei Kogyo Co Ltd Inspection apparatus of piping or the like
JP2011027506A (en) * 2009-07-23 2011-02-10 Shin Nippon Hihakai Kensa Kk Piping thickness reduction measuring apparatus and piping thickness reduction measuring method using the same
JP2010096779A (en) * 2010-02-04 2010-04-30 Sumitomo Metal Ind Ltd Ultrasonic flaw detection device
JP2014505247A (en) * 2011-01-04 2014-02-27 サウジ アラビアン オイル カンパニー Ultrasonic corrosion monitoring sensor assembly and system
JP2012173068A (en) * 2011-02-18 2012-09-10 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detection apparatus
JP2013124891A (en) * 2011-12-14 2013-06-24 Mitsubishi Heavy Ind Ltd Ultrasonic flaw inspection device
JP2017104954A (en) * 2015-12-11 2017-06-15 住友重機械工業株式会社 Working robot
WO2021194811A1 (en) * 2020-03-24 2021-09-30 Baker Hughes Holdings Llc Vehicle suspension with coupled, pivoting, opposing support legs
CN111896554A (en) * 2020-07-23 2020-11-06 山东特种设备检验检测集团有限公司 A atmospheric pressure storage tank wall climbing robot for miniature physiognomy in surface detects
CN111896554B (en) * 2020-07-23 2023-07-14 山东特种设备检验检测集团有限公司 A ordinary pressure storage tank wall climbing robot for miniature appearance detection in surface
CN114414661A (en) * 2022-03-29 2022-04-29 江苏凤坡工程机械有限公司 Debugging device of welding seam detection equipment of mining equipment conveying pipeline

Also Published As

Publication number Publication date
JP4441421B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP4441421B2 (en) Ultrasonic measuring device
JP4255674B2 (en) Thickness measuring system for large diameter pipes
JP2007285772A (en) Pipe inspection method, and pipe inspection device used therefor
JP4883395B2 (en) Trackless pipe inspection system
CN209811506U (en) Long-distance spiral welded pipe flaw detector
JP4740718B2 (en) Ultrasonic thickness measuring device
JP2004125752A (en) Measuring apparatus and measuring method
JP5740283B2 (en) Pipe thickness measuring device
JP6458818B2 (en) Elongation measuring device and elongation measuring method
JP4707594B2 (en) In-pipe inspection device
KR20170111668A (en) The breaker for pipe cleaning
CN116039696A (en) Steel rail ultrasonic wheel type detection wheel assembly with automatic centering function and flaw detection vehicle
CN210476958U (en) Water-cooled wall inspection robot
CN114424060A (en) Mobile inspection device, mobile inspection method, and method for manufacturing steel material
JP2003302217A (en) Self-running steel pipe inspection device, motor truck running in steel pipe, driving truck and sensor truck
JP2008304430A (en) Probe holder and probe holder assembly
JP3822149B2 (en) Method for measuring the thickness of a hydraulic iron pipe
JP5171753B2 (en) Pipe thinning measuring device and pipe thinning measuring method using the same
JP2009001069A (en) Travelling device between opposing surfaces
JP3928260B2 (en) Turning posture correction device for work vehicle in tunnel
CN112557509A (en) Phased array probe frame and detection system for pipeline flaw detection
KR20110051530A (en) Automatic welding device for cylindrical member
CN220153519U (en) Glass thickness measuring device
CN219728390U (en) Wall climbing robot for nondestructive testing of inner wall of pressure steel pipe
JPH0891210A (en) In-pipe working device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4441421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees