JP2006232793A - New functional electron acceptor and its functional metal complex polymer - Google Patents

New functional electron acceptor and its functional metal complex polymer Download PDF

Info

Publication number
JP2006232793A
JP2006232793A JP2005082589A JP2005082589A JP2006232793A JP 2006232793 A JP2006232793 A JP 2006232793A JP 2005082589 A JP2005082589 A JP 2005082589A JP 2005082589 A JP2005082589 A JP 2005082589A JP 2006232793 A JP2006232793 A JP 2006232793A
Authority
JP
Japan
Prior art keywords
metal complex
formula
functional
compound
electron acceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005082589A
Other languages
Japanese (ja)
Other versions
JP2006232793A5 (en
Inventor
Makoto Tadokoro
誠 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005082589A priority Critical patent/JP2006232793A/en
Publication of JP2006232793A publication Critical patent/JP2006232793A/en
Publication of JP2006232793A5 publication Critical patent/JP2006232793A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a functional metal complex which has a new skeleton structure and good conductivity and can be used as an organic conductive material or magnetic material. <P>SOLUTION: This functional metal complex polymer obtained from a compound of formula (1) (R is H, Cl, Br, F, NO<SB>2</SB>, CN, or Ph group) as an electron acceptor and any other metal ion as an electron donor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、分子回路等の配線、各種有機導電性材料に使用可能な新たな骨格構造を持つ有機受容体を用いた高伝導性金属錯体高分子あるいは新しい分子磁性化合物に関するものである。  The present invention relates to a highly conductive metal complex polymer or a new molecular magnetic compound using an organic receptor having a new skeletal structure that can be used for wiring such as molecular circuits and various organic conductive materials.

金属錯体高分子に基づいた伝導体・磁性体は、銅、アルミニウム等の金属材料に比べて軽量であり、腐食しない等の特徴を有しているので、注目されてきている。さらに、金属材料に比べて分子骨格を基盤とした物質であるため、機能性をデザインすることが可能であり、また豊富に存在する資源を原料にして製造されることも優れた点である。  Conductors and magnetic materials based on metal complex polymers have attracted attention because they are lighter than metal materials such as copper and aluminum, and do not corrode. Furthermore, since it is a substance based on a molecular skeleton compared to a metal material, it is possible to design functionality, and it is also excellent that it is manufactured using abundant resources as raw materials.

金属錯体自身は、電気絶縁体であり、これに伝導性を付与するには、金属イオンとその有機化合物部位あるいはその有機化合物同士の電荷移動相互作用を利用するのが、一般的である。これまで金属イオンと相互作用する有機電子受容体の骨格構造の種類は、例えばテトラシアノキノジメタン(DCNQI)(非特許文献1参照)及びジシアノベンゾキノンジイミン(TCNQ)(非特許文献2参照)など、ほんの数例しか存在しないため、新規な骨格構造を持つ有機電子受容体の開発が待たれていた。
Z.Hanhua,el.al.,Inorg.Chem.38(1),144−156(1999) A.Alexander,et.al.,Angew.Chem.98(8),759−761(1986) K.M.Dumber et.al.Inorg.Chem.,38,144−156(1999)
The metal complex itself is an electrical insulator, and in order to impart conductivity to the metal complex, it is common to use a charge transfer interaction between the metal ion and its organic compound site or between the organic compounds. The types of skeleton structures of organic electron acceptors that interact with metal ions are, for example, tetracyanoquinodimethane (DCNQI) (see Non-Patent Document 1) and dicyanobenzoquinone diimine (TCNQ) (see Non-Patent Document 2). Since there are only a few examples, development of an organic electron acceptor having a novel skeleton structure has been awaited.
Z. Hanhua, el. al. Inorg. Chem. 38 (1), 144-156 (1999) A. Alexander, et. al. , Angew. Chem. 98 (8), 759-761 (1986) K. M.M. Dumber et. al. Inorg. Chem. , 38, 144-156 (1999)

発明を解決しようとする課題Problems to be solved by the invention

しかしながら、従来の伝導性錯体高分子を作る有機電子受容体では、DCNQIのCu錯体(非特許文献1参照)以外、良好な伝導性は得られるものはなかった。そのため、すでに多くの誘導体が合成・調査されて、新しい物性現象が望めなくなっていた。  However, none of the conventional organic electron acceptors for producing a conductive complex polymer can obtain good conductivity other than the DCNQI Cu complex (see Non-Patent Document 1). For this reason, many derivatives have already been synthesized and investigated, and new physical property phenomena cannot be expected.

比較的容易に化学合成でき、新規な化学構造を持ち、しかも高い伝電性及び磁性を得ることが出来る機能性金属錯体高分子を得ることである。  It is to obtain a functional metal complex polymer that can be chemically synthesized relatively easily, has a new chemical structure, and can obtain high electrical conductivity and magnetism.

課題を解決するための手段Means for solving the problem

この新規Cu−TANCの高伝導体錯体は伝導性でも磁性でもCu−DCNQIのものとは全く違った性質を示し、その伝導性や磁性を新しい物質開発に適応することができる。  This novel Cu-TANC high-conductivity complex exhibits completely different properties from those of Cu-DCNQI, both in terms of conductivity and magnetism, and can be adapted to the development of new materials.

即ち、本発明は下記式(1)で示される新規有機物電子受容体である。

Figure 2006232793
(式中、Rは、H、Cl、Br、Me、CN、Ph基である)That is, the present invention is a novel organic electron acceptor represented by the following formula (1).
Figure 2006232793
(In the formula, R is H, Cl, Br, Me, CN, Ph group)

さらに、本発明は前記式(1)で示される化合物を電子受容体とし、他の金属イオンを電子供与体とする式(2)で示される伝導性錯体高分子および機能性分子磁性体である。

Figure 2006232793
(式中、Mは、Cu、Ag、Auであり、mは1〜3である。Xは、F、Cl、Br
Figure 2006232793
0である。mが1から3へ、またはnが0.5から1.0へと移るに従って伝導体から磁性体へと変わる。)Further, the present invention is a conductive complex polymer and a functional molecular magnetic substance represented by the formula (2) in which the compound represented by the formula (1) is an electron acceptor and another metal ion is an electron donor. .
Figure 2006232793
(In the formula, M is Cu, Ag, Au, and m is 1 to 3. X is F , Cl , Br.
Figure 2006232793
0. As m shifts from 1 to 3 or n shifts from 0.5 to 1.0, the conductor changes to a magnetic substance. )

本発明の式(1)の新規有機電子受容体(以下「化合物(1)」という)の合成は、例えば下記に示す方法で容易に合成することができる。

Figure 2006232793
The novel organic electron acceptor (hereinafter referred to as “compound (1)”) of the formula (1) of the present invention can be easily synthesized by, for example, the method shown below.
Figure 2006232793

本発明の化合物(1)は1電子還元することで安定なアニオンラジカルを発生することができる。

Figure 2006232793
The compound (1) of the present invention can generate a stable anion radical by one-electron reduction.
Figure 2006232793

本発明の式(2)の電子供与体(以下「化合物(2)」という)の合成は、例えば化合物(1)(TANC)を電子受容体とし下記に示す方法で容易に合成できる。

Figure 2006232793
The synthesis of the electron donor of the formula (2) of the present invention (hereinafter referred to as “compound (2)”) can be easily synthesized by the following method using, for example, the compound (1) (TANC) as an electron acceptor.
Figure 2006232793

発明の効果The invention's effect

本発明により得られる銅イオンを用いた高伝導性錯体高分子は、d軌道とπ軌道を絡めた高伝導物性を有している。例えば本発明の化合物では、およそ100Scm−1に達する伝導性を有する結晶が得られている。これは化合物(1)と銅イオンが1:1で順次配位結合で連なっている1次元の構造をとり、この鎖が化合物(1)同士を積層した分離積層型をとった2次元のラダー型をもっているからである。この2次元ラダー間はディスオーダーしたフッ素イオンの層で隔てられている為にこのような高伝導性を有している。TCNQ−Cu錯体高分子のように膜化(非特許文献3参照)できるため、スイッチング素子やトランジスター機能を導くことができる。The highly conductive complex polymer using copper ions obtained by the present invention has high conductive properties in which d orbitals and π orbitals are entangled. For example, in the compound of the present invention, a crystal having conductivity reaching approximately 100 Scm −1 has been obtained. This has a one-dimensional structure in which the compound (1) and the copper ion are sequentially linked by a coordinate bond at 1: 1, and this chain is a two-dimensional ladder having a separate laminated type in which the compounds (1) are laminated. Because it has a type. Since the two-dimensional ladder is separated by a disordered fluorine ion layer, it has such high conductivity. Since it can be formed into a film like a TCNQ-Cu complex polymer (see Non-Patent Document 3), a switching element and a transistor function can be derived.

本発明は、先ず式(1)で示される機能性電子受容体化合物(1)の合成からはじまり、かかる化合物はキノキサリンとオルトフェニレンジアミン誘導体からフルオロフラビン誘導体を得て、ついでこの化合物をトルエン中で酸化鉛あるいはDDQ(2,3−dichloro−5,6−dicyanoquinone)などの酸化剤の存在下で、酸化反応を行うと容易に合成することが出来る。他方、電子供与体化合物(2)は、化合物(1)と各種金属イオン化合物から有機溶媒中で容易に合成できる。  The present invention begins with the synthesis of a functional electron acceptor compound (1) represented by the formula (1), which obtains a fluoroflavin derivative from quinoxaline and an orthophenylenediamine derivative, and then the compound is dissolved in toluene. It can be easily synthesized when an oxidation reaction is carried out in the presence of an oxidizing agent such as lead oxide or DDQ (2,3-dichloro-5,6-dicyanquinone). On the other hand, the electron donor compound (2) can be easily synthesized from the compound (1) and various metal ion compounds in an organic solvent.

本発明において、化合物(2)の高伝導性化合物は、R=Hの誘導体が好ましく、化合物(2)の伝導体としての最適な金属イオンは銅であり、TANCの数はm=1、ハロゲンイオンはフッ素イオン、nは0.5が好ましい。  In the present invention, the highly conductive compound of the compound (2) is preferably a derivative of R = H, the optimum metal ion as a conductor of the compound (2) is copper, the number of TANC is m = 1, halogen The ions are preferably fluorine ions, and n is preferably 0.5.

次に本発明の実施例を示し、具体的に説明する。なお、機器分析は以下の機器を使用した。
NMR:日本電子JEOL−Lambda300
IR:日本分光JASCO FT/IR−420およびPERKIN−ELMER Spectrum One
MS:日本電子JMA−700T
元素分析:PERKIN−ELMER240C Elemental Analyzer
ICP:セイコー電子工業SPS−7700(ver.1.02)
Fの定量:ダイオネスク社製DX−500
電気電導性測定器:定電流発生装置YOKOGAWA7651
ESR:JEOL社のER041MR
Next, examples of the present invention will be shown and described in detail. The instrument analysis used the following instruments.
NMR: JEOL JEOL-Lambda300
IR: JASCO JASCO FT / IR-420 and PERKIN-ELMER Spectrum One
MS: JEOL JMA-700T
Elemental analysis: PERKIN-ELMER240C Elemental Analyzer
ICP: Seiko Electronics Industry SPS-7700 (ver. 1.02)
Quantification of F: DX-500 manufactured by Dionesque
Electrical conductivity measuring device: constant current generator YOKOGAWA7651
ESR: ER041MR from JEOL

2,3−ジヒドロキシキノキサリン9.5g(60mol)と5塩化リン25g(0.12mol)を外温170℃で加熱した。15分間加熱反応した後、室温まで放冷し、氷水500mlに加え、これをろ過した。得られた結晶をエタノールから再結晶した。収量10.8g(92%)。
MS:m/e 199(M
元素分析C=48.32%、H=2.27%、N=13.92%
(CClとしての計算値:C=48.28%、H=2.03%、N=14.07%)
9.5 g (60 mol) of 2,3-dihydroxyquinoxaline and 25 g (0.12 mol) of phosphorus pentachloride were heated at an external temperature of 170 ° C. After heating for 15 minutes, the mixture was allowed to cool to room temperature, added to 500 ml of ice water, and filtered. The obtained crystals were recrystallized from ethanol. Yield 10.8 g (92%).
MS: m / e 199 (M + )
Elemental analysis C = 48.32%, H = 2.27%, N = 13.92%
(Calculated as C 8 H 4 N 2 Cl 2 : C = 48.28%, H = 2.03%, N = 14.07%)

2.3−ジクロロキノキサリン2.00g(10mmol)とo−フェニレンジアミン2.16g(20mmol)をエチレングリコール(10ml)に加え、外温200℃で加熱反応さえた。15分間反応させ、室温まで放冷した後、熱水250mlに加えて、ろ過した。エタノールで洗浄した後、乾燥させた。
収量1.77g(76%)
MS:m/e 235(M+)
元素分析C=71.37%、H=4.21%、N=23.78%
(C1410としての計算値:C=71.78%、H=4.30%、N=23.92%)
UV−vis.(DMSO):423nm
IR(KBr):νNH2945cm∇1
2.3-dichloroquinoxaline (2.00 g, 10 mmol) and o-phenylenediamine (2.16 g, 20 mmol) were added to ethylene glycol (10 ml), and the reaction was heated at an external temperature of 200 ° C. The mixture was allowed to react for 15 minutes and allowed to cool to room temperature, then added to 250 ml of hot water and filtered. After washing with ethanol, it was dried.
Yield 1.77 g (76%)
MS: m / e 235 (M +)
Elemental analysis C = 71.37%, H = 4.21%, N = 23.78%
(Calculated values as C 14 H 10 N 4 : C = 71.78%, H = 4.30%, N = 23.92%)
UV-vis. (DMSO): 423 nm
IR (KBr): ν NH 2945 cm ∇1

5,11−ジヒドロ−5,6,11,12−テトラアザナフタセン1.00g(4.27mol)を含むトルエン120mlにPbOを15g加えて、外温120℃で20時間反応させた。得られた褐色溶液を濃縮乾固して目的物(TANC)を得た。
収量0.99g(99%)
MS:m/e 233(M
元素分析C=72.24%、H=3.40%、N=24.04%
(C14としての計算値:C=72.40%、H=3.47%、N=24.12%)
UV−vis.(MeCN):460nm、402nm
H−NMR(CDCl、TMS):δ7.98(m、4H、4位と5位)δ8.43(m、4H、3位と6位)
サイクリックボルタンメトリー:E 1/2=−0.20V,E 1/2=−0.88V ΔE1/2=0.68V(vs.Ag/AgCl)
測定条件:Ar雰囲気下、濃度10−3
スキャン速度:100mV/s
支持電解質:BuNPF(0.1M)
作用電極:Glassy carbon
対極:Pt wire
参照電極:Ag/AgCl
溶液:MeCN
なお同条件でとったフェロセンの半波電位は次の通りである。
1/2=+0.44V(vs.Ag/AgCl)
15 g of PbO 2 was added to 120 ml of toluene containing 1.00 g (4.27 mol) of 5,11-dihydro-5,6,11,12-tetraazanaphthacene, and reacted at an external temperature of 120 ° C. for 20 hours. The obtained brown solution was concentrated to dryness to obtain the desired product (TANC).
Yield 0.99g (99%)
MS: m / e 233 (M + )
Elemental analysis C = 72.24%, H = 3.40%, N = 24.04%
(Calculated values as C 14 H 8 N 4 : C = 72.40%, H = 3.47%, N = 24.12%)
UV-vis. (MeCN): 460 nm, 402 nm
1 H-NMR (CDCl 3 , TMS): δ 7.98 (m, 4H, 4th and 5th positions) δ8.43 (m, 4H, 3rd and 6th positions)
Cyclic voltammetry: E 1 1/2 = −0.20 V, E 2 1/2 = −0.88 V ΔE 1/2 = 0.68 V (vs. Ag / AgCl)
Measurement conditions: Ar atmosphere, concentration 10 −3 M
Scan speed: 100 mV / s
Supporting electrolyte: n Bu 4 NPF 6 (0.1 M)
Working electrode: Glassy carbon
Counter electrode: Pt wire
Reference electrode: Ag / AgCl
Solution: MeCN
The half-wave potential of ferrocene taken under the same conditions is as follows.
E 1/2 = + 0.44 V (vs. Ag / AgCl)

Ar下TANC(0.17g、0.5mol)と5,11−dihydro−5,6,11,12−tetraazanaphthacene(0.17g、0.50mol)を−85℃に冷やしたn−BuLiのヘキサン溶液(1.0ml、1.57mmol)を含むtetrahydrofran(30ml)に加えると深緑色粉末が生成した。
元素分析C=63.34%、H=5.13%、N=15.64%
(Li・C14・(HO)・(THF)1.25としての計算値:C=63.34%、H=4.76%、N=15.55%)
ESR:g=2.00
N-BuLi hexane solution in which TANC (0.17 g, 0.5 mol) and 5,11-dihydro-5,6,11,12-tetraazanaphthathene (0.17 g, 0.50 mol) under Ar were cooled to -85 ° C. When added to tetrahydrofran (30 ml) containing (1.0 ml, 1.57 mmol), a dark green powder was produced.
Elemental analysis C = 63.34%, H = 5.13%, N = 15.64%
(Calculated as Li · C 14 H 8 N 4 · (H 2 O) · (THF) 1.25 : C = 63.34%, H = 4.76%, N = 15.55%)
ESR: g = 2.00

TANC40mg(0.17mmol)とテトラフルオロテトラアセトニトリル銅(I)34mg(1.0mmol)をアセトニトリル/メタノール混合溶液に加えて室温でゆっくりと濃縮した。溶液から濃青色の結晶が単離された。
収量25mg(50%)
元素分析C=55.33%、H=2.64%、N=18.41%、Cu=20.73%、F=3.40%
(C14CuF0.5)としての計算値:C=55.08%、H=2.64%、N=18.35%、Cu=20.81%、F=3.11%)
UV−vis.(KBr):227nm、313nm,394nm,609nm
電導度測定
75Scm−(25℃)
測定条件:直流四端子法(カーボンペースト、Au線(φ10μm))
40 mg (0.17 mmol) of TANC and 34 mg (1.0 mmol) of tetrafluorotetraacetonitrile copper (I) were added to a mixed solution of acetonitrile / methanol and slowly concentrated at room temperature. Dark blue crystals were isolated from the solution.
Yield 25 mg (50%)
Elemental analysis C = 55.33%, H = 2.64%, N = 18.41%, Cu = 20.73%, F = 3.40%
Calculated as (C 14 H 8 N 4 CuF 0.5 ): C = 55.08%, H = 2.64%, N = 18.35%, Cu = 20.81%, F = 3.11 %)
UV-vis. (KBr): 227 nm, 313 nm, 394 nm, 609 nm
Conductivity measurement 75Scm- 1 (25 ° C)
Measurement conditions: DC four-terminal method (carbon paste, Au wire (φ10 μm))

TANC23mg(0.1mmol)とCuI 9.5mg(0.05mmol)をアセトニトリル溶液に加えて静置した。溶液から濃青色の結晶が単離された。
元素分析C=40.48%、H=1.83%、N=13.22%、Cu=14.39%
((C14CuI)としての計算値:C=39.78%、H=1.91%、N=13.25%、Cu=15.03%)
UV−vis.(KBr):234nm、314nm,377nm,729nm
ESR:active
Qバンド(粉末法)
23 mg (0.1 mmol) of TANC and 9.5 mg (0.05 mmol) of CuI were added to the acetonitrile solution and allowed to stand. Dark blue crystals were isolated from the solution.
Elemental analysis C = 40.48%, H = 1.83%, N = 13.22%, Cu = 14.39%
(Calculated values as (C 14 H 8 N 4 CuI): C = 39.78%, H = 1.91%, N = 13.25%, Cu = 15.03%)
UV-vis. (KBr): 234 nm, 314 nm, 377 nm, 729 nm
ESR: active
Q band (powder method)

図1には、化合物(2)(R=H、M=Cu、m=1、X=F、n=0.5)は室温(〜50Scm−1)から低温にするに連れて抵抗値が上がり、典型的な半導体挙動を示し、280KのところではMI(metal−insulator transition)と見られる転移が見られる。また、40Kを境に150meVから45meVへと活性化エネルギーの変化が見られた。FIG. 1 shows that the resistance value of the compound (2) (R = H, M = Cu, m = 1, X = F, n = 0.5) decreases from room temperature (˜50 Scm −1 ) to low temperature. It shows a typical semiconductor behavior, and a transition seen as MI (metal-insulator transition) is seen at 280K. In addition, the activation energy changed from 150 meV to 45 meV at 40K.

図2には、化合物(2)(R=H、M=Cu、m=1、X=I、n=1.0)の10KでのESRスペクトルを示す。Cu+の錯体はd10の電子配置をもつため、ESRのピークが通常観測されないが、TANCとの電荷移動相互作用により、ラジカルが発生しESRのピークを観測できる。FIG. 2 shows an ESR spectrum of Compound (2) (R = H, M = Cu, m = 1, X = I, n = 1.0) at 10K. For Cu + complexes with electron configuration d 10, the peak of the ESR is not usually observed, the charge transfer interaction with the TaNC, can be observed a peak of radicals are generated ESR.

本発明により得られる機能性電子受容体から作られる伝導性を有する機能性金属錯体化合物は、伝導性が高く、その結果分子回路の配線材料や導電性材料に使用できる。また、得られた伝導体は安定であり、膜化も可能である。  The functional metal complex compound having conductivity produced from the functional electron acceptor obtained by the present invention has high conductivity, and as a result, can be used for wiring materials and conductive materials for molecular circuits. Further, the obtained conductor is stable and can be formed into a film.

他の金属イオンとTANCとの錯体はアニオンラジカルと金属イオンのスピンとの相互作用のため磁性体として振る舞うことができる。やはり、膜化を行うことができ磁性デバイスとして使用可能である。  A complex of another metal ion and TANC can behave as a magnetic substance due to the interaction between the anion radical and the spin of the metal ion. Again, film formation can be performed and it can be used as a magnetic device.

本発明の化合物(2)(R=H、M=Cu、X=F、n=0.5)の電子伝導度の温度変化を示すグラフである。It is a graph which shows the temperature change of the electronic conductivity of the compound (2) (R = H, M = Cu, X = F, n = 0.5) of this invention. 本発明の化合物(2)(R=H、M=Cu、m=1、X=I、n=1.0)のQバンドのESRスペクトルを示す。(10K)FIG. 2 shows an ESR spectrum of Q band of the compound (2) of the present invention (R = H, M = Cu, m = 1, X = I, n = 1.0). (10K)

Claims (5)

式(1)で示される機能性電子受容体化合物。
Figure 2006232793
(式中、Rは、H、Cl、Br、F、NO、CN、Ph基である)
The functional electron acceptor compound shown by Formula (1).
Figure 2006232793
(Wherein R is H, Cl, Br, F, NO 2 , CN, Ph group)
式(1)で示されるTANC化合物を電子受容体とし、他の成分の電子供与体金属イオンとから合成される式(2)で示される機能性金属錯体高分子。
Figure 2006232793
(式中、Mは、Cu、Ag、Auであり、mは1〜3である。Xは、F、Cl、Br
Figure 2006232793
である。)
A functional metal complex polymer represented by the formula (2) synthesized from the TANC compound represented by the formula (1) as an electron acceptor and an electron donor metal ion as another component.
Figure 2006232793
(In the formula, M is Cu, Ag, Au, and m is 1 to 3. X is F , Cl , Br ,
Figure 2006232793
It is. )
請求項2で示されるTANCより得られる式(2)で表される伝導度〜100Scm−1乃至を有するMがCuであり、XがFであり、nが0.5である機能性金属錯体高分子。A functional metal complex in which M is Cu, X is F, and n is 0.5, the conductivity represented by the formula (2) obtained from TANC shown in claim 2 and having a conductivity of ~ 100 Scm -1. High molecular. 請求項2で示されるTANCより得られる式(2)で現される磁性体乃至を有するMがCuであり、mが1、XがIであり、nが1.0である機能性金属錯体高分子。  A functional metal complex in which M having a magnetic substance represented by the formula (2) obtained from TANC shown in claim 2 is Cu, m is 1, X is I, and n is 1.0. High molecular. 請求項2で示されるTANCより得られる式(2)で示される機能性金属錯体高分子を膜化し得られるスイッチング素子、磁性体素子。  A switching element and a magnetic element obtained by forming a functional metal complex polymer represented by the formula (2) obtained from TANC shown in claim 2 into a film.
JP2005082589A 2005-02-21 2005-02-21 New functional electron acceptor and its functional metal complex polymer Pending JP2006232793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005082589A JP2006232793A (en) 2005-02-21 2005-02-21 New functional electron acceptor and its functional metal complex polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005082589A JP2006232793A (en) 2005-02-21 2005-02-21 New functional electron acceptor and its functional metal complex polymer

Publications (2)

Publication Number Publication Date
JP2006232793A true JP2006232793A (en) 2006-09-07
JP2006232793A5 JP2006232793A5 (en) 2008-07-17

Family

ID=37040840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005082589A Pending JP2006232793A (en) 2005-02-21 2005-02-21 New functional electron acceptor and its functional metal complex polymer

Country Status (1)

Country Link
JP (1) JP2006232793A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142216A1 (en) * 2006-06-05 2007-12-13 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and material for organic electroluminescent device
WO2013110057A1 (en) * 2012-01-20 2013-07-25 University Of Southern California Synthesis of aza-acenes as novel n-type materials for organic electronics
WO2015146541A1 (en) * 2014-03-27 2015-10-01 国立大学法人九州大学 Light emitting material, organic light emitting element and compound

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142216A1 (en) * 2006-06-05 2007-12-13 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and material for organic electroluminescent device
JP5213705B2 (en) * 2006-06-05 2013-06-19 出光興産株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT
WO2013110057A1 (en) * 2012-01-20 2013-07-25 University Of Southern California Synthesis of aza-acenes as novel n-type materials for organic electronics
WO2015146541A1 (en) * 2014-03-27 2015-10-01 国立大学法人九州大学 Light emitting material, organic light emitting element and compound
JPWO2015146541A1 (en) * 2014-03-27 2017-04-13 株式会社Kyulux Luminescent materials, organic light emitting devices and compounds
US10256415B2 (en) 2014-03-27 2019-04-09 Kyulux, Inc. Light-emitting material, organic light-emitting device, and compound

Similar Documents

Publication Publication Date Title
JP5113571B2 (en) Pyrido [3,2-h] quinazolinones and / or 5,6-dihydro derivatives thereof, process for their production, and doped organic semiconductor materials containing them
Xiao et al. Synthesis, structure, and optoelectronic properties of a new twistacene 1, 2, 3, 4, 6, 13-hexaphenyl-7: 8, 11: 12-bisbenzo-pentacene
Chen et al. Synthesis, structure and luminescence properties of zinc (II) complexes with terpyridine derivatives as ligands
Song et al. Asymmetric thermally activated delayed fluorescence (TADF) emitters with 5, 9-dioxa-13 b-boranaphtho [3, 2, 1-de] anthracene (OBA) as the acceptor and highly efficient blue-emitting OLEDs
Araki et al. Bridging nanogap electrodes by in situ electropolymerization of a bis (terthiophenylphenanthroline) ruthenium complex
Wang et al. Realizing efficient red thermally activated delayed fluorescence organic light-emitting diodes using phenoxazine/phenothiazine-phenanthrene hybrids
Bezvikonnyi et al. Pyrenyl substituted 1, 8-naphthalimide as a new material for weak efficiency-roll-off red OLEDs: a theoretical and experimental study
EP3259786B1 (en) Semiconducting material and naphtofurane matrix compound for it
KR102408143B1 (en) Organometallic compound, composition containing organometallic compound and organic light-emitting device including the same
Reddy et al. Synthesis and characterization of 9, 10-bis (2-phenyl-1, 3, 4-oxadiazole) derivatives of anthracene: Efficient n-type emitter for organic light-emitting diodes
JP2019127481A (en) Organometallic compound, organic light-emitting device including the same, and diagnostic composition including the organometallic compound
Chen et al. A highly efficient OLED based on terbium complexes
Hou et al. Synthesis, crystal structure, photoluminescence and theoretical studies of a series of copper (I) compounds based on imidazole derivatives
Park et al. Aggregation induced emission small molecules for blue light-emitting electrochemical cells
EP3053986B1 (en) Organometallic compound, composition containing the organometallic compound, and organic light-emitting device including the organometallic compound or composition
Li et al. High-performance OLEDs based on 4, 5-diaza-9, 9′-spirobifluorene ligated rhenium (I) complex with enhanced steric hindrance
JP2006232793A (en) New functional electron acceptor and its functional metal complex polymer
Meti et al. Structure property relationship of linear and angular pyrazine-based structural isomers with terminal DA groups and evaluation of their photophysical properties
Wang et al. A magnetic and conductive study on a stable defective extended cobalt atom chain
Wu et al. Hybrid host materials for highly efficient electrophosphorescence and thermally activated delayed fluorescence independent of the linkage mode
TW200934776A (en) Asymmetric phenanthrolines, their production methods and doped organic semiconductor material containing them
Yang et al. Pyridoindole modified carbazole compounds as high triplet energy host materials of imidazole derived blue triplet emitters for high quantum efficiency
Tsou et al. Asymmetric tetranuclear nickel chains with unidirectionally ordered 2-(α-(5-phenyl) pyridylamino)-1, 8-naphthyridine ligands
Zhang et al. Carbazolyl-contained phenol-pyridyl boron complexes: syntheses, structures, photoluminescent and electroluminescent properties
Fang et al. Synthesis and study of novel supramolecular nanocomposites containing aryl-imidazo-phenanthroline-based metallo-polymers (H-donors) and surface-modified ZnO nanoparticles (H-acceptors)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

A131 Notification of reasons for refusal

Effective date: 20110531

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018