JP2006232705A - Anti-polyglutamine disease agent - Google Patents

Anti-polyglutamine disease agent Download PDF

Info

Publication number
JP2006232705A
JP2006232705A JP2005047826A JP2005047826A JP2006232705A JP 2006232705 A JP2006232705 A JP 2006232705A JP 2005047826 A JP2005047826 A JP 2005047826A JP 2005047826 A JP2005047826 A JP 2005047826A JP 2006232705 A JP2006232705 A JP 2006232705A
Authority
JP
Japan
Prior art keywords
demethoxygeldanamycin
amino
polyglutamine
geldanamycin
aag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005047826A
Other languages
Japanese (ja)
Other versions
JP4956737B2 (en
Inventor
Hajime Sofue
元 祖父江
Hiroaki Adachi
弘明 足立
Masahiro Waza
雅浩 和座
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP2005047826A priority Critical patent/JP4956737B2/en
Publication of JP2006232705A publication Critical patent/JP2006232705A/en
Application granted granted Critical
Publication of JP4956737B2 publication Critical patent/JP4956737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other In-Based Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel anti-polyglutamine disease agent (drug). <P>SOLUTION: The anti-polyglutamine disease agent is constituted of geldanamycin or a geldanamycin derivative as an active ingredient. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ポリグルタミン病に対する薬剤(抗ポリグルタミン病剤)及びその利用に関する。   The present invention relates to a drug (anti-polyglutamine disease agent) for polyglutamine disease and use thereof.

球脊髄性筋萎縮症(spinal and bulbar muscular atrophy: SBMA)は遺伝性の神経変性疾患であり、ポリグルタミン病として初めて同定された(非特許文献1)。ポリグルタミン病は、CAG繰り返し配列の異常延長を原因とする遺伝性の神経変性疾患であり、SBMAの他、ハンチントン病および脊髄小脳変性症などを含む。SBMAでは、アンドロゲン受容体(androgen receptor: AR)内のポリグルタミン鎖が異常伸長しており、この変異AR(病的AR)が神経細胞内で不溶性の封入体を形成したり、或いは蓄積する過程で神経毒性を有すると考えられている(非特許文献2)。AR内のCAGリピート数は健常者では5〜33であるのに対してSBMA患者では40〜62と異常伸長している(非特許文献3)。また、CAGリピート数が疾患の発症年齢や重症度に比例するという現象が確認されている(非特許文献4)。同様の現象が他のポリグルタミン病にも認められており、ポリグルタミン病の治療には、ポリグルタミン鎖が異常伸長した原因タンパク質を特異的に失活もしくは減少させることが有効と考えられている。
本発明者らは既に、SBMAのモデル動物であるトランスジェニックマウスを用い、病因蛋白である変異ARのテストステロン依存性核内集積がその病態の根幹をなしていることを見いだし(非特許文献5)、黄体形成ホルモン刺激ホルモン(LHRH)アナログによるテストステロン分泌の抑制が劇的な治療効果につながることを発表してきた(非特許文献6、特許文献1)。同治療薬については現在臨床試験を実施中である。
Spinal and bulbar muscular atrophy (SBMA) is an inherited neurodegenerative disease and was first identified as polyglutamine disease (Non-patent Document 1). Polyglutamine disease is an inherited neurodegenerative disease caused by abnormal extension of CAG repeat sequence, and includes SBMA, Huntington's disease and spinocerebellar degeneration. In SBMA, the polyglutamine chain in the androgen receptor (AR) is abnormally elongated, and this mutant AR (pathological AR) forms or accumulates insoluble inclusion bodies in nerve cells. And is considered to have neurotoxicity (Non-patent Document 2). The number of CAG repeats in AR is abnormally extended to 40 to 62 in SBMA patients, while 5 to 33 in healthy individuals (Non-patent Document 3). Moreover, the phenomenon that the number of CAG repeats is proportional to the onset age and severity of the disease has been confirmed (Non-Patent Document 4). The same phenomenon has been observed in other polyglutamine diseases, and it is considered effective to specifically inactivate or reduce the causative protein in which polyglutamine chains are abnormally elongated in the treatment of polyglutamine diseases. .
The present inventors have already found that the testosterone-dependent nuclear accumulation of mutant AR, which is a pathogenic protein, forms the basis of the disease state using a transgenic mouse which is a model animal of SBMA (Non-patent Document 5). In addition, it has been announced that suppression of testosterone secretion by luteinizing hormone stimulating hormone (LHRH) analogs leads to dramatic therapeutic effects (Non-patent Document 6, Patent Document 1). A clinical trial is currently underway for this drug.

一方、変異タンパク質の凝集を阻害する分子として熱ショックタンパク質(heat shock protein:HSP)が知られている。熱ショックタンパク質は熱などのストレスによって発現が誘導される分子シャペロンであり、構造変化を来した異常タンパク質の形状を元に戻し(refolding)、その凝集を阻害するのみならず、プロテアゾームにおける変異タンパク質の分解を促進すると考えられている。本発明者らは、熱ショックタンパク質の一つであるHsp70の発現を増強することで変異ARの核内凝集を抑制することを球脊髄性筋萎縮症の培養細胞モデルにおいて確認し(非特許文献7)、神経症状を改善することを球脊髄性筋萎縮症のモデルマウスとHsp70高発現マウスとを交配することにより見いだした(非特許文献8)。同様の効果は球脊髄性筋萎縮症のショウジョウバエモデルや(非特許文献9)、脊髄小脳変性症のショウジョウバエやマウスモデルにおいても確認されており(非特許文献10及び11)、有望な治療戦略と考えられる。   On the other hand, heat shock protein (HSP) is known as a molecule that inhibits aggregation of mutant proteins. Heat shock protein is a molecular chaperone whose expression is induced by stress such as heat, refolding the shape of an abnormal protein that has undergone structural changes (refolding), not only inhibiting its aggregation, but also a mutant protein in the proteasome It is believed to promote the degradation of The present inventors confirmed in a cultured cell model of bulbar spinal muscular atrophy that suppression of nuclear aggregation of mutant AR by enhancing the expression of Hsp70, which is one of heat shock proteins (Non-Patent Literature). 7) The improvement of neurological symptoms was found by mating a mouse model of bulbar spinal muscular atrophy and a mouse with high Hsp70 expression (Non-patent Document 8). Similar effects have been confirmed in the Drosophila model of bulbospinal muscular atrophy (Non-Patent Document 9) and in the Drosophila and mouse model of spinocerebellar degeneration (Non-Patent Documents 10 and 11). Conceivable.

また、転写機能を改善する作用を有するヒストン脱アセチル化酵素阻害剤についても、このマウスでの治療効果を確認しており(非特許文献12)、同様の結果がハンチントン病のモデルマウスにおいても報告されている(非特許文献13及び14)。この他、ハンチントン病のモデルマウスにおいては、変異蛋白の凝集抑制効果を有するcongo redやtrehalose、変異蛋白の分解を促進する効果のあるrapamycinなどの治療効果も報告されているが、いずれも臨床応用には至っていない。   In addition, a histone deacetylase inhibitor having an action to improve transcription function has also been confirmed to have a therapeutic effect in this mouse (Non-patent Document 12), and similar results have been reported in a model mouse for Huntington's disease. (Non-patent Documents 13 and 14). In addition, in mouse models of Huntington's disease, therapeutic effects such as congo red and trehalose, which have the effect of inhibiting the aggregation of mutant proteins, and rapamycin, which have the effect of promoting the degradation of mutant proteins, have been reported. It has not reached.

国際公開第2004/016083号パンフレットInternational Publication No. 2004/016083 Pamphlet La Spada AR et al. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature. 352, 77-79 (1991).La Spada AR et al. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy.Nature. 352, 77-79 (1991). Poletti A et al. The polyglutamine tract of androgen receptor: from functions to dysfunctions in motor neurons. Front Neuroendocrinol. 25, 1-26 (2004).Poletti A et al. The polyglutamine tract of androgen receptor: from functions to dysfunctions in motor neurons. Front Neuroendocrinol. 25, 1-26 (2004). Tanaka F, Doyu M, Ito Y, Matsumoto M, Mitsuma T, Abe K, Aoki M, Itoyama Y, Fischbeck KH, Sobue G et al. Founder effect in spinal and bulbar muscular atrophy (SBMA). Hum Mol Genet. 5, 1253-1257 (1996).Tanaka F, Doyu M, Ito Y, Matsumoto M, Mitsuma T, Abe K, Aoki M, Itoyama Y, Fischbeck KH, Sobue G et al. Founder effect in spinal and bulbar muscular atrophy (SBMA) .Hum Mol Genet. 5, 1253-1257 (1996). Doyu M, Sobue G, Mukai E, Kachi T, Yasuda T, Mitsuma T, Takahashi A et al. Severity of X-linked recessive bulbospinal neuronopathy correlates with size of the tandem CAG repeat in androgen receptor gene. Ann Neurol. 32, 707-710 (1992).Doyu M, Sobue G, Mukai E, Kachi T, Yasuda T, Mitsuma T, Takahashi A et al. Severity of X-linked recessive bulbospinal neuronopathy correlates with size of the tandem CAG repeat in androgen receptor gene.Ann Neurol. 32, 707 -710 (1992). Katsuno M, Adachi H, Kume A, Li M, Nakagomi Y, Niwa H, Sang C, Kobayashi Y, Doyu M, Sobue G. Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron.35, 843-854(2002).Katsuno M, Adachi H, Kume A, Li M, Nakagomi Y, Niwa H, Sang C, Kobayashi Y, Doyu M, Sobue G. Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy.Neuron.35 , 843-854 (2002). Katsuno M, Adachi H, Doyu M, Minamiyama M, Sang C, Kobayashi Y, Inukai A, Sobue G. Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nat Med. 9, 768-773 (2003).Katsuno M, Adachi H, Doyu M, Minamiyama M, Sang C, Kobayashi Y, Inukai A, Sobue G. Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nat Med. 9, 768-773 (2003). Kobayashi Y, Kume A, Li M, Doyu M, Hata M, Ohtsuka K, Sobue G. Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J Biol Chem. 275, 8772-8778(2000).Kobayashi Y, Kume A, Li M, Doyu M, Hata M, Ohtsuka K, Sobue G. Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract.J Biol Chem. 275, 8772-8778 (2000). Adachi H, Katsuno M, Minamiyama M, Sang C, Pagoulatos G, Angelidis C, Kusakabe M, Yoshiki A, Kobayashi Y, Doyu M, Sobue G. Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J Neurosci.23, 2203-2211(2003).Adachi H, Katsuno M, Minamiyama M, Sang C, Pagoulatos G, Angelidis C, Kusakabe M, Yoshiki A, Kobayashi Y, Doyu M, Sobue G. Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J Neurosci. 23, 2203-2211 (2003). Chan HY, Warrick JM, Andriola I, Merry D, Bonini NM Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum Mol Genet.11, 2895-2904 (2002).Chan HY, Warrick JM, Andriola I, Merry D, Bonini NM Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila.Hum Mol Genet. 11, 2895-2904 (2002). Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet.19, 148-154 (1998).Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet. 19, 148-154 (1998). Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY. Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet.10, 1511-1518 (2001).Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY.Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice.Hum Mol Genet.10, 1511-1518 (2001). Minamiyama M, Katsuno M, Adachi H, Waza M, Sang C, Kobayashi Y, Tanaka F, Doyu M, Inukai A, Sobue G. Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet.13,1183-1192 (2004).Minamiyama M, Katsuno M, Adachi H, Waza M, Sang C, Kobayashi Y, Tanaka F, Doyu M, Inukai A, Sobue G. Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy.Hum Mol Genet .13,1183-1192 (2004). Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PA, Steffan JS, Marsh JL, Thompson LM, Lewis CM, Marks PA, Bates GP. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci U S A.100, 2041-2046 (2003).Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PA, Steffan JS, Marsh JL, Thompson LM, Lewis CM, Marks PA, Bates GP. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease.Proc Natl Acad Sci US A.100, 2041-2046 (2003). Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, Hersch SM. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J Neurosci.23, 9418-9427 (2004).Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, Hersch SM. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice J Neurosci. 23, 9418-9427 (2004). DeBoer C et al. Geldanamycin, a new antibiotic. J Antibiot (Tokyo). 23, 442-447 (1970).DeBoer C et al. Geldanamycin, a new antibiotic. J Antibiot (Tokyo). 23, 442-447 (1970). Whitesell L et al. Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition. Cancer Res. 52, 1721-1728 (1992).Whitesell L et al. Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition.Cancer Res. 52, 1721-1728 (1992). Supko JG et al. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol. 36, 305-315 (1995).Supko JG et al. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent.Cancer Chemother Pharmacol. 36, 305-315 (1995). Schnur RC et al. Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives. J Med Chem. 38, 3806-3812 (1995).Schnur RC et al. Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives.J Med Chem. 38, 3806-3812 (1995). Goetz MP et al. The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol. 14, 1169-1176 (2003).Goetz MP et al. The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol. 14, 1169-1176 (2003). Vanaja DK et al. Effect of geldanamycin on androgen receptor function and stability. Cell Stress Chaperones.7, 55-64 (2002).Vanaja DK et al. Effect of geldanamycin on androgen receptor function and stability.Cell Stress Chaperones. 7, 55-64 (2002). Banerji U et al. A pharmacokinetically (PK) - pharmacodynamically (PD) driven phase I trial of the HSP90 molecular chaperone inhibitor 17-allyamino 17-demethoxygeldanamycin (17AAG). Proc Am Assoc Cancer Res. 43, 1352 (2002).Banerji U et al. A pharmacokinetically (PK)-pharmacodynamically (PD) driven phase I trial of the HSP90 molecular chaperone inhibitor 17-allyamino 17-demethoxygeldanamycin (17AAG). Proc Am Assoc Cancer Res. 43, 1352 (2002). Munster PN et al. Phase I trial of 17-(allylamino)-17- demethoxygeldanamycin (17-AAG) in patients with advanced solid malignancies. Proc Am Soc Clin Oncol.20, 324 (2001).Munster PN et al. Phase I trial of 17- (allylamino) -17- demethoxygeldanamycin (17-AAG) in patients with advanced solid malignancies.Proc Am Soc Clin Oncol. 20, 324 (2001). Agnew EB et al. Clinical pharmacokinetics of 17-(allylamino)-17- demethoxygeldanamycin and the active metabolite 17-(amino)-17- demethoxygeldanamycin given as a one-hour infusion daily for 5 days. Proc Am Assoc Cancer Res. 43, 1349 (2001).Agnew EB et al. Clinical pharmacokinetics of 17- (allylamino) -17- demethoxygeldanamycin and the active metabolite 17- (amino) -17- demethoxygeldanamycin given as a one-hour infusion daily for 5 days.Proc Am Assoc Cancer Res. 43, 1349 (2001). Page J et al. Comparison of geldanamycin (NSC-122750) and 17-allylaminogeldanamycin(NSC-330507D)toxicity in rats. Proc. Am. Assoc. Cancer Res. 38, 308 (1997).Page J et al. Comparison of geldanamycin (NSC-122750) and 17-allylaminogeldanamycin (NSC-330507D) toxicityity in rats.Proc. Am. Assoc. Cancer Res. 38, 308 (1997). Schulte TW & Neckers LM. The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol.42,273-279 (1998).Schulte TW & Neckers LM.The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin.Cancer Chemother Pharmacol. 42,273-279 (1998). Egorin MJ, Zuhowski EG & Eiseman JL. Plasma pharmacokinetics and tissue distribution of 17-(allylamino)- 17-demethoxygeldanamycin(NSC 330507) in CD2F1 mice1. Cancer Chemother Pharmacol. 47, 291-302 (2001).Egorin MJ, Zuhowski EG & Eiseman JL.Plasma pharmacokinetics and tissue distribution of 17- (allylamino)-17-demethoxygeldanamycin (NSC 330507) in CD2F1 mice1. Cancer Chemother Pharmacol. 47, 291-302 (2001). Egorin MJ, Lagattuta TF & Eiseman JL. Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethoxy geldanamycin(NSC 707545) in CD2F1 mice and Fischer 344 rats. Cancer Chemother Pharmacol. 47, 291-302 (2002).Egorin MJ, Lagattuta TF & Eiseman JL. Pharmacokinetics, tissue distribution, and metabolism of 17- (dimethylaminoethylamino) -17-demethoxy geldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats.Cancer Chemother Pharmacol. 47, 291-302 (2002 ). Pratt WB & Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood). 228, 111-133 (2003).Pratt WB & Toft DO.Regulation of signaling protein function and trafficking by the hsp90 / hsp70-based chaperone machinery.Exp Biol Med (Maywood) .228, 111-133 (2003). Neckers L et al. Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest New Drugs. 17, 361-73 (1999).Neckers L et al. Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity.Invest New Drugs. 17, 361-73 (1999). Bonvini PU et al. Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylamino-demethoxygeldanamycin: role of the co-chaperone carboxyl heat shock protein 70-interacting protein. Cancer Res. 64, 3256-3264 (2004).Bonvini PU et al. Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylamino-demethoxygeldanamycin: role of the co-chaperone carboxyl heat shock protein 70-interacting protein.Cancer Res. 64, 3256-3264 (2004). Stebbins CE et al. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell. 89, 239-250 (1997).Stebbins CE et al. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent.Cell. 89, 239-250 (1997). Kamal A et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature.425,407-410 (2003).Kamal A et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature.425,407-410 (2003). Fang Y et al. Hsp90 regulates androgen receptor hormone binding affinity in vivo. J Biol Chem.271,28697-28702 (1996).Fang Y et al. Hsp90 regulates androgen receptor hormone binding affinity in vivo. J Biol Chem. 271,28697-28702 (1996). Solit DB et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res. 8, 986-993 (2002).Solit DB et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2 / neu and inhibits the growth of prostate cancer xenografts.Clin Cancer Res. 8, 986-993 (2002). Bagatell R et al. Destabilization of steroid receptors by heat shock protein 90-binding drugs: a ligand-independent approach to hormonal therapy of breast cancer. Clin Cancer Res.7, 2076-2084 (2001).Bagatell R et al. Destabilization of steroid receptors by heat shock protein 90-binding drugs: a ligand-independent approach to hormonal therapy of breast cancer.Clin Cancer Res. 7, 2076-2084 (2001). Blagosklonny MV et al. Toretsky J & Neckers L. Geldanamycin selectively destabilizes and conformationally alters mutated p53. Oncogene. 11, 933-939 (1995).Blagosklonny MV et al. Toretsky J & Neckers L. Geldanamycin selectively destabilizes and conformationally alters mutated p53. Oncogene. 11, 933-939 (1995). Blagosklonny MV et al. Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc Natl Acad Sci U S A. 93, 8379-8383 (1996).Blagosklonny MV et al. Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90.Proc Natl Acad Sci U S A. 93, 8379-8383 (1996). Nagata Y et al. The stabilization mechanism of mutant-type p53 by impaired ubiquitination: the loss of wild-type p53 function and the hsp90 association. Oncogene. 18, 6037-49 (1999).Nagata Y et al. The stabilization mechanism of mutant-type p53 by impaired ubiquitination: the loss of wild-type p53 function and the hsp90 association.Oncogene. 18, 6037-49 (1999). Zou J et al. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell. 94, 471-480 (1998).Zou J et al. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell. 94, 471-480 (1998). Winklhofer KF et al. Geldanamycin restores a defective heat shock response in vivo. J Biol Chem. 276, 45160-45167 (2001).Winklhofer KF et al. Geldanamycin restores a defective heat shock response in vivo. J Biol Chem. 276, 45160-45167 (2001). Sittler A, Lurz R, & Wanker EE. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease. Hum Mol Genet. 14, 1307-1315 (2001).Sittler A, Lurz R, & Wanker EE. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease.Hum Mol Genet. 14, 1307-1315 (2001). Hay DG, Sathasivam K & Bates GP. Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach. Hum Mol Genet. 13. 1389-1405 (2004).Hay DG, Sathasivam K & Bates GP. Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach.Hum Mol Genet. 13. 1389-1405 (2004). Tian ZQ, et al. Synthesis and biological activities of novel 17-aminogeldanamycin derivatives. Bioorg. Med. Chem. 12, 5317-5329 (2004).Tian ZQ, et al. Synthesis and biological activities of novel 17-aminogeldanamycin derivatives. Bioorg. Med. Chem. 12, 5317-5329 (2004).

球脊髄性筋萎縮症に対するLHRHアナログ治療は動物モデルを用いた研究が臨床応用に向かいつつあるが、この治療法は球脊髄性筋萎縮症以外のポリグルタミン病には効果が期待しづらい。一方、ハンチントン病のモデルマウスで治療効果が報告されているヒストン脱アセチル化酵素阻害剤などの薬剤については、人体への安全性が確立されておらず、臨床で患者に使用するにはその毒性を評価し克服することが必要であると考えられる。こうしたことから、臨床応用可能な、低毒性化合物の探索が急務とされている。そこで本発明は、このような要求に応えることができる、ポリグルタミン病に対する新規な薬剤(医薬)を提供することを目的とする。   LHRH analog treatment for bulbar spinal muscular atrophy is being studied for clinical application using animal models, but this treatment method is unlikely to be effective for polyglutamine diseases other than spinal and spinal muscular atrophy. On the other hand, drugs such as histone deacetylase inhibitors that have been reported to have therapeutic effects in Huntington's disease model mice have not been established for human safety and are toxic for clinical use in patients. It is considered necessary to evaluate and overcome this. For these reasons, there is an urgent need to search for low toxicity compounds that can be clinically applied. Then, an object of this invention is to provide the novel chemical | medical agent (medicine) with respect to a polyglutamine disease which can meet such a request | requirement.

以上の目的の下、本発明者らは、ポリグルタミン病に対する薬剤の候補としてゲルダナマイシン(geldanamycin: GA)及びその誘導体に注目した。GAは最も古典的なHsp90阻害剤であり、1970年に抗真菌薬として見出され(非特許文献15)、優れた抗腫瘍効果を持つことが知られていた(非特許文献16)。しかし、その後GAには生体内で容認できない肝臓毒性があることが判明し(非特許文献17)、より毒性の低い誘導体の検索が行われた。その結果としてGAの側鎖の一部が置換された17−アリルアミノ−17−デメトキシゲルダナマイシン(17-allylamino-17-demethoxygeldanamycin: 17-AAG)が見出された(非特許文献18)。17-AAGは現在、新規抗癌剤として臨床応用が間近となっている(非特許文献19)。Phase Iの治験がほぼ完了し(非特許文献21〜23)、既にPhase IIが始まっている。17-AAGは、GAにみられるような副作用が抑えられながら(非特許文献24)、GAとほぼ同等の薬理活性を持つ優れた誘導体である(非特許文献25)。動物モデルにて、17-AAGは静脈内投与、腹腔内投与であれば、良好な組織移行性を有することが確認されているが、一方で、その高い脂溶性のため経口投与が困難であることが指摘されている(非特許文献26)。近年、経口投与も可能な17-AAGのさらなる誘導体17−(2−ジメチルアミノエチル)アミノ−17−デメトキシゲルダナマイシン(17-(2-dimethylaminoethyl)amino-17-demethoxygeldanamycin: 17-DMAG)が開発されており(非特許文献27)、17-AAGに次いで臨床応用が試みられようとしている。   Under the above object, the present inventors paid attention to geldanamycin (GA) and its derivatives as drug candidates for polyglutamine disease. GA is the most classic Hsp90 inhibitor, was found as an antifungal agent in 1970 (Non-patent Document 15), and was known to have an excellent antitumor effect (Non-patent Document 16). However, GA was later found to have unacceptable liver toxicity in vivo (Non-patent Document 17), and a search for a less toxic derivative was conducted. As a result, 17-allylamino-17-demethoxygeldanamycin (17-AAG) in which part of the side chain of GA was substituted was found (Non-patent Document 18). Currently, 17-AAG is approaching clinical application as a novel anticancer agent (Non-patent Document 19). Phase I clinical trials are almost complete (Non-Patent Documents 21 to 23), and Phase II has already begun. 17-AAG is an excellent derivative having almost the same pharmacological activity as GA (Non-patent Document 25) while suppressing the side effects seen in GA (Non-patent Document 24). In animal models, it has been confirmed that 17-AAG has good tissue transferability when administered intravenously or intraperitoneally, but on the other hand, its high fat solubility makes oral administration difficult. (Non-patent Document 26). In recent years, 17- (2-dimethylaminoethyl) amino-17-demethoxygeldanamycin (17-DMAG), a further derivative of 17-AAG that can also be administered orally, has been It has been developed (Non-Patent Document 27), and clinical application is being attempted following 17-AAG.

Hsp90は他の分子シャペロン(Hsp70、Hop、p23、p50など)とともにHsp90依存性のクライアントタンパク質と複合体を形成し、そのタンパク質の安定化と機能発現に重要な役割を果たしている(非特許文献28)。GA誘導体投与により、こうしたHsp90複合体形成が阻害され、タンパク質の機能が失活し、さらにはユビキチン・プロテアゾーム系で分解されることが明らかにされている(非特許文献29及び30)。これまでに既知タンパク質の多くがHsp90のクライアントタンパク質であることが明らかにされているが、その中には多くの腫瘍関連タンパク質が含まれる(非特許文献28)。GA誘導体はこうしたクライアントタンパク質のHsp90との複合体形成を阻害することで薬理効果を発揮するが(非特許文献31)、腫瘍細胞内のタンパク質は、正常細胞内のものに比べて多量にHsp90-タンパク質複合体を形成しているため、GA誘導体に対する感受性が非常に高い(非特許文献32)。このことから、17-AAGをはじめとするGA誘導体は、Hsp90という恒常的に発現しているタンパク質の機能を障害するという作用機序によるものの、選択的な抗腫瘍効果を有するとされている。   Hsp90 forms a complex with an Hsp90-dependent client protein together with other molecular chaperones (Hsp70, Hop, p23, p50, etc.), and plays an important role in the stabilization and functional expression of the protein (Non-patent Document 28). ). It has been clarified that administration of a GA derivative inhibits the formation of such an Hsp90 complex, inactivates the function of the protein, and further degrades it in the ubiquitin / proteasome system (Non-patent Documents 29 and 30). So far, it has been clarified that many of the known proteins are Hsp90 client proteins, among which many tumor-related proteins are included (Non-patent Document 28). GA derivatives exert a pharmacological effect by inhibiting the complex formation of these client proteins with Hsp90 (Non-patent Document 31), but the amount of protein in tumor cells is higher than that in normal cells. Since a protein complex is formed, the sensitivity to GA derivatives is very high (Non-patent Document 32). From this, GA derivatives including 17-AAG are said to have a selective antitumor effect, although the mechanism of action impairs the function of a constitutively expressed protein called Hsp90.

今回、本発明者らはターゲットタンパク質の発現量を減少させるというGA誘導体の薬剤効果に注目した。上記のようにSBMAはAR内のポリグルタミン鎖が延長した病的タンパク質が神経細胞内に異常蓄積する疾患である。既に本発明者らは、ARをターゲットとしたホルモン療法がSBMAの有効な治療法になることを実証している。即ち、ARのリガンドであるテストステロンを減少させることでARの核内移行を阻害し、核内封入体の形成も顕著に抑制されることを示した(非特許文献5及び6)。ARも代表的なHsp90のクライアントタンパク質であり、その機能発現にはHsp90が必須である(非特許文献33)。図2に示すように、GA誘導体はHsp90-タンパク質複合体形成に変化をもたらし、その結果クライアントタンパク質の機能が失活し、ユビキチン・プロテアゾーム系で分解される(非特許文献20)。このようにクライアントタンパク質であるARをはじめとするステロイド受容体が、GA誘導体によりその機能が障害され、さらには分解が促進されるという現象は、培養細胞モデルやマウスモデルにおいても既に確認されている(非特許文献20、34、35)。
Hsp90依存性のクライアントタンパク質の体表的なものに変異型p53がある。全悪性腫瘍の約50%にこの変異型p53の発現が認められるが、興味深いことに正常型p53より、変異型は著しくGAに対する感受性が高くなっているという(非特許文献36〜38)。変異型の病的タンパク質は構造的に不安定であり、その安定化のためにはより多くのHsp90を必要としていると思われる。これと同様に、ARもポリグルタミンが伸張した変異型になることにより、GA誘導体に対する感受性が亢進していれば、GA誘導体の使用によってより効果的かつ選択的に、病的タンパク質の発現量を量的に減少させることができ、即ち優れた治療法が提供できると考えられる。
This time, the present inventors paid attention to the drug effect of the GA derivative that reduces the expression level of the target protein. As described above, SBMA is a disease in which a pathological protein with an extended polyglutamine chain in AR is abnormally accumulated in nerve cells. We have already demonstrated that hormonal therapy targeting AR is an effective treatment for SBMA. That is, it was shown that by reducing the testosterone which is an AR ligand, AR translocation into the nucleus was inhibited, and formation of inclusion bodies in the nucleus was remarkably suppressed (Non-patent Documents 5 and 6). AR is also a typical Hsp90 client protein, and Hsp90 is essential for its functional expression (Non-patent Document 33). As shown in FIG. 2, the GA derivative causes a change in the formation of the Hsp90-protein complex. As a result, the function of the client protein is deactivated and decomposed in the ubiquitin / proteasome system (Non-patent Document 20). Thus, the phenomenon that the steroid receptors such as AR, which is a client protein, are impaired in function and further promoted by GA derivatives has already been confirmed in cultured cell models and mouse models. (Nonpatent literature 20, 34, 35).
A variant of p53 is a typical Hsp90-dependent client protein. Although expression of this mutant p53 is observed in about 50% of all malignant tumors, it is interesting that the mutant is significantly more sensitive to GA than normal p53 (Non-patent Documents 36 to 38). The mutant pathological protein is structurally unstable and appears to require more Hsp90 for its stabilization. Similarly, if AR is also a mutant with an extended polyglutamine, if the sensitivity to GA derivative is enhanced, the use of GA derivative will increase the expression level of pathological protein more effectively and selectively. It can be reduced in quantity, i.e. an excellent therapy can be provided.

ポリグルタミン鎖が異常延長したARもHsp90への依存性があると考えられることに鑑み、本発明者らは、腫瘍細胞内タンパク質の場合と同様の機序で、Hsp90阻害剤投与により変異ARを量的に減少させることが可能と考えた。変異AR(病的AR)の発現量を抑制できれば、SBMAに対する優れた治療効果を期待できる。
また一方で、Hsp90阻害剤が、熱ショックタンパク質の転写因子であるHeat shock transcription factor(HSF-1)を活性化し、Hsp70やHsp40といった抗ストレス分子シャペロンを非特異的に増加させる薬理作用を有すること(非特許文献39及び40)にも注目した。即ち、Hsp90阻害剤は分子シャペロン誘導剤としての一面を持つため、この作用によってもSBMAに対する治療効果が得られると考えた。
GA及びその誘導体(特に17-AAG)のポリグルタミン病への適用の可能性に関しては、ポリグルタミン病培養細胞モデルにおいてGAが病因タンパク質の封入体形成を抑制することが報告されたに留まり(非特許文献41及び42)、マウス等の個体動物レベルでGA等の薬剤効果を検討したという報告はない。
そこで本発明者らは、GA誘導体の中でも最も薬理作用・動態が調べられ、臨床応用が間近となっている17-AAGを選択し、そのSBMAに対する治療効果を培養細胞モデル、及び病的遺伝子(AR内のCAGリピート数が97のもの)を導入したモデルマウスにて評価した。その結果驚くべきことに、培養細胞モデルにおいて、17-AAGの投与によって病的ARの発現量が著しく減少することが判明した。さらにモデルマウスにおいて、投与量依存性の有意な治療効果を17-AAGが発揮することが確認された。これらの結果から、17-AAGが実際にSBMAの治療において有効であることが明らかとなった。また、GAの基本骨格を有する化合物(GAの誘導体及びGA自体)も17-AAGと同様の機序で作用し得ることから、これらの化合物もSBMAの治療剤の候補として有力であると考えられた。
In view of the fact that AR with an abnormally extended polyglutamine chain is also considered to be dependent on Hsp90, the present inventors have mutated AR by administration of an Hsp90 inhibitor by the same mechanism as that of tumor intracellular proteins. We thought it was possible to reduce the quantity. If the expression level of mutant AR (pathological AR) can be suppressed, an excellent therapeutic effect on SBMA can be expected.
On the other hand, Hsp90 inhibitors have a pharmacological action that activates heat shock transcription factor (HSF-1), a transcription factor of heat shock protein, and nonspecifically increases antistress molecular chaperones such as Hsp70 and Hsp40. (Non-patent documents 39 and 40) were also noted. That is, since the Hsp90 inhibitor has one aspect as a molecular chaperone inducer, it was considered that this action can also provide a therapeutic effect on SBMA.
Regarding the possibility of application of GA and its derivatives (especially 17-AAG) to polyglutamine diseases, it has been reported that GA suppresses the inclusion body formation of pathogenic proteins in a cultured cell model of polyglutamine disease (non- Patent Documents 41 and 42), there is no report that the effect of drugs such as GA was examined at the level of individual animals such as mice.
Accordingly, the present inventors have selected 17-AAG, which has been studied for its most pharmacological action and kinetics among GA derivatives, and whose clinical application is imminent, and its therapeutic effect on SBMA has been shown to be a cultured cell model and a pathogenic gene ( Evaluation was performed with a model mouse into which the number of CAG repeats in the AR was 97). As a result, it was surprisingly found that the expression level of pathological AR was significantly reduced by administration of 17-AAG in a cultured cell model. Furthermore, it was confirmed that 17-AAG exerts a dose-dependent significant therapeutic effect in model mice. These results revealed that 17-AAG is actually effective in the treatment of SBMA. In addition, since compounds having a GA basic skeleton (GA derivatives and GA itself) can act by the same mechanism as 17-AAG, these compounds are also considered to be promising candidates for SBMA therapeutics. It was.

一方、SBMAをはじめとするポリグルタミン病では、特定の遺伝子におけるCAGリピートの異常延長が原因であること、CAGリピート長が長いほど発症年齢が若年化し重症化すること、表現促進現象(世代を経るごとに発症年齢が若年化する現象)が認められること、神経組織が選択的に障害を受けること、及び神経細胞内に変異タンパク質の凝集が認められるとともに核内封入体が観察されることなど、多くの共通点が認められる。尚、核内に集積した変異タンパク質はCBP(c-AMP response element binding protein-binding protein)などの転写調節因子の機能を障害し、これがポリグルタミン病における神経細胞障害の主因と考えられている(Steffan JS, et al. Proc Natl Acad Sci U S A 2000; 97: 6763-6768.;Nucifora FC Jr, et al. Science 2001; 291: 2423-2428.)。以上のような、疾患原因をはじめとした多くの共通点から、ポリグルタミン病の一つであるSBMAのモデル動物を用いた実験で得られた上記知見は他のポリグルタミン病についても適用できる可能性が極めて高い。即ち、SBMAのみならず他のポリグルタミン病に対しても17-AAG等が有効な薬理作用を奏することが当然として予測される。特に、他のポリグルタミン病においても、原因タンパク質の封入体形成抑制にHsp70やHsp40が関与していることが判明しており、さらには原因タンパク質がHsp90のクライアントタンパク質であることが予想されることを考え合わせれば、17-AAG及び同様の機序で作用する化合物はポリグルタミン病に対して広く治療効果を有することが期待される。   On the other hand, in polyglutamine diseases such as SBMA, it is caused by abnormal extension of CAG repeats in specific genes, the longer the CAG repeat length, the younger the onset age becomes, the more severe the expression, and the expression-promoting phenomenon (through generations) A phenomenon in which the age of onset becomes younger every time), the nerve tissue is selectively damaged, and the aggregation of the mutant protein is observed in the nerve cell and the inclusion body in the nucleus is observed, Many similarities are recognized. The mutant protein accumulated in the nucleus impairs the function of transcriptional regulatory factors such as CBP (c-AMP response element binding protein-binding protein), which is considered to be the main cause of neuronal damage in polyglutamine disease ( Steffan JS, et al. Proc Natl Acad Sci USA 2000; 97: 6763-6768 .; Nucifora FC Jr, et al. Science 2001; 291: 2423-2428.). The above findings obtained from experiments using SBMA model animals, which are one of polyglutamine diseases, can be applied to other polyglutamine diseases from the above-mentioned many common points including disease causes. The nature is extremely high. That is, it is naturally predicted that 17-AAG and the like exert an effective pharmacological action not only on SBMA but also on other polyglutamine diseases. Especially in other polyglutamine diseases, it has been found that Hsp70 and Hsp40 are involved in suppressing the inclusion body formation of the causative protein, and that the causative protein is expected to be a client protein of Hsp90. In view of the above, it is expected that compounds that act by 17-AAG and similar mechanisms have a broad therapeutic effect on polyglutamine diseases.

本発明は以上の知見及び考察に基づき完成されたものであり、ゲルダナマイシン(GA)及びその誘導体のポリグルタミン病に関する医用用途を提供するものである。具体的には本発明は以下の構成を提供する。
即ち本発明の一形態は、ゲルダナマイシン又はゲルダナマイシン誘導体を有効成分として含有する抗ポリグルタミン病剤である。ゲルダナマイシン誘導体は、ゲルダナマイシンのC−17位置のメトキシ基をアルキルアミノ基で置換して得られる化合物であることが好ましい。ゲルダナマイシンの毒性の原因の一つがC−17位置のメトキシ基にあると考えられている。従って、このメトキシ基を有しない上記化合物では一般に毒性が低減する。
本発明の一態様では、ゲルダナマイシン誘導体が、以下の化合物群、即ち17−アリルアミノ−17−デメトキシゲルダナマイシン、17−(2−ジメチルアミノエチル)アミノ−17−デメトキシゲルダナマイシン、17−(4−(ジメチルアミノ)ブチル)アミノ−17−デメトキシゲルダナマイシン、17−(2−(カルボキシ)エチル)アミノ−17−デメトキシゲルダナマイシン、17−(2−(N−メチルエチルアミノ)エチル)アミノ−17−デメトキシゲルダナマイシン、17−(2−(ピロリジン−1−イル)エチル)アミノ−17−デメトキシゲルダナマイシン、17−(2−(ピペラジン−1−イル)エチル)アミノ−デメトキシゲルダナマイシン、及び17−(4−(ジメチルアミノ)ブチル)アミノ−17−デメトキシゲルダナマイシンからなる群より選択される。
また、本発明の好ましい一態様では、17−アリルアミノ−17−デメトキシゲルダナマイシン又は17−(2−ジメチルアミノエチル)アミノ−17−デメトキシゲルダナマイシンを有効成分として抗ポリグルタミン病剤が構成される。
更に、本発明の好ましい他の一態様では、17−アリルアミノ−17−デメトキシゲルダナマイシンを有効成分として抗ポリグルタミン病剤が構成される
一方、本発明の好ましい態様ではポリグルタミン病が球脊髄性筋萎縮症であり、従って球脊髄性筋萎縮症に対する薬剤(医薬)が提供されることとなる。
本発明の他の形態は、抗ポリグルタミン病剤を製造するために、上記化合物(即ち、ゲルダナマイシン又はゲルダナマイシン誘導体など)を使用すること、及びゲルダナマイシン又はゲルダナマイシン誘導体を用いたポリグルタミン病の医療的処置(ポリグルタミン病の予防及び治療)に関する。
The present invention has been completed based on the above knowledge and consideration, and provides a medical use of geldanamycin (GA) and its derivatives regarding polyglutamine disease. Specifically, the present invention provides the following configurations.
That is, one form of the present invention is an anti-polyglutamine disease agent containing geldanamycin or a geldanamycin derivative as an active ingredient. The geldanamycin derivative is preferably a compound obtained by replacing the methoxy group at the C-17 position of geldanamycin with an alkylamino group. One of the causes of geldanamycin toxicity is thought to be in the methoxy group at the C-17 position. Therefore, the toxicity of the above compound having no methoxy group is generally reduced.
In one embodiment of the present invention, the geldanamycin derivative comprises the following group of compounds: 17-allylamino-17-demethoxygeldanamycin, 17- (2-dimethylaminoethyl) amino-17-demethoxygeldanamycin, 17- (4- (dimethylamino) butyl) amino-17-demethoxygeldanamycin, 17- (2- (carboxy) ethyl) amino-17-demethoxygeldanamycin, 17- (2- (N-methyl) Ethylamino) ethyl) amino-17-demethoxygeldanamycin, 17- (2- (pyrrolidin-1-yl) ethyl) amino-17-demethoxygeldanamycin, 17- (2- (piperazin-1-yl) ) Ethyl) amino-demethoxygeldanamycin and 17- (4- (dimethylamino) butyl) amino-17-deme It is selected from the group consisting of carboxymethyl geldanamycin.
In a preferred embodiment of the present invention, an anti-polyglutamine disease agent comprising 17-allylamino-17-demethoxygeldanamycin or 17- (2-dimethylaminoethyl) amino-17-demethoxygeldanamycin as an active ingredient is used. Composed.
Furthermore, in another preferred embodiment of the present invention, an anti-polyglutamine disease agent is composed of 17-allylamino-17-demethoxygeldanamycin as an active ingredient, whereas in a preferred embodiment of the present invention, polyglutamine disease is caused by the bulbar spinal cord. Therefore, a drug (medicine) for bulbar spinal muscular atrophy is provided.
Another aspect of the present invention is to use the above compounds (ie, geldanamycin or geldanamycin derivatives, etc.) and to produce geldanamycin or geldanamycin derivatives to produce an anti-polyglutamine disease agent. The present invention relates to medical treatment of polyglutamine disease (prevention and treatment of polyglutamine disease).

本発明の抗ポリグルタミン病剤はゲルダナマイシン(geldanamycin、本明細書において「GA」ともいう)又はゲルダナマイシン誘導体(geldanamycin derivative)を有効成分として含有することを特徴とする。ここで「ゲルダナマイシン(GA)」は以下の構造式で表される。
但し、式中のRはCH3Oである。
The anti-polyglutamine disease agent of the present invention is characterized by containing geldanamycin (also referred to herein as “GA”) or a geldanamycin derivative as an active ingredient. Here, “geldanamycin (GA)” is represented by the following structural formula.
However, R in the formula is CH 3 O.

様々なゲルダナマイシン誘導体が見出されている。例えば、Tian ZQ et al., Bioorg. Med. Chem. 12 (2004) 5317-5329、米国特許第5,387,584号、米国特許第4,261,989号、米国特許第3,987,035号、WO00/03737、WO02/079167、WO99/21552、WO99/22761に具体的な化合物が記載されている。これら文献の全内容は援用によって引用される。
本発明において好ましいゲルダナマイシン誘導体として、ゲルダナマイシンのC−17位置のメトキシ基をアルキルアミノ基に置換して得られる化合物(17−アルキルアミノ−17−デメトキシゲルダナマイシン)を挙げることができる。このような化合物は、ゲルダナマイシンの毒性の原因の一つと考えられているC−17位置のメトキシ基を有しないことから毒性の面で有利である。具体的には、17−アリルアミノ−17−デメトキシゲルダナマイシン(17-allylamino-17-demethoxygeldanamycin: 17-AAG)、17−(2−ジメチルアミノエチル)アミノ−17−デメトキシゲルダナマイシン(17-(2-dimethylaminoethyl)amino-17-demethoxygeldanamycin: 17-DMAG)、17−(4−(ジメチルアミノ)ブチル)アミノ−17−デメトキシゲルダナマイシン(17-[4-(Dimethylamino)butyl]amino-17-demethoxygeldanamycin)、17−(2−(カルボキシ)エチル)アミノ−17−デメトキシゲルダナマイシン(17-[2-(Carboxy)ethyl]amino-17-demethoxygeldanamycin)、17−(2−(N−メチルエチルアミノ)エチル)アミノ−17−デメトキシゲルダナマイシン(17-[2-(N-Methylethylamino)ethyl]amino-17-demethoxygeldanamycin)、17−(2−(ピロリジン−1−イル)エチル)アミノ−17−デメトキシゲルダナマイシン(17-[2-(Pyrrolidin-1-yl)ethyl]amino-17-demethoxygeldanamycin)、17−(2−(ピペラジン−1−イル)エチル)アミノ−デメトキシゲルダナマイシン(17-[2-(Piperazin-1-yl)ethyl]amino-17-demethoxygeldanamycin)、及び17−(4−(ジメチルアミノ)ブチル)アミノ−17−デメトキシゲルダナマイシン(17-[4-(Dimethylamino)butyl]amino-17-demethoxygeldanamycin)からなる群より選択される化合物を用いることができる。本発明の好ましい一態様では、これらの化合物の中でも17−アリルアミノ−17−デメトキシゲルダナマイシン(本明細書において「17-AAG」ともいう)又は17−(2−ジメチルアミノエチル)アミノ−17−デメトキシゲルダナマイシン(本明細書において「17-DMAG」ともいう)が有効成分として用いられる。
また、17−(2−(N−メチルエチルアミノ)エチル)アミノ−17−デメトキシゲルダナマイシン、及び17−(2−(ピロリジン−1−イル)エチル)アミノ−17−デメトキシゲルダナマイシンは17-DMAGと同等の薬理力価を有し、且つ水溶性が高いことから、経口可能な薬剤を構成し得る点で好ましい。
一方、Hsp90の阻害作用を保ちながら、細胞毒性の低いという点(IC50が高い)において、17−(2−(カルボキシ)エチル)アミノ−17−デメトキシゲルダナマイシン及び17−(4−(ジメチルアミノ)ブチル)アミノ−17−デメトキシゲルダナマイシンは好適な化合物である。尚、本発明が対象とする疾患(神経変性疾患)においては、腫瘍性疾患を対象とする場合と異なり、有効成分の細胞毒性は低い方が好ましい。
Various geldanamycin derivatives have been found. For example, Tian ZQ et al., Bioorg. Med. Chem. 12 (2004) 5317-5329, U.S. Patent No. 5,387,584, U.S. Patent No. 4,261,989, U.S. Patent No. 3,987,035, WO00 / 03737, WO02 / 079167, WO99 / Specific compounds are described in 21552, WO99 / 22761. The entire contents of these documents are incorporated by reference.
Preferred geldanamycin derivatives in the present invention include a compound (17-alkylamino-17-demethoxygeldanamycin) obtained by substituting the alkylamino group for the methoxy group at the C-17 position of geldanamycin. it can. Such a compound is advantageous in terms of toxicity because it does not have a methoxy group at the C-17 position, which is considered to be one of the causes of the toxicity of geldanamycin. Specifically, 17-allylamino-17-demethoxygeldanamycin (17-AAG), 17- (2-dimethylaminoethyl) amino-17-demethoxygeldanamycin (17 -(2-dimethylaminoethyl) amino-17-demethoxygeldanamycin: 17-DMAG), 17- [4- (Dimethylamino) butyl) amino-17-demethoxygeldanamycin (17- [4- (Dimethylamino) butyl] amino- 17-demethoxygeldanamycin), 17- (2- (carboxy) ethyl) amino-17-demethoxygeldanamycin (17- [2- (Carboxy) ethyl] amino-17-demethoxygeldanamycin), 17- (2- (N- Methylethylamino) ethyl) amino-17-demethoxygeldanamycin (17- [2- (N-Methylethylamino) ethyl] amino-17-demethoxygeldanamycin), 17- (2- (pyrrolidin-1-yl) ethyl) amino -17-demethoxy gel Danama Syn (17- [2- (Pyrrolidin-1-yl) ethyl] amino-17-demethoxygeldanamycin), 17- (2- (piperazin-1-yl) ethyl) amino-demethoxygeldanamycin (17- [2- (Piperazin-1-yl) ethyl] amino-17-demethoxygeldanamycin) and 17- (4- (dimethylamino) butyl) amino-17-demethoxygeldanamycin (17- [4- (Dimethylamino) butyl] amino- A compound selected from the group consisting of 17-demethoxygeldanamycin) can be used. In one preferred embodiment of the present invention, among these compounds, 17-allylamino-17-demethoxygeldanamycin (also referred to herein as “17-AAG”) or 17- (2-dimethylaminoethyl) amino-17 -Demethoxygeldanamycin (also referred to herein as "17-DMAG") is used as the active ingredient.
Also, 17- (2- (N-methylethylamino) ethyl) amino-17-demethoxygeldanamycin and 17- (2- (pyrrolidin-1-yl) ethyl) amino-17-demethoxygeldanamycin Has a pharmacological potency equivalent to 17-DMAG and is highly water-soluble, which is preferable in that it can constitute an orally-available drug.
On the other hand, 17- (2- (carboxy) ethyl) amino-17-demethoxygeldanamycin and 17- (4- (dimethyl) are low in cytotoxicity while maintaining the inhibitory action of Hsp90 (high IC50). Amino) butyl) amino-17-demethoxygeldanamycin is a preferred compound. In addition, in the disease (neurodegenerative disease) which this invention makes object, unlike the case where tumorous disease is made object, the one where the cytotoxicity of an active ingredient is low is preferable.

尚、17−アリルアミノ−17−デメトキシゲルダナマイシン又は17−(2−ジメチルアミノエチル)アミノ−17−デメトキシゲルダナマイシンの誘導体を用いて、本発明の抗ポリグルタミン病剤を構成してもよい。
ここで、17-AAGは以下の構造式で表される。
但し、式中のRはCH2=CH-CH2-NHである。
In addition, the anti-polyglutamine disease agent of the present invention is constituted using a derivative of 17-allylamino-17-demethoxygeldanamycin or 17- (2-dimethylaminoethyl) amino-17-demethoxygeldanamycin. Also good.
Here, 17-AAG is represented by the following structural formula.
Here, R in the formula is CH 2 = CH-CH 2 -NH .

同様に、17-DMAGは以下の構造式で表される。
但し、式中のRは(CH3)2NH-CH-CH2-NHである。
Similarly, 17-DMAG is represented by the following structural formula.
However, R in the formula is (CH 3 ) 2 NH—CH—CH 2 —NH.

ゲルダナマイシンは広く市販されており、容易に入手可能である(例えば、シグマ(SIGMA)社、インビトロジェン(InvitroGen)社)。一方、ゲルダナマイシン誘導体は、公知の合成法に従って調製することができる。具体的には、ゲルダナマイシン誘導体の一種である17−アルキルアミノ−17−デメトキシゲルダナマイシンは例えば以下の手順で合成することができる。まず、ゲルダナマイシン溶液にアミン(合成目的の化合物に対応するアルキルアミン)を添加し所定時間攪拌する。その後、酢酸エチルなどで希釈し、続いて重炭酸塩水などで洗浄する。得られた有機層を乾燥させ、最後にクロマトグラフィー等で精製する。合成法の詳細については、Tian ZQ et al., Bioorg. Med. Chem. 12 (2004) 5317-5329を参照することができる。尚、当該文献は別法にも言及する。   Geldanamycin is widely commercially available and is readily available (eg, SIGMA, InvitroGen). On the other hand, a geldanamycin derivative can be prepared according to a known synthesis method. Specifically, 17-alkylamino-17-demethoxygeldanamycin, which is a kind of geldanamycin derivative, can be synthesized, for example, by the following procedure. First, an amine (an alkylamine corresponding to a compound to be synthesized) is added to a geldanamycin solution and stirred for a predetermined time. Then, dilute with ethyl acetate etc. and then wash with bicarbonate water. The obtained organic layer is dried and finally purified by chromatography or the like. For details of the synthesis method, Tian ZQ et al., Bioorg. Med. Chem. 12 (2004) 5317-5329 can be referred to. The document also refers to an alternative method.

一方、17-DMAGは以下の手順で合成することができる(Tian ZQ et al., Bioorg. Med. Chem. 12 (2004) 5317-5329を参照)。まず、ゲルダナマイシンの1,2−ジクロロエタン溶液にN,N−ジメチルエチレンジアミンを添加し、所定時間攪拌する。その後、エチルアセテートで希釈し、続いて重炭酸水などで洗浄する。得られた有機層を乾燥させ、最後にクロマトグラフィー等で精製する。   On the other hand, 17-DMAG can be synthesized by the following procedure (see Tian ZQ et al., Bioorg. Med. Chem. 12 (2004) 5317-5329). First, N, N-dimethylethylenediamine is added to a 1,2-dichloroethane solution of geldanamycin and stirred for a predetermined time. Then, it is diluted with ethyl acetate and subsequently washed with bicarbonate water. The obtained organic layer is dried and finally purified by chromatography or the like.

本発明の有効成分として使用される化合物は塩の形態であってもよい。塩の例としてはハロゲン化水素酸塩(具体的にはフッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩等)、無機酸塩(具体的には硫酸塩、硝酸塩、過塩素酸塩、リン酸塩、炭酸塩、重炭酸塩等)、有機カルボン酸塩(具体的には酢酸塩、トリフルオロ酢酸塩、シュウ酸塩、マレイン酸塩、酒石酸塩、フマル酸塩、クエン酸塩等)、有機スルホン酸塩(具体的にはメタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩、カンファースルホン酸塩等)、アミノ酸塩(具体的にはアスパラギン酸塩、グルタミン酸塩等)、四級アミン塩、アルカリ金属塩(具体的にはナトリウム塩、カリウム塩等)、アルカリ土類金属塩(具体的にはマグネシウム塩、カルシウム塩等)を挙げることができる。   The compound used as the active ingredient of the present invention may be in the form of a salt. Examples of salts include hydrohalides (specifically hydrofluoride, hydrochloride, hydrobromide, hydroiodide, etc.), inorganic acid salts (specifically sulfate, nitrate) , Perchlorate, phosphate, carbonate, bicarbonate, etc.), organic carboxylates (specifically acetate, trifluoroacetate, oxalate, maleate, tartrate, fumarate) , Citrates, etc.), organic sulfonates (specifically methanesulfonate, trifluoromethanesulfonate, ethanesulfonate, benzenesulfonate, toluenesulfonate, camphorsulfonate, etc.), amino acids Salt (specifically aspartate, glutamate, etc.), quaternary amine salt, alkali metal salt (specifically sodium salt, potassium salt, etc.), alkaline earth metal salt (specifically magnesium salt, calcium) Salt) It can be mentioned.

本発明において「抗ポリグルタミン病剤」とは、ポリグルタミン病の発症を抑制するために使用される薬剤(医薬)、又はポリグルタミン病の症状を改善(部分的又は完全な治癒を含む)するために使用される薬剤(医薬)のことをいう。したがって本発明の抗ポリグルタミン病剤には、ポリグルタミン病の予防的処置に使用可能な薬剤、及びポリグルタミン病の治療に使用可能な薬剤が含まれる。
「ポリグルタミン病」とは神経変性疾患の一種であって、遺伝子のコード領域においてCAGリピートの伸長(異常伸長)が認められることを特徴とする。これまでにポリグルタミン病として球脊髄性筋萎縮症、ハンチントン病、脊髄小脳変性症1型(SCA1)、脊髄小脳変性症2型(SCA2)、Machado-Joseph病(MJD、SCA3)、脊髄小脳変性症6型(SCA6)、脊髄小脳変性症7型(SCA7)、脊髄小脳変性症17型(SCA17)、歯状核赤核・淡蒼球ルイ体萎縮症(DRPLA)が見出されている。ポリグルタミン病の患者には表現促進現象(anticipation)やCAGリピート数のばらつき(体細胞モザイク)、主に神経組織が選択的に障害されるという共通の病態が観察される。本発明の薬剤はこれらのポリグルタミン病の予防薬又は治療薬として用いられ得るが、特に球脊髄性筋萎縮症に対して好適に適用される。
In the present invention, the term “anti-polyglutamine disease agent” means a drug (medicine) used to suppress the onset of polyglutamine disease, or improves (including partial or complete cure) symptoms of polyglutamine disease. It refers to a drug (medicine) used for the purpose. Therefore, the anti-polyglutamine disease agent of the present invention includes a drug that can be used for the prophylactic treatment of polyglutamine disease and a drug that can be used for the treatment of polyglutamine disease.
“Polyglutamine disease” is a kind of neurodegenerative disease, characterized in that CAG repeat elongation (abnormal elongation) is observed in the coding region of the gene. So far, polyglutamine diseases such as bulbar spinal muscular atrophy, Huntington's disease, spinocerebellar degeneration type 1 (SCA1), spinocerebellar degeneration type 2 (SCA2), Machado-Joseph disease (MJD, SCA3), spinocerebellar degeneration Syndrome type 6 (SCA6), spinocerebellar degeneration type 7 (SCA7), spinocerebellar degeneration type 17 (SCA17), dentate nucleus erythrocytic and pallidal Louis atrophy (DRPLA) have been found. In patients with polyglutamine disease, common symptoms are observed, such as expression promotion (anticipation), variation in the number of CAG repeats (somatic cell mosaic), and mainly nerve tissue is selectively damaged. The agent of the present invention can be used as a prophylactic or therapeutic agent for these polyglutamine diseases, but is particularly preferably applied to bulbospinal muscular atrophy.

本発明の有効成分の製剤化は常法に従って行うことができる。製剤化する場合には、製剤上許容される他の成分(例えば、担体、賦形剤、結合剤、崩壊剤、溶解補助剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、酸化防止剤、滑沢剤、着色剤、矯味剤、生理食塩水など)を含有させることができる。
賦形剤としては乳糖、デンプン、ソルビトール、D-マンニトール、白糖等を用いることができる。崩壊剤としてはデンプン、カルボキシメチルセルロース、炭酸カルシウム等を用いることができる。結合剤としてはポリビニルピロリドン、エチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、アラビアゴム等を用いることができる。溶解補助剤としては生理食塩水、乳酸化リンゲル溶液、ポリオキシエチレン硬化ひまし油、ニコチン酸アミド等を用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩等を用いることができる。乳化剤としてはアラビアゴム、アルギン酸ナトリウム、トラガント等を用いることができる。懸濁剤としてはモノステアリン酸グリセリン、モノステアリン酸アルミニウム、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ラウリル硫酸ナトリウム等を用いることができる。無痛化剤としてはベンジルアルコール、クロロブタノール、ソルビトール等を用いることができる。安定剤としてはプロピレングリコール、ジエチリン亜硫酸塩、アスコルビン酸等を用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等を用いることができる。防腐剤としては塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等と用いることができる。酸化防止剤としてはアスコルビン酸、αトコフェノール等を用いることができる。滑沢剤としてはタルク、ステアリン酸マグネシウム、ステアリン酸カルシウム等を用いることができる。
The active ingredient of the present invention can be formulated according to a conventional method. When formulating, other pharmaceutically acceptable ingredients (for example, carriers, excipients, binders, disintegrants, solubilizers, buffers, emulsifiers, suspensions, soothing agents, stabilizers, Preservatives, preservatives, antioxidants, lubricants, colorants, flavoring agents, physiological saline, and the like).
As the excipient, lactose, starch, sorbitol, D-mannitol, sucrose and the like can be used. As the disintegrant, starch, carboxymethylcellulose, calcium carbonate and the like can be used. As the binder, polyvinyl pyrrolidone, ethyl cellulose, methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, gum arabic, or the like can be used. As a solubilizer, physiological saline, lactated Ringer's solution, polyoxyethylene hydrogenated castor oil, nicotinamide, and the like can be used. Phosphate, citrate, acetate, etc. can be used as the buffer. As the emulsifier, gum arabic, sodium alginate, tragacanth and the like can be used. As the suspending agent, glyceryl monostearate, aluminum monostearate, methyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, sodium lauryl sulfate and the like can be used. As the soothing agent, benzyl alcohol, chlorobutanol, sorbitol and the like can be used. As the stabilizer, propylene glycol, diethylin sulfite, ascorbic acid or the like can be used. As preservatives, phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben, and the like can be used. As preservatives, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used. As the antioxidant, ascorbic acid, α-tocophenol and the like can be used. As the lubricant, talc, magnesium stearate, calcium stearate and the like can be used.

製剤化する場合の剤型も特に限定されず、例えば錠剤、散剤、細粒剤、顆粒剤、カプセル剤、シロップ剤、注射剤、外用剤、点眼剤、点鼻剤、吸入剤、及び座剤などとして調製できる。
このように製剤化した本発明の薬剤はその形態に応じて経口投与又は非経口投与(静脈内、動脈内、皮下、筋肉、腹腔内注射など)によって対象に適用され得る。ここでの「対象」は特に限定されず、ヒト、及びヒト以外の哺乳動物(ペット動物、家畜、実験動物を含む。具体的には例えばマウス、ラット、モルモット、ハムスター、サル、ウシ、ブタ、ヤギ、ヒツジ、イヌ、ネコ、ニワトリ、ウズラ等である)を含む。好適には、本発明の薬剤はヒトに対して適用される。
本発明の薬剤中における有効成分(GA又はその誘導体)の含量は一般に剤型によって異なるが、所望の投与量を達成できるように例えば約0.01重量%〜約90重量%とする。
The dosage form for formulation is not particularly limited, for example, tablets, powders, fine granules, granules, capsules, syrups, injections, external preparations, eye drops, nasal drops, inhalants, and suppositories. Etc. can be prepared.
The drug of the present invention thus formulated can be applied to a subject by oral administration or parenteral administration (intravenous, intraarterial, subcutaneous, intramuscular, intraperitoneal injection, etc.) depending on the form. The “subject” here is not particularly limited, and includes humans and non-human mammals (including pet animals, domestic animals, laboratory animals. Specifically, for example, mice, rats, guinea pigs, hamsters, monkeys, cows, pigs, Goats, sheep, dogs, cats, chickens, quails, etc.). Suitably, the medicament of the present invention is applied to humans.
The content of the active ingredient (GA or a derivative thereof) in the drug of the present invention generally varies depending on the dosage form, but is, for example, about 0.01% by weight to about 90% by weight so that a desired dose can be achieved.

本発明の他の局面では上記薬剤を使用したポリグルタミン病の予防方法又は治療方法(以下、これら二つの方法をまとめて「治療方法等」という)が提供される。本発明の治療方法等は、GA又はその誘導体を有効成分として含む薬剤を対象に投与するステップを含む。投与経路は特に限定されず例えば経口、静脈内、皮内、皮下、筋肉内、腹腔内、経皮、経粘膜などを挙げることができる。これらの投与経路は互いに排他的なものではなく、任意に選択される二つ以上を併用することもできる(例えば、経口投与と同時に又は所定時間経過後に静脈注射等を行う等)。尚、投与が容易である点から経口投与によることが好ましい。   In another aspect of the present invention, a method for preventing or treating polyglutamine disease using the above-mentioned drug (hereinafter, these two methods are collectively referred to as “therapeutic methods”) is provided. The therapeutic method of the present invention includes a step of administering a drug containing GA or a derivative thereof as an active ingredient to a subject. The administration route is not particularly limited, and examples thereof include oral, intravenous, intradermal, subcutaneous, intramuscular, intraperitoneal, transdermal, transmucosal and the like. These administration routes are not mutually exclusive, and two or more arbitrarily selected can be used in combination (for example, intravenous injection or the like is performed simultaneously with oral administration or after a predetermined time has elapsed). In addition, oral administration is preferable because administration is easy.

薬剤の投与量は症状、患者の年齢、性別、及び体重などによって異なるが、当業者であれば適宜適当な投与量を設定することが可能である。例えば、成人(体重約60kg)を対象として一日当たりの有効成分量が約100mg〜約10g、好ましくは約150mg〜約5gとなるよう投与量を設定することができる。投与スケジュールとしては例えば一日一回〜数回、二日に一回、或いは三日に一回などを採用できる。投与スケジュールの設定においては、患者の病状や薬剤の効果持続時間などを考慮することができる。   The dose of the drug varies depending on symptoms, patient age, sex, weight, etc., but those skilled in the art can appropriately set an appropriate dose. For example, for an adult (body weight of about 60 kg), the dose can be set so that the amount of active ingredient per day is about 100 mg to about 10 g, preferably about 150 mg to about 5 g. As the administration schedule, for example, once to several times a day, once every two days, or once every three days can be adopted. In setting the administration schedule, it is possible to consider the patient's medical condition, the duration of the drug effect, and the like.

以下の実施例における材料・試薬及び実験方法は特に記載しない限り次の通りとした。
(アンドロゲン受容体発現ベクター)
24ないし97CAGの全長アンドロゲン受容体(AR)コンストラクトをpPCR3.1ベクター(インビトロジェン社、カリフォルニア、アメリカ)にクローニングした。
Materials / reagents and experimental methods in the following examples were as follows unless otherwise specified.
(Androgen receptor expression vector)
A 24-97 CAG full length androgen receptor (AR) construct was cloned into the pPCR3.1 vector (Invitrogen, California, USA).

(球脊髄性筋萎縮症(SBMA)培養細胞モデル)
ヒト神経培養細胞(SHSY-5Y)を、レチノイン酸10μMを含むメディウムで分化誘導後、24ないし97CAGを有する全長ARを含む発現ベクターをリポフェクション法にて感染させた。このようにして培養細胞モデルを調製した。
(Culbus spinal muscular atrophy (SBMA) cultured cell model)
Human neuronal cultured cells (SHSY-5Y) were induced to differentiate with a medium containing 10 μM retinoic acid, and then infected with an expression vector containing a full-length AR having 24 to 97 CAG by the lipofection method. Thus, a cultured cell model was prepared.

(SBMAモデルマウス(トランスジェニックマウス))
CMVエンハンサー及びチキンβアクチンプロモーターの制御下に97CAGを有する完全長ARを発現するコンストラクトを導入したトランスジェニックマウス(AR-97Q)をモデルマウスとして用いた。当該トランスジェニックマウスの作製方法の概要は次の通りである。まず、pCAGGSベクター(Niwa, H., Yamamura, K., and Miyazaki, J. (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193-199.)内にNheI部位を作製した後(pCAGGS-NheI)、97CAGを有する全長ヒトAR遺伝子 (Kobayashi, Y., Miwa, S., Merry, D.E., Kume, A., Mei, L., Doyu, M., and Sobue, G. (1998). Biochem. Biophys. Res. Commun. 252, 145-150.)をこのpCAGGS-NheIにサブクローニングする。次に、SalI-NheI で処理し、AR断片を切り出す。この断片をBDF1受精卵(日本エスエルシー、静岡、日本)にマイクロインジェクションする。注入操作を終了した受精卵を偽妊娠マウスの卵管に移植し、所定期間飼育することで仔マウス(F0、AR-97Qマウス)を得る。これらF0マウスをC57BL/6J(日本エスエルシー、静岡、日本)に交配することで維持を行った。尚、AR-97Qの作製方法の詳細についてはWO2004/016083を参照されたい。
(SBMA model mouse (transgenic mouse))
A transgenic mouse (AR-97Q) into which a construct expressing a full-length AR having 97 CAG under the control of a CMV enhancer and a chicken β-actin promoter was used as a model mouse. The outline of the method for producing the transgenic mouse is as follows. First, the NheI site in the pCAGGS vector (Niwa, H., Yamamura, K., and Miyazaki, J. (1991) .Efficient selection for high-expression transfectants with a novel eukaryotic vector.Gene 108, 193-199.) After preparation (pCAGGS-NheI), the full-length human AR gene with 97CAG (Kobayashi, Y., Miwa, S., Merry, DE, Kume, A., Mei, L., Doyu, M., and Sobue, G (1998). Biochem. Biophys. Res. Commun. 252, 145-150.) Is subcloned into this pCAGGS-NheI. Next, treatment with SalI-NheI cuts out the AR fragment. This fragment is microinjected into BDF1 fertilized eggs (Japan SLC, Shizuoka, Japan). A fertilized egg that has completed the injection operation is transplanted into the oviduct of a pseudopregnant mouse and bred for a predetermined period to obtain a pup mouse (F0, AR-97Q mouse). These F0 mice were maintained by mating to C57BL / 6J (Japan SLC, Shizuoka, Japan). For details of the production method of AR-97Q, refer to WO2004 / 016083.

(薬剤投与)
モデルマウスへの17-AAGの投与は次のように行った。DMSOに溶解した17-AAGを腹腔内投与した。生後6週から投与を開始し、生後25週齢まで週3回の投与を行った。投与量の異なる2群(1回投与量2.5mg/kgの群、及び1回投与量25mg/kgの群)を用意した。また、対照群(Tg-0)には溶剤であるDMSOそのものを投与した。
(Drug administration)
Administration of 17-AAG to model mice was performed as follows. 17-AAG dissolved in DMSO was administered intraperitoneally. Administration was started from 6 weeks of age and administered 3 times a week until 25 weeks of age. Two groups with different doses (a group with a single dose of 2.5 mg / kg and a group with a single dose of 25 mg / kg) were prepared. The control group (Tg-0) was administered with the solvent DMSO itself.

(表現型解析)
1.ロータロッド法(Rotarod task)を薬剤投与開始から毎週行い、運動機能を解析した。Rotarod taskにはEconomex Rotarod (Colombus Instruments、アメリカ)を用い、毎週12時間ごとの明暗サイクルの明時に、以前の報告と同様に行った (Adachi, H., Kume, A., Li, M., Nakagomi, Y., Niwa, H., Do, J., Sang, C., Kobayashi, Y., Doyu, M., and Sobue, G. (2001). Hum. Mol. Genet. 10, 1039-1048.)。試行は3回行い、各々のマウスが回転バーにもっとも長く乗ることのできた時間を記録した。マウスがバーから落下した時ないし180秒に達した時にタイマーを停止し、その時間を記録した。
マウスの1日の行動量であるケージアクティビティ(cage activity)は、マウスを透明なケージ(16 x 30 x 14 cm)に入れ、AB system (ニューロサイエンス、日本)を用い、赤外線センサーを使って測定した。測定は10分間隔で24時間行った。
(Phenotype analysis)
1. Rotarod task was performed every week from the start of drug administration, and motor function was analyzed. The Rotarod task was carried out using Economex Rotarod (Colombus Instruments, USA), as in the previous report (Adachi, H., Kume, A., Li, M., during the light / dark cycle every 12 hours). Nakagomi, Y., Niwa, H., Do, J., Sang, C., Kobayashi, Y., Doyu, M., and Sobue, G. (2001). Hum. Mol. Genet. 10, 1039-1048 .). Trials were performed three times and the time each mouse was able to ride on the rotating bar the longest was recorded. The timer was stopped when the mouse fell from the bar or when 180 seconds were reached, and the time was recorded.
The cage activity, which is the amount of activity per day of a mouse, is measured with an infrared sensor using the AB system (Neuroscience, Japan) by placing the mouse in a transparent cage (16 x 30 x 14 cm). did. Measurements were taken at 10 minute intervals for 24 hours.

2.正常長(AR24Q)又は異常延長したポリグルタミン鎖(AR97Q)を含有するヒトアンドロゲン受容体(AR)遺伝子発現ベクターをヒト神経培養細胞(SHSY5Y)で一過性強制発現させて、培養細胞モデルを作成した。この培養細胞モデルを用いてGAと17-AAGの薬理効果を評価した。薬剤(GA,17-AAG)の投与は、強制発現後にメディウムに加えることによって行い、24時間後に一度薬剤(GA,17-AAG)を含んだメディウムを交換した。GAと17-AAGはDimethyl Sulfoxide(DMSO)に溶解し、それぞれGA 0.9,1.8,3.6,7.2nM,17-AAG 18,90,180,360nMの濃度で投与した。コントロールとして、何も投与しないもの(C)とDMSOのみを投与したもの(DM)を用いた。発現48時間後に細胞を回収してタンパク質を抽出し、ウエスタンブロットにてそれぞれのタンパク質の発現量を評価した。用いた抗体は以下の通りである。
抗AR抗体:N-20(Santa Cruzu Biotechnology, Inc.)
抗Hsp70抗体:SPA-810(Stressgen Biotechnologies corp.)
抗Hsp40抗体:SPA-400(Stressgen Biotechnologies corp.)
抗Hsp90抗体:SPA-835(Stressgen Biotechnologies corp.)
抗Hop抗体:SRA-1500(Stressgen Biotechnologies corp.)
抗p23抗体:MA3-414(Affinity BioReagents Inc.)
抗Hsp60抗体:MS-263(Neo Markers)
2. Create a cultured cell model by transiently forcing human androgen receptor (AR) gene expression vector containing normal length (AR24Q) or abnormally extended polyglutamine chain (AR97Q) in human neuronal cells (SHSY5Y) did. Using this cultured cell model, the pharmacological effects of GA and 17-AAG were evaluated. Administration of the drug (GA, 17-AAG) was performed by adding to the medium after forced expression, and the medium containing the drug (GA, 17-AAG) was replaced once after 24 hours. GA and 17-AAG were dissolved in dimethyl sulfide oxide (DMSO) and administered at concentrations of GA 0.9, 1.8, 3.6, 7.2 nM, 17-AAG 18, 90, 180, and 360 nM, respectively. As a control, a non-administered drug (C) and a DMSO-only drug (DM) were used. After 48 hours of expression, the cells were collected, proteins were extracted, and the expression level of each protein was evaluated by Western blot. The antibodies used are as follows.
Anti-AR antibody: N-20 (Santa Cruzu Biotechnology, Inc.)
Anti-Hsp70 antibody: SPA-810 (Stressgen Biotechnologies corp.)
Anti-Hsp40 antibody: SPA-400 (Stressgen Biotechnologies corp.)
Anti-Hsp90 antibody: SPA-835 (Stressgen Biotechnologies corp.)
Anti-Hop antibody: SRA-1500 (Stressgen Biotechnologies corp.)
Anti-p23 antibody: MA3-414 (Affinity BioReagents Inc.)
Anti-Hsp60 antibody: MS-263 (Neo Markers)

3.Hsp70遺伝子を組み込んだ発現ベクターを用意した。これと、正常長(AR24Q)又は異常延長したポリグルタミン鎖(AR97Q)を含有するヒトAR遺伝子発現ベクターとをヒト神経培養細胞(SHSY-5Y)で共発現させ、それぞれのARの発現量をウエスタンブロットにより評価した。また、Hsp90αサブセット又はβサブセットを組み込んだ発現ベクターを用いて、ヒト神経培養細胞(SHSY-5Y)内でHsp90α又はβを高発現させ、同様にARの発現量をウエスタンブロットで評価した。
4.薬剤投与後のマウスの脊髄および筋組織のウエスタンブロットは、各組織のtotal homogenateを用いた。また、抗AR抗体はH-280(Santa Cruzu Biotechnology, Inc.)、抗Hsp70抗体はSPA-810(Stressgen Biotechnologies corp.)抗Hsp40抗体はSPA-400(Stressgen Biotechnologies corp.)、抗Hsp90抗体はSPA-835(Stressgen Biotechnologies corp.)を利用し、コントロールタンパクとしてα-tubulinを用いた。また、脊髄と骨格筋における免疫染色においては、ポリグルタミンが異常伸張したタンパクを特異的に認識する抗体として1C2(CHEMICON International)を使用した。
3. An expression vector incorporating the Hsp70 gene was prepared. This and a human AR gene expression vector containing normal length (AR24Q) or abnormally extended polyglutamine chain (AR97Q) were co-expressed in human neuronal culture cells (SHSY-5Y), and the expression level of each AR was determined by Western Evaluated by blot. Moreover, Hsp90α or β was highly expressed in human neuronal culture cells (SHSY-5Y) using an expression vector incorporating the Hsp90α subset or β subset, and the expression level of AR was similarly evaluated by Western blot.
4). For the Western blot of spinal cord and muscle tissues of mice after drug administration, total homogenate of each tissue was used. The anti-AR antibody is H-280 (Santa Cruzu Biotechnology, Inc.), the anti-Hsp70 antibody is SPA-810 (Stressgen Biotechnologies corp.), The anti-Hsp40 antibody is SPA-400 (Stressgen Biotechnologies corp.), And the anti-Hsp90 antibody is SPA. -835 (Stressgen Biotechnologies corp.) Was used and α-tubulin was used as a control protein. In immunostaining of spinal cord and skeletal muscle, 1C2 (CHEMICON International) was used as an antibody that specifically recognizes a protein with abnormally expanded polyglutamine.

17-AAGの薬剤効果は培養細胞モデル、および病的遺伝子(AR内のCAGリピート数が97のもの)を導入したモデルマウスにて評価した。今回使用したモデルマウスは、表現形に性差があり、進行性の運動障害を呈することが確認されている(非特許文献5)。薬効の評価は体重変化、生存率、Rotarod法(一定の速度で回転する棒の上に、落下せずにつかまっていられる時間測定)、Cage activity測定法(24時間のマウスの動作の回数の測定)をパラメーターとした。薬剤の1回投与量はこれまでの報告において、短期投与では毒性が問題にならないことが確認されている量とし(2.5mg/kg、25mg/kg)、薬剤吸収が確実な腹腔内注射法にて週に3回施行した。17-AAGのマウスでの薬剤動態は既に詳細に検討されている(非特許文献43)。対照群には溶剤であるDimethyl Sulfoxide(DMSO)を投与した。   The drug effect of 17-AAG was evaluated in a cultured cell model and a model mouse into which a pathological gene (with 97 CAG repeats in AR) was introduced. It has been confirmed that the model mouse used this time has gender differences in phenotype and exhibits progressive movement disorders (Non-patent Document 5). The evaluation of drug efficacy is weight change, survival rate, Rotarod method (time measurement that can be held without falling on a rod rotating at a constant speed), Cage activity measurement method (measurement of the number of mouse movements for 24 hours) ) As a parameter. The single dose of the drug has been confirmed in previous reports that toxicity has not been a problem with short-term administration (2.5 mg / kg, 25 mg / kg). Was performed three times a week. The pharmacokinetics of 17-AAG in mice has already been studied in detail (Non-patent Document 43). Dimethyl Sulfoxide (DMSO) as a solvent was administered to the control group.

<培養細胞におけるGAと17-AAGの薬理効果>
培養細胞モデルにおいて、GAと17-AAGの薬理効果を評価した。図3A及び3Bに示されるように、GAと17-AAG投与により薬剤濃度依存性に双方のリピート数のARの減少効果を認めた。人体では正常リピート数とされる24リピートのAR(AR24Q)でも同様の効果を認めたが、AR減少効果はリピート数が異常伸長したAR97Qで強くみられた。また、GAと17-AAGの投与でHsp70とHsp40の発現増加がみられたが、Hsp90の発現量には変化がみられなかった。その他のシャペロン群(Hsp60、Hop、p23)の発現量も変化は認めなかった。
図4A及び4Bは、17-AAG投与実験を5回試行し、AR24QとAR97Qの減少効果の平均値を棒グラフで示したものである。これらの減少効果をDMのみ加えたコントロール群と、17-AAG(360nM)投与群で比較すると、それぞれの減少率はAR24Qが41.1%(p=0.0132)、AR97Qは11.0%(p=0.0062)であった。さらに、AR24QとAR97Qの減少率を比較すると、有意にAR97Qの減少率が大きく(p=0.0063)、ポリグルタミンが異常伸長した病的なARの方が17-AAGに対する感受性が高いことが明らかになった。統計学的解析はτ検定を使用した。
こうしたARの減少効果は、Hsp70を遺伝子操作で強制発現させることでも得ることができた。しかし、薬剤投与とほぼ同等のHsp70高発現が得られているにも拘わらず、そのAR減少効果は薬剤投与に比し劣っていた(図5A)。一方、Hsp90のαとβの二つのサブセットをそれぞれ高発現させると、双方でAR24Q、AR97Qの発現量の増加がみられ、その傾向はAR97Qにより強く認められた(図5B)。
<Pharmacological effects of GA and 17-AAG in cultured cells>
In cultured cell models, the pharmacological effects of GA and 17-AAG were evaluated. As shown in FIGS. 3A and 3B, GA and 17-AAG administration showed an effect of decreasing AR of both repeat numbers in a drug concentration-dependent manner. In the human body, the same effect was observed with the AR of 24 repeats (AR24Q), which is regarded as the normal repeat number, but the AR reduction effect was strongly observed with AR97Q with an abnormally long repeat number. In addition, GA and 17-AAG administration increased Hsp70 and Hsp40 expression, but Hsp90 expression did not change. The expression levels of the other chaperone groups (Hsp60, Hop, p23) did not change.
4A and 4B are graphs showing the average value of the reduction effect of AR24Q and AR97Q in a bar graph after five trials of 17-AAG administration. Comparing these reduction effects in the control group to which only DM was added and the 17-AAG (360nM) administration group, the respective reduction rates were 41.1% (p = 0.0132) for AR24Q and 11.0% (p = 0.0062) for AR97Q there were. Furthermore, when the AR24Q and AR97Q reduction rates were compared, it was found that the AR97Q reduction rate was significantly larger (p = 0.0063), and the pathological AR with abnormally extended polyglutamine was more sensitive to 17-AAG. became. Statistical analysis used the τ test.
Such an AR reduction effect could also be obtained by forcibly expressing Hsp70 by genetic manipulation. However, despite the fact that high expression of Hsp70 almost equivalent to that of drug administration was obtained, the AR reduction effect was inferior to that of drug administration (FIG. 5A). On the other hand, when the two subsets of α and β of Hsp90 were highly expressed, the expression levels of AR24Q and AR97Q were increased in both, and this tendency was strongly observed by AR97Q (FIG. 5B).

<マウスモデルにおけるGAと17-AAGの薬理効果>
以上の培養細胞モデルの結果より、ポリグルタミンが伸張した病的なARは、17-AAGにより生体内でもその発現量を減少させることが可能と予想された。GA誘導体として、個体動物レベルで既に安全性が確認されている17-AAGを選択し、マウスモデルに薬剤投与を行った。マウスの症状の変化は、体重、生存率、運動機能解析(Rotarod, cage activity)にて評価した(図6、図7)。対照群はTg-0(DMSOのみ)、治療群(投与群)はTg-2.5(17-AAG:2.5mg/kg)、Tg-25(17-AAG:25mg/kg)で示す。図8Aは生後16週齢のマウスの写真であるが、治療群で著明な筋萎縮を呈しているのに対し、治療群ではほぼ健常マウスに近い体格をしている。図8Bはマウスの歩幅の比較であるが、治療群では有意に歩幅は広く、規則的である。このように、17-AAG治療群(投与群)は非治療群に比べて、すべての解析において投与量依存性に有意な治療効果を認めた。
個体数は、体重、生存率、Rotarod法においてはTg-0(n=27)、Tg-2.5(n=22)、Tg-25(n=23)とし、Cage Activity法においてはTg-0(n=18)、Tg-2.5(n=17)、Tg-25(n=18)とした。
<Pharmacological effects of GA and 17-AAG in mouse model>
From the results of the above cultured cell model, it was predicted that the pathological AR in which polyglutamine was extended could be reduced in vivo by 17-AAG. As a GA derivative, 17-AAG, which has already been confirmed to be safe at the individual animal level, was selected, and a drug was administered to a mouse model. Changes in mouse symptoms were evaluated by weight, survival rate, and motor function analysis (Rotarod, cage activity) (FIGS. 6 and 7). The control group is indicated by Tg-0 (DMSO only), and the treatment group (administration group) is indicated by Tg-2.5 (17-AAG: 2.5 mg / kg) and Tg-25 (17-AAG: 25 mg / kg). FIG. 8A is a photograph of a 16-week-old mouse, showing marked muscle atrophy in the treatment group, whereas the treatment group has a physique almost similar to that of a healthy mouse. FIG. 8B is a comparison of mouse stride, but the stride is significantly wider and regular in the treatment group. Thus, the 17-AAG treatment group (administration group) showed a significant therapeutic effect on dose dependency in all analyses, compared to the non-treatment group.
The number of individuals is body weight, survival rate, Tg-0 (n = 27), Tg-2.5 (n = 22), Tg-25 (n = 23) in the Rotarod method, and Tg-0 ( n = 18), Tg-2.5 (n = 17), and Tg-25 (n = 18).

ポリグルタミン鎖が異常延長した変異AR(AR97Q)の発現量の評価は、ウエスタンブロット法によりSBMAマウスモデルの脊髄と骨格筋にて施行した。AR97Qの発現量は、モノマー及びスタッキングゲル内のタンパク複合体の双方で有意に減少した(図9A)。スタッキングゲルに蓄積する高分子量のARは、凝集した変異ARを示すと考えられる。培養細胞モデルと同様にHsp70とHsp40は発現が増加していたが、Hsp90の発現量には変化がみられなかった(図9A)。治療群(Tg-0)、非治療群(Tg-25)の各5匹のマウスで変異ARの発現量を比較すると、変異ARは双方の臓器でモノマー及びスタッキングゲル内のタンパク複合体ともに有意に減少した(図9B)。統計学的解析はT検定を用いた。
異常延長したポリグルタミンを特異的に認識する1C2抗体を用いた免疫染色においては、17-AAG治療群で1C2陽性細胞数が減少していた(図10)。
ウエスタンブロット法、免役染色に使用した抗体を以下に示す。
抗AR抗体:H-280(Santa Cruzu Biotechnology, Inc.)
抗Hsp70抗体:SPA-810(Stressgen Biotechnologies corp.)
抗Hsp40抗体:SPA-400(Stressgen Biotechnologies corp.)
抗Hsp90抗体:SPA-835(Stressgen Biotechnologies corp.)
抗ポリグルタミン抗体:1C2(CHEMICON International)
The expression level of the mutant AR (AR97Q) in which the polyglutamine chain was abnormally extended was evaluated in the spinal cord and skeletal muscle of the SBMA mouse model by Western blotting. The expression level of AR97Q was significantly decreased in both the monomer and the protein complex in the stacking gel (FIG. 9A). The high molecular weight AR that accumulates in the stacking gel is considered to indicate an aggregated mutant AR. Although the expression of Hsp70 and Hsp40 increased as in the cultured cell model, the expression level of Hsp90 did not change (FIG. 9A). Comparing the expression level of mutant AR in 5 mice each of treatment group (Tg-0) and non-treatment group (Tg-25), mutation AR is significant in both organs and in protein complex in stacking gel. (FIG. 9B). Statistical analysis used the T test.
In immunostaining using a 1C2 antibody that specifically recognizes abnormally prolonged polyglutamine, the number of 1C2-positive cells decreased in the 17-AAG treatment group (FIG. 10).
The antibodies used for Western blotting and immunostaining are shown below.
Anti-AR antibody: H-280 (Santa Cruzu Biotechnology, Inc.)
Anti-Hsp70 antibody: SPA-810 (Stressgen Biotechnologies corp.)
Anti-Hsp40 antibody: SPA-400 (Stressgen Biotechnologies corp.)
Anti-Hsp90 antibody: SPA-835 (Stressgen Biotechnologies corp.)
Anti-polyglutamine antibody: 1C2 (CHEMICON International)

<まとめ>
以上のように、SBMAの培養細胞モデルとモデルマウスへの17-AAGの投与は、有意な治療効果を示した。ポリグルタミン鎖が伸張した病的なARタンパク質の方が、Hsp90に対する依存性が高くなっていると考えられる。モデルマウスへの長期連続投与に、明らかな副作用は確認されなかった。今回、SBMAの病的タンパク質である変異型ARが17-AAGの治療ターゲットとなることが明らかになった。一方、その他のポリグルタミン病の病因タンパク質にもHsp90依存性が認められ、かつポリグルタミンが異常延長することでその依存性が高くなるようであれば、同様に治療ターゲットになると予測される。17-AAGをはじめとするGA誘導体は悪性腫瘍の治療法として臨床応用されつつあるが、神経変性疾患であるポリグルタミン病全般にも応用できる有望な薬剤である。
<Summary>
As described above, administration of 17-AAG to cultured cell models of SBMA and model mice showed a significant therapeutic effect. A pathological AR protein with an extended polyglutamine chain is considered to be more dependent on Hsp90. No obvious side effects were observed in long-term continuous administration to model mice. This time, it was revealed that mutant AR, a pathological protein of SBMA, is a therapeutic target for 17-AAG. On the other hand, if other pathogenic proteins of polyglutamine disease are also Hsp90-dependent, and if the dependence is increased by abnormally extending polyglutamine, it is expected to be a therapeutic target as well. Although GA derivatives such as 17-AAG are being clinically applied as a treatment for malignant tumors, they are promising drugs that can be applied to polyglutamine diseases, which are neurodegenerative diseases.

本発明はポリグルタミン病の予防ないし治療に有用である。ポリグルタミン病の中でも特に球脊髄性筋萎縮症の予防ないし治療に対して本発明を好適に利用することができる。   The present invention is useful for prevention or treatment of polyglutamine disease. Among the polyglutamine diseases, the present invention can be suitably used particularly for the prevention or treatment of bulbar spinal muscular atrophy.

この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。
The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.
The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.

図1はゲルダナマイシン(GA)とその誘導体を示す。1970年に抗真菌剤としてGAが見いだされが、その後は優れた抗腫瘍効果を有することが判明した。臨床応用のためいくつかのゲルダナマイシン誘導体が開発されてきた。17-AAGはGAの側鎖の一部のみが置換された誘導体である。同じ薬理作用を保ちながら、生体内の毒性を減少させることに成功した優れた誘導体である。17-DMAGは17-AAGをさらに改良した誘導体で、水溶性を高めることにより経口投与が可能となった。FIG. 1 shows geldanamycin (GA) and its derivatives. In 1970, GA was found as an antifungal agent, and thereafter it was found to have an excellent antitumor effect. Several geldanamycin derivatives have been developed for clinical application. 17-AAG is a derivative in which only part of the side chain of GA is substituted. It is an excellent derivative that has succeeded in reducing toxicity in vivo while maintaining the same pharmacological action. 17-DMAG is a further improved derivative of 17-AAG, which can be administered orally by increasing water solubility. 図2はHsp90およびコシャペロンの作用を模式的に示す。Hsp90は複数のコシャペロンと共同して、その機能を発現することが明らかにされている。p50とp23が結合したHsp90-クライアントタンパク複合体は、機能発現するための最も安定した形であり、逆にHopとHsp70が結合した複合体は不安定でプロテアゾームのターゲットとなる。GAをはじめとするHsp90阻害剤は、こうしたHsp90複合体の形成を特異的に阻害することで薬理作用を発揮する。FIG. 2 schematically shows the action of Hsp90 and cochaperone. Hsp90 has been shown to express its function in cooperation with several co-chaperones. The Hsp90-client protein complex in which p50 and p23 are bound is the most stable form for functional expression, and conversely, the complex in which Hop and Hsp70 are bound is unstable and becomes the target of the proteasome. GA and other Hsp90 inhibitors exert their pharmacological actions by specifically inhibiting the formation of such Hsp90 complexes. 図3は、培養細胞モデルにおけるGAと17-AAGの効果を示す。A,B.培養細胞モデルは、正常長(AR24Q)又は異常延長したポリグルタミン鎖(AR97Q)を含有するヒトアンドロゲン受容体(AR)遺伝子を発現ベクターに組み込み、ヒト神経培養細胞(SHSY5Y)に発現させたものである。GAと17-AAGの薬理効果を評価した。発現48時間後に細胞を回収してタンパク質を抽出し、ウエスタンブロットを行った結果である。GAと17-AAGはDimethyl Sulfoxide(DMSO)に溶解し、それぞれGA 0.9,1.8,3.6,7.2nM,17-AAG 18,90,180,360nMの濃度で投与した。コントロールとして、何も投与しないもの(C)とDMSOのみを投与したもの(DM)を用いた。コントロールタンパク質としてp85を用いた。FIG. 3 shows the effects of GA and 17-AAG in a cultured cell model. A, B. The cultured cell model incorporates a human androgen receptor (AR) gene containing a normal length (AR24Q) or abnormally extended polyglutamine chain (AR97Q) into an expression vector and is expressed in cultured human nerve cells (SHSY5Y) It has been made. The pharmacological effects of GA and 17-AAG were evaluated. It is the result of recovering the cells 48 hours after the expression, extracting the protein, and performing Western blotting. GA and 17-AAG were dissolved in dimethyl sulfide oxide (DMSO) and administered at concentrations of GA 0.9, 1.8, 3.6, 7.2 nM, 17-AAG 18, 90, 180, and 360 nM, respectively. As a control, a non-administered drug (C) and a DMSO-only drug (DM) were used. P85 was used as a control protein. 図4は、17-AAG投与によるAR発現量への効果を示す。A. 17-AAGによるAR24QとAR97Qの減少効果を表す棒グラフである。B. ARの減少率を比較した棒グラフである。FIG. 4 shows the effect of 17-AAG administration on the AR expression level. A. It is a bar graph showing the reduction effect of AR24Q and AR97Q by 17-AAG. B. It is the bar graph which compared the decreasing rate of AR. 図5は、培養細胞モデルにおいて、分子シャペロン(Hsp70及びHsp90)の高発現によってもたらされる、AR発現量への効果を示す。A. Hsp70遺伝子を発現ベクターに組み込み、正常長(AR24Q)又は異常延長したポリグルタミン鎖(AR97Q)を含有するヒトアンドロゲン受容体(AR)遺伝子発現ベクターと共発現させ、それぞれのARの発現量をウエスタンブロットにより評価した。B. Hsp90のαとβの2つのサブセットをそれぞれ発現ベクターに組み込み高発現させ、同様にARの発現量を評価した。FIG. 5 shows the effect on the AR expression level caused by high expression of molecular chaperones (Hsp70 and Hsp90) in a cultured cell model. A. The Hsp70 gene is incorporated into an expression vector and co-expressed with a human androgen receptor (AR) gene expression vector containing a normal length (AR24Q) or abnormally extended polyglutamine chain (AR97Q), and the expression level of each AR is expressed. Evaluated by Western blot. B. Two subsets of α and β of Hsp90 were each incorporated into an expression vector for high expression, and the expression level of AR was similarly evaluated. 図6は、SBMAモデルマウスの症状に対する17-AAGの効果を示す。17-AAGの投与量は2.5mg/kg(Tg-2.5)、25mg/kg(Tg-25)の2群、対照群(Tg-0)には溶剤であるDMSOそのものを投与した。薬剤は腹腔内に投与した。生後6週から投与を開始し、生後25週齢まで週3回の投与を行った。A.体重の25週齢までのグラフを示す。B. 累積生存曲線の25週齢までのグラフを示す。Tg-0は◆、Tg-2.5は▲、Tg-25は●で示した。FIG. 6 shows the effect of 17-AAG on the symptoms of SBMA model mice. The 17-AAG dose was 2.5 mg / kg (Tg-2.5) and 25 mg / kg (Tg-25), and the control group (Tg-0) was administered with DMSO as a solvent. The drug was administered intraperitoneally. Administration was started from 6 weeks of age and administered 3 times a week until 25 weeks of age. A. Graphs of body weight up to 25 weeks of age are shown. B. Graph of cumulative survival curve up to 25 weeks of age. Tg-0 is indicated by ◆, Tg-2.5 is indicated by ▲, and Tg-25 is indicated by ●. 図7は、SBMAモデルマウスの症状に対する17-AAGの効果を示す。A. rotarod taskの25週齢までのグラフを示す。B. cage activityの25週齢までのグラフを示す。FIG. 7 shows the effect of 17-AAG on the symptoms of SBMA model mice. The graph of A. rotarod task up to 25 weeks of age is shown. B. Cage activity graph up to 25 weeks of age. 図8は、SBMAモデルマウスの症状に対する17-AAGの効果を示す。A. 16週齢の対照群のマウス(Tg-0)と治療群のマウス(Tg-25)のマウスの写真を示す。対照群では体幹・四肢の著名な筋萎縮を呈するが、治療群のマウスは正常マウスに近い体格をしている。B. 16週齢のそれぞれの群の足跡を示す。前脚は赤、後脚は青で着色してある。FIG. 8 shows the effect of 17-AAG on the symptoms of SBMA model mice. A. Photographs of 16-week-old control group mice (Tg-0) and treatment group mice (Tg-25) are shown. The control group exhibits prominent muscle atrophy of the trunk and limbs, but the mice in the treatment group have a physique close to that of normal mice. B. Shows the footprint of each group at 16 weeks of age. The front legs are colored red and the rear legs are colored blue. 図9は、SBMAモデルマウスのタンパク発現および病理所見に対する17-AAGの効果を示す。A. 対照群(Tg-0)と治療群マウス(Tg-25)の脊髄および筋組織のtotal homogenateを用いたウエスタンブロット法である。抗AR抗体はH-280、抗Hsp70抗体はSPA-810を利用し、コントロールタンパクとしてα-tubulinを用いた。B. 対照群(Tg-0)と治療群マウス(Tg-25)の脊髄および筋組織における変異ARの発現量を比較したグラフである。FIG. 9 shows the effect of 17-AAG on protein expression and pathological findings in SBMA model mice. A. Western blotting using total homogenate of spinal cord and muscle tissue of control group (Tg-0) and treatment group mouse (Tg-25). Anti-AR antibody was H-280, anti-Hsp70 antibody was SPA-810, and α-tubulin was used as a control protein. B. A graph comparing the amount of mutant AR expressed in the spinal cord and muscle tissue of a control group (Tg-0) and a treatment group mouse (Tg-25). 図10は、SBMAモデルマウスにおける17-AAGの効果を示す。対照群(Tg-0)と治療群マウス(Tg-25)の脊髄と骨格筋にて免疫染色を行った。ポリグルタミンが異常延長したタンパクを特異的に認識する抗体は1C2を利用した。FIG. 10 shows the effect of 17-AAG in SBMA model mice. Immunostaining was performed on spinal cord and skeletal muscle of control group (Tg-0) and treatment group mouse (Tg-25). The antibody that specifically recognizes the protein with abnormally prolonged polyglutamine used 1C2.

Claims (8)

ゲルダナマイシン又はゲルダナマイシン誘導体を有効成分として含有する抗ポリグルタミン病剤。   An anti-polyglutamine disease agent containing geldanamycin or a geldanamycin derivative as an active ingredient. 前記ゲルダナマイシン誘導体が、ゲルダナマイシンのC−17位置のメトキシ基をアルキルアミノ基で置換して得られる化合物である、請求項1に記載の抗ポリグルタミン病剤。   The anti-polyglutamine disease agent according to claim 1, wherein the geldanamycin derivative is a compound obtained by substituting a methoxy group at the C-17 position of geldanamycin with an alkylamino group. 前記ゲルダナマイシン誘導体が、以下の群から選択される化合物である、請求項1に記載の抗ポリグルタミン病剤:
17−アリルアミノ−17−デメトキシゲルダナマイシン、17−(2−ジメチルアミノエチル)アミノ−17−デメトキシゲルダナマイシン、17−(4−(ジメチルアミノ)ブチル)アミノ−17−デメトキシゲルダナマイシン、17−(2−(カルボキシ)エチル)アミノ−17−デメトキシゲルダナマイシン、17−(2−(N−メチルエチルアミノ)エチル)アミノ−17−デメトキシゲルダナマイシン、17−(2−(ピロリジン−1−イル)エチル)アミノ−17−デメトキシゲルダナマイシン、17−(2−(ピペラジン−1−イル)エチル)アミノ−デメトキシゲルダナマイシン、及び17−(4−(ジメチルアミノ)ブチル)アミノ−17−デメトキシゲルダナマイシンからなる群。
The anti-polyglutamine disease agent according to claim 1, wherein the geldanamycin derivative is a compound selected from the following group:
17-allylamino-17-demethoxygeldanamycin, 17- (2-dimethylaminoethyl) amino-17-demethoxygeldanamycin, 17- (4- (dimethylamino) butyl) amino-17-demethoxygeldana Mycin, 17- (2- (carboxy) ethyl) amino-17-demethoxygeldanamycin, 17- (2- (N-methylethylamino) ethyl) amino-17-demethoxygeldanamycin, 17- (2 -(Pyrrolidin-1-yl) ethyl) amino-17-demethoxygeldanamycin, 17- (2- (piperazin-1-yl) ethyl) amino-demethoxygeldanamycin, and 17- (4- (dimethyl The group consisting of amino) butyl) amino-17-demethoxygeldanamycin.
17−アリルアミノ−17−デメトキシゲルダナマイシン又は17−(2−ジメチルアミノエチル)アミノ−17−デメトキシゲルダナマイシンが有効成分である、請求項1に記載の抗ポリグルタミン病剤。   The anti-polyglutamine disease agent according to claim 1, wherein 17-allylamino-17-demethoxygeldanamycin or 17- (2-dimethylaminoethyl) amino-17-demethoxygeldanamycin is an active ingredient. 17−アリルアミノ−17−デメトキシゲルダナマイシンが有効成分である、請求項1に記載の抗ポリグルタミン病剤。   The anti-polyglutamine disease agent according to claim 1, wherein 17-allylamino-17-demethoxygeldanamycin is an active ingredient. ポリグルタミン病が球脊髄性筋萎縮症である、請求項1〜5のいずれかに記載の抗ポリグルタミン病剤。   The anti-polyglutamine disease agent according to any one of claims 1 to 5, wherein the polyglutamine disease is bulbar spinal muscular atrophy. 抗ポリグルタミン病剤を製造するための、請求項1〜5のいずれかに記載の有効成分の使用。   Use of the active ingredient according to any one of claims 1 to 5 for producing an anti-polyglutamine disease agent. ゲルダナマイシン又はゲルダナマイシン誘導体を対象に投与するステップを含む、ポリグルタミン病の予防又は治療方法。   A method for preventing or treating polyglutamine disease, comprising a step of administering geldanamycin or a geldanamycin derivative to a subject.
JP2005047826A 2005-02-23 2005-02-23 Anti-polyglutamine disease agent Active JP4956737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005047826A JP4956737B2 (en) 2005-02-23 2005-02-23 Anti-polyglutamine disease agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005047826A JP4956737B2 (en) 2005-02-23 2005-02-23 Anti-polyglutamine disease agent

Publications (2)

Publication Number Publication Date
JP2006232705A true JP2006232705A (en) 2006-09-07
JP4956737B2 JP4956737B2 (en) 2012-06-20

Family

ID=37040759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005047826A Active JP4956737B2 (en) 2005-02-23 2005-02-23 Anti-polyglutamine disease agent

Country Status (1)

Country Link
JP (1) JP4956737B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5765839B2 (en) * 2009-12-05 2015-08-19 国立大学法人名古屋大学 Drugs for bulbar spinal muscular atrophy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003067262A2 (en) * 2002-02-07 2003-08-14 Cancer Research Technology Limited Methods and compositions involving the hsp90 activator aha1
WO2004072051A1 (en) * 2003-02-11 2004-08-26 Vernalis (Cambridge) Limited Isoxazole compounds as inhibitors of heat shock proteins
US20040235813A1 (en) * 2001-05-03 2004-11-25 Erich Wanker Compounds that inhibit hsp90 and stimulate hsp70 and hsp40, useful in the prevention or treatment of diseases associated with protein aggregation and amyloid formation
WO2005000314A1 (en) * 2003-05-30 2005-01-06 Kosan Biosciences, Inc. Method for treating diseases using hsp90-inhibiting agents in combination with antimitotics
WO2005012482A2 (en) * 2003-06-30 2005-02-10 Sloan-Kettering Institute For Cancer Research Assay for identification of bioactive compounds that interact with heat shock protein 90

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040235813A1 (en) * 2001-05-03 2004-11-25 Erich Wanker Compounds that inhibit hsp90 and stimulate hsp70 and hsp40, useful in the prevention or treatment of diseases associated with protein aggregation and amyloid formation
WO2003067262A2 (en) * 2002-02-07 2003-08-14 Cancer Research Technology Limited Methods and compositions involving the hsp90 activator aha1
WO2004072051A1 (en) * 2003-02-11 2004-08-26 Vernalis (Cambridge) Limited Isoxazole compounds as inhibitors of heat shock proteins
WO2005000314A1 (en) * 2003-05-30 2005-01-06 Kosan Biosciences, Inc. Method for treating diseases using hsp90-inhibiting agents in combination with antimitotics
WO2005012482A2 (en) * 2003-06-30 2005-02-10 Sloan-Kettering Institute For Cancer Research Assay for identification of bioactive compounds that interact with heat shock protein 90

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5765839B2 (en) * 2009-12-05 2015-08-19 国立大学法人名古屋大学 Drugs for bulbar spinal muscular atrophy

Also Published As

Publication number Publication date
JP4956737B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
EP3704108B1 (en) Irak4 inhibitor in combination with a bcl-2 inhibitor for use in treating cancer
CN1784221B (en) Compositions for affecting weight loss
US20230128132A1 (en) Methods of treating prostate cancer
US7759321B2 (en) Compounds for the treatment of pain
US20240066032A1 (en) Methods of treating prostate cancer
KR102517650B1 (en) Combination therapy for the treatment of breast cancer
KR20220130085A (en) Tetracyclic compounds and salts, compositions, and methods of using the same
US20220031657A1 (en) Pharmaceutical combination comprising lsz102 and ribociclib
US7989479B2 (en) Use of a p38 kinase inhibitor for treating psychiatric disorders
US20050227984A1 (en) Drugs for improving the prognosis of brain injury and a method of screening the same
RU2655811C2 (en) Therapeutic agent for amyotrophic lateral sclerosis
JP4956737B2 (en) Anti-polyglutamine disease agent
US20190015395A1 (en) Tacrolimus for treating tdp-43 proteinopathy
KR20170079128A (en) A Pharmaceutical composition comprising PPAR-β inhibitor for enhancing Anti-cancer effect
US11883410B2 (en) Preventative and therapeutic agents for sarcopenia
JP5830983B2 (en) Anti-cancer drug side effect reducing agent
JP2006063012A (en) Anti-polyglutamine disease agent
CN114053256B (en) Compound for preventing and treating mental disorder diseases and application thereof
WO2023280294A1 (en) Target and small molecule compounds for treating neurodegenerative diseases or central nervous system injury
US20230040125A1 (en) Targeting the intrinsic apoptotic machinery in glioblastoma
US20140274967A1 (en) Polyisoprenyl derivatives and uses thereof
JP2012102069A (en) Treatment agent for early ejaculation
AU2013205648A1 (en) Combination treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4956737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250