JP2006232635A - Device for forming thermoplastic member and method for forming the same - Google Patents

Device for forming thermoplastic member and method for forming the same Download PDF

Info

Publication number
JP2006232635A
JP2006232635A JP2005051010A JP2005051010A JP2006232635A JP 2006232635 A JP2006232635 A JP 2006232635A JP 2005051010 A JP2005051010 A JP 2005051010A JP 2005051010 A JP2005051010 A JP 2005051010A JP 2006232635 A JP2006232635 A JP 2006232635A
Authority
JP
Japan
Prior art keywords
mold
molds
cooling
thermoplastic member
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005051010A
Other languages
Japanese (ja)
Inventor
Hiroshi Kojima
博志 小島
Hidemitsu Sorimachi
秀光 返町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005051010A priority Critical patent/JP2006232635A/en
Publication of JP2006232635A publication Critical patent/JP2006232635A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/80Simultaneous pressing of multiple products; Multiple parallel moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for forming thermoplastic members where, in mold forming for thermoplastic members such as optical stocks, forming can be simultaneously performed to many members, and also, uniform heating and the increase of a cooling speed can be realized. <P>SOLUTION: The device is composed of a first die 1 as a pressing member and a second die 2 provided with a plurality of molds 9, and in which the molds 9 are pressed, and thermoplastic members placed in the molds 9 are formed, and the molds 9 are arranged in the shape of a concentric circle at equal intervals in the second die 2. The second die 2 is provided with heat sources 6, 7 for uniformly heating the plurality of molds 9. The heat sources 6, 7 are provided at least on either the central part of the second die 2 or the outer circumference of the outside of the second die 2. The second die 2 is provided with cooling passages 20, 21 of uniformly cooling the molds 9. The cooling passages 20, 21 are provided in the shape of a concentric circle among the molds 9 or at the parts on the sides inner than the molds 9. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は光学素材のような熱可塑性部材の成形装置およびその成形方法に関し、より詳しくは、デジタルカメラ、プロジェクタ等のガラスあるいはプラスチック等によって形成される光学用レンズ等の熱可塑性部材をモールド成形によって製造する熱可塑性部材の成形装置およびその成形方法に関するものである。   The present invention relates to a molding apparatus for a thermoplastic member such as an optical material and a molding method thereof, and more specifically, a thermoplastic member such as an optical lens formed of glass or plastic of a digital camera, a projector or the like by molding. The present invention relates to a molding apparatus and a molding method for a thermoplastic member to be manufactured.

従来から、比較的小径の非球面レンズなどの製造に際し、光学素材を金型内に入れて加圧し成形するための成形型が知られている。このような光学素子の成形においては、加熱によって軟化した光学素材を押圧成形し、その後これを冷却して光学素子を得る成形方法およびそれを実施するための成形装置があった。この場合、コア上型とコア下型からなる金型を同一の成形装置に複数組セットして、光学素材の成形を行っていた。   2. Description of the Related Art Conventionally, when manufacturing a relatively small diameter aspherical lens or the like, a mold for putting an optical material in a mold and pressurizing and molding the mold is known. In the molding of such an optical element, there has been a molding method for molding an optical material softened by heating and then cooling it to obtain an optical element, and a molding apparatus for carrying it out. In this case, the optical material is molded by setting a plurality of sets of molds composed of the upper core mold and the lower core mold in the same molding apparatus.

特開平9−77520号公報(第2頁−第4頁、図4)JP-A-9-77520 (2nd page-4th page, FIG. 4)

従来の光学素子の成形では、加熱時に、金型配置位置において、その外周部と中心部付近との温度差が著しくなり、金型間においてガラス粘度にばらつきが発生する場合があり、このため、成形時において均一なプレス力を与えることが困難になる場合があった。また、冷却時においても、金型配置位置において、外周部と中心付近との温度差が著しくなり、金型間においてガラス粘度にばらつきが発生する場合があり、このため、冷却時において均一な冷却を与えることが困難になる場合があった。さらに、金型のメンテナンス性が悪いという面もあった。   In the molding of the conventional optical element, the temperature difference between the outer peripheral portion and the central portion becomes significant at the mold arrangement position during heating, and the glass viscosity may vary between the molds. In some cases, it may be difficult to give a uniform pressing force during molding. In addition, even during cooling, the temperature difference between the outer periphery and the vicinity of the center becomes significant at the position where the mold is placed, and there may be variations in glass viscosity between the molds. It might be difficult to give. In addition, the mold has poor maintenance.

本発明は上記のような課題を解決するためになされたもので、光学素材のような熱可塑性部材のモールド成形において、多数個同時成形が可能であり、かつ均一加熱と冷却のスピードアップを可能にする熱可塑性部材の成形装置及びその成形方法を提供することを目的とする。   The present invention has been made to solve the above-described problems. In molding a thermoplastic member such as an optical material, a large number can be simultaneously molded, and uniform heating and cooling can be speeded up. An object of the present invention is to provide a molding apparatus and a molding method for a thermoplastic member.

本発明に係る熱可塑性部材の成形装置は、押圧部材である第1の型と、金型を複数備え前記第1の型によって該金型が押圧されて該金型内に載置した熱可塑性部材が成形される第2の型とからなり、前記第2の型に前記金型を同心円状かつ等間隔に配置したものである。このため、複数の金型によって複数の熱可塑性部材を多数同時成形ができ、また加熱時において金型内の熱可塑性部材に熱を均一に与えることができ、さらに冷却時において、金型内の熱可塑性部材を均一に冷却することができる。また、金型のメンテナンスを容易に行うことができる。   The thermoplastic member molding apparatus according to the present invention includes a first mold that is a pressing member, and a thermoplastic that includes a plurality of molds and the mold is pressed by the first mold and placed in the mold. It consists of a second mold in which members are molded, and the molds are arranged concentrically and at equal intervals in the second mold. For this reason, a plurality of thermoplastic members can be simultaneously molded by a plurality of molds, heat can be uniformly applied to the thermoplastic members in the mold during heating, and further, in the mold during cooling. The thermoplastic member can be cooled uniformly. Moreover, the maintenance of the mold can be easily performed.

また、本発明に係る熱可塑性部材の成形装置は、前記第2の型に前記複数の金型を均一に加熱する熱源を設けたものである。このため、加熱時において金型内の熱可塑性部材に熱を均一に与えることができる。   In the thermoplastic member molding apparatus according to the present invention, a heat source for uniformly heating the plurality of molds is provided on the second mold. For this reason, heat can be uniformly applied to the thermoplastic member in the mold during heating.

また、本発明に係る熱可塑性部材の成形装置は、前記熱源を、前記第2の型の中央部及び該第2の型の外側外周の少なくとも一方に設けられたものである。このため、加熱時において金型内の熱可塑性部材に熱を均一に与えることができ、金型間において熱可塑性部材の粘度にばらつきが発生することもなく、金型に均一なプレス力を与えることができる。   In the thermoplastic member molding apparatus according to the present invention, the heat source is provided in at least one of a central portion of the second mold and an outer periphery of the second mold. For this reason, heat can be uniformly applied to the thermoplastic member in the mold during heating, and uniform pressing force is applied to the mold without variation in the viscosity of the thermoplastic member between the molds. be able to.

また、本発明に係る熱可塑性部材の成形装置は、熱源が、前記第2の型の中央部付近に同心円状に設けられるとともに、前記金型が配置された同心円の外側部であって前記金型の間に同心円状に設けられたものである。このため、加熱時において金型内の熱可塑性部材に熱を均一に与えることができ、金型間において熱可塑性部材の粘度にばらつきが発生することもなく、金型に均一なプレス力を与えることができる。   In the thermoplastic member molding apparatus according to the present invention, the heat source is provided concentrically near the center of the second die, and is an outer portion of the concentric circle where the die is disposed. Concentric circles are provided between the molds. For this reason, heat can be uniformly applied to the thermoplastic member in the mold during heating, and uniform pressing force is applied to the mold without variation in the viscosity of the thermoplastic member between the molds. be able to.

また、本発明に係る熱可塑性部材の成形装置は、前記第2の型に前記金型を均一に冷却する冷却流路を設けたものである。このため、冷却時において金型内の熱可塑性部材を均一に冷却することができる。   In the thermoplastic member molding apparatus according to the present invention, a cooling channel for uniformly cooling the mold is provided in the second mold. For this reason, the thermoplastic member in a metal mold | die can be cooled uniformly at the time of cooling.

また、本発明に係る熱可塑性部材の成形装置は、前記冷却流路を、前記金型の間及びこれらの金型より内側部に同心円状にそれぞれ設けられたものである。このため、冷却時において金型内の熱可塑性部材を均一に冷却することができ、金型間において熱可塑性部材の冷却速度にばらつきが発生することもなく、熱可塑性部材を均一に冷却することができる。   In the thermoplastic member molding apparatus according to the present invention, the cooling flow path is provided concentrically between the molds and inside the molds. For this reason, the thermoplastic member in the mold can be uniformly cooled during cooling, and the thermoplastic member can be uniformly cooled without variation in the cooling rate of the thermoplastic member between the molds. Can do.

また、本発明に係る熱可塑性部材の成形装置は、金型内に該金型を均一に冷却する金型冷却流路を設け、該金型冷却流路を前記冷却流路と連通させたものである。このため、金型内の熱可塑性部材を冷却するスピードを早くすることができる。   The thermoplastic member molding apparatus according to the present invention includes a mold cooling channel for uniformly cooling the mold in the mold, and the mold cooling channel communicated with the cooling channel. It is. For this reason, the speed which cools the thermoplastic member in a metal mold | die can be made quick.

本発明に係る熱可塑性部材の成形方法は、上記のいずれかに記載の第2の型の同一円周上に配置した複数の金型内に熱可塑性部材を載置し、前記金型を均一に加熱したのち押圧しその後さらに均一に冷却するものである。このため、加熱時において金型内の熱可塑性部材に熱を均一に与えることができ、また、冷却時において金型内の熱可塑性部材を均一に冷却することができる。   The method for molding a thermoplastic member according to the present invention includes placing a thermoplastic member in a plurality of molds arranged on the same circumference of the second mold according to any one of the above, and uniformly molding the mold. After being heated, it is pressed and then cooled more uniformly. For this reason, heat can be uniformly applied to the thermoplastic member in the mold during heating, and the thermoplastic member in the mold can be uniformly cooled during cooling.

[実施の形態1]
図1は本発明の実施の形態1に係る光学素子の成形装置の概略説明図、図2は光学素子の成形装置の要部の分解斜視図、図3は図2の要部の平面図、図4は図2のA−A断面図である。光学素子である例えば光学レンズの成形装置は上型1と下型2とからなり、上型1は油圧機構(図示せず)によって上下駆動する押圧板であり、下型2は、リボルバー形状の母型3と、その下部に取り付けられた下プレート4によって構成されている。母型3の中央部にはヒータ挿入穴5が設けられてその内部にヒータ6が挿入され、母型3の外周部には赤外線ランプ7が配設され、外内部併用方式による加熱方式が採用されている。
[Embodiment 1]
FIG. 1 is a schematic explanatory diagram of an optical element molding apparatus according to Embodiment 1 of the present invention, FIG. 2 is an exploded perspective view of a main part of the optical element molding apparatus, and FIG. 3 is a plan view of the main part of FIG. 4 is a cross-sectional view taken along the line AA in FIG. A molding apparatus for an optical lens, for example, an optical element, includes an upper mold 1 and a lower mold 2. The upper mold 1 is a pressing plate that is driven up and down by a hydraulic mechanism (not shown), and the lower mold 2 has a revolver shape. It is comprised by the mother die 3 and the lower plate 4 attached to the lower part. A heater insertion hole 5 is provided in the center of the mother die 3 and a heater 6 is inserted therein. An infrared lamp 7 is provided on the outer periphery of the mother die 3, and a heating method using an external / internal combination method is adopted. Has been.

中央部に位置するヒータ挿入穴5の周囲には、複数の金型挿入穴8がヒータ挿入穴5と同心円a状に一定の間隔で均一に配置され、金型挿入穴8の内部には円筒状の金型9が挿入されている。このように光学素子の成形装置は、光学素子の製造効率をはかるために金型9を同心円状に複数備え、複数の光学素子を同時に成形できるようにしてある。同心円状に配置された金型9の間にはこれらの金型9の同心円aに沿って第1の冷却流路20が設けられ、その内周側にはヒータ挿入穴5を取り巻くように同心円状の第2の冷却流路21が第1の冷却用穴20のそれぞれに対応して、すなわち対応する冷却用穴同士がヒータ挿入穴5を通る同一直線上に位置するようにして配置されている。   Around the heater insertion hole 5 located in the center, a plurality of mold insertion holes 8 are arranged uniformly at regular intervals concentrically with the heater insertion hole 5, and inside the mold insertion hole 8 is a cylinder. A metal mold 9 is inserted. As described above, the optical element molding apparatus includes a plurality of molds 9 concentrically so as to improve the manufacturing efficiency of the optical elements so that a plurality of optical elements can be molded simultaneously. Between the molds 9 arranged concentrically, a first cooling flow path 20 is provided along a concentric circle a of these molds 9, and a concentric circle is formed around the heater insertion hole 5 on the inner peripheral side thereof. The second cooling flow passages 21 are arranged so as to correspond to the first cooling holes 20, that is, the corresponding cooling holes are positioned on the same straight line passing through the heater insertion hole 5. Yes.

金型挿入穴8のそれぞれには、レンズの上面を形成する雌型凹部10を有するコア上型
11と、レンズの下面を形成する雌型凹部12を有するコア下型13とによって構成された金型9が挿入され、下プレート4によって支持されている。これらのコア上型11とコア下型13とは、共に所定の耐熱性と強度を有する材料、例えばハードメタルから形成されている。そしてコア上型11は、油圧機構によって上下駆動される押圧板である上型1によって、図1に示す矢印方向に圧力を受けるようにしてある。
Each of the mold insertion holes 8 is constituted by a core upper mold 11 having a female recess 10 that forms the upper surface of the lens and a core lower mold 13 having a female recess 12 that forms the lower surface of the lens. A mold 9 is inserted and supported by the lower plate 4. Both the core upper mold 11 and the core lower mold 13 are made of a material having predetermined heat resistance and strength, for example, hard metal. The core upper mold 11 receives pressure in the direction of the arrow shown in FIG. 1 by the upper mold 1 which is a pressing plate that is driven up and down by a hydraulic mechanism.

第1、第2の冷却流路20、21は、図5(冷却流路のみを示す)に示すように、母型3の上下方向に筒状に形成されている。また、下プレート4にはヒータ5の外周に沿って上下方向に冷媒導入穴22が形成され、さらに母型3側の面に沿って各冷媒導入穴22に対応した溝部23が形成され、その溝部23が第1、第2の冷却流路20、21の下部に連通するようになっている。第1の冷却流路20は図6、図7に示すように、その上下2カ所に左右の対応する金型挿入穴8に連通する横方向に形成された金型連通穴20a,20bが設けられ、金型挿入穴8に挿入された金型9に設けた金型冷却流路24a,24bに通じて、金型9を冷却するようにしてある。   As shown in FIG. 5 (only the cooling flow path is shown), the first and second cooling flow paths 20 and 21 are formed in a cylindrical shape in the vertical direction of the mother die 3. The lower plate 4 is formed with coolant introduction holes 22 in the vertical direction along the outer periphery of the heater 5, and further, groove portions 23 corresponding to the coolant introduction holes 22 are formed along the surface of the mother die 3 side. The groove 23 communicates with the lower portions of the first and second cooling channels 20 and 21. As shown in FIGS. 6 and 7, the first cooling flow path 20 is provided with mold communication holes 20 a and 20 b formed in the lateral direction communicating with the corresponding mold insertion holes 8 on the left and right sides. The mold 9 is cooled through the mold cooling passages 24 a and 24 b provided in the mold 9 inserted into the mold insertion hole 8.

すなわち、図6(図3のB−B断面図)、図7(図3のC−C断面図)、図8、図9、図10(図3の流路状態を示す説明図)に示すように、コア上型11では、それぞれ第1の冷却用通路20より金型連通穴20aを通って金型9内に導入された冷却用水が金型9の中央部でほぼ120℃の角度をなすようにして交差し、そののちこれらの通路に対してほぼ120℃の角度をなすようにして外側方向に流れ、母型3の側面に設けた冷媒排出穴25aより母型3の外部に流出するようにしてある。同様にしてコア下型13にも、第1の冷却用通路20より金型9内に導入された冷却用水が金型9の中央部でほぼ120℃の角度をなすようにして交差し、そののちこれらの通路に対してほぼ120℃の角度をなすようにして外側方向に流れ、母型3の側面に設けた冷媒排出穴25bより母型3の外部に流出するようにしてある。   That is, it is shown in FIG. 6 (BB sectional view of FIG. 3), FIG. 7 (CC sectional view of FIG. 3), FIG. 8, FIG. 9, and FIG. Thus, in the core upper mold 11, the cooling water introduced into the mold 9 from the first cooling passage 20 through the mold communication hole 20 a has an angle of approximately 120 ° C. at the center of the mold 9. Intersect, and then flow outwardly at an angle of approximately 120 ° C. with respect to these passages, and flow out of the mother die 3 through the refrigerant discharge holes 25a provided on the side surfaces of the mother die 3. I have to do it. Similarly, the cooling water introduced into the mold 9 from the first cooling passage 20 intersects the core lower mold 13 so as to form an angle of approximately 120 ° C. at the center of the mold 9. After that, it flows in an outward direction so as to form an angle of about 120 ° C. with respect to these passages, and flows out of the mother die 3 through a refrigerant discharge hole 25b provided in a side surface of the mother die 3.

次に、以上のように構成した光学素子の成形装置によって行われる光学素材のプレス成形について説明する。まず、ガラスやプラスチックなどからなる複数の光学素材をコア下型13の雌型凹部12上に載置し、内部に位置するヒータ6及び外部に位置する赤外線ランプ7により母型3の加熱を行う。この際、複数の金型9を同心円状に配置してあるので、内部あるいは外部からの熱は金型9に均一に与えられる。加熱は、光学素材が例えばガラスである場合は、ガラス温度がガラスの転移点以上となる程度まで行う。この加熱により光学素材は軟化し、可塑性を持つようになる。次に、この状態で、油圧機構により押圧板である上型1を下降させて下型2に圧力をかけ、光学素材を押圧する。これにより、光学素材は、下型2と上型1との間でレンズ形状に成形される。   Next, press molding of an optical material performed by the optical element molding apparatus configured as described above will be described. First, a plurality of optical materials made of glass, plastic or the like are placed on the female recess 12 of the core lower mold 13 and the master 3 is heated by the heater 6 located inside and the infrared lamp 7 located outside. . At this time, since the plurality of molds 9 are arranged concentrically, heat from the inside or the outside is uniformly applied to the mold 9. When the optical material is glass, for example, heating is performed to such an extent that the glass temperature becomes equal to or higher than the glass transition point. This heating causes the optical material to soften and become plastic. Next, in this state, the upper die 1 as a pressing plate is lowered by the hydraulic mechanism to apply pressure to the lower die 2 to press the optical material. As a result, the optical material is molded into a lens shape between the lower mold 2 and the upper mold 1.

その後、N2 のような冷媒を下プレート4の冷媒導入穴22より母型3内に導入し、下プレート4に設けた溝部23を通って第1、第2の冷却流路20,21に通し、上方に移動させて上部より排出させる。一方、第1の冷却流路20を通過する冷媒の一部は金型連通穴20a,20bを横方向に流れて金型冷却流路24a,24bに至り、金型9のコア上型11、コア下型13に設けられた金型冷却流路24a,24bに入り、中央部で交わったのち外側方向に移動し、母型3の側部に設けた冷媒排出穴25a,25bより外部に排出される。このとき、複数の金型9を同心円状に配置したので、外部あるいは内部から流入した冷媒を均一に流すことができる。また、母型3内に複数の冷却流路を設けて、母型3の外周部と中心部の冷却速度を均一にしたため、金型3内の光学素材を均一に冷却することができる。そして、母型3内の冷却流路と相対する位置に金型9の金型冷却流路24a,24bを設け、その内部を冷媒が通過するようにしたので、金型9の冷却スピードを速くすることができる。その後、油圧機構により押圧板である上型1を上昇させ、成形された光学レンズをコア下型13から取り出す。このような成形装置を使用するので、金型9のメンテ性が向上する。また、単体での交換を容易に行うことができる。 Thereafter, a refrigerant such as N 2 is introduced into the mother die 3 through the refrigerant introduction hole 22 of the lower plate 4, passes through the groove portion 23 provided in the lower plate 4, and enters the first and second cooling flow paths 20 and 21. Through, move upward and discharge from the top. On the other hand, a part of the refrigerant passing through the first cooling flow path 20 flows laterally through the mold communication holes 20a, 20b to reach the mold cooling flow paths 24a, 24b, and the upper core 11 of the mold 9; The mold cooling channels 24 a and 24 b provided in the core lower mold 13 enter the center and then move outward, and are discharged to the outside through the refrigerant discharge holes 25 a and 25 b provided on the side of the mother die 3. Is done. At this time, since the plurality of molds 9 are arranged concentrically, the refrigerant flowing from the outside or the inside can be made to flow uniformly. In addition, since a plurality of cooling channels are provided in the mother die 3 and the cooling rate of the outer peripheral portion and the central portion of the mother die 3 is made uniform, the optical material in the die 3 can be uniformly cooled. Since the mold cooling flow paths 24a and 24b of the mold 9 are provided at positions opposite to the cooling flow paths in the mother mold 3, and the refrigerant passes through the mold cooling flow paths 24a and 24b, the cooling speed of the mold 9 is increased. can do. Thereafter, the upper die 1 as a pressing plate is raised by a hydraulic mechanism, and the molded optical lens is taken out from the lower core die 13. Since such a molding apparatus is used, the maintainability of the mold 9 is improved. In addition, it can be easily replaced as a single unit.

なお、上記の説明では、コア下型13及びコア上型11の両方の転写面を凹面としたが、少なくとも一方の型の転写面を凹部または平面とすることができる。転写面を凹面または平面とすることにより、より確実に偏心や偏肉の発生を防止して光学素子をプレス成形することができる。また、上記の説明では、ガラスあるいはプラスチックのような光学素子の成形を行う場合を示したが、ガラスあるいはプラスチックに限定するものではなく、その他の熱可塑性部材であればいかなるものであってもよい。   In the above description, the transfer surfaces of both the core lower mold 13 and the core upper mold 11 are concave. However, the transfer surface of at least one mold can be a concave or flat surface. By making the transfer surface concave or flat, it is possible to more reliably prevent the occurrence of decentration and thickness deviation and press-mold the optical element. In the above description, the optical element such as glass or plastic is molded. However, the present invention is not limited to glass or plastic, and any other thermoplastic member may be used. .

[実施の形態2]
図11は本発明の実施の形態2に係る光学素子の成形装置の要部の分解斜視図である。なお、図2と同一部分には同じ符号を付し説明を省略する。金型挿入穴8のそれぞれには、レンズの上面を形成する雌型凹部10を有する断面T字状のコア上型11と、コア胴筒110と、レンズの下面を形成する雌型凹部12を有する断面逆T字状のコア下型13とによって構成された金型9が挿入され、下プレート4によって支持されている。コア上型11とコア下型13のそれぞれの対向側側面は同径に縮径されてその縮径側面に中空円筒状のコア胴筒110が挿入するようにしてあり、金型9全体として同径の金型形状を構成している。コア胴筒110は、コア上型11とコア下型13の雌型凹部間に挟まれた複数の光学素材の外周を規制している。これらのコア上型11とコア胴筒110とコア下型13とは、共に所定の耐熱性と強度を有する材料、例えばハードメタルから形成されている。
その他の構成、作用、効果は実施の形態1で示した場合と実質的に同一なので、説明を省略する。
[Embodiment 2]
FIG. 11 is an exploded perspective view of the main part of the optical element molding apparatus according to Embodiment 2 of the present invention. In addition, the same code | symbol is attached | subjected to FIG. 2 and an identical part, and description is abbreviate | omitted. Each of the mold insertion holes 8 includes a core upper mold 11 having a T-shaped cross section having a female recess 10 that forms the upper surface of the lens, a core barrel 110, and a female recess 12 that forms the lower surface of the lens. A mold 9 constituted by a core lower mold 13 having an inverted T-shaped cross section is inserted and supported by the lower plate 4. The opposing side surfaces of the core upper mold 11 and the core lower mold 13 are reduced in diameter to the same diameter, and a hollow cylindrical core cylinder 110 is inserted into the reduced diameter side surface. The mold shape of the diameter is configured. The core barrel 110 regulates the outer periphery of a plurality of optical materials sandwiched between the female concave portions of the core upper mold 11 and the core lower mold 13. The upper core mold 11, the core cylinder 110, and the lower core mold 13 are all formed of a material having predetermined heat resistance and strength, for example, hard metal.
Other configurations, operations, and effects are substantially the same as those shown in the first embodiment, and thus description thereof is omitted.

[実施の形態3]
図12は本発明の実施の形態3に係る光学素子の成形装置の要部の分解斜視図、図13は図12の要部の平面図である。光学素子の成形装置は上型1と下型2とからなり、上型1は油圧機構によって上下駆動する押圧板であり、下型2は、リボルバー形状の母型3と、その下部に取り付けられた下プレート4によって構成されている。母型3には同心円状に複数の金型挿入穴8が同心円a上に一定の間隔で均一に配置され、金型挿入穴8の内部には円筒状の金型9が挿入されている。このように光学素子の成形装置は、光学素子の製造効率をはかるために金型9を同心円上に複数備え、複数の光学素子を同時に成形できるようにしてある。母型3の中央部付近には各金型9間に位置する部分に同心円状に第1のヒータ挿入穴50が設けられてその内部にヒータ6が挿入され、さらに同心円aよりも外側位置であって各金型9の間に位置する同心円b上には第2のヒータ挿入穴51が設けられてヒータ6が挿入されている。
同心円状に配置された金型11の間には前記金型9の同心円aに沿って第1の冷却流路20が設けられ、さらにその内周側には同心円に沿ってもしくは中心部に第2の冷却流路(図示せず)が一定間隔で配置されている。なお、第1、第2の冷却流路の詳細は、実施の形態1で示した場合と実質的に同一なので説明を省略する。
[Embodiment 3]
12 is an exploded perspective view of the main part of the optical element molding apparatus according to Embodiment 3 of the present invention, and FIG. 13 is a plan view of the main part of FIG. An optical element molding apparatus includes an upper mold 1 and a lower mold 2. The upper mold 1 is a pressing plate that is driven up and down by a hydraulic mechanism. The lower mold 2 is attached to a revolver-shaped mother mold 3 and a lower portion thereof. The lower plate 4 is used. A plurality of mold insertion holes 8 are concentrically arranged in the mother mold 3 at regular intervals on the concentric circle a, and a cylindrical mold 9 is inserted into the mold insertion hole 8. As described above, the optical element molding apparatus includes a plurality of molds 9 on the concentric circles in order to increase the manufacturing efficiency of the optical elements so that a plurality of optical elements can be molded simultaneously. A first heater insertion hole 50 is concentrically provided in a portion located between the molds 9 in the vicinity of the center portion of the mother die 3, and the heater 6 is inserted therein, and further at a position outside the concentric circle a. A second heater insertion hole 51 is provided on the concentric circle b located between the molds 9 and the heater 6 is inserted.
Between the molds 11 arranged concentrically, a first cooling flow path 20 is provided along the concentric circle a of the mold 9, and further, the first cooling channel 20 is arranged along the concentric circle or at the center on the inner peripheral side thereof. Two cooling channels (not shown) are arranged at regular intervals. The details of the first and second cooling flow paths are substantially the same as those shown in the first embodiment, and a description thereof will be omitted.

金型挿入穴8のそれぞれには、レンズの上面形成の雌型凹部10を有するコア上型11と、レンズの下面を形成する雌型凹部12を有するコア下型13とによって構成された金型9が挿入されている。これらのコア上型11とコア下型13とは、共に所定の耐熱性と強度を有する材料、例えばハードメタルから形成されている。そしてコア上型11は、油圧機構によって上下駆動される押圧板である上型1によって、図1に示す矢印方向に圧力を受けるようにしてある。   Each of the mold insertion holes 8 includes a mold formed by an upper core mold 11 having a female recess 10 for forming the upper surface of the lens and a lower core mold 13 having a female recess 12 for forming the lower surface of the lens. 9 is inserted. Both the core upper mold 11 and the core lower mold 13 are made of a material having predetermined heat resistance and strength, for example, hard metal. The core upper mold 11 receives pressure in the direction of the arrow shown in FIG. 1 by the upper mold 1 which is a pressing plate that is driven up and down by a hydraulic mechanism.

次に、以上のように構成した光学素子の成型装置によって行われる光学素子のプレス成形について説明する。まず、複数の光学素材をコア下型13の雌型凹部12上に載置し、内部に位置するヒータ6により母型3の加熱を行う。この際、複数の金型9を同心円状に配置してあるので、内部からの熱は金型9に均一に与えられる。加熱は、光学素材が例えばガラス素材である場合は、ガラス温度がガラスの転移点以上となる程度まで行う。この加熱により光学素材は軟化し、可塑性を持つようになる。次に、この状態で、油圧機構により押圧板である上型1を下降させて下型2に圧力をかけ、光学素材を押圧する。これにより、光学素材は、下型2と上型1との間に形成されるレンズ形状に成形される。   Next, press molding of an optical element performed by the optical element molding apparatus configured as described above will be described. First, a plurality of optical materials are placed on the female recess 12 of the core lower mold 13, and the mother mold 3 is heated by the heater 6 located inside. At this time, since the plurality of molds 9 are arranged concentrically, heat from the inside is uniformly applied to the mold 9. When the optical material is, for example, a glass material, the heating is performed to such an extent that the glass temperature is equal to or higher than the glass transition point. This heating causes the optical material to soften and become plastic. Next, in this state, the upper die 1 as a pressing plate is lowered by the hydraulic mechanism to apply pressure to the lower die 2 to press the optical material. As a result, the optical material is molded into a lens shape formed between the lower mold 2 and the upper mold 1.

その後、N2 のような冷媒を下プレート4の冷媒導入穴22より母型3内に導入し、母型3内に設けた複数の冷却流路を通し、母型3内の冷却速度を均一にして、金型9内の光学素材を均一に冷却することができる。また、母型3内の冷却流路と相対する位置に金型9の金型冷却流路24a,24bを設けその内部を冷媒が通過するようにしたので、金型9の冷却スピードを速くすることができる。その後、油圧機構により押圧板である上型1を上昇させ、成形された光学レンズをコア下型13から取り出す。このような成形装置を使用するので、金型9のメンテ性が向上する。また、単体での交換を容易に行うことができる。 Thereafter, a refrigerant such as N 2 is introduced into the mother die 3 through the refrigerant introduction hole 22 of the lower plate 4, and the cooling rate in the mother die 3 is made uniform through a plurality of cooling channels provided in the mother die 3. Thus, the optical material in the mold 9 can be cooled uniformly. In addition, since the mold cooling flow paths 24a and 24b of the mold 9 are provided at positions facing the cooling flow path in the mother mold 3, the coolant passes through the mold cooling flow paths 24a and 24b, so that the cooling speed of the mold 9 is increased. be able to. Thereafter, the upper die 1 as a pressing plate is raised by a hydraulic mechanism, and the molded optical lens is taken out from the lower core die 13. Since such a molding apparatus is used, the maintainability of the mold 9 is improved. In addition, it can be easily replaced as a single unit.

[実施の形態4]
図14は本発明の実施の形態4に係る光学素子の成形装置の要部の分解斜視図、図15は図14のD−D断面図である。本実施の形態4では、実施の形態2で示した金型9を、実施の形態3で示した母型3の金型挿入穴8に挿入して光学素子の成形を行う成形装置を示すものである。その他の構成、作用、効果は実施の形態3で示した場合と実質的に同様なので、説明を省略する。
[Embodiment 4]
14 is an exploded perspective view of the main part of the optical element molding apparatus according to Embodiment 4 of the present invention, and FIG. 15 is a sectional view taken along the line DD of FIG. In the fourth embodiment, a molding apparatus for molding an optical element by inserting the mold 9 shown in the second embodiment into the mold insertion hole 8 of the mother mold 3 shown in the third embodiment is shown. It is. Other configurations, operations, and effects are substantially the same as those shown in the third embodiment, and a description thereof will be omitted.

本発明の実施の形態1に係る光学素子の成形装置の概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing of the optical element shaping | molding apparatus which concerns on Embodiment 1 of this invention. 実施の形態1に係る光学素子の成形装置の要部の分解斜視図。FIG. 3 is an exploded perspective view of the main part of the optical element molding apparatus according to Embodiment 1; 図2の要部の平面図。The top view of the principal part of FIG. 図2のA−A断面図。AA sectional drawing of FIG. 図2に示す冷却流路の概略説明図。Schematic explanatory drawing of the cooling flow path shown in FIG. 図3のB−B断面図。BB sectional drawing of FIG. 図3のC−C断面図。CC sectional drawing of FIG. 図7のコア上型の側面図及び平面図。The side view and top view of the upper mold | die of a core of FIG. 図7のコア下型の平面図及び側面図。The top view and side view of the core lower mold | type of FIG. 図2に示す冷却流路の概略説明図。Schematic explanatory drawing of the cooling flow path shown in FIG. 本発明の実施の形態2に係る光学素子の成形装置の要部の分解斜視図。The disassembled perspective view of the principal part of the shaping | molding apparatus of the optical element which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る光学素子の成形装置の要部の分解斜視図。The disassembled perspective view of the principal part of the shaping | molding apparatus of the optical element which concerns on Embodiment 3 of this invention. 図11の要部の平面図。The top view of the principal part of FIG. 本発明の実施の形態4に係る光学素子の成形装置の要部の分解斜視図。The disassembled perspective view of the principal part of the shaping | molding apparatus of the optical element which concerns on Embodiment 4 of this invention. 図14のD−D断面図。DD sectional drawing of FIG.

符号の説明Explanation of symbols

1 上型(第1の型)、2 下型(第2の型)、8 金型挿入穴、6 ヒータ(熱源)、7 赤外線ランプ(熱源)、9 金型、20 第1の冷却流路(冷却流路)、20a,20b 金型連通穴(冷却流路)、21 第2の冷却流路(冷却流路)、24a,24b 金型冷却流路、A,B 同心円。
1 Upper mold (first mold), 2 Lower mold (second mold), 8 Mold insertion hole, 6 Heater (heat source), 7 Infrared lamp (heat source), 9 Mold, 20 First cooling flow path (Cooling channel), 20a, 20b Mold communication hole (cooling channel), 21 Second cooling channel (cooling channel), 24a, 24b Mold cooling channel, A, B Concentric circles.

Claims (8)

押圧部材である第1の型と、金型を複数備え前記第1の型によって該金型が押圧されて該金型内に載置した熱可塑性部材が成形される第2の型とからなる熱可塑性部材の成形装置において、
前記第2の型に前記金型を同心円状かつ等間隔に配置したことを特徴とする熱可塑性部材の成形装置。
A first mold that is a pressing member and a second mold that includes a plurality of molds and that is molded by pressing the mold by the first mold and placing the thermoplastic member placed in the mold. In the molding device for thermoplastic members,
An apparatus for molding a thermoplastic member, wherein the molds are arranged concentrically and at equal intervals in the second mold.
前記第2の型に前記複数の金型を均一に加熱する熱源を設けたことを特徴とする請求項1記載の熱可塑性部材の成形装置。   The apparatus for molding a thermoplastic member according to claim 1, wherein a heat source for uniformly heating the plurality of molds is provided in the second mold. 前記熱源は、前記第2の型の中央部及び該第2の型の外側外周の少なくとも一方に設けられたことを特徴とする請求項2記載の熱可塑性部材の成形装置。   The thermoplastic member molding apparatus according to claim 2, wherein the heat source is provided in at least one of a central portion of the second mold and an outer periphery of the second mold. 前記熱源は、前記第2の型の中央部付近に同心円状に設けられるとともに前記金型が配置された同心円の外側部であって前記金型の間に同心円状に設けられたことを特徴とする請求項2記載の熱可塑性部材の成形装置。   The heat source is provided concentrically in the vicinity of the center of the second mold, and is provided on the outer side of the concentric circle where the mold is disposed and concentrically between the molds. The apparatus for molding a thermoplastic member according to claim 2. 前記第2の型に前記金型を均一に冷却する冷却流路を設けたことを特徴とする請求項1〜4のいずれかに記載の熱可塑性部材の成形装置。   The thermoplastic member molding apparatus according to any one of claims 1 to 4, wherein a cooling channel for uniformly cooling the mold is provided in the second mold. 前記冷却流路は、前記金型の間及びこれらの金型より内側部に同心円状にそれぞれ設けられたことを特徴とする請求項5記載の熱可塑性部材の成形装置。   6. The apparatus for molding a thermoplastic member according to claim 5, wherein the cooling flow path is provided concentrically between the molds and inside the molds. 金型内に該金型を均一に冷却する金型冷却流路を設け、該金型冷却流路を前記冷却流路と連通させたことを特徴とする請求項6記載の熱可塑性部材の成形装置。   7. The molding of a thermoplastic member according to claim 6, wherein a mold cooling flow path for uniformly cooling the mold is provided in the mold, and the mold cooling flow path is communicated with the cooling flow path. apparatus. 請求項1〜7のいずれかに記載の第2の型の同一円周上に配置した複数の金型内に熱可塑性部材を載置し、前記金型を均一に加熱したのち押圧しその後さらに均一に冷却することを特徴とする熱可塑性部材の成形方法。
A thermoplastic member is placed in a plurality of molds arranged on the same circumference of the second mold according to any one of claims 1 to 7, and the mold is heated uniformly and then pressed. A method for molding a thermoplastic member, characterized by cooling uniformly.
JP2005051010A 2005-02-25 2005-02-25 Device for forming thermoplastic member and method for forming the same Withdrawn JP2006232635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005051010A JP2006232635A (en) 2005-02-25 2005-02-25 Device for forming thermoplastic member and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005051010A JP2006232635A (en) 2005-02-25 2005-02-25 Device for forming thermoplastic member and method for forming the same

Publications (1)

Publication Number Publication Date
JP2006232635A true JP2006232635A (en) 2006-09-07

Family

ID=37040697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005051010A Withdrawn JP2006232635A (en) 2005-02-25 2005-02-25 Device for forming thermoplastic member and method for forming the same

Country Status (1)

Country Link
JP (1) JP2006232635A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101558544B1 (en) * 2013-11-11 2015-10-19 한국광기술원 Mold for forming lens
US11401191B2 (en) * 2020-01-09 2022-08-02 Aac Optics Solutions Pte. Ltd. Mold and apparatus for forming glass product, and method of processing glass product
JP2022176118A (en) * 2021-05-13 2022-11-25 アイオーソリューション カンパニー リミテッド Mold release type non-dicing mold for manufacturing micro-array lenses, and method for manufacturing micro-array lenses using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101558544B1 (en) * 2013-11-11 2015-10-19 한국광기술원 Mold for forming lens
US11401191B2 (en) * 2020-01-09 2022-08-02 Aac Optics Solutions Pte. Ltd. Mold and apparatus for forming glass product, and method of processing glass product
JP2022176118A (en) * 2021-05-13 2022-11-25 アイオーソリューション カンパニー リミテッド Mold release type non-dicing mold for manufacturing micro-array lenses, and method for manufacturing micro-array lenses using the same
JP7321591B2 (en) 2021-05-13 2023-08-07 アイオーソリューション カンパニー リミテッド Mold for manufacturing microarray lens and method for manufacturing microarray lens using the same

Similar Documents

Publication Publication Date Title
JP4409291B2 (en) Thermoforming mold for optical lens made of thermoplastic material and process thereof
JP2018065281A (en) Multilayered molding lens and manufacturing method thereof
US20090231688A1 (en) Optical glass lens set and manufacturing method thereof
JP2006232635A (en) Device for forming thermoplastic member and method for forming the same
CN110948786B (en) Liquid silica gel forming die
KR101822565B1 (en) Injection molded lens using hot runner
TWI721368B (en) Mold for molding glass optical parts and method for manufacturing glass optical parts using the mold
JP4362500B2 (en) Method for making gob
JP6374951B2 (en) Optical element molding die set and optical element manufacturing method
JP3137150U (en) Plastic molds with cooling channels used in the production of optical lenses
WO2018159745A1 (en) Molding mold
KR100914947B1 (en) Manufacturing mold for aspheric lenses
KR101174050B1 (en) Concentration cooling type molding apparatus
JP2007230834A (en) Molding method of optical glass element
KR102233297B1 (en) Non-dicing type grating structure mold for manufacturing microlens and method of manufacturing microlens using the same
CN108081374A (en) Anti-dazzling screen chamfering shaping mould
JPH04357121A (en) Molding optical element and molding device therefor
US20070042075A1 (en) Fast thermal response mold
CN107382034B (en) High-efficient production facility of optical lens
JP2004249640A (en) Cooling device of mold for high-precision plastic optical component
JP2009078470A (en) Molding method of optical element
JP2007070215A (en) Molding die for optical lens
CN111263691B (en) Die set
JP5960862B2 (en) Mold apparatus and method for manufacturing mold apparatus
TWM637574U (en) Optical Component Forming Mold

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513