JP2006232582A - Method for producing transparent silica glass product - Google Patents

Method for producing transparent silica glass product Download PDF

Info

Publication number
JP2006232582A
JP2006232582A JP2005046451A JP2005046451A JP2006232582A JP 2006232582 A JP2006232582 A JP 2006232582A JP 2005046451 A JP2005046451 A JP 2005046451A JP 2005046451 A JP2005046451 A JP 2005046451A JP 2006232582 A JP2006232582 A JP 2006232582A
Authority
JP
Japan
Prior art keywords
silica glass
slurry
producing
transparent silica
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005046451A
Other languages
Japanese (ja)
Other versions
JP4446448B2 (en
Inventor
Tsukasa Sakaguchi
司 坂口
Akira Fujinoki
朗 藤ノ木
Hiroyuki Watanabe
博行 渡辺
Takayuki Imaizumi
孝之 今泉
Hiroyuki Saito
博之 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2005046451A priority Critical patent/JP4446448B2/en
Priority to PCT/EP2006/001671 priority patent/WO2006089754A1/en
Publication of JP2006232582A publication Critical patent/JP2006232582A/en
Application granted granted Critical
Publication of JP4446448B2 publication Critical patent/JP4446448B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a transparent silica glass product, by which a silica glass product having a relatively complicated shape can be produced at a low cost with good productivity. <P>SOLUTION: The method for producing the transparent silica glass product includes (A) a step for preparing silica glass granules by mixing silica glass primary particles having diameters of ≤1 μm and water and drying the resulting mixture, (B) a step for obtaining a sintered powder by sintering the silica glass granules, (C) a step for preparing high concentration slurry containing 80-85 mass% silica particles by mixing the sintered powder with pure water and silica balls, then pulverizing the resulting mixture to obtain high concentration 70-78 mass% slurry, removing the silica balls from the slurry, and drying the slurry, (D) a step for casting the high concentration slurry in a mold, and (E) a step for taking out the formed article from the mold, and subjecting the formed article to drying/purifying treatment and vitrifying treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学機器産業、照明用ランプ産業、理化学機器産業などの分野で使用されるシリカガラス製品、更に詳しくはリフレクタ等比較的複雑な形状をした透明シリカガラス製品の製造方法に関する。  The present invention relates to a silica glass product used in the fields of the optical equipment industry, the lighting lamp industry, the physics and chemistry equipment industry, and more particularly to a method for producing a transparent silica glass product having a relatively complicated shape such as a reflector.

従来シリカガラスからなる比較的複雑な形状をした透明シリカガラス製品の製造においては、単純な形状の部材を火加工により溶接し組み立てる方法、シリカガラスバルク体を機械加工技術を用いて加工する方法、加熱プレス成形法を用いて成形する方法などが採られてきた。前記溶接による組み立て方法では工程のほとんどが手作業で行われ非常な熟練と時間とを要し、さらに火加工時に発生する高熱のため端部にだれが発生し外観を損ねるなどの問題があった。また、機械加工技術では砥石等を用いた切削加工が行われるがシリカガラスが硬度の高い脆性材料であることから切削に非常に時間がかかる上に、チッピング等のカケなども頻繁に生じ、投入するエネルギーが膨大なものとなる問題があった。さらに、加熱プレス成形法による成形では石英ガラスが2000℃においてもlogηが5以上と高い粘度を示すことから使用する装置が高価となる上に、高温プレスに耐えうる型が実用的にほとんど存在せず、一般的に使われているカーボン質材料を用いても高温でシリカガラスと反応しその消耗が激しく頻繁に取り替える必要があり、さらに、得られた製品の表面状態が悪く相当量を切削加工で除去しなければならず製造コストを高いものにする問題があった。  Conventionally, in the production of transparent silica glass products having a relatively complicated shape made of silica glass, a method of welding and assembling simple shaped members by fire processing, a method of processing a silica glass bulk body using machining technology, A method of forming using a hot press forming method has been adopted. In the assembly method by welding, most of the steps are performed manually, requiring a great deal of skill and time, and further, there is a problem in that the outer part is damaged due to high heat generated during fire processing and the appearance is damaged. . In machining technology, cutting using a grindstone or the like is performed, but since silica glass is a brittle material with high hardness, it takes a very long time to cut, and chipping and other chipping frequently occur and input. There was a problem that enormous energy to do. Furthermore, in the molding by the hot press molding method, quartz glass exhibits a high viscosity of logη of 5 or higher even at 2000 ° C, so the equipment to be used is expensive, and there are practically no molds that can withstand high-temperature pressing. In addition, even when commonly used carbonaceous materials are used, it reacts with silica glass at high temperatures, and its consumption is severe and needs to be replaced frequently. There is a problem in that the manufacturing cost must be increased.

上記問題点を解消し安価に、かつ生産性よく透明シリカガラス製品を製造する方法としては、シリカガラス粉末を溶液中に分散したスラリーを型に入れて成形する、いわゆる鋳込み成形方法が提案された。従来のシリカガラス製品の鋳込み成型法として、例えば特許文献1に示すように、10〜500nmのシリカ微粉末を用い、それを水と混ぜ乾燥し、次いで熱処理して粒径が0.5〜数10μmのシリカガラス粒子とし、再度水に分散しスラリー状としたのち成形型内に鋳込み、焼成する方法。特許文献2に示すように、2段階でシリカ粉末と水とのスラリーを作製し、乾燥して1mm未満のシリカ粒子を製造し、それを型に鋳込む方法、或いは特許文献3に示すように、粒径の揃った単分散粒子をバインダーを添加した水或は有機溶媒に分散させスラリーとし、それを遠心鋳込み成形法で成形する方法などが提案されている。しかし、前記特許文献1の製造方法では、スラリーの粘性が低く、単純な形状をした製品が製造できるにとどまる上に、大型の製品が製造できない欠点があった。また、特許文献2の製造方法では、スラリー化する工程毎にシリカ粉末を添加することからスラリーの粘性を十分に高いものにできず成形型に流し込んでも型漏れを起こし良好な製品、特に比較的複雑な形状をしたシリカガラス製品の製造ができない欠点があった。更に、特許文献3の製造方法では、バインダー等に有機物を使用することからシリカガラス製品に不純物や泡が多く含まれの透明なシリカガラス製品の製造を困難にするなどの欠点があった。
特開昭64-56331号公報 特開平8-59222号公報 特開平5-124828号公報
As a method for solving the above-mentioned problems and producing a transparent silica glass product inexpensively and with high productivity, a so-called cast molding method in which a slurry in which silica glass powder is dispersed in a solution is molded in a mold has been proposed. . As a conventional casting method of silica glass products, for example, as shown in Patent Document 1, a silica fine powder of 10 to 500 nm is used, mixed with water and dried, and then heat-treated to have a particle size of 0.5 to several tens of μm. A method in which silica glass particles are formed, dispersed again in water to form a slurry, cast into a mold, and fired. As shown in Patent Document 2, a slurry of silica powder and water is prepared in two stages, dried to produce silica particles of less than 1 mm, and cast into a mold, or as shown in Patent Document 3 There has been proposed a method in which monodispersed particles having a uniform particle size are dispersed in water or an organic solvent to which a binder is added to form a slurry, which is molded by centrifugal casting. However, the manufacturing method of Patent Document 1 has a disadvantage that the viscosity of the slurry is low and a product having a simple shape can be manufactured, and a large product cannot be manufactured. In addition, in the production method of Patent Document 2, since silica powder is added for each step of slurrying, the viscosity of the slurry cannot be made sufficiently high, and even if it is poured into a mold, it causes mold leakage and is particularly good. There was a drawback that silica glass products having complicated shapes could not be produced. Furthermore, the production method of Patent Document 3 has a drawback in that it makes it difficult to produce a transparent silica glass product in which many impurities and bubbles are contained in the silica glass product because an organic substance is used as a binder.
JP-A 64-56331 JP-A-8-59222 Japanese Patent Laid-Open No. 5-124828

こうした現状に鑑み、本発明者等は鋭意研究を続けた結果、1μm以下のシリカガラス1次粒子と水とを混合し、乾燥してシリカガラス顆粒を作製し焼結した後に、それを水と混ぜ粉砕混合した後乾燥することにより80〜85質量%の高濃度スラリーとしたのち成形型に鋳込み、ガラス化することで、安価に、生産性よく、比較的複雑な形状の透明シリカガラス製品が容易に製造できることを見出して本発明を完成したものである。すなわち、  In view of the current situation, the present inventors have continued intensive research, and as a result, silica glass primary particles of 1 μm or less and water are mixed, dried to produce silica glass granules and sintered with water. After mixing, pulverizing and drying, the slurry is made into a high-concentration slurry of 80 to 85% by mass, then cast into a mold and vitrified to produce a transparent silica glass product with a relatively complex shape at low cost and high productivity. The present invention has been completed by finding that it can be easily produced. That is,

本発明は、高純度の透明シリカガラス製品を安価に、かつ生産性よく製造できる方法を提供することを目的とする。  An object of this invention is to provide the method of manufacturing a highly purified transparent silica glass product cheaply and with sufficient productivity.

また、本発明は、比較的複雑な形状の高純度の透明シリカガラス製品を容易に製造する方法を提供することを目的とする。  Another object of the present invention is to provide a method for easily producing a high-purity transparent silica glass product having a relatively complicated shape.

上記目的を達成する本発明は、(A)1μm以下のシリカガラス1次粒子と水とを混合し、乾燥してシリカガラス顆粒を作成する工程、(B)シリカガラス顆粒を焼結処理して焼結粉とする工程、(C)焼結粉を水と混合し、粉砕して70〜78質量%のスラリーとした後、乾燥してシリカガラス粒子の濃度が80〜85質量%の高濃度スラリーとする工程、(D)高濃度スラリーを成型型に鋳込む工程、及び(E)成形体を成形型から取り出し、乾燥、純化処理し、さらにガラス化処理する工程、の各工程からなることを特徴とする透明シリカガラス製品の製造方法に係る。  The present invention to achieve the above object is (A) a step of mixing silica glass primary particles of 1 μm or less and water and drying to produce silica glass granules, and (B) sintering the silica glass granules. Step of making sintered powder, (C) The sintered powder is mixed with water, pulverized into a slurry of 70 to 78% by mass, and dried to a high concentration of 80 to 85% by mass of silica glass particles It consists of the following steps: a step of forming a slurry, (D) a step of casting a high-concentration slurry into a mold, and (E) a step of taking out the molded body from the mold, drying, purifying, and further vitrifying. The present invention relates to a method for producing a transparent silica glass product.

本発明の原料として1μm以下のシリカガラス1次粒子を使用するが、このシリカガラス1次粒子は珪酸エチルを用いたゾルーゲル法、廃シリコン微粒子を熱酸化する方法、四塩化珪素を加水分解する方法などで製造される。いずれの製造方法によってもシリカガラス1次粒子中のナトリウム、カリウム、リチウム、カルシウム、マグネシウム、アルミニウム、鉄、チタン、銅、ニッケル、ホウ素の各元素は1ppm以下がよい。また、シリカガラス1次粒子と混合する水としては10μs未満の電気伝導度をもつ水が好適である。  Silica glass primary particles of 1 μm or less are used as the raw material of the present invention. This silica glass primary particle is a sol-gel method using ethyl silicate, a method of thermally oxidizing waste silicon fine particles, a method of hydrolyzing silicon tetrachloride Etc. are manufactured. Regardless of which method is used, each element of sodium, potassium, lithium, calcium, magnesium, aluminum, iron, titanium, copper, nickel, and boron in the silica glass primary particles is preferably 1 ppm or less. In addition, water having an electric conductivity of less than 10 μs is suitable as the water mixed with the silica glass primary particles.

本発明の製造方法では、高純度のシリカガラス1次粒子を用い、それを有機バインダーなどの不純物混合材料を用いることなく、水と混合し高濃度スラリーを作製したのち、成形型に鋳込みガラス化することで、透明シリカガラス製品を安価に、生産性よく、かつ比較的複雑な形状の透明シリカガラス製品を製造できる。  In the production method of the present invention, high-purity silica glass primary particles are used, and they are mixed with water without using an impurity mixed material such as an organic binder to produce a high-concentration slurry. By doing so, a transparent silica glass product can be produced at a low cost, with high productivity, and in a relatively complicated shape.

本発明の製造方法では、上述のとおり1μm以下のシリカガラス1次粒子と水とを、前記シリカガラス1次粒子の濃度が60〜70質量%となるように給排気が可能な回転式円筒形容器内に導入し、さらにシリカガラスボールもシリカガラス1次粒子の40重量%以下導入し、回転式円筒形容器を10〜20rpmの速度で回転しつつ撹拌し、乾燥してシリカガラス顆粒を作製する。前記撹拌においてシリカガラス1次粒子の濃度が60質量%未満では処理時間が長くかかり好ましくなく、70質量%を越えるとスラリーの抵抗が非常に大きくなり撹拌が不可能となり高価な設備を要する上に、pH調整剤である酸なども加える必要が生じ後処理が大変になる。また、シリカガラスボールを混合することでシリカガラス顆粒の粒度分布が狭くなり次工程以降の作業時間が短縮できるばかりでなく、撹拌羽の磨耗による異物や不純物の混入を少なく出来る。前記シリカガラス顆粒の乾燥においては、回転式円筒容器に100〜150℃に暖められた空気を10〜20m3/minの割合で送風して行われるが、最終的なスラリーの水分量を5質量%以下、シリカガラス顆粒の粒径を0.5〜100μmの範囲にするのがよい。スラリーの水分量が5質量%を越えると焼結工程前に乾燥工程を別途必要としコスト高となる。また、シリカガラス顆粒範囲が前記範囲を超えるとスラリー作成に時間がかかり、前記範囲未満では強度のある顆粒が得られない。 In the production method of the present invention, as described above, silica glass primary particles having a size of 1 μm or less and water can be supplied and exhausted so that the concentration of the silica glass primary particles is 60 to 70% by mass. Silica glass balls are introduced into the vessel and 40% by weight or less of silica glass primary particles are introduced, and a rotating cylindrical container is stirred while rotating at a speed of 10 to 20 rpm, and dried to produce silica glass granules. To do. In the stirring, if the concentration of the silica glass primary particles is less than 60% by mass, the treatment time is long and undesirable, and if it exceeds 70% by mass, the resistance of the slurry becomes very large and stirring becomes impossible and expensive equipment is required. Further, it is necessary to add an acid as a pH adjusting agent, and post-treatment becomes difficult. Further, by mixing the silica glass balls, the particle size distribution of the silica glass granules is narrowed, and not only the working time after the next step can be shortened, but also the contamination by foreign matters and impurities due to the abrasion of the stirring blades can be reduced. The silica glass granules are dried by blowing air heated to 100 to 150 ° C. in a rotating cylindrical container at a rate of 10 to 20 m 3 / min. The final slurry has a water content of 5 mass. The particle size of the silica glass granules is preferably in the range of 0.5 to 100 μm. If the water content of the slurry exceeds 5% by mass, a separate drying step is required before the sintering step, resulting in high costs. Moreover, when the silica glass granule range exceeds the above range, it takes a long time to produce a slurry, and when the silica glass granule range is less than the above range, strong granules cannot be obtained.

上記シリカガラス顆粒に適切な顆粒骨格強度を持たせるため、さらにpHの影響をなくすために熱処理を施し焼結粉にする。この熱処理なしでは顆粒骨格強度が弱いため次工程で成形品に割れやクラックが発生する。また、熱処理のコストを低くするため大気雰囲気中で行われるが、その際、るつぼ等のシリカガラス容器を用いシリカガラス顆粒をその中に充填し石英ガラス板で蓋をする。シリカガラス顆粒の充填密度は0.6g/cm3以上の見かけ密度となるよう充填することが重要である。特に充填に当たり振とうするのがよい。充填密度の不均一又は前記充填密度未満では焼結状態が不均一となり均質な高濃度スラリーが得られない。焼結のための加熱温度は、大気雰囲気中で1220〜1250℃の範囲がよい。焼結温度が前記温度範囲を超えると容器内壁にシリカガラス顆粒が融着し、その解砕に時間がかかり作業効率が悪くなる。さらに、シリカガラス顆粒が非常に硬くなり容器内壁が削られ、異物や汚染物質がスラリー中に混入することが起こる。その一方、温度が低すぎると顆粒骨格強度が低くなり製品にクラックや割れが生じ易くなる。 In order to give the silica glass granule an appropriate granule skeleton strength, heat treatment is applied to obtain a sintered powder in order to eliminate the influence of pH. Without this heat treatment, the strength of the granule skeleton is weak, and cracks and cracks occur in the molded product in the next step. Further, in order to reduce the cost of heat treatment, it is carried out in an air atmosphere. At that time, a silica glass container such as a crucible is used, and silica glass granules are filled therein and covered with a quartz glass plate. It is important to fill the silica glass granules so that the apparent density is 0.6 g / cm 3 or more. Shake well when filling. If the packing density is non-uniform or less than the above-mentioned packing density, the sintered state is non-uniform and a homogeneous high-concentration slurry cannot be obtained. The heating temperature for sintering is preferably in the range of 1220 to 1250 ° C. in an air atmosphere. When the sintering temperature exceeds the above temperature range, silica glass granules are fused to the inner wall of the container, and it takes time to disintegrate the glass, resulting in poor working efficiency. Furthermore, the silica glass granule becomes very hard, the inner wall of the container is shaved, and foreign substances and contaminants are mixed into the slurry. On the other hand, if the temperature is too low, the strength of the granule skeleton is lowered, and cracks and cracks are likely to occur in the product.

上記工程で得られた焼結粉は次いで水とさらに必要に応じてシリカガラスボールとともに回転円筒形密閉容器に導入される。前記焼結粉の割合は70〜78質量%がよい。また、使用する回転円筒形密閉容器の内壁は高純度のポリウレタンやシリカガラスなどのライニング材で覆い不純物の混入を防ぐのがよい。前記回転円筒形密閉容器の回転速度は10〜100rpmに調整される。回転円筒形密閉容器の作業時間はシリカガラス焼結粉の作製量によって異なるが約1〜7日間が採られる。回転円筒形密閉容器に導入されるシリカガラスボールは焼結粉の100重量%以下がよく、直径20〜25mmのシリカガラスボールと直径25〜35mmのシリカガラスボールとを質量比で1:2の割合で混合するのがよい。シリカガラスボールが焼結粉の100質量%を越えるとライニング層に傷がつき不純物の混入が起こる。  The sintered powder obtained in the above step is then introduced into a rotating cylindrical airtight container together with water and, if necessary, a silica glass ball. The ratio of the sintered powder is preferably 70 to 78% by mass. Also, the inner wall of the rotating cylindrical airtight container to be used is preferably covered with a lining material such as high-purity polyurethane or silica glass to prevent impurities from entering. The rotational speed of the rotating cylindrical airtight container is adjusted to 10 to 100 rpm. The working time of the rotating cylindrical airtight container varies depending on the production amount of the silica glass sintered powder, but takes about 1 to 7 days. Silica glass balls introduced into the rotating cylindrical airtight container should be 100% by weight or less of the sintered powder, and a silica glass ball having a diameter of 20 to 25 mm and a silica glass ball having a diameter of 25 to 35 mm has a mass ratio of 1: 2. Mix in proportions. When the silica glass ball exceeds 100% by mass of the sintered powder, the lining layer is scratched and impurities are mixed.

上記作業によりシリカガラス顆粒濃度70〜78質量%スラリーにする。前記スラリー中にシリカガラスボールが存在したままにしておくと、スラリーがその近辺で固化してしまうため、それらを取り除き、次いで中心軸に対し10°〜60°の角度に傾斜した開放型回転容器内に導入し、室温〜50℃の清浄雰囲気中で加温し乾燥させ、さらに高濃度スラリーとする。前記乾燥での水分蒸発速度は初期には1kg当たり50g/時間以下、終期には5g/時間以下と勾配をつけて乾燥するのがよい。水分除去速度が最後まで速いとスラリーの表面近傍で固化が進み不均一なスラリーが形成される。また、最初から遅い場合には所定の水分量に達するまで非常に時間がかかり作業効率が悪い。この乾燥によりスラリー中のシリカガラス粒子濃度が80〜85質量%の高濃度スラリーとなり、シリカガラス粒子の粒度分布は、1〜6μmと15〜40μmに肩を持ち6〜15μmの範囲にピークをもつ図1に示す粒度分布となる。この粒度分布を有することで高濃度スラリーは流動性を保持でき成形型への重力鋳込みが可能となり複雑な形状の製品を精度よく製造できる。しかし、シリカガラス粒子の粒度分布が図2に示すような単純な1峰型になると鋳込み時に離型が困難であったり割れや泡が生じ精度の高い製品を得ることが難しい。前記乾燥中の開放型回転容器の回転速度は5rpm以下にし、泡の巻き込みを少なくするのがよい。また、開放型回転容器が前記の傾斜を有することで傾きによる応力が高濃度スラリーに付与され、高粘度である高濃度スラリーの流動性が保持され均一なスラリーができる。  A silica glass granule concentration of 70 to 78% by mass is obtained by the above operation. If the silica glass balls are left in the slurry, the slurry will solidify in the vicinity thereof, so that they are removed, and then the open rotating container inclined at an angle of 10 ° to 60 ° with respect to the central axis It is introduced into the inside, heated in a clean atmosphere at room temperature to 50 ° C. and dried to obtain a highly concentrated slurry. The moisture evaporation rate in the drying is preferably 50 g / hour or less per kg in the initial stage and 5 g / hour or less in the final stage with a gradient. If the moisture removal rate is fast to the end, solidification proceeds near the surface of the slurry and a non-uniform slurry is formed. In addition, when it is slow from the beginning, it takes a very long time to reach a predetermined moisture content, and the working efficiency is poor. This drying results in a high-concentration slurry in which the silica glass particle concentration in the slurry is 80 to 85% by mass, and the particle size distribution of the silica glass particles has a shoulder in 1 to 6 μm and 15 to 40 μm, and has a peak in the range of 6 to 15 μm. The particle size distribution is as shown in FIG. By having this particle size distribution, the high-concentration slurry can maintain fluidity and can be gravity-cast into a mold, so that a product having a complicated shape can be accurately produced. However, when the particle size distribution of the silica glass particles is a simple one-peak type as shown in FIG. 2, it is difficult to release during casting or cracks and bubbles occur, and it is difficult to obtain a highly accurate product. The rotational speed of the open-type rotating container during drying should be 5 rpm or less to reduce entrainment of bubbles. In addition, since the open-type rotating container has the above-described inclination, stress due to the inclination is applied to the high-concentration slurry, and the fluidity of the high-concentration slurry having high viscosity is maintained and a uniform slurry can be formed.

シリカガラス粒子濃度が80〜85質量%の高濃度スラリーは次いで成形型に鋳込まれるが、本発明で使用する成形型としては複雑な形状の製品が成形できるように外型と中型を備えた成形型とする。また、成形型は一体型に製作される。離型の容易さを考慮すると2分割以上の分割型が好ましいが成形後に分割跡が残り、製品の外観を損ねることから好ましくない。成形型の外型には吸湿性のある素材が選ばれる。吸湿性のある材質としてセラミックス、石膏、多孔性樹脂等が使用できるが、型材料の気孔径、ハンドリング、コストなどから石膏が好適である。中型には気孔が存在しない材料が選ばれる。気孔が存在すると出来た成形体の表面状態が悪くなる上に中型が吸水し収縮が起こり、割れが発生することがある。実質的に気孔が存在しない材料としては金属、プラスチック、セラミックス等が挙げられるが型の製作費用や日数、量産性、離型性のよさからシリコーンゴムなどのゴム弾性体がよい。硬度の高い材料であると、スラリーが中型に付着し離型に時間がかかる上に、割れが発生することがあり製品の歩留まりが低下する。また、前記成形型の外型には肉厚が変化する部分、形状変化が大きい部分、または微細な部分に圧縮空気吐出口を設け、そこに圧縮空気を送るエアーラインを設けるのがよい。  The high-concentration slurry having a silica glass particle concentration of 80 to 85% by mass is then cast into a mold, but the mold used in the present invention has an outer mold and a middle mold so that a product having a complicated shape can be molded. A mold is used. Further, the mold is manufactured as an integral mold. Considering the ease of mold release, a split mold with two or more splits is preferable, but a split trace remains after molding, which is not preferable because the appearance of the product is impaired. A hygroscopic material is selected for the outer mold of the mold. Ceramics, gypsum, porous resin, and the like can be used as the hygroscopic material, but gypsum is preferred because of the pore diameter, handling, cost, etc. of the mold material. A material having no pores is selected for the middle mold. If the pores are present, the surface state of the resulting molded article is deteriorated, and the middle mold absorbs water and contracts, resulting in cracks. Examples of the material that does not substantially have pores include metals, plastics, ceramics, and the like, but rubber elastic bodies such as silicone rubber are preferable from the viewpoint of mold manufacturing cost, days, mass productivity, and mold releasability. When the material is high in hardness, the slurry adheres to the middle mold and takes time to release, and cracks may occur, resulting in a decrease in product yield. Further, the outer mold of the mold may be provided with a compressed air discharge port at a portion where the thickness changes, a portion where the shape change is large, or a fine portion, and an air line through which compressed air is sent.

上記高濃度スラリーは非常に高粘度でダイラタンシー特性を持つことでシリカガラス粒子の沈降による密度のバラツキを抑え最密充填に近い成形体を得ることができる。この高濃度スラリーの成形型への鋳込み工程では、重力鋳込みとする。これにより比較的複雑な形状をもった型内の微細な部分までスラリーの充填が図られ、硬質な転写性のよい成形体が作成でき、精度の高い透明シリカガラス製品が製造できる。しかし、従来から用いられている圧力鋳込み法では、中型に成形型がくいついてしまい中型から成形体を外すのが困難となる上に、中型がゴム弾性体からなるとで加圧中に中型が変形し形状が変わり凹凸のある複雑な部分に割れが発生することが起こる。これはいわゆるスプリングバックと呼ばれる現象で成形圧力を取り除く際に弾性体が元の形状に戻ろうとするために発生する現象である。  The high-concentration slurry has a very high viscosity and dilatancy characteristics, so that it is possible to obtain a compact close to the closest packing by suppressing variation in density due to settling of silica glass particles. Gravity casting is used in the casting process of the high-concentration slurry into the mold. As a result, the slurry can be filled up to a minute portion in the mold having a relatively complicated shape, and a hard molded article having good transferability can be produced, and a highly accurate transparent silica glass product can be produced. However, with the conventional pressure casting method, it becomes difficult to remove the molded body from the middle mold because the middle mold gets stuck, and the middle mold is deformed during pressurization because the middle mold is made of a rubber elastic body. However, the shape changes and cracks occur in complex parts with irregularities. This is a so-called spring back phenomenon that occurs when the elastic body tries to return to its original shape when the molding pressure is removed.

成形型から離型した成形体は室温〜200℃まで50℃上昇毎に4時間ずつ静置し乾燥される。このとき雰囲気はコストを勘案し大気雰囲気でよい。得られた成形体は好ましくは、純化処理されるが、その条件はHCl含有ガスを0.5L/分以上流すとともに温度を900〜1200℃とする。これにより不純物が特に表層から除去されクラックの発生が防止された製品が得られる。  The molded body released from the mold is allowed to stand for 4 hours every 50 ° C. from room temperature to 200 ° C. and dried. At this time, the atmosphere may be an air atmosphere in consideration of cost. The obtained molded body is preferably subjected to a purification treatment under the condition that an HCl-containing gas is allowed to flow at 0.5 L / min or more and the temperature is set to 900 to 1200 ° C. As a result, a product in which impurities are removed from the surface layer and cracks are prevented is obtained.

乾燥された成形体は温度1200〜1550℃の範囲に加熱されガラス化されるが、1200℃〜1400℃までは10Pa以下の減圧雰囲気で、100℃上昇毎に1〜5時間保持しするのがよい。この保持が行われることにより最終的に透明なシリカガラス体を長時間かけずに得ることができる。また、1400〜1550℃の範囲では不活性ガス下、2×105Pa以下の圧力下で加熱される。不活性ガスとしてはHe、N2、Arなどが用いられる。 The dried molded body is heated to a temperature of 1200 to 1550 ° C and vitrified. Up to 1200 to 1400 ° C, it must be kept in a reduced pressure atmosphere of 10 Pa or less and held for 1 to 5 hours every 100 ° C increase. Good. By this holding, a finally transparent silica glass body can be obtained without taking a long time. Moreover, in the range of 1400-1550 degreeC, it heats under the pressure of 2 * 10 < 5 > Pa or less under inert gas. As the inert gas, He, N 2 , Ar, or the like is used.

上記本発明の透明シリカガラス製品の製造方法の概略プロセスフローを図3に示す。  FIG. 3 shows a schematic process flow of the method for producing the transparent silica glass product of the present invention.

以下に本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。  Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.

実施例1
四塩化珪素を加水分解して得た平均粒径が100nmのシリカガラス1次粒子130kgと5μsの電気伝導度をもつ水70kgとを、内面が高純度ポリウレタンでライニングされ給排気を備えた回転円筒形容器に導入し、さらにシリカガラスボール45kgを導入し撹拌した。撹拌開始から1時間後に、HEPAフィルターを通した清浄で130℃に暖められた空気10m3/minを流し水分を徐々に蒸発した。約30時間後、水分が0.5質量%、粒径範囲が1〜80μmのシリカガラス顆粒を得た。
Example 1
Rotating cylinder with 130 kg of silica glass primary particles with an average particle size of 100 nm obtained by hydrolyzing silicon tetrachloride and 70 kg of water with an electrical conductivity of 5 μs, lined with high-purity polyurethane and equipped with air supply and exhaust It was introduced into a shaped container, and further 45 kg of silica glass balls were introduced and stirred. One hour after the start of stirring, 10 m 3 / min of air that was passed through a HEPA filter and was warmed to 130 ° C. was flowed to gradually evaporate the water. After about 30 hours, silica glass granules having a water content of 0.5% by mass and a particle size range of 1 to 80 μm were obtained.

シリカガラス顆粒を直径300mmの複数のシリカガラス製るつぼ中に充填し、大気雰囲気炉内に設置した。充填に当たっては振とう機を用いるつぼを振とうしながら充填密度を0.65g/cm3とした。得られた充填シリカガラス顆粒を1225℃で、10時間加熱し焼結した。そのシリカガラス焼結粉100kgとイオン交換水33kgとを、高純度ポリウレタンでライニングした直径500mm長さ1000mmの回転円筒形密閉容器に入れ、さらにシリカガラスボール80kgを導入し回転数18rpmで5日間操業し、シリカガラス粒子をおよそ75質量%含むスラリーを製造した。シリカガラス粒子の粒度分布は、レーザー回折式の粒度分布測定機器を用いて測定したところ図1に示すように1〜6μmと15〜40μmに肩をもち6μm〜15μmの範囲にピークをもっていた。次にシリカガラスボールを取り除き開放型回転容器にスラリーを移し、そこでさらに25℃の清浄空気中で乾燥し、シリカガラス粒子濃度82質量%の固形分をもつ高濃度スラリーとした。前記回転円筒形密閉容器はその内側が高純度のポリウレタンで被覆され、中心軸が垂直軸に対し45°の傾斜をなしていた。前記乾燥は、水分除去が1kgあたりの初期には40g/時間、終期には4g/時間の勾配をもって乾燥し、この時の回転円筒形密閉容器の回転速度を1rpmとした。次に前記高濃度スラリーをお椀形状のリフレクターを作製するため型に導入した。鋳込みは鋳込み口に漏斗を装着し、そこから自然に流し込み充填した後、そのまま1時間放置し、外型に設けられたエアー導入口より圧搾空気を吹き込み離型した。得られた成形体を室温〜200℃まで50℃上昇毎に4時間静置し乾燥した。乾燥した成形体にHCl含有ガスを1.5L/分で流し、1200℃で1時間熱処理し、純化を行った。次いで10Paの減圧雰囲気で1200〜1400℃まで100℃上昇毎に2時間保持し、さらに1×105Paの不活性ガス雰囲気下で1400〜1500℃に加熱後1500℃で10分保持しガラス化した。得られたリフレクターは透明で、形状も良好であった。 Silica glass granules were filled into a plurality of silica glass crucibles having a diameter of 300 mm and placed in an atmospheric furnace. For filling, the packing density was 0.65 g / cm 3 while shaking the crucible using a shaker. The obtained filled silica glass granules were heated and sintered at 1225 ° C. for 10 hours. 100 kg of the silica glass sintered powder and 33 kg of ion-exchanged water are placed in a rotating cylindrical sealed container with a diameter of 500 mm and a length of 1000 mm, lined with high-purity polyurethane. Thus, a slurry containing about 75% by mass of silica glass particles was produced. The particle size distribution of the silica glass particles was measured using a laser diffraction type particle size distribution measuring instrument. As shown in FIG. 1, the particle size distribution had shoulders at 1 to 6 μm and 15 to 40 μm, and peaks in the range of 6 to 15 μm. Next, the silica glass balls were removed and the slurry was transferred to an open-type rotary container where it was further dried in clean air at 25 ° C. to obtain a high-concentration slurry having a solid content of silica glass particle concentration of 82% by mass. The inside of the rotating cylindrical airtight container was covered with high-purity polyurethane, and the central axis was inclined at 45 ° with respect to the vertical axis. In the drying, moisture removal was performed with a gradient of 40 g / hour in the initial stage per 1 kg and 4 g / hour in the final stage, and the rotation speed of the rotating cylindrical sealed container at this time was 1 rpm. Next, the high-concentration slurry was introduced into a mold to produce a bowl-shaped reflector. For casting, a funnel was attached to the casting port, and after naturally pouring and filling, it was left as it was for 1 hour, and compressed air was blown away from the air inlet port provided in the outer mold. The obtained molded body was allowed to stand for 4 hours every 50 ° C. from room temperature to 200 ° C. and dried. Purified by flowing HCl-containing gas at 1.5 L / min to the dried molded body and heat-treating at 1200 ° C. for 1 hour. Next, hold for 2 hours each time the temperature rises up to 1200-1400 ° C in a reduced pressure of 10Pa, and further heat to 1400-1500 ° C in an inert gas atmosphere of 1 × 10 5 Pa, then hold at 1500 ° C for 10 minutes for vitrification did. The obtained reflector was transparent and had a good shape.

実施例2
実施例1においてシリカガラス粒子を84質量%含有する高濃度スラリーを用い微細な振動を与えながら型に鋳込んだ以外は実施例1と同様にして透明で、形状のよいリフレクターを製造した。
Example 2
A transparent and well-shaped reflector was produced in the same manner as in Example 1 except that a high-concentration slurry containing 84% by mass of silica glass particles in Example 1 was cast into a mold while giving fine vibrations.

比較例1
廃シリコン微粒子を熱酸化して得られた平均粒径が3μmのシリカガラス1次粒子130kgと5μsの電気伝導度をもつ水70kgとを内面が高純度ポリウレタンでライニングされ給排気を備えた回転円筒形容器に入れ、更にシリカガラスボール45kgを導入し撹拌した。撹拌開始から1時間後に、130℃に暖められた空気を10m3/minを流し水分を徐々に蒸発した。約30時間後に含有水分が1質量%、粒径範囲が1〜100μmのシリカガラス顆粒を得た。このシリカガラス顆粒を直径300mmの複数のシリカガラス製るつぼ中に振とうしながら120kg充填した。シリカガラス顆粒の充填密度は0.6g/cm3であった。シリカガラス顆粒を充填したるつぼを大気炉内に設置し加熱した。加熱処理は1300℃、10時間保持の条件で行った。次いで得られたシリカガラス焼結粉100kgとイオン交換水33kg、及びシリカガラスボール80kgを高純度ポリウレタンでライニングされ、直径500mm長さ1000mmの回転円筒形密閉容器に入れ、回転数18rpmで5日間操業し、シリカガラス粒子をおよそ75質量%含むスラリーを製造した。このスラリー中のシリカガラス粒子の粒度分布は図2に示す1峰型であった。得られたスラリーを開放型回転容器内で25℃の空気中で加温しつつシリカガラス粒子濃度83質量%の固形分をもつ高濃度スラリーとした。前記水分除去は初期には1kgあたり40g/時間、終期には4g/時間と勾配を持って行った。またこの時の開放型回転容器の回転速度は1rpmであった。
Comparative Example 1
Rotating cylinder equipped with 130 kg of silica glass primary particles with an average particle diameter of 3 μm obtained by thermal oxidation of waste silicon fine particles and 70 kg of water with electrical conductivity of 5 μs, and the inner surface is lined with high-purity polyurethane Into a shaped container, 45 kg of silica glass balls were further introduced and stirred. One hour after the start of stirring, air heated to 130 ° C. was allowed to flow at 10 m 3 / min to gradually evaporate water. After about 30 hours, silica glass granules having a water content of 1% by mass and a particle size range of 1 to 100 μm were obtained. 120 kg of this silica glass granule was filled while shaking in a plurality of silica glass crucibles having a diameter of 300 mm. The packing density of the silica glass granules was 0.6 g / cm3. A crucible filled with silica glass granules was placed in an atmospheric furnace and heated. The heat treatment was performed at 1300 ° C. for 10 hours. Next, 100 kg of the resulting silica glass sintered powder, 33 kg of ion-exchanged water, and 80 kg of silica glass balls were lined with high-purity polyurethane, placed in a rotating cylindrical sealed container with a diameter of 500 mm and a length of 1000 mm, and operated for 5 days at a rotation speed of 18 rpm. Thus, a slurry containing about 75% by mass of silica glass particles was produced. The particle size distribution of the silica glass particles in this slurry was unimodal as shown in FIG. The obtained slurry was heated in air at 25 ° C. in an open rotary container to obtain a high-concentration slurry having a solid content of silica glass particle concentration of 83% by mass. The water removal was performed with a gradient of 40 g / hour per kg at the beginning and 4 g / hour at the end. At this time, the rotational speed of the open-type rotating container was 1 rpm.

次に高濃度スラリーをお椀形状のリフレクターを作製するため型に導入した。この時外型の材料として石膏を用い、1時間経過後に4kg/cm2の圧縮空気を用いて離型した。高濃度スラリーの成形型への付着が強く離型が困難であった。無理に離型した製品にはクラックが多く発生していた。 Next, the high-concentration slurry was introduced into a mold to produce a bowl-shaped reflector. At this time, gypsum was used as the material of the outer mold, and after 1 hour, the mold was released using 4 kg / cm 2 compressed air. The high-concentration slurry was strongly adhered to the mold and was difficult to release. There were many cracks in the product that was forcibly released.

比較例2
高濃度スラリーの固形分を75質量%とした以外、実施例1と同様にしてリフレクターを製造した。高純度スラリーの成形型への付着が大きく離型が困難であった。乾燥、ガラス化処理後の製品にはクラックが多くみられた。
Comparative Example 2
A reflector was manufactured in the same manner as in Example 1 except that the solid content of the high-concentration slurry was 75% by mass. The high-purity slurry adhered to the mold and was difficult to release. Many cracks were found in the product after drying and vitrification.

本発明の製造方法は、光学機器産業、照明用ランプ産業、理化学機器産業などの分野で使用される比較的複雑な形状の透明シリカガラス製品を安価に、かつ生産性よく製造し、その価値は工業的に高いものがある。   The production method of the present invention produces a transparent silica glass product having a relatively complex shape, which is used in fields such as the optical equipment industry, the lighting lamp industry, and the physics and chemistry equipment industry, at low cost and with high productivity. Some are industrially expensive.

本発明の高濃度スラリー中のシリカガラス粒子の粒度分布を示す。The particle size distribution of the silica glass particle in the high concentration slurry of this invention is shown. 比較例の高濃度スラリー中のシリカガラス粒子の粒度分布を示す。The particle size distribution of the silica glass particle in the high concentration slurry of a comparative example is shown. 本発明のプロセスフロー図である。It is a process flow figure of the present invention.

Claims (13)

(A)1μm以下のシリカガラス1次粒子と水とを混合し、乾燥してシリカガラス顆粒を作成する工程、(B)シリカガラス顆粒を焼結処理して焼結粉とする工程、(C)焼結粉を水と混合し、粉砕して70〜78質量%のスラリーとした後、乾燥してシリカガラス粒子の濃度が80〜85質量%の高濃度スラリーとする工程、(D)高濃度スラリーを成型に鋳込む工程、及び(E)成形体を成形型から取り出し、乾燥、純化処理し、さらにガラス化処理する工程、の各工程からなることを特徴とする透明シリカガラス製品の製造方法。 (A) Step of mixing silica glass primary particles of 1 μm or less and water and drying to produce silica glass granules, (B) Step of sintering silica glass granules into sintered powder, (C ) A step of mixing the sintered powder with water and pulverizing to make a slurry of 70 to 78% by mass, followed by drying to obtain a high concentration slurry having a silica glass particle concentration of 80 to 85% by mass, (D) high Production of a transparent silica glass product comprising: a step of casting a concentration slurry into a molding; and (E) a step of taking out the molded body from the mold, drying, purifying, and further vitrifying. Method. シリカガラス1次粒子の粒径が10〜500nmであることを特徴とする請求項1記載の透明シリカガラス製品の製造方法。 2. The method for producing a transparent silica glass product according to claim 1, wherein the primary particle size of the silica glass is 10 to 500 nm. (A)工程において、シリカガラス顆粒の水分濃度を5質量%以下、粒径を0.5〜100μmの範囲の顆粒とすることを特徴とする請求項1記載の透明シリカガラス製品の製造方法。 2. The method for producing a transparent silica glass product according to claim 1, wherein in the step (A), the silica glass granule has a moisture concentration of 5% by mass or less and a particle size in the range of 0.5 to 100 μm. (B)工程において、シリカガラス顆粒を充填密度0.6g/cm3以上に石英ガラス製容器に充填し、大気雰囲気下、温度1220〜1250℃で焼結処理することを特徴とする請求項1記載の透明シリカガラス製品の製造方法。 2. In the step (B), the silica glass granules are filled in a quartz glass container with a packing density of 0.6 g / cm 3 or more, and sintered at a temperature of 1220 to 1250 ° C. in an air atmosphere. Method for producing transparent silica glass products. (C)工程において、焼結粉と水とに加えてさらにシリカガラスボールを混合し、粉砕して70〜78質量%のスラリーとした後、スラリーからシリカガラスボールを取り除き、乾燥することを特徴とする請求項1記載の透明シリカガラス製品の製造方法。 In step (C), in addition to the sintered powder and water, the silica glass balls are further mixed and pulverized to make a slurry of 70 to 78% by mass, and then the silica glass balls are removed from the slurry and dried. 2. The method for producing a transparent silica glass product according to claim 1. 上記乾燥を室温〜50℃の清浄雰囲気で初期の水分蒸発速度が1kgあたり50g/時間以下、終期の水分蒸発速度が5g/時間以下の勾配ある乾燥を行い、終期にシリカガラス粒子濃度80〜85質量%とすることを特徴とする請求項5記載の透明シリカガラス製品の製造方法。 The above drying is performed in a clean atmosphere at room temperature to 50 ° C. with an initial moisture evaporation rate of 50 g / hour or less per kg and a final moisture evaporation rate of 5 g / hour or less with a gradient, and silica glass particle concentration of 80 to 85 at the final stage. 6. The method for producing a transparent silica glass product according to claim 5, wherein the mass percentage is set to mass%. 高濃度スラリー中のシリカガラス粒子の粒度分布が1〜6μm及び15〜40μmに肩をもち、6〜15μmにピークをもつことを特徴とする請求項5又は6記載の透明シリカガラス製品の製造方法。 The method for producing a transparent silica glass product according to claim 5 or 6, wherein the particle size distribution of the silica glass particles in the high-concentration slurry has a shoulder at 1 to 6 µm and 15 to 40 µm, and has a peak at 6 to 15 µm. . (C)工程の高濃度スラリー化において内側が高純度のポリウレタン又はシリカガラスで被覆され、中心軸が垂直軸に対し30°〜60°の傾斜をもち、かつ回転速度が1〜100rpmの開放型回転円筒形容器内で行うことを特徴とする請求項1記載の透明シリカガラス製品の製造方法。 In the high concentration slurry of step (C), the inner side is coated with high-purity polyurethane or silica glass, the central axis has an inclination of 30 ° to 60 ° with respect to the vertical axis, and the rotation speed is 1 to 100 rpm. 2. The method for producing a transparent silica glass product according to claim 1, wherein the method is performed in a rotating cylindrical container. (D)工程において、鋳込みを重力鋳込みで行うことを特徴とする請求項1に記載の透明シリカガラス製品の製造方法。 2. The method for producing a transparent silica glass product according to claim 1, wherein the casting is performed by gravity casting in the step (D). 重力鋳込み時に振動を与えることを特徴とする請求項9記載の透明シリカガラス製品の製造方法。 10. The method for producing a transparent silica glass product according to claim 9, wherein vibration is applied during gravity casting. 成形型が一体成形の外型と中型からなり、外型が石膏であり、中型が気泡のないゴム弾性体からなることを特徴とする請求項1記載の透明シリカガラス製品の製造方法。 2. The method for producing a transparent silica glass product according to claim 1, wherein the molding die is composed of an integrally molded outer die and a middle die, the outer die is gypsum, and the middle die is a rubber elastic body free from bubbles. (E)工程の純化処理が、HCl含有ガスを流量0.5L/分以上で流す容器内で、温度900〜1200℃に加熱する処理であることを特徴とする請求項1に記載の透明シリカガラス製品の製造方法。 2. The transparent silica glass according to claim 1, wherein the purification treatment in step (E) is a treatment of heating to a temperature of 900 to 1200 ° C. in a vessel in which an HCl-containing gas is flowed at a flow rate of 0.5 L / min or more. Product manufacturing method. (E)工程のガラス化処理において、該処理を1200〜1550℃で行い、最初の1200〜1400℃までの処理を10Pa未満の減圧雰囲気下で、かつ100℃上昇毎に1〜5時間その温度に保持する処理で、最後の1400〜1550℃の処理を不活性ガス雰囲気下で圧力2×105Pa以下で行うことを特徴とする請求項1記載の透明シリカガラス製品の製造方法。





(E) In the vitrification treatment in step (E), the treatment is performed at 1200 to 1550 ° C., and the first treatment to 1200 to 1400 ° C. is performed at a temperature of 1 to 5 hours in a reduced pressure atmosphere of less than 10 Pa and every 100 ° C. rise. 2. The method for producing a transparent silica glass product according to claim 1, wherein the last treatment at 1400 to 1550 ° C. is carried out under an inert gas atmosphere at a pressure of 2 × 10 5 Pa or less.





JP2005046451A 2005-02-23 2005-02-23 Method for producing transparent silica glass product Expired - Fee Related JP4446448B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005046451A JP4446448B2 (en) 2005-02-23 2005-02-23 Method for producing transparent silica glass product
PCT/EP2006/001671 WO2006089754A1 (en) 2005-02-23 2006-02-23 Method for the manufacture of a silica glass product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005046451A JP4446448B2 (en) 2005-02-23 2005-02-23 Method for producing transparent silica glass product

Publications (2)

Publication Number Publication Date
JP2006232582A true JP2006232582A (en) 2006-09-07
JP4446448B2 JP4446448B2 (en) 2010-04-07

Family

ID=37040650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005046451A Expired - Fee Related JP4446448B2 (en) 2005-02-23 2005-02-23 Method for producing transparent silica glass product

Country Status (1)

Country Link
JP (1) JP4446448B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290666A (en) * 2005-04-08 2006-10-26 Shinetsu Quartz Prod Co Ltd Method of manufacturing silica glass product
JP2008156224A (en) * 2006-12-21 2008-07-10 Schott Ag Quartz glass body, and method and casting mold for manufacturing quartz glass body
WO2011004852A1 (en) 2009-07-08 2011-01-13 国立大学法人九州大学 Composite shaped body, silica glass, and processes for production of same
WO2016140316A1 (en) * 2015-03-04 2016-09-09 国立大学法人九州大学 Silica glass precursor production method, silica glass precursor, silica glass production method and silica glass precursor
CN107487985A (en) * 2017-08-30 2017-12-19 嘉善冠得光学玻璃有限公司 Optical glass material casting car
KR20210057220A (en) 2016-06-01 2021-05-20 신에쯔 세끼에이 가부시키가이샤 Silica glass member for hermetic sealing of ultraviolet smd led element and method for manufacturing quarts glass member for ultraviolet led

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290666A (en) * 2005-04-08 2006-10-26 Shinetsu Quartz Prod Co Ltd Method of manufacturing silica glass product
JP4484748B2 (en) * 2005-04-08 2010-06-16 信越石英株式会社 Method for producing silica glass product
JP2008156224A (en) * 2006-12-21 2008-07-10 Schott Ag Quartz glass body, and method and casting mold for manufacturing quartz glass body
WO2011004852A1 (en) 2009-07-08 2011-01-13 国立大学法人九州大学 Composite shaped body, silica glass, and processes for production of same
US10407334B2 (en) 2009-07-08 2019-09-10 Kyushu University Composite shaped body and silica glass, and method for producing the same
WO2016140316A1 (en) * 2015-03-04 2016-09-09 国立大学法人九州大学 Silica glass precursor production method, silica glass precursor, silica glass production method and silica glass precursor
JPWO2016140316A1 (en) * 2015-03-04 2017-12-14 国立大学法人九州大学 Silica glass precursor manufacturing method, silica glass precursor, silica glass manufacturing method, and silica glass
KR20210057220A (en) 2016-06-01 2021-05-20 신에쯔 세끼에이 가부시키가이샤 Silica glass member for hermetic sealing of ultraviolet smd led element and method for manufacturing quarts glass member for ultraviolet led
CN107487985A (en) * 2017-08-30 2017-12-19 嘉善冠得光学玻璃有限公司 Optical glass material casting car

Also Published As

Publication number Publication date
JP4446448B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
JP4446448B2 (en) Method for producing transparent silica glass product
CN1105650A (en) Formed body with high silicon dioxide content and preparation of same
JP6129293B2 (en) Method for producing a molded body from electrically fused synthetic quartz glass
EP2463246A1 (en) Silica vessel and process for producing same
US9556073B2 (en) Process for sintering silicon carbide
JP2013540688A (en) Method for producing synthetic quartz glass granules
CN107417071B (en) Method for producing opaque quartz glass containing pores
JP2004131378A (en) Process for manufacturing opaque quartz glass material
US9353014B2 (en) Process for sintering silicon carbide
WO1987005287A1 (en) Process for manufacturing glass
JP2001130972A (en) Silicon carbide powder, method for producing green body, and method for producing silicon carbide sintered body
JP4484748B2 (en) Method for producing silica glass product
EP1445243B1 (en) Process for producing silicon carbide sinter
JP5108803B2 (en) Method for producing silica container
CA2478657A1 (en) Method of producing silicon carbide sintered body jig, and silicon carbide sintered body jig obtained by the production method
JP4498173B2 (en) Method for producing silica glass product
WO2017189998A1 (en) Process for sintering silicon carbide
JP2007070201A (en) Transparent silica sintered compact and method of manufacturing the same
WO2006089754A1 (en) Method for the manufacture of a silica glass product
JP2005139018A (en) Opaque silica glass molding and method for producing the same
CN109909898B (en) CeO for grinding semiconductor material2Grinding disc and preparation process thereof
JPH03275527A (en) Porous silica glass powder
JP2012211082A (en) Silica vessel
JP4504036B2 (en) Amorphous silica molded body and method for producing the same
JP4838591B2 (en) Silicone coagulation mold and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070817

AA91 Notification of revocation by ex officio

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20080311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4446448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees