JP2006231354A - Method of manufacturing ultra thin-walled seamless metallic tube - Google Patents

Method of manufacturing ultra thin-walled seamless metallic tube Download PDF

Info

Publication number
JP2006231354A
JP2006231354A JP2005047510A JP2005047510A JP2006231354A JP 2006231354 A JP2006231354 A JP 2006231354A JP 2005047510 A JP2005047510 A JP 2005047510A JP 2005047510 A JP2005047510 A JP 2005047510A JP 2006231354 A JP2006231354 A JP 2006231354A
Authority
JP
Japan
Prior art keywords
rolling
tube
mill
cold
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005047510A
Other languages
Japanese (ja)
Other versions
JP4569317B2 (en
Inventor
Chihiro Hayashi
千博 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005047510A priority Critical patent/JP4569317B2/en
Publication of JP2006231354A publication Critical patent/JP2006231354A/en
Application granted granted Critical
Publication of JP4569317B2 publication Critical patent/JP4569317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an ultra thin-walled seamless tube by which a hot manufactured seamless metallic tube is used as a tube stock and the manufacturable range on the thin-wall side of the metallic tube can be radically expanded by cold-working after performing hot elongation rolling of the tube stock. <P>SOLUTION: The method of manufacturing the ultra thin-walled seamless metallic tube is characterized in that the seamless metallic tube manufactured by a hot manufacturing process is used as the tube stock, thickness is reduced by performing the elongation rolling after reheating and the thickness is further reduced by a cold-manufacturing process. When performing the elongation rolling, it is desirable to perform a expansion and elongation rolling by using a two-roll type or a three-roll type skew rolling mill and using a plug the diameter of which is larger than the outside diameter of the tube stock. By this method, the ultra thin-walled seamless tube having a thickness of approximately about 1.0 mm is easily manufactured. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、継目無金属管の製造方法に関し、詳しくは、熱間製造プロセスにより製造された継目無金属管を素管として、さらに熱間延伸圧延プロセス、次いで冷間製造プロセスを経ることにより、継目無金属管の薄肉側の製造可能範囲を抜本的に拡大する超薄肉継目無金属管の製造方法に関するものである。   The present invention relates to a method for producing a seamless metal pipe, and more specifically, by using a seamless metal pipe produced by a hot production process as a base pipe, and further undergoing a hot drawing and rolling process, and then a cold production process. The present invention relates to a method for manufacturing an ultra-thin seamless metal pipe that drastically expands the range of manufacture on the thin-walled side of a seamless metal pipe.

継目無金属管の製造方法には、マンネスマン・マンドレルミルプロセス、マンネスマン・プラグミルプロセス、マンネスマン・アッセルミルプロセス、あるいはマンネスマン・プッシュベンチミルプロセスなどがある。これらの製造方法においては、加熱炉にて所定の温度に加熱した中実ビレットを穿孔圧延機により穿孔してホローピースとなし、これをマンドレルミル、プラグミル、アッセルミルあるいはプッシュベンチミルなどの延伸圧延機により、主としてその肉厚を減じてホローシェルとし、次いで、サイザあるいはストレッチレデューサなどの絞り圧延機により、主としてその外径を減じて、所定の寸法の金属管に仕上げる(非特許文献1、非特許文献2など)。   The manufacturing method of the seamless metal pipe includes a Mannesmann mandrel mill process, a Mannesmann plug mill process, a Mannesmann Assel mill process, or a Mannesmann push bench mill process. In these manufacturing methods, a solid billet heated to a predetermined temperature in a heating furnace is pierced by a piercing mill to form a hollow piece, which is drawn by a stretching mill such as a mandrel mill, plug mill, assel mill or push bench mill. The thickness is mainly reduced to form a hollow shell, and then the outer diameter is mainly reduced by a drawing mill such as a sizer or a stretch reducer to finish a metal tube having a predetermined size (Non-patent Document 1, Non-patent Document 2). Such).

図1は、上記プロセスの例として、マンネスマン・マンドレルミルプロセスを説明するための図であり、同図(a)は回転炉床式加熱炉、(b)はロータリピアサ(穿孔圧延機)、(c)はマンドレルミル(延伸圧延機)、(d)は再加熱炉、そして(e)はストレッチレデューサ(絞り圧延機)をそれぞれ示す。   FIG. 1 is a diagram for explaining a Mannesmann mandrel mill process as an example of the above process, in which (a) is a rotary hearth type heating furnace, (b) is a rotary piercer (piercing and rolling mill), (c) ) Shows a mandrel mill (drawing rolling mill), (d) shows a reheating furnace, and (e) shows a stretch reducer (drawing rolling mill).

これらのマンネスマンプロセスの他に、ユジーンエクストルージョンプロセスがあり、このプロセスでは、機械加工により下穴を施したビレットをエクストルージョンプレスを使用して一挙に押出して金属管製品とする。   In addition to these Mannesmann processes, there is the Eugene extrusion process. In this process, billets with holes prepared by machining are extruded at once using an extrusion press to form metal pipe products.

そして、上記の熱間製造プロセスにより製造された金属管製品の一部は、冷間製造プロセスに送られ、ドローベンチミルによる冷間抽伸プロセス、プッシュベンチミルによる冷間押抜きプロセスあるいはコールドピルガーミルによる冷間圧延プロセスなどのプロセスにより、その外径および肉厚を減じて所定の寸法に仕上げられる。   A part of the metal tube product manufactured by the above hot manufacturing process is sent to the cold manufacturing process, where it is cold drawn by a draw bench mill, a cold punching process by a push bench mill, or a cold pilger. By a process such as a cold rolling process using a mill, the outer diameter and the wall thickness are reduced to a predetermined size.

図2は、代表的な冷間製造プロセスを示す説明図であり、同図(a)〜(c)はドローベンチミルによる冷間抽伸法であって、(a)はプラグ引き、(b)はフローティングプラグ引き、(c)はマンドレル引きを示し、(d)はプッシュベンチミルによる冷間押抜き法、そして(e)はコールドピルガーミルによる冷間圧延法をそれぞれ示す。   FIG. 2 is an explanatory view showing a typical cold manufacturing process, in which FIGS. (A) to (c) are cold drawing methods using a draw bench mill, (a) is plug drawing, (b) Is a floating plug drawing, (c) is a mandrel drawing, (d) is a cold punching method using a push bench mill, and (e) is a cold rolling method using a cold pilger mill.

同図(a)〜(c)に示すドローベンチミルによる冷間抽伸法では、素管1内に、プラグ2、浮きプラグ5または心金6を挿入し、ダイス4を通して素管1を引き抜くことにより冷間抽伸される。(d)に示すプッシュベンチミルによる冷間押抜き法は、一端が閉じた素管1内に心金6を挿入し、ダイス4を通して素管1を押抜く方法である。また、(e)に示すコールドピルガーミルによる冷間圧延法は、外径Dを有する素管内にマンドレル6を挿入し、円周方向にテーパ状の断面形状の孔型を有するロール7により圧延することにより外径dの仕上管を製造する方法である。   In the cold drawing method using the draw bench mill shown in FIGS. 1A to 1C, the plug 2, the floating plug 5 or the mandrel 6 is inserted into the element tube 1, and the element tube 1 is pulled out through the die 4. Is cold drawn. The cold punching method using a push bench mill shown in (d) is a method in which a mandrel 6 is inserted into the base tube 1 whose one end is closed, and the base tube 1 is punched out through a die 4. In the cold rolling method using a cold pilger mill shown in (e), a mandrel 6 is inserted into a raw pipe having an outer diameter D, and rolling is performed by a roll 7 having a hole shape having a tapered cross-sectional shape in the circumferential direction. This is a method for manufacturing a finished pipe having an outer diameter d.

本発明は、熱間製造プロセスに続いて冷間製造プロセスを経て仕上げられる継目無金属管の製造方法に関する。以下の説明では、熱間製造プロセスとしてマンネスマン・マンドレルミルプロセスを例にとり説明する。   The present invention relates to a method of manufacturing a seamless metal tube that is finished through a cold manufacturing process following a hot manufacturing process. In the following description, the Mannesmann mandrel mill process will be described as an example of the hot manufacturing process.

マンドレルミルでは、穿孔圧延機により穿孔されたホローピースの内側にマンドレルバーを挿入し、バーごと連続圧延する。管の内面にマンドレルバーが接触している領域を孔型ロールの溝底側とし、また、管の内面にマンドレルバーが接触していない領域を孔型ロールのフランジ側として分けて考察すると、溝底側とフランジ側とでは管材料の変形挙動が下記のとおり相違する。   In a mandrel mill, a mandrel bar is inserted inside a hollow piece drilled by a piercing rolling mill, and the whole bar is continuously rolled. Considering the area where the mandrel bar is in contact with the inner surface of the pipe as the groove bottom side of the perforated roll and the area where the mandrel bar is not in contact with the inner surface of the pipe as the flange side of the perforated roll, The deformation behavior of the pipe material is different between the bottom side and the flange side as follows.

すなわち、溝底側の材料は、孔型ロールから外圧を受け、マンドレルバーからは内圧を受けながら圧延され、軸方向(長手方向)に延伸されるとともに、管の円周方向に幅拡がりを生じる。これに対して、フランジ側の材料は、マンドレルバーに接触しない状態で溝底側の材料の伸びに引っ張られて延伸されるとともに、円周方向に幅狭まりを生じる。つまり、マンドレルミルにおける管の塑性変形においては、溝底側の材料は、外圧と内圧と軸方向圧縮力のもとで変形し、フランジ側の材料は、内圧がゼロであるから、外圧と軸方向引張力のもとで変形する。   That is, the material on the groove bottom side is rolled while receiving an external pressure from the perforated roll and an internal pressure from the mandrel bar, and is stretched in the axial direction (longitudinal direction) and expands in the circumferential direction of the tube. . On the other hand, the flange side material is stretched by being stretched by the extension of the material on the groove bottom side without being in contact with the mandrel bar, and narrows in the circumferential direction. That is, in plastic deformation of the pipe in the mandrel mill, the material on the groove bottom side is deformed under external pressure, internal pressure, and axial compression force, and the material on the flange side has zero internal pressure. Deforms under directional tensile force.

さらに、マンドレルミルでは、各スタンドの孔型ロールは独立に駆動されることから、孔型ロールの回転数の設定如何により、スタンド間に張力あるいは圧縮力が生じ、これが各スタンドにおけるシェルの内部応力に重畳される。その結果、フランジ側の軸方向の引張応力が高い場合には、フランジ側で破断して金属管に穴あきを生じ、また、溝底側の軸方向の圧縮応力が高い場合には、溝底側で挫屈して管内面に波打ちを生じる。この現象は、管の肉厚が薄くなるほど顕著に現れやすく、これがマンドレルミルにおける圧延可能な最小肉厚を決定する。   Furthermore, in the mandrel mill, the hole rolls of each stand are driven independently, so that tension or compressive force is generated between the stands depending on the setting of the rotation speed of the hole roll, and this is the internal stress of the shell in each stand. Is superimposed on. As a result, when the tensile stress in the axial direction on the flange side is high, fracture occurs on the flange side, creating a hole in the metal tube, and when the axial compressive stress on the groove bottom side is high, the groove bottom It will buckle on the side and cause undulations on the inner surface of the tube. This phenomenon is more prominent as the tube thickness decreases, which determines the minimum wall thickness that can be rolled in a mandrel mill.

次に、ストレッチレデューサにおける管の塑性変形は、マンドレルミルにおけるフランジ側の塑性変形と同様であり、外圧と軸方向引張応力の下で変形する。そして、軸方向の引張応力は、薄肉管の絞り圧延において最大となり、容易に破断する。一般に、金属材料の変形抵抗をkfとしたとき、軸方向の引張応力σlが0.5kfに達すると引き細りが始まり、1.0kfに達すると破断する。したがって、絞り圧延工程では、スタンド間張力応力σlが0.9kfを超えないように制御する必要がある。スタンド間張力応力σlは、絞り圧延機に入る管の肉厚に反比例して高くなることを考慮すれば、たとえ、マンドレルミルにおいて穴あきを生じなかったとしても、薄肉管をストレッチレデューサまたはサイザなどの連続圧延機により絞り圧延することは、危険極まりないことである。 Next, the plastic deformation of the pipe in the stretch reducer is the same as the plastic deformation on the flange side in the mandrel mill, and is deformed under external pressure and axial tensile stress. The tensile stress in the axial direction is maximized in the drawing rolling of the thin-walled tube and easily breaks. In general, when the deformation resistance of the metal material was k f, a tensile stress sigma l axial starts thinning pull to reach 0.5 k f, breaks to reach 1.0k f. Therefore, the reducing rolling step, interstand tension stress sigma l it is necessary to control so as not to exceed the 0.9k f. Considering that the inter-stand tension stress σ l increases in inverse proportion to the wall thickness of the pipe entering the drawing mill, even if no drilling occurs in the mandrel mill, the thin-walled pipe is stretched by a stretch reducer or sizer. It is extremely dangerous to perform rolling with a continuous rolling machine such as the above.

ストレッチレデューサによりストレッチパターンを調節することにより若干の肉厚の変更は可能であるが、熱間製造工程における継目無金属管の製造可能な肉厚下限は、マンドレルミルにおける製造可能な肉厚下限に大きく支配され、さらに、これが冷間製造工程における製造可能な肉厚下限に大きく影響する。   Although the wall thickness can be slightly changed by adjusting the stretch pattern with the stretch reducer, the minimum wall thickness that can be produced for seamless metal pipes in the hot manufacturing process is the minimum wall thickness that can be manufactured in a mandrel mill. In addition, this greatly affects the lower wall thickness that can be produced in the cold production process.

一般に、マンドレルミルにおける製造可能最小肉厚は、4.0mm程度であり、ストレッチレデューサによる仕上げ後の肉厚の下限は、金属管の外径によって異なり、外径が30.0〜40.0mmφの範囲では3.5mm、40.0〜70.0mmφの範囲では3.7mm、70.0〜80.0mmφの範囲では4.0mm、80.0〜90.0mmφの範囲では4.2mm、90.0〜140.0mmφの範囲では4.5mm程度となる。そして、冷間製造工程においてドローベンチミル、プッシュベンチミルあるいはコールドピルガーミルなどにより外径および肉厚を減じた後の仕上がり製品の肉厚の下限は、熱間製造工程における肉厚下限のおよそ1/2程度となる。   Generally, the minimum manufacturable thickness in the mandrel mill is about 4.0 mm, and the lower limit of the thickness after finishing by the stretch reducer varies depending on the outer diameter of the metal tube, and the outer diameter is 30.0 to 40.0 mmφ. 3.5 mm in the range, 3.7 mm in the range of 40.0 to 70.0 mmφ, 4.0 mm in the range of 70.0 to 80.0 mmφ, 4.2 mm in the range of 80.0 to 90.0 mmφ, and 90.mm. In the range of 0 to 140.0 mmφ, it is about 4.5 mm. The lower limit of the wall thickness of the finished product after reducing the outer diameter and wall thickness by a draw bench mill, push bench mill or cold pilger mill in the cold manufacturing process is approximately the lower wall thickness limit in the hot manufacturing process. It becomes about 1/2.

上述のとおり、従来の製管方法では、熱間製造工程における肉厚圧下にさらに冷間製造工程での肉厚圧下を加えても、なお、仕上がり製品の薄肉化には限界があり、継目無金属管の薄肉側の製造可能範囲の抜本的拡大は困難であった。   As described above, in the conventional pipe making method, there is a limit to reducing the thickness of the finished product even if the thickness reduction in the cold manufacturing process is further added to the thickness reduction in the hot manufacturing process. It has been difficult to drastically expand the manufacturable range on the thin side of the metal tube.

日本鉄鋼協会編集:第3版 鉄鋼便覧 第3巻(2)条鋼・鋼管・圧延設備(昭和55年11月20日) 903〜1054頁Edited by Japan Iron and Steel Institute: 3rd Edition Steel Handbook Volume 3 (2) Steel, Steel Pipe and Rolling Equipment (November 20, 1980) 903-1054

林 千博著:鋼管の製造方法(2000年10月10日) 17〜264頁Chihiro Hayashi: Manufacturing method of steel pipe (October 10, 2000) 17-264

本発明は、上記の問題に鑑みてなされたものであり、その課題は、熱間製造プロセスにより製造された継目無金属管を素管として、再加熱後、延伸圧延し、さらに冷間製造プロセスを経ることにより、継目無金属管の薄肉側の製造可能範囲を抜本的に拡大する超薄肉継目無金属管の製造方法を提供することにある。   The present invention has been made in view of the above problems, and the problem is that a seamless metal tube manufactured by a hot manufacturing process is used as a base tube, and after reheating, stretched and rolled, and further a cold manufacturing process Thus, an object of the present invention is to provide a method for producing an ultra-thin seamless metal tube that drastically expands the manufacturable range on the thin-wall side of a seamless metal tube.

本発明者は、上述の課題を解決するために、従来の問題点を踏まえて研究を重ね、下記の(a)〜(f)の知見を得て、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventor has conducted research based on the conventional problems, obtained the following knowledge (a) to (f), and completed the present invention.

(a)従来の熱間および冷間の製造プロセスを強化して、強圧下の圧延を行っても、継目無金属管の肉厚は、熱間製造工程で3.0mm、冷間製造工程で1.5mm程度が限界であり、それ以下に達する薄肉化は期待できない。もっとも、冷間製造工程においてスピニング加工を採用すれば、肉厚を1.5mm以下とすることも可能ではあるが、生産能率が著しく低下し、経済的に成立し得ない。   (A) Even if the conventional hot and cold manufacturing processes are strengthened and rolled under high pressure, the thickness of the seamless metal pipe is 3.0 mm in the hot manufacturing process, and in the cold manufacturing process. About 1.5 mm is the limit, and it is not possible to expect a reduction in thickness to reach that limit. However, if a spinning process is employed in the cold manufacturing process, the wall thickness can be reduced to 1.5 mm or less, but the production efficiency is remarkably lowered, and cannot be established economically.

(b)冷間製造プロセスにおいて肉厚がおよそ1.2mm以下の超薄肉金属管を安定して製造可能とするためには、従来公知の熱間製造プロセスで製造される薄肉継目無金属管を素管として、熱間において更なる延伸圧延を行って肉厚を2.0mm以下とし、これを冷間製造工程に送る必要がある。   (B) In order to stably manufacture an ultra-thin metal tube having a wall thickness of approximately 1.2 mm or less in a cold manufacturing process, a thin-wall seamless metal tube manufactured by a conventionally known hot manufacturing process As a raw tube, it is necessary to further stretch and roll hot to make the wall thickness 2.0 mm or less, and to send it to the cold manufacturing process.

(c)上記(b)における更なる延伸圧延プロセスとしては、マンドレルミルのように管軸方向に圧延する連続圧延方式よりも、2ロール型傾斜圧延機または3ロール型傾斜圧延機により、管周方向にも圧延する傾斜圧延方式が望ましい。管軸方向にのみ圧延する連続圧延方式では、従来の延伸圧延工程と同様に、材料の穴あきや破断などの問題が繰り返される場合があるからである。   (C) As a further drawing and rolling process in the above (b), the tube circumference is obtained by a two-roll type inclined rolling mill or a three-roll type inclined rolling mill rather than a continuous rolling method in which the rolling is performed in the tube axis direction like a mandrel mill. A tilt rolling method that rolls in the direction is also desirable. This is because, in the continuous rolling method in which rolling is performed only in the tube axis direction, problems such as material perforation and fracture may be repeated as in the conventional stretching and rolling process.

(d)上記(c)の傾斜圧延機による延伸圧延工程においては、マンドレルバーを管内側に挿入してマンドレルバーごと圧延する縮径減肉圧延方式よりも、プラグを挿入する拡径減肉圧延方式がはるかに有利である。マンドレルバーを挿入する縮径減肉圧延方式では、傾斜ロール相互間において管肉がはみ出してフレアリングを起こし、モータストップ、すなわち操業停止事態を惹起しやすいばかりでなく、また、2ロール型傾斜圧延機の場合には、フレアリングした管肉がソリッドガイドシューまたはディスクロールの端縁において周方向に削られるピーリングを起こしやすいからである。   (D) In the drawing and rolling process using the inclined rolling mill of (c) above, the diameter-expanded reduction rolling in which the plug is inserted rather than the diameter-reduction thickness reduction rolling method in which the mandrel bar is inserted inside the pipe and rolled together with the mandrel bar. The method is much more advantageous. In the reduced diameter reduction rolling method in which a mandrel bar is inserted, not only does the tube wall protrude between the inclined rolls, causing flaring and not only causing a motor stop, that is, an operation stoppage, but also a two-roll type inclined rolling. This is because, in the case of a machine, the flare tube is easily peeled off at the edge of the solid guide shoe or disk roll in the circumferential direction.

(e)上記(d)の傾斜圧延機による拡管延伸圧延工程においては、素管の外径よりも大きな直径を有するプラグを使用するのが望ましい。また、圧延ロールの傾斜角(後述の図3における角度β)は、可能な限り小さく設定し、傾斜圧延工程において不可避的に発生する管内外面のスパイラルマークを極力低減することが望ましい。   (E) It is desirable to use a plug having a diameter larger than the outer diameter of the raw tube in the pipe expansion and drawing process by the inclined rolling mill of (d). Further, it is desirable to set the inclination angle of the rolling roll (angle β in FIG. 3 described later) as small as possible to reduce the spiral marks on the inner and outer surfaces of the pipe inevitably generated in the inclined rolling process as much as possible.

(f)冷間製造プロセスには冷間抽伸方式、冷間押抜き方式または冷間圧延方式があり、前記再加熱後の延伸圧延プロセスに傾斜圧延機を使用した際に発生した管内外面のスパイラルマークを消去する。   (F) The cold production process includes a cold drawing method, a cold punching method, or a cold rolling method, and the spiral of the inner and outer surfaces of the pipe generated when a tilt rolling mill is used in the drawing and rolling process after the reheating. Erase the mark.

穿孔圧延の場合も、延伸圧延の場合も、傾斜圧延機の内面規制工具としてプラグを使用すれば、管の内外面にスパイラルマークが発生することは避けられない。このスパイラルマークは、本発明における更なる延伸圧延においても現れてくる。スパイラルマークを消去するには、管軸方向に連続圧延する延伸圧延工程か、または内面規制工具としてマンドレルバーを使用する傾斜ロールによる延伸圧延工程が必要となる。マンネスマン・マンドレルミルプロセス、マンネスマン・プラグミルプロセス、マンネスマン・アッセルミルプロセス、マンネスマン・プッシュベンチミルプロセスなどでは、上記のスパイラルマークを消去する工程を備えている。スパイラルマークが残存すれば、熱間圧延製品として市場に出荷できないことはもちろんである。   In both the case of piercing and rolling, if a plug is used as the inner surface regulating tool of the inclined rolling mill, it is inevitable that spiral marks are generated on the inner and outer surfaces of the pipe. This spiral mark also appears in the further drawing and rolling in the present invention. In order to erase the spiral mark, a drawing and rolling process in which rolling is performed continuously in the tube axis direction or a drawing and rolling process using an inclined roll using a mandrel bar as an inner surface regulating tool is required. In the Mannesmann mandrel mill process, Mannesmann plug mill process, Mannesmann Assel mill process, Mannesmann push bench mill process, etc., a process for erasing the spiral mark is provided. Of course, if the spiral mark remains, it cannot be shipped to the market as a hot rolled product.

本発明は、冷間圧延製品とすることを前提としており、前記(b)の更なる熱間延伸圧延工程において発生したスパイラルマークは、冷間抽伸、冷間押抜きまたは冷間圧延工程における管軸方向の減肉圧延により完全に消去されるとともに、管内外面は凹凸の極めて少ない平滑で美麗な面となる。なお、傾斜圧延を行う場合であっても、内面規制工具としてマンドレルバーを用いる場合には、スパイラルマークの発生は、極めて軽微であり、品質上問題とはならない。   The present invention is premised on a cold rolled product, and the spiral mark generated in the further hot drawing and rolling process of (b) is a tube in cold drawing, cold punching or cold rolling process. It is completely erased by the axial thinning rolling, and the inner and outer surfaces of the pipe are smooth and beautiful with very few irregularities. Even when tilt rolling is performed, when a mandrel bar is used as the inner surface regulating tool, the occurrence of spiral marks is extremely slight and does not cause a quality problem.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)〜(4)に示す超薄肉継目無金属管の製造方法にある。   The present invention has been completed on the basis of the above findings, and the gist thereof resides in a method for manufacturing an ultrathin seamless metal pipe shown in the following (1) to (4).

(1)熱間製造プロセスにより製造された継目無金属管を素管として、再加熱後、延伸圧延を行って肉厚を減じ、酸洗後、冷間製造プロセスによりさらに肉厚を減じることを特徴とする超薄肉継目無金属管の製造方法。   (1) Using a seamless metal tube manufactured by a hot manufacturing process as a base tube, after reheating, stretch rolling to reduce the wall thickness, and after pickling, further reduce the wall thickness by a cold manufacturing process. A method for producing a featured ultra-thin seamless metal tube.

(2)前記の延伸圧延を行うに際して、2個または3個の圧延ロールを備えた傾斜圧延機を用いることを特徴とする前記(1)に記載の超薄肉継目無金属管の製造方法。   (2) The method for producing an ultrathin seamless metal pipe according to (1) above, wherein an inclined rolling mill equipped with two or three rolling rolls is used when performing the stretching and rolling.

(3)前記の傾斜圧延機を用いた延伸圧延において、プラグを用いて拡管圧延することを特徴とする前記(2)に記載の超薄肉継目無金属管の製造方法。   (3) The method for producing an ultra-thin seamless metal pipe according to (2), wherein in the rolling using the inclined rolling mill, pipe expansion is performed using a plug.

(4)前記のプラグを用いた拡管圧延において、素管の外直径よりも大きな直径を有するプラグを用いることを特徴とする前記(3)に記載の超薄肉継目無金属管の製造方法。   (4) The method for producing an ultra-thin seamless metal pipe according to (3), wherein a plug having a diameter larger than the outer diameter of the raw pipe is used in the pipe expansion rolling using the plug.

本発明において、「熱間製造プロセス」とは、マンネスマン・マンドレルミルプロセス、マンネスマン・プラグミルプロセス、マンネスマン・アッセルミルプロセス、マンネスマン・プッシュベンチミルプロセス、ユジーンエクストルージョンプロセスなどによる熱間製管プロセスを意味する。   In the present invention, the “hot manufacturing process” refers to a hot pipe manufacturing process such as a Mannesmann mandrel mill process, a Mannesmann plug mill process, a Mannesmann Assel mill process, a Mannesmann push bench mill process, and a Eugene extrusion process. Means.

また、「冷間製造プロセス」とは、ドローベンチミルによる冷間抽伸、ソリッドダイス型プッシュベンチミルによる冷間押抜き、またはコールドピルガーミルによる冷間圧延プロセスを意味する。   The “cold manufacturing process” means a cold drawing process using a draw bench mill, a cold punching process using a solid die type push bench mill, or a cold rolling process using a cold pilger mill.

「超薄肉継目無金属管」とは、加熱後に延伸圧延を行った後の肉厚が2.0mm以下の継目無金属管、または冷間加工後の肉厚が1.2mm以下の継目無金属管を意味する。   “Ultra-thin seamless metal tube” means a seamless metal tube with a thickness of 2.0 mm or less after drawing and rolling after heating, or a seamless metal tube with a thickness of 1.2 mm or less after cold working. Means a metal tube.

本発明の方法によれば、熱間製造プロセスにより製造された継目無金属管を素管として、再加熱後、延伸圧延を行ってさらに肉厚を減じ、冷間製造プロセスを経ることにより超薄肉の継目無金属管を製造することができる。したがって、本発明の継目無金属管の製造方法を適用することにより、継目無金属管の薄肉側の製造可能範囲を抜本的に拡大することができる。   According to the method of the present invention, a seamless metal tube manufactured by a hot manufacturing process is used as a base tube, and after reheating, stretch rolling is performed to further reduce the wall thickness, and after passing through a cold manufacturing process, ultrathinness is achieved. Meat seamless metal tubes can be produced. Therefore, by applying the method for manufacturing a seamless metal pipe according to the present invention, the manufacturable range on the thin wall side of the seamless metal pipe can be drastically expanded.

本発明は、前記のとおり、熱間製造プロセスにより製造された継目無金属管を素管として、再加熱後、延伸圧延を行って肉厚を減じ、酸洗後、冷間製造プロセスによりさらに肉厚を減じることを特徴とする超薄肉継目無金属管の製造方法である。   As described above, the present invention uses a seamless metal tube manufactured by a hot manufacturing process as a base tube, and after reheating, stretches and rolls to reduce the wall thickness, pickles, and further cools by a cold manufacturing process. An ultra-thin seamless metal pipe manufacturing method characterized in that the thickness is reduced.

本発明の最良の実施形態として、当該延伸圧延工程において傾斜圧延機を用い、管内にプラグを挿入して圧延する拡管延伸圧延プロセスを採用するのが望ましいことは、前記課題を解決するための手段の項の(c)〜(e)において述べたとおりであるが、他の減肉手段を用いても本発明に準ずる効果が得られることは言うまでもない。   As the best mode of the present invention, it is desirable to employ a tube-stretching and rolling process in which a plug is inserted into a pipe and rolled using an inclined rolling mill in the drawing and rolling process. Although it is as having described in (c)-(e) of the term of the above, it cannot be overemphasized that the effect according to this invention is acquired even if it uses other thinning means.

図3は、傾斜圧延機による拡管圧延プロセスを示す説明図であり、同図(a)は拡管圧延プロセスの側面図、(b)は(a)の平面図、(c)は(a)の正面図をそれぞれ示す。   FIG. 3 is an explanatory view showing a tube-rolling process by an inclined rolling mill, in which (a) is a side view of the tube-rolling process, (b) is a plan view of (a), and (c) is of (a). Front views are shown respectively.

ロールの回転中心軸がパスライン16を含む水平面(または垂直面)に対して角度β(以下、「ロール傾斜角」と記す)をなして傾斜するとともに、回転中心軸が同パスライン16を含む垂直面(または水平面)に対して角度γ(以下、「ロール交叉角」と記す)をなして交叉するように配置され、互いに同方向に回転する一対の圧延ロール(コーン型主ロール)11の間隙に、図中の矢印Xで示す方向から素管14が供給される。なお、素管14は、回転駆動するディスクロール13によりパスライン16の周りをガイドされながら圧延ロール11の間隙内に供給される。供給された素管14は、圧延ロール11により螺進運動を付与されながら管周方向および管軸方向に圧延されるとともに、プラグ12により拡管されて、延伸シェル15を形成する。   The rotation center axis of the roll is inclined at an angle β (hereinafter referred to as “roll inclination angle”) with respect to a horizontal plane (or vertical plane) including the pass line 16, and the rotation center axis includes the pass line 16. Of a pair of rolling rolls (cone-type main rolls) 11 that are arranged to cross each other at an angle γ (hereinafter referred to as “roll crossing angle”) with respect to a vertical plane (or horizontal plane) and rotate in the same direction. The raw tube 14 is supplied to the gap from the direction indicated by the arrow X in the figure. The raw tube 14 is supplied into the gap of the rolling roll 11 while being guided around the pass line 16 by a disk roll 13 that is driven to rotate. The supplied raw pipe 14 is rolled in the pipe circumferential direction and the pipe axis direction while being given a spiral motion by the rolling roll 11, and is expanded by the plug 12 to form a stretched shell 15.

また、冷間製造プロセスには、前記(f)にて説明したとおり、冷間抽伸方式、冷間押抜き方式および冷間圧延方式があり、傾斜圧延機を用いた延伸圧延により発生した管内外面のスパイラルマークを管軸方向の減肉圧延により消去するとともに、管内外面を平滑化する。   Further, as described in the above (f), the cold production process includes a cold drawing method, a cold punching method, and a cold rolling method, and the inner and outer surfaces of the pipe generated by drawing rolling using a tilt rolling mill. The spiral mark is erased by thinning rolling in the tube axis direction, and the inner and outer surfaces of the tube are smoothed.

本発明の継目無金属管の製造方法による効果を確認するため、下記の試験を行い、その結果を評価した。なお、試験においては、本発明の最良の実施形態として、延伸圧延工程に傾斜圧延機による拡管延伸プロセスを採用した。   In order to confirm the effect of the method for producing a seamless metal pipe according to the present invention, the following tests were conducted and the results were evaluated. In the test, as the best embodiment of the present invention, a pipe expansion and drawing process using a tilt rolling mill was adopted for the drawing and rolling process.

(本発明例1)
外直径34.0mm、肉厚3.5mmの炭素鋼(C:0.15%、Si:0.35%、Mn:1.20%、P:0.010%、S:0.010%)の鋼管を供試素管として用いた。なお、供試素管は、マンネスマン・マンドレルミルプロセスにより製造したものである。前記供試素管を用い、2ロール型傾斜圧延機のパイロットミルを使用して920℃の温度にて拡管比が1.50の傾斜圧延を行って、外径50.8mm、肉厚1.4mmの延伸シェルとした。さらに、これを冷却後、実機のドローベンチミルにより冷間抽伸し、外径40.0mm、肉厚1.2mmの鋼管を製造した。
(Invention Example 1)
Carbon steel with an outer diameter of 34.0 mm and a wall thickness of 3.5 mm (C: 0.15%, Si: 0.35%, Mn: 1.20%, P: 0.010%, S: 0.010%) The steel pipe was used as a test element pipe. The specimen tube was manufactured by the Mannesmann mandrel mill process. Using the above-mentioned sample tube, tilt rolling with a tube expansion ratio of 1.50 was performed at a temperature of 920 ° C. using a pilot mill of a two-roll type inclined rolling mill, an outer diameter of 50.8 mm, and a thickness of 1. A 4 mm stretched shell was used. Furthermore, after cooling this, it was cold-drawn by an actual draw bench mill to produce a steel pipe having an outer diameter of 40.0 mm and a wall thickness of 1.2 mm.

試験条件を以下に示す。
(1)熱間拡管圧延条件
ロール交叉角:γ=25°
ロール傾斜角:β=8°
プラグ径:dp=46mm
素管外径:do=34.0mm
素管肉厚:to=3.5mm
圧延後の延伸シェル外径:d=50.8mm
圧延後の延伸シェル肉厚:t=1.4mm
拡管比:d/do=1.50
延伸比:to(do−to)/{t(d−t)}=1.54
(肉厚/外径)比:t/d=2.05%
(2)冷間抽伸条件
プラグ径:dp=37.0mm
素管外径:do=50.8mm
素管肉厚:to=1.4mm
抽伸後の管外径:d=40.0mm
抽伸後の管肉厚:t=1.2mm
抽伸比:to(do−to)/{t(d−t)}=1.48
(肉厚/外径)比:t/d=3.00%
プラグを用いる傾斜圧延によって発生した延伸シェル内外面のスパイラルマークは、冷間抽伸によって完全に消失し、内外面肌の美麗な鋼管を得ることができた。
Test conditions are shown below.
(1) Hot tube rolling conditions Roll crossing angle: γ = 25 °
Roll tilt angle: β = 8 °
Plug diameter: dp = 46mm
Raw tube outer diameter: do = 34.0 mm
Tube thickness: to = 3.5mm
Stretched shell outer diameter after rolling: d = 50.8 mm
Stretched shell wall thickness after rolling: t = 1.4mm
Expansion ratio: d / do = 1.50
Stretch ratio: to (do-to) / {t (dt)} = 1.54
(Wall thickness / outer diameter) ratio: t / d = 2.05%
(2) Cold drawing conditions Plug diameter: dp = 37.0 mm
Base tube outer diameter: do = 50.8mm
Tube thickness: to = 1.4mm
Pipe outer diameter after drawing: d = 40.0 mm
Tube thickness after drawing: t = 1.2mm
Drawing ratio: to (do-to) / {t (dt)} = 1.48
(Wall thickness / outer diameter) ratio: t / d = 3.00%
The spiral marks on the inner and outer surfaces of the drawn shell generated by tilt rolling using a plug completely disappeared by cold drawing, and a beautiful steel pipe with inner and outer surface skin could be obtained.

(本発明例2)
本発明例1と同様に、外直径34.0mm、肉厚3.5mmの炭素鋼の鋼管を供試素管として用い、2ロール型傾斜圧延機を使用して920℃の温度にて拡管比が1.62の傾斜圧延を行い、外径55.0mm、肉厚1.3mmの延伸シェルとし、冷却後、プッシュベンチミルのパイロットミルにより冷間押抜きし、外径40.0mm、肉厚1.0mmの鋼管を製造した。
(Invention Example 2)
Similarly to Example 1 of the present invention, a steel pipe made of carbon steel having an outer diameter of 34.0 mm and a wall thickness of 3.5 mm was used as a test element pipe, and a tube expansion ratio was set at a temperature of 920 ° C. using a two-roll type inclined rolling mill. Is 1.62 and rolled into a stretched shell with an outer diameter of 55.0 mm and a wall thickness of 1.3 mm. After cooling, it is cold-punched with a pilot mill of a push bench mill, and has an outer diameter of 40.0 mm and a wall thickness. A 1.0 mm steel pipe was produced.

試験条件を以下に示す。
(1)熱間拡管圧延条件
ロール交叉角:γ=25°
ロール傾斜角:β=8°
プラグ径:dp=50mm
素管外径:do=34.0mm
素管肉厚:to=3.5mm
圧延後の延伸シェル外径:d=55.0mm
圧延後の延伸シェル肉厚:t=1.3mm
拡管比:d/do=1.62
延伸比:to(do−to)/{t(d−t)}=1.53
(肉厚/外径)比:t/d=2.36%
(2)冷間押抜き条件
マンドレル外径:dm=37.0mm
素管外径:do=55.0mm
素管肉厚:to=1.3mm
押抜き後の管外径:d=40.0mm
押抜き後の管肉厚:t=1.0mm
押抜き比:to(do−to)/{t(d−t)}=1.79
(肉厚/外径)比:t/d=2.50%
プラグを用いる傾斜圧延によって発生した延伸シェル内外面のスパイラルマークは、タンデム押抜き加工によって完全に消失し、内外面肌の美麗な鋼管が得られた。
Test conditions are shown below.
(1) Hot tube rolling conditions Roll crossing angle: γ = 25 °
Roll tilt angle: β = 8 °
Plug diameter: dp = 50mm
Raw tube outer diameter: do = 34.0 mm
Tube thickness: to = 3.5mm
Stretched shell outer diameter after rolling: d = 55.0 mm
Stretched shell wall thickness after rolling: t = 1.3mm
Tube expansion ratio: d / do = 1.62
Stretch ratio: to (do-to) / {t (dt)} = 1.53
(Wall thickness / outer diameter) ratio: t / d = 2.36%
(2) Cold punching condition Mandrel outer diameter: dm = 37.0 mm
Base tube outer diameter: do = 55.0mm
Tube thickness: to = 1.3mm
Pipe outer diameter after punching: d = 40.0mm
Tube thickness after punching: t = 1.0mm
Punching ratio: to (do-to) / {t (dt)} = 1.79
(Thickness / outer diameter) ratio: t / d = 2.50%
The spiral marks on the inner and outer surfaces of the drawn shell generated by tilt rolling using a plug completely disappeared by the tandem punching process, and a beautiful steel pipe with an inner and outer surface skin was obtained.

(本発明例3)
本発明例1と同様に、外直径34.0mm、肉厚3.5mmの炭素鋼の鋼管を供試素管として用い、2ロール型傾斜圧延機を使用して920℃の温度にて拡管比が1.78の傾斜圧延を行い、外径60.5mm、肉厚1.2mmの延伸シェルとした。さらに、これを冷却後、実機のコールドピルガーミル(75VMR)により冷間圧延して、外径40.0mm、肉厚0.8mmの鋼管を製造した。
(Invention Example 3)
Similarly to Example 1 of the present invention, a steel pipe made of carbon steel having an outer diameter of 34.0 mm and a wall thickness of 3.5 mm was used as a test element pipe, and a tube expansion ratio was set at a temperature of 920 ° C. using a two-roll type inclined rolling mill. Was 1.78 inclined rolling to obtain a stretched shell having an outer diameter of 60.5 mm and a wall thickness of 1.2 mm. Furthermore, after cooling this, it cold-rolled with the actual cold pilger mill (75VMR), and manufactured the steel pipe of outer diameter 40.0mm and thickness 0.8mm.

試験条件を以下に示す。
(1)熱間拡管圧延条件
ロール交叉角:γ=25°
ロール傾斜角:β=8°
プラグ径:dp=56mm
素管外径:do=34.0mm
素管肉厚:to=3.5mm
圧延後の延伸シェル外径:d=60.5mm
圧延後の延伸シェル肉厚:t=1.2mm
拡管比:d/do=1.78
延伸比:to(do−to)/{t(d−t)}=1.50
(肉厚/外径)比:t/d=1.98%
(2)冷間圧延条件
マンドレル外径:dp=37.0mm
素管外径:do=60.5mm
素管肉厚:to=1.2mm
圧延後の管外径:d=40.0mm
圧延後の管肉厚:t=0.8mm
フィード量:f=8mm
ターン角度:θ=60°
圧延比:to(do−to)/{t(d−t)}=2.27
(肉厚/外径)比:t/d=2.00%
傾斜圧延によって発生した延伸シェル内外面のスパイラルマークは、冷間圧延によって完全に消失し、冷間圧延後の管の内外面肌は美麗であった
Test conditions are shown below.
(1) Hot tube rolling conditions Roll crossing angle: γ = 25 °
Roll tilt angle: β = 8 °
Plug diameter: dp = 56mm
Raw tube outer diameter: do = 34.0 mm
Tube thickness: to = 3.5mm
Stretched shell outer diameter after rolling: d = 60.5 mm
Stretched shell wall thickness after rolling: t = 1.2mm
Tube expansion ratio: d / do = 1.78
Stretch ratio: to (do-to) / {t (dt)} = 1.50
(Thickness / outer diameter) ratio: t / d = 1.98%
(2) Cold rolling conditions Mandrel outer diameter: dp = 37.0 mm
Base tube outer diameter: do = 60.5mm
Tube thickness: to = 1.2mm
Tube outer diameter after rolling: d = 40.0 mm
Tube thickness after rolling: t = 0.8mm
Feed amount: f = 8mm
Turn angle: θ = 60 °
Rolling ratio: to (do-to) / {t (dt)} = 2.27
(Thickness / outer diameter) ratio: t / d = 2.00%
The spiral marks on the inner and outer surfaces of the stretched shell generated by tilt rolling disappeared completely by cold rolling, and the inner and outer surfaces of the tube after cold rolling were beautiful.

本発明の超薄肉継目無金属管の製造方法によれば、熱間製造プロセスにより製造された継目無金属管を素管として、再加熱後延伸圧延し、さらに冷間製造プロセスを経ることにより、継目無金属管の薄肉側の製造可能範囲を抜本的に拡大できる。したがって、本発明の方法を適用することにより、TIG溶接管、レーザ溶接管などの超薄肉溶接管分野への広範な進出が期待できる。   According to the method for manufacturing an ultrathin wall seamless metal pipe of the present invention, a seamless metal pipe manufactured by a hot manufacturing process is used as a base pipe, and is drawn and rolled after reheating, and further through a cold manufacturing process. The production range on the thin wall side of the seamless metal pipe can be drastically expanded. Therefore, by applying the method of the present invention, it is possible to expect a broad advance into the field of ultra-thin welded pipes such as TIG welded pipes and laser welded pipes.

マンネスマン−マンドレルミルプロセスを示す説明図であり、同図(a)は回転炉床式加熱炉、(b)はロータリピアサ(穿孔圧延機)、(c)はマンドレルミル(延伸圧延機)、(d)は再加熱炉、そして(e)はストレッチレデューサ(絞り圧延機)を示す。It is explanatory drawing which shows a Mannesmann-mandrel mill process, The figure (a) is a rotary hearth type heating furnace, (b) is a rotary piercer (piercing rolling mill), (c) is a mandrel mill (drawing rolling mill), (d ) Shows a reheating furnace, and (e) shows a stretch reducer (drawing mill). 代表的な冷間製造プロセスを示す説明図であり、同図(a)〜(c)はドローベンチミルによる冷間抽伸法であって、(a)はプラグ引き、(b)はフローティングプラグ引き、(c)はマンドレル引きを示し、(d)はソリッドダイス型プッシュベンチミルによる冷間押抜き法、そして(e)はコールドピルガーミルによる冷間圧延法を示す。It is explanatory drawing which shows a typical cold manufacturing process, The figure (a)-(c) is the cold drawing method by a draw bench mill, (a) is plug drawing, (b) is floating plug drawing. (C) shows mandrel drawing, (d) shows a cold punching method using a solid die type push bench mill, and (e) shows a cold rolling method using a cold pilger mill. 傾斜圧延機による 拡管圧延プロセスを示す説明図であり、同図(a)は拡管圧延プロセスの側面図、(b)は(a)の平面図、(c)は(a)の正面図を示す。It is explanatory drawing which shows the pipe expansion rolling process by an inclination rolling mill, The same figure (a) is a side view of a pipe expansion rolling process, (b) is a top view of (a), (c) shows the front view of (a). .

符号の説明Explanation of symbols

1:素管、 2:プラグ、 3:プラグ支持棒、 4:ダイス、 5:浮きプラグ、
6:心金(マンドレル)、 7:ロール、 11:圧延ロール(コーン型主ロール)、 12:プラグ、 13:ディスクロール、 14:素管、 15:延伸シェル、
16:圧延機のパスライン、
β:ロール傾斜角、 γ:ロール交叉角
1: Raw tube, 2: Plug, 3: Plug support rod, 4: Die, 5: Floating plug,
6: mandrel, 7: roll, 11: rolling roll (cone main roll), 12: plug, 13: disc roll, 14: base tube, 15: stretched shell,
16: Pass line of rolling mill,
β: Roll inclination angle, γ: Roll cross angle

Claims (4)

熱間製造プロセスにより製造された継目無金属管を素管として、再加熱後、延伸圧延を行って肉厚を減じ、酸洗後、冷間製造プロセスによりさらに肉厚を減じることを特徴とする超薄肉継目無金属管の製造方法。   A seamless metal tube manufactured by a hot manufacturing process is used as a base tube, and after reheating, stretch rolling is performed to reduce the thickness, and after pickling, the thickness is further reduced by a cold manufacturing process. Manufacturing method of ultra-thin seamless metal pipe. 前記の延伸圧延を行うに際して、2個または3個の圧延ロールを備えた傾斜圧延機を用いることを特徴とする請求項1に記載の超薄肉継目無金属管の製造方法。   The method for producing an ultra-thin seamless metal pipe according to claim 1, wherein an inclined rolling mill provided with two or three rolling rolls is used when performing the drawing and rolling. 前記の傾斜圧延機を用いた延伸圧延において、プラグを用いて拡管圧延することを特徴とする請求項2に記載の超薄肉継目無金属管の製造方法。   3. The method for producing an ultra-thin seamless metal pipe according to claim 2, wherein in the stretching using the inclined rolling mill, the pipe is expanded using a plug. 前記のプラグを用いた拡管圧延において、素管の外直径よりも大きな直径を有するプラグを用いることを特徴とする請求項3に記載の超薄肉継目無金属管の製造方法。
4. The method for producing an ultra-thin seamless metal pipe according to claim 3, wherein a plug having a diameter larger than the outer diameter of the raw pipe is used in the pipe expansion rolling using the plug.
JP2005047510A 2005-02-23 2005-02-23 Manufacturing method of ultra-thin seamless metal pipe Active JP4569317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005047510A JP4569317B2 (en) 2005-02-23 2005-02-23 Manufacturing method of ultra-thin seamless metal pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005047510A JP4569317B2 (en) 2005-02-23 2005-02-23 Manufacturing method of ultra-thin seamless metal pipe

Publications (2)

Publication Number Publication Date
JP2006231354A true JP2006231354A (en) 2006-09-07
JP4569317B2 JP4569317B2 (en) 2010-10-27

Family

ID=37039575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005047510A Active JP4569317B2 (en) 2005-02-23 2005-02-23 Manufacturing method of ultra-thin seamless metal pipe

Country Status (1)

Country Link
JP (1) JP4569317B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101804421A (en) * 2010-03-23 2010-08-18 北京科技大学 Low-noise copper ball skew rolling feed device with straightening function
CN117548520A (en) * 2024-01-12 2024-02-13 成都先进金属材料产业技术研究院股份有限公司 Titanium alloy seamless tube and method for improving plasticity of thin-wall titanium alloy seamless tube

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103934269B (en) * 2014-03-31 2016-06-08 攀钢集团成都钢钒有限公司 A kind of TC4 titanium alloy seamless tube and production method thereof
CN109940059B (en) * 2017-12-21 2021-04-02 有研工程技术研究院有限公司 Preparation method of precise thin-wall large-diameter aluminum alloy pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07185609A (en) * 1993-12-28 1995-07-25 Kawasaki Steel Corp Rolling equipment train for seamless pipe
JPH0839106A (en) * 1994-07-26 1996-02-13 Kawasaki Steel Corp High-expansion rolling method of seamless tube
JPH1058013A (en) * 1996-08-14 1998-03-03 Sumitomo Metal Ind Ltd Manufacture of small diameter seamless metallic tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07185609A (en) * 1993-12-28 1995-07-25 Kawasaki Steel Corp Rolling equipment train for seamless pipe
JPH0839106A (en) * 1994-07-26 1996-02-13 Kawasaki Steel Corp High-expansion rolling method of seamless tube
JPH1058013A (en) * 1996-08-14 1998-03-03 Sumitomo Metal Ind Ltd Manufacture of small diameter seamless metallic tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101804421A (en) * 2010-03-23 2010-08-18 北京科技大学 Low-noise copper ball skew rolling feed device with straightening function
CN117548520A (en) * 2024-01-12 2024-02-13 成都先进金属材料产业技术研究院股份有限公司 Titanium alloy seamless tube and method for improving plasticity of thin-wall titanium alloy seamless tube
CN117548520B (en) * 2024-01-12 2024-04-19 成都先进金属材料产业技术研究院股份有限公司 Titanium alloy seamless tube and method for improving plasticity of thin-wall titanium alloy seamless tube

Also Published As

Publication number Publication date
JP4569317B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP4438960B2 (en) Seamless pipe manufacturing method
JP4893858B2 (en) Manufacturing method of seamless metal pipe by cold rolling
JP4774809B2 (en) Manufacturing method of ultra-thin seamless metal tube by cold rolling method
US7895870B2 (en) Method for producing ultra thin wall metallic tube with cold working process
JP4655768B2 (en) Manufacturing method of ultra-thin metal tube by cold drawing method
JP4569317B2 (en) Manufacturing method of ultra-thin seamless metal pipe
JP4506563B2 (en) Cold manufacturing method for ultra-thin seamless metal tubes
JP5615938B2 (en) Tube rolling plant
JPH0520165B2 (en)
JP3082678B2 (en) Manufacturing method of small diameter seamless metal pipe
JP4603707B2 (en) Seamless pipe manufacturing method
JP4487847B2 (en) A method for hot production of seamless metal tubes by drawing and rolling.
JP3452039B2 (en) Rolling method of seamless steel pipe
JP3470686B2 (en) Rolling method of seamless steel pipe
JPH07185609A (en) Rolling equipment train for seamless pipe
JPS6111122B2 (en)
JPH105820A (en) Manufacture of seamless metallic tube
JPH07308703A (en) Rolling method with elongator
JPH07185610A (en) Rolling equipment train for seamless pipe
JPS63149004A (en) Manufacture of seamless steel tube
JPS61180603A (en) Manufacture of seamless steel pipe
JP2005046893A (en) Method for suppressing deviation in wall-thickness of seamless steel tube and guide for manufacturing seamless tube
JPH0714524B2 (en) Method for continuously stretching and rolling tube and rolling machine therefor
JP2005138142A (en) Method for sizing metallic tube
JPH07185607A (en) Rolling equipment train for seamless pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4569317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350