JP2006231096A - Preparation method of copper-containing hydrogenation catalyst and manufacturing method of alcohols - Google Patents

Preparation method of copper-containing hydrogenation catalyst and manufacturing method of alcohols Download PDF

Info

Publication number
JP2006231096A
JP2006231096A JP2005044892A JP2005044892A JP2006231096A JP 2006231096 A JP2006231096 A JP 2006231096A JP 2005044892 A JP2005044892 A JP 2005044892A JP 2005044892 A JP2005044892 A JP 2005044892A JP 2006231096 A JP2006231096 A JP 2006231096A
Authority
JP
Japan
Prior art keywords
copper
catalyst
alcohols
hydrogenation catalyst
esters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005044892A
Other languages
Japanese (ja)
Other versions
JP4479537B2 (en
Inventor
Satoyuki Ito
智行 伊藤
Tokuo Matsuzaki
徳雄 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2005044892A priority Critical patent/JP4479537B2/en
Publication of JP2006231096A publication Critical patent/JP2006231096A/en
Application granted granted Critical
Publication of JP4479537B2 publication Critical patent/JP4479537B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-containing hydrogenation catalyst which imparts target alcohols in a high yield in a method for manufacturing alcohols by reducing esters and does not elute catalyst constituent components (metal atoms) during reaction, that is, does not hardly cause deterioration, an efficient manufacturing method of alcohols using it, especially a manufacturing method for synthesizing 1, 6-hexane diol efficiently by reducing an esterification solution of organic acids, which are recovered from an oxidation liquid of cyclohexane containing an adipic acid diester, by hydrogen. <P>SOLUTION: A precursor of the copper-containing hydrogenation catalyst is brought into contact with a polyvalent carboxylic acid such as a divalent or trivalent 4-20C carboxylic acid or the like to manufacture the copper-containing hydrogenation catalyst hardly eluting the catalyst constituent components (metal atoms) during the reducing reaction of esters. Further, alcohols can be obtained in a high yield using this catalyst in the manufacture of alcohols by the reduction of esters by hydrogen. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エステル類を水素還元し対応するアルコール類を製造するに際し、劣化が少なく、高い収率でアルコール類を与える銅含有水素化触媒及びその調製法、更にはその触媒を用いるアルコール類の製造法に関するものである。   The present invention relates to a copper-containing hydrogenation catalyst which provides an alcohol in a high yield with little degradation when producing an alcohol by reducing an ester with a hydrogen, a method for preparing the same, and a method for preparing an alcohol using the catalyst. It relates to the manufacturing method.

アルコール類の製法の一つとして、触媒の存在下、エステル類を水素で還元する方法がある。この方法は、エステル類を対応するアルコール類に変換する簡便な方法であり、各種モノアルコール類の合成のみならず、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールなどの二価アルコール類の製造などに幅広く適用されている。
ここで、エステル類の還元触媒としては、銅系触媒や貴金属系触媒が知られている。
銅系触媒としては、例えば、銅−クロム−酸素系触媒(Cu−Cr−O系触媒)が知られている(非特許文献1)。
銅−クロム−酸素系触媒の調製法としては、液相法で、銅とクロムからなる触媒前駆体(Cu(OH)NHCrO)を沈殿物として形成させた後、その沈殿物である触媒前駆体を洗浄、乾燥、次いで焼成する事によって触媒とする方法や、液相に銅化合物(例えば、硝酸銅、酢酸銅など)とクロム化合物(例えば、硝酸クロム、無水クロム酸など)を溶解させた後、濃縮乾固させ、これを乾燥して、焼成し分解する方法が知られている(例えば、非特許文献2)。
One method for producing alcohols is to reduce esters with hydrogen in the presence of a catalyst. This method is a simple method for converting esters to the corresponding alcohols, and includes not only the synthesis of various monoalcohols, but also 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol. It is widely applied to the production of dihydric alcohols.
Here, copper-based catalysts and noble metal-based catalysts are known as esters reduction catalysts.
As a copper-based catalyst, for example, a copper-chromium-oxygen-based catalyst (Cu-Cr-O-based catalyst) is known (Non-Patent Document 1).
As a method for preparing a copper-chromium-oxygen-based catalyst, a catalyst precursor (Cu (OH) NH 4 CrO 4 ) composed of copper and chromium is formed as a precipitate by a liquid phase method. A method in which the catalyst precursor is washed, dried and then calcined, and a copper compound (eg, copper nitrate, copper acetate) and a chromium compound (eg, chromium nitrate, chromic anhydride) are dissolved in the liquid phase. Then, it is concentrated and dried, dried, baked and decomposed (for example, Non-Patent Document 2).

また、クロムを含まない銅系触媒としては、例えば、銅−亜鉛酸化物触媒(CuO−ZnO触媒)が知られている(特許文献1)。   Moreover, as a copper-type catalyst which does not contain chromium, the copper-zinc oxide catalyst (CuO-ZnO catalyst) is known, for example (patent document 1).

銅−亜鉛酸化物触媒はクロムを含まない銅系触媒として代表的なものであり、その調製は、例えば、非特許文献3に記載されているように、先ず液相での共沈法により銅と亜鉛から成る触媒前駆体を沈殿させて、得られた沈殿を洗浄、乾燥、次いで焼成することによって行われる。   The copper-zinc oxide catalyst is a typical copper-based catalyst that does not contain chromium. As described in Non-Patent Document 3, for example, the copper-zinc oxide catalyst is first prepared by a coprecipitation method in a liquid phase. And by precipitating a catalyst precursor comprising zinc and washing, drying and then calcining the resulting precipitate.

その他、エステル類の還元に用いられる銅系触媒としては、様々な金属酸化物の組み合わせが報告されており、例えば、銅−亜鉛−アルミニウム−酸素系触媒、銅−シリカ系触媒、銅−ジルコニア系触媒等が知られている。これらは、いずれも上記と同様な調製方法か、或いは担持法によって調製される。(例えば、特許文献2、特許文献3、特許文献4)   In addition, as copper-based catalysts used for the reduction of esters, various metal oxide combinations have been reported, for example, copper-zinc-aluminum-oxygen-based catalysts, copper-silica-based catalysts, copper-zirconia-based catalysts. Catalysts and the like are known. These are all prepared by the same preparation method as described above or by a supporting method. (For example, Patent Document 2, Patent Document 3, and Patent Document 4)

銅系触媒は、一般に高い水素圧での反応条件を必要とするものの、触媒が安価であり選択性も比較的高い事から、エステル類の還元反応のみならず、広く還元反応に用いられている。
しかし、反応中に銅やその他の触媒構成成分(金属原子)の溶出、触媒の劣化、活性低下などがしばしば見られる。この原因は種々考えられているが、反応原料中に存在する微量の酸成分による銅成分等の溶出や、還元凝集によるものとされている。なお、金属成分の溶出については、特許文献5に、金属成分の凝集については、非特許文献4に記載されている。
Although copper-based catalysts generally require reaction conditions at high hydrogen pressure, they are widely used not only for reduction reactions of esters but also for reduction reactions because the catalysts are inexpensive and have relatively high selectivity. .
However, during the reaction, elution of copper and other catalyst constituents (metal atoms), catalyst deterioration, and activity decrease are often observed. Although various causes are considered, it is considered to be due to elution of a copper component or the like by a small amount of acid component present in the reaction raw material or reduction aggregation. The elution of the metal component is described in Patent Document 5, and the aggregation of the metal component is described in Non-Patent Document 4.

このような触媒の劣化に対する対応としては、特許文献6に、反応原料中の酸成分を低減させて触媒の劣化を防ぐことが記載されている。   As a countermeasure against such catalyst deterioration, Patent Document 6 describes that the acid component in the reaction raw material is reduced to prevent catalyst deterioration.

エステル類の還元反応においても、銅系触媒の触媒活性を保持するには、原料エステル中の酸性分を低減させることが重要となる。
従って、原料エステル中に酸成分を含まない事が望ましいが、酸成分を除去する事が困難な場合も少なくない。また、酸成分を含まない原料エステルを用いた場合でも、生成したアルコールが一部、さらに水素化分解を受ける等で反応系中に水が生成し、エステルが加水分解して、酸成分を含有する状況になり触媒が劣化する。
すなわち、液相反応中に酸成分が微量でも存在したり、或いは反応中に水分が生成する場合には、銅系触媒は劣化し、結果として目的とするアルコールの収率は低いものになる。この事により、使用後の触媒は一回或いは数回の使用で廃棄することにもなる。
In the reduction reaction of esters, it is important to reduce the acid content in the raw material ester in order to maintain the catalytic activity of the copper catalyst.
Therefore, it is desirable that the raw material ester does not contain an acid component, but it is often difficult to remove the acid component. In addition, even when raw material esters that do not contain acid components are used, some of the generated alcohol undergoes hydrocracking, and water is produced in the reaction system, and the ester is hydrolyzed to contain acid components. This will cause the catalyst to deteriorate.
That is, when a small amount of an acid component is present during the liquid phase reaction or when water is generated during the reaction, the copper-based catalyst deteriorates, resulting in a low yield of the target alcohol. As a result, the used catalyst is discarded after one or several uses.

銅系触媒以外のエステル類の還元反応に用いられる触媒としては、例えば、ルテニウム系触媒(特許文献7など)、パラジウム系触媒(特許文献8)、或いはレニウム系触媒(非特許文献5など)等の貴金属系触媒が知られている。
一般的に貴金属系触媒は耐酸性があるものの、満足しうる選択性を示さないことが多く、高価であるため経済性も低い。
Examples of the catalyst used for the reduction reaction of esters other than the copper catalyst include, for example, a ruthenium catalyst (such as Patent Document 7), a palladium catalyst (Patent Document 8), a rhenium catalyst (such as Non-Patent Document 5), and the like. Noble metal-based catalysts are known.
In general, noble metal catalysts have acid resistance, but often do not exhibit satisfactory selectivity, and are expensive, so they are not economical.

銅系触媒を用いたエステル類の還元反応としては、アジピン酸ジエステルを含有するシクロへキサンの酸化液から回収される有機酸類のエステル化液を水素還元する1,6−ヘキサンジオールの製造法が知られているが(特許文献9)、その触媒活性は高いものではなく、反応中に触媒の成分が一部溶出し、触媒劣化が起る場合もあり、目的の1,6−ヘキサンジオールが収率良く得られないという問題があった。
欧州特許第0661255号明細書 特開2003−277303号公報 特開平2−164449号公報 特開平8−125702号公報 特許第3033882号公報 特公昭53−33567号公報 特開平7−213901号公報 米国特許第5319129号明細書 特公昭53−33567号公報 特開平3−115237号公報 H.Adkins著“Organic Reaction” Vol.8(1984),p.1−27 “触媒”.,vol.38,1996,p.236 尾崎ら編,「触媒調製化学」,講談社,1980,p.244 J.Mol.Catal.A:Chemical.,vol.191,2003,p.123 J.Mol.Catal.A:Chemical.,vol.198,2003,p.297 Ullmann’s Encyclopedia of Industrial Chemistry,5.ed,1987,Vol.A8,S.2/9,p.219
As a reduction reaction of esters using a copper-based catalyst, there is a process for producing 1,6-hexanediol in which an esterification solution of organic acids recovered from an oxidation solution of cyclohexane containing adipic acid diester is hydrogen-reduced. Although known (Patent Document 9), the catalytic activity is not high, and some of the components of the catalyst may be eluted during the reaction, leading to catalyst degradation. There was a problem that the yield was not good.
European Patent No. 0661255 JP 2003-277303 A Japanese Patent Laid-Open No. 2-164449 JP-A-8-125702 Japanese Patent No. 3033882 Japanese Patent Publication No.53-33567 JP-A-7-213901 US Pat. No. 5,319,129 Japanese Patent Publication No.53-33567 JP-A-3-115237 H. “Organic Reaction” by Adkins, Vol. 8 (1984), p. 1-27 "catalyst". , Vol. 38, 1996, p. 236 Ozaki et al., “Catalyst Preparation Chemistry”, Kodansha, 1980, p. 244 J. et al. Mol. Catal. A: Chemical. , Vol. 191, 2003, p. 123 J. et al. Mol. Catal. A: Chemical. , Vol. 198, 2003, p. 297 4. Ullmann's Encyclopedia of Industrial Chemistry, 5. ed, 1987, Vol. A8, S.A. 2/9, p. 219

本発明は、エステル類を還元するアルコール類の製造法において、高い収率で目的のアルコール類を与え、反応中に触媒構成成分(金属原子)が溶出しない、即ち、劣化し難い銅含有水素化触媒と、それを用いたアルコール類の効率的な製造法を提供する事、特に、アジピン酸ジエステルなどを含有するシクロへキサンの酸化液から回収される有機酸類のエステル化液を水素還元し、効率的に1,6−ヘキサンジオールを合成する製法を提供する事を課題とする。   The present invention provides a method for producing alcohols for reducing esters, which provides the desired alcohols in a high yield, and does not elute the catalyst components (metal atoms) during the reaction, that is, does not easily deteriorate copper-containing hydrogenation. Providing a catalyst and an efficient production method of alcohols using the catalyst, in particular, reducing an esterification solution of organic acids recovered from an oxidation solution of cyclohexane containing adipic acid diester and the like, It is an object to provide a production method for efficiently synthesizing 1,6-hexanediol.

本発明者らは、銅含有水素化触媒前駆体を、炭素数4〜20の2価又は3価のカルボン酸などの多価のカルボン酸に接触させることによって、エステル類の還元反応中に、触媒構成成分(金属原子)の溶出し難い銅含有水素化触媒を製造する事ができ、更に、その触媒を用いることによって、エステル類を水素還元するアルコール類の製造において、高収率でアルコール類が得られる事を見出した。
即ち、本発明は以下の通りである。
By contacting the copper-containing hydrogenation catalyst precursor with a polyvalent carboxylic acid such as a divalent or trivalent carboxylic acid having 4 to 20 carbon atoms, during the reduction reaction of the esters, It is possible to produce a copper-containing hydrogenation catalyst in which the catalyst component (metal atom) is difficult to elute, and furthermore, by using the catalyst, alcohols are produced in high yield in the production of alcohols for reducing esters with hydrogen. I found out that
That is, the present invention is as follows.

第1の発明は、エステル溶媒又はエーテル溶媒中、銅含有水素化触媒前駆体を炭素数4〜20の2価又は3価のカルボン酸と、温度50〜300℃で接触させることを特徴とする銅含有水素化触媒の製造方法に関するものである。   The first invention is characterized in that a copper-containing hydrogenation catalyst precursor is brought into contact with a divalent or trivalent carboxylic acid having 4 to 20 carbon atoms at a temperature of 50 to 300 ° C. in an ester solvent or an ether solvent. The present invention relates to a method for producing a copper-containing hydrogenation catalyst.

第2の発明は、エステル類を水素で還元して対応するアルコール類を製造する方法において、第1の発明の銅含有水素化触媒を用いることを特徴とするアルコール類の製造法に関するものである。   The second invention relates to a process for producing alcohols, characterized in that the copper-containing hydrogenation catalyst of the first invention is used in a process for producing corresponding alcohols by reducing esters with hydrogen. .

本発明の多価カルボン酸に接触処理した銅含有水素化触媒を用いる事により、触媒構成成分(金属原子)が溶出する事なく、エステル類を水素還元し対応するアルコール類を収率良く製造することができる。
特に、アジピン酸ジエステルなどを含有するシクロへキサンの酸化液から回収される有機酸類のエステル化液を水素還元し、効率的に1,6−ヘキサンジオールを製造することができる。
By using the copper-containing hydrogenation catalyst contact-treated with the polyvalent carboxylic acid of the present invention, the corresponding alcohols are produced with good yields by reducing the esters with hydrogen without eluting the catalyst components (metal atoms). be able to.
In particular, an esterification solution of organic acids recovered from an oxidation solution of cyclohexane containing adipic acid diester and the like can be reduced with hydrogen to efficiently produce 1,6-hexanediol.

以下に本発明の詳細を述べる。
本発明の銅含有水素化触媒の調整法は、成型した銅含有水素化触媒前駆体に多価カルボン酸を接触させて行うものである。
Details of the present invention will be described below.
The method for preparing a copper-containing hydrogenation catalyst of the present invention is carried out by bringing a polyvalent carboxylic acid into contact with a molded copper-containing hydrogenation catalyst precursor.

銅含有水素化触媒前駆体としては、銅−クロム−酸素系触媒、銅−亜鉛−酸素系触媒、銅−亜鉛−アルミニウム−酸素系触媒、銅−シリカ系触媒あるいは銅−ジルコニア系触媒などの触媒前駆体が挙げられるが、特にこれらに限定されるものではない。但し、銅含有量が触媒前駆体の全重量に対して5〜80重量%、更には10〜60重量%の範囲にあることが好ましい。なお、これらの触媒前駆体をシリカ、アルミナ、酸化ジルコニウム、酸化チタン、シリカ−アルミナ等に担持させたものを用いてもよい。なお、この場合、ここでいう触媒前駆体の全重量は、これらの担体を含めた重量をいう。   Examples of the copper-containing hydrogenation catalyst precursor include a copper-chromium-oxygen catalyst, a copper-zinc-oxygen catalyst, a copper-zinc-aluminum-oxygen catalyst, a copper-silica catalyst, or a copper-zirconia catalyst. Although a precursor is mentioned, it is not specifically limited to these. However, the copper content is preferably in the range of 5 to 80% by weight, more preferably 10 to 60% by weight, based on the total weight of the catalyst precursor. In addition, what carried these catalyst precursors on silica, alumina, zirconium oxide, titanium oxide, silica-alumina or the like may be used. In this case, the total weight of the catalyst precursor here refers to the weight including these supports.

銅含有水素化触媒前駆体の形状は、打錠又は押し出し成形体、球状粒子、或いは粉末が挙げられる。   Examples of the shape of the copper-containing hydrogenation catalyst precursor include tableting or extrusion molding, spherical particles, and powder.

多価カルボン酸としては、炭素数4〜20の2価又は3価のカルボン酸が挙げられるが、好ましくは、炭素数4〜14の2価又は3価のカルボン酸、更には、コハク酸、グルタル酸、アジピン酸等の炭素数4〜8の2価のカルボン酸が好ましい。   Examples of the polyvalent carboxylic acid include divalent or trivalent carboxylic acids having 4 to 20 carbon atoms, preferably divalent or trivalent carboxylic acids having 4 to 14 carbon atoms, and further, succinic acid, Divalent carboxylic acids having 4 to 8 carbon atoms such as glutaric acid and adipic acid are preferred.

銅含有水素化触媒前駆体の前記多価カルボン酸への接触方法は、銅含有水素化触媒前駆体を、銅含有水素化触媒前駆体に含まれる銅金属原子1モルに対して、0.01モル以上の前記多価カルボン酸に浸漬し、50〜300℃で、特に制限は無いが0.5〜10時間加熱処理した後、濾取し、溶媒(水、アルコール(メタノール、エタノールなど)、アセトンなどの前記多価カルボン酸を溶かす溶媒)で洗浄し、50〜150℃で0.5〜10時間乾燥することによって行われる。   The method for contacting the copper-containing hydrogenation catalyst precursor with the polyvalent carboxylic acid is such that the copper-containing hydrogenation catalyst precursor is 0.01% with respect to 1 mol of copper metal atoms contained in the copper-containing hydrogenation catalyst precursor. It is immersed in the above-mentioned polycarboxylic acid in a molar amount or more and heated at 50 to 300 ° C. without particular limitation, but after heat treatment for 0.5 to 10 hours, it is collected by filtration, and the solvent (water, alcohol (methanol, ethanol, etc.), Washing with a solvent for dissolving the polyvalent carboxylic acid such as acetone) and drying at 50 to 150 ° C. for 0.5 to 10 hours.

ここで、前記多価カルボン酸は、アジピン酸メチル、グルタル酸メチルなどのエステル溶媒、ジエチルエーテル、ジエチレングリコ−ルなどのエーテル溶媒等の触媒に不活性な溶媒に溶解させたものを用いる事もできる。これらの溶媒の使用量は、前記多価カルボン酸1gに対して、1〜100gである。   Here, the polyvalent carboxylic acid may be one dissolved in a solvent inert to a catalyst such as an ester solvent such as methyl adipate or methyl glutarate, or an ether solvent such as diethyl ether or diethylene glycol. . The amount of these solvents used is 1 to 100 g with respect to 1 g of the polyvalent carboxylic acid.

ここで不活性な溶媒とは、金属銅などの銅含有水素化触媒前駆体の銅成分の溶出や不可逆的な吸着及び銅との化合物の生成を起さないものをいう。   Here, the inert solvent means a solvent that does not cause elution or irreversible adsorption of a copper component of a copper-containing hydrogenation catalyst precursor such as metallic copper and generation of a compound with copper.

本発明の銅含有水素化触媒は、エステル類を水素で還元し、対応するアルコール類の製造に用いられるほかに、アルデヒド基あるいはケトン基の水素化還元、オレフィン類の水素化還元、ニトロ基の水素化還元などの各種水素化還元反応にも用いることができる。   The copper-containing hydrogenation catalyst of the present invention is used for the production of the corresponding alcohols by reducing esters with hydrogen, as well as hydrogenation reduction of aldehyde groups or ketone groups, hydrogenation reduction of olefins, It can also be used for various hydroreduction reactions such as hydroreduction.

本発明のアルコール類の製造法は、エステル類を水素で還元して対応するアルコール類を製造する方法において、前記の銅含有水素化触媒を用いることを特徴とするものである。   The method for producing alcohols of the present invention is characterized in that the copper-containing hydrogenation catalyst is used in the method for producing the corresponding alcohols by reducing esters with hydrogen.

ここで、エステル類としては、直鎖状、分岐状、環状、あるいはこれらの組合せのいずれでもよく、その側鎖を除いた主鎖の炭素数が1〜20のものであって、飽和脂肪族、不飽和脂肪族又は芳香族の1価又は2価のカルボン酸のエステル類である。   Here, the esters may be linear, branched, cyclic, or combinations thereof, the main chain excluding the side chain having 1 to 20 carbon atoms, and saturated aliphatic , Esters of unsaturated aliphatic or aromatic monovalent or divalent carboxylic acids.

このようなエステル類としては、蟻酸エステル、酢酸エステル、カプロン酸エステル、カプリル酸エステル、カプリン酸エステル、ウンデセン酸エステル、ラウリン酸エステル、ミリスチン酸エステル、パルミチン酸エステル、ステアリン酸エステル、イソステアリン酸エステル、オレイン酸エステル、アラキン酸エステル、ベヘン酸エステル、シュウ酸エステル、マレイン酸エステル、アジピン酸エステル、セバシン酸エステル、シクロヘキサンカルボン酸エステル、安息香酸エステル、フタル酸エステル等を挙げられる。ここで、これらのエステル類を構成するアルコール部位は特に限定されるものではないが、直鎖状又は分岐状の炭素数1〜22の飽和脂肪族アルコールから成る。
また、アジピン酸ジエステルなどを含有するシクロへキサンの酸化液から回収される有機酸類のエステル化液を、1,6−ヘキサンジオール、1,5−ペンタンジオールの製造原料として用いることもできる。
Such esters include formic acid ester, acetic acid ester, caproic acid ester, caprylic acid ester, capric acid ester, undecenoic acid ester, lauric acid ester, myristic acid ester, palmitic acid ester, stearic acid ester, isostearic acid ester, Examples include oleic acid ester, arachidic acid ester, behenic acid ester, oxalic acid ester, maleic acid ester, adipic acid ester, sebacic acid ester, cyclohexanecarboxylic acid ester, benzoic acid ester, and phthalic acid ester. Here, although the alcohol site | part which comprises these esters is not specifically limited, It consists of a linear or branched C1-C22 saturated aliphatic alcohol.
Further, an esterification solution of organic acids recovered from an oxidation solution of cyclohexane containing adipic acid diester or the like can also be used as a raw material for producing 1,6-hexanediol and 1,5-pentanediol.

本発明の上記エステル類を水素化還元する反応形式としては、液相懸濁床反応形式、固定床触媒反応形式を挙げることができる。   Examples of the reaction format for hydrogenating and reducing the esters of the present invention include a liquid phase suspension bed reaction format and a fixed bed catalytic reaction format.

本発明の、液相懸濁床でのエステル類の水素化還元は、前記銅含有水素化触媒の使用量は、エステル類に対して、0.1〜50重量%であり、反応温度は、150〜300℃、好ましくは200〜290℃であり、水素圧は、1〜30MPa、好ましくは15〜30MPaである。   In the hydrogenation reduction of esters in the liquid phase suspension bed of the present invention, the amount of the copper-containing hydrogenation catalyst used is 0.1 to 50% by weight based on the esters, and the reaction temperature is It is 150-300 degreeC, Preferably it is 200-290 degreeC, and a hydrogen pressure is 1-30 Mpa, Preferably it is 15-30 Mpa.

固定床でのエステル類の水素還元反応は、エステル類をLHSV(液空間速度)0.01〜10g/ml・h、好ましくは0.1〜5g/ml・hで供給し、水素ガスをGHSV(ガス空間速度)10〜10000/hr、好ましくは100〜3000/hrで供給し、水素圧1〜30MPa、好ましくは5〜20MPa、反応温度は150〜300℃、好ましくは180〜250℃で行われる。ここで銅含有水素化触媒は必要によって水素還元前処理を行ってもよい。   In the hydrogen reduction reaction of esters on a fixed bed, esters are supplied at LHSV (liquid space velocity) of 0.01 to 10 g / ml · h, preferably 0.1 to 5 g / ml · h, and hydrogen gas is supplied to GHSV. (Gas space velocity) Supply at 10 to 10000 / hr, preferably 100 to 3000 / hr, hydrogen pressure 1 to 30 MPa, preferably 5 to 20 MPa, reaction temperature 150 to 300 ° C., preferably 180 to 250 ° C. Is called. Here, the copper-containing hydrogenation catalyst may be subjected to hydrogen reduction pretreatment if necessary.

本発明では、上記エステル類の水素還元は、無溶媒で行われるが、アルコールやエーテルなどの溶媒を使用することもできる。   In the present invention, the hydrogen reduction of the esters is carried out without a solvent, but a solvent such as alcohol or ether can also be used.

本発明のエステル類を水素還元するアルコール類の製造の具体的な態様としては、例えば、酢酸エステルからのエタノールの製造、プロピオン酸エステルからのプロパノールの製造、ブタン酸エステルからのブタノールの製造、ペンタン酸エステルからのペンタノールの製造、ヘキサン酸エステルからのヘキサノールの製造、高級脂肪酸エステルからの高級アルコールの製造などのモノ酸のエステルからの対応するモノアルコールの製造、シュウ酸エステルからのエチレングリコールの製造、コハク酸エステルからの1,4−ブタンジオールの製造、グルタル酸エステルからの1,5−ペンタンジオールの製造、アジピン酸エステルからの1,6−ヘキサンジオールの製造、ドデカン二酸エステルからのドデカンジオールの製造、シクロへキサンの酸化反応液から水抽出、アルカリ抽出、又は中和後の有機溶媒(メチルイソブチルケトンなど)による抽出により回収されるカルボン酸混合物のエステル化液(アジピン酸ジエステルなどを含有する。)からの、1,6−ヘキサンジオール及び/又は1,5−ペンタンジオールの製造等が挙げられる。   Specific embodiments of the production of alcohols for hydrogen reduction of the esters of the present invention include, for example, production of ethanol from acetic acid ester, production of propanol from propionic acid ester, production of butanol from butanoic acid ester, pentane Production of pentanol from acid ester, production of hexanol from hexanoic acid ester, production of corresponding monoalcohol from monoacid ester such as production of higher alcohol from higher fatty acid ester, ethylene glycol from oxalate ester Production, production of 1,4-butanediol from succinic acid ester, production of 1,5-pentanediol from glutaric acid ester, production of 1,6-hexanediol from adipic acid ester, from dodecanedioic acid ester Production of dodecanediol, cyclohex From an esterification solution (containing adipic acid diester, etc.) of a carboxylic acid mixture recovered from water oxidation reaction solution by water extraction, alkali extraction, or extraction with a neutralized organic solvent (such as methyl isobutyl ketone). , Production of 1,6-hexanediol and / or 1,5-pentanediol.

以下に、本発明の具体例を示すが本発明はこれらに限定されるものではない。   Specific examples of the present invention are shown below, but the present invention is not limited thereto.

実施例1
〔銅含有水素化触媒の調製〕
濃度14.5重量%の炭酸アンモニウム水溶液250mlを内容積2L(リットル)のガラス容器(触媒調製槽)に入れて80〜85℃に保ち、攪拌下、この溶液に、pHを6.5に維持するように硝酸銅0.157モル及び硝酸亜鉛0.125モルを水250mlに溶解した水溶液を30分間で滴下した。滴下終了後、引き続き攪拌しながら放冷したところ、この間、触媒調製槽中の溶液のpHは8.2まで上昇した。生成した沈澱を濾過して洗浄し、空気中120℃で乾燥した後、70メッシュの篩を通して銅及び亜鉛を含む塩基性炭酸塩((Cu,Zn)(CO(OH)のオーリカルサイト型化合物)4gを得た。この塩基性炭酸塩をガラス製のボート状容器に入れて内径25mmのガラス管内に仕込み、空気を36L/hrの流量で流しながら350℃まで昇温し、その温度で6時間保持することによって焼成した。室温まで冷却し触媒前駆体を取り出した。
この焼成後の銅−亜鉛−酸素系触媒前駆体4gを、グルタル酸2.26gをアジピン酸ジメチル50gに溶解した液に加え、攪拌下窒素を流しながら200℃で2時間加熱処理した。その後、ろ過し、アセトンで洗浄し乾燥して酸処理触媒とした。
得られた触媒の物性を以下に示す。
Example 1
(Preparation of copper-containing hydrogenation catalyst)
Place 250 ml of 14.5 wt% ammonium carbonate aqueous solution in a 2 L (liter) glass container (catalyst preparation tank) and keep it at 80 to 85 ° C., and maintain the pH at 6.5 with stirring. Thus, an aqueous solution in which 0.157 mol of copper nitrate and 0.125 mol of zinc nitrate were dissolved in 250 ml of water was added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was allowed to cool with continued stirring. During this time, the pH of the solution in the catalyst preparation tank rose to 8.2. The precipitate formed was filtered and washed, dried at 120 ° C. in air, and then passed through a 70-mesh sieve to obtain a basic carbonate ((Cu, Zn) 5 (CO 3 ) 2 (OH) 2 containing copper and zinc. 4 g of an auricalcite type compound) was obtained. This basic carbonate is placed in a glass boat-like container, charged into a glass tube with an inner diameter of 25 mm, heated to 350 ° C. while flowing air at a flow rate of 36 L / hr, and fired by holding at that temperature for 6 hours. did. The catalyst precursor was taken out after cooling to room temperature.
4 g of this calcined copper-zinc-oxygen catalyst precursor was added to a solution obtained by dissolving 2.26 g of glutaric acid in 50 g of dimethyl adipate, and heat-treated at 200 ° C. for 2 hours while flowing nitrogen under stirring. Thereafter, it was filtered, washed with acetone and dried to obtain an acid treatment catalyst.
The physical properties of the obtained catalyst are shown below.

XRF:触媒前駆体 :Cu/Zn(原子比)=1
実施例1で得られた触媒:Cu/Zn(原子比)=1
XRF: catalyst precursor: Cu / Zn (atomic ratio) = 1
Catalyst obtained in Example 1: Cu / Zn (atomic ratio) = 1

XRDの回折角2θ(deg.)
触媒前駆体 :31.78,34.46,35.90(いずれもZnOに基
づくピーク)38.96(CuOに基づくピーク)
実施例1で得られた触媒:31.78,34.46,35.90,38.96,
12.32,18.86,20.62,22.46,
26.64(なお、12.32以降のピークは触媒前駆体
には見られない新たなピークである。)
XRD diffraction angle 2θ (deg.)
Catalyst precursor: 31.78, 34.46, 35.90 (all based on ZnO
38.96 (peak based on CuO)
Catalyst obtained in Example 1: 31.78, 34.46, 35.90, 38.96,
12.32, 18.86, 20.62, 22.46,
26.64 (Note that the peak after 12.32 is the catalyst precursor.
It is a new peak that cannot be seen. )

拡散反射IR:
触媒前駆体 :1600〜2000cm−1にピーク無し。
実施例1で得られた触媒:1738.1cm−1
Diffuse reflection IR:
Catalyst precursor: No peak at 1600 to 2000 cm −1 .
Catalyst obtained in Example 1: 1738.1 cm −1

ESCAによる表面元素濃度(atomic%)
触媒前駆体 :C:20.9,O:46.2,Cu:13.8,Zn:19.2
実施例1で得られた触媒:C:53.1,O:37.5,Cu:3.9,Zn:5.6
ESCA surface element concentration (atomic%)
Catalyst precursor: C: 20.9, O: 46.2, Cu: 13.8, Zn: 19.2
Catalyst obtained in Example 1: C: 53.1, O: 37.5, Cu: 3.9, Zn: 5.6

実施例2
非特許文献6の記載と同様にして、シクロヘキサンの液相空気酸化を行った反応液の水抽出により得られたカルボン酸混合物(アジピン酸を32.1重量%、オキシカプロン酸を33.7重量%、グルタール酸を6.1重量%、コハク酸を1.2重量%含有)と、1,6−ヘキサンジオールを50%以上含有する水素化分解反応液とを、カルボン酸混合物/水素化分解反応液(重量比)=1/0.77の比率で混合し、水を抜きながら200〜250℃で加熱して得られたエステル化物(酸価2mg−KOH/g−試料)40gと実施例1で得られた触媒1.0gとを内容積200mlのSUS製オートクレーブに仕込み、水素ガスを90kg/cm(ゲージ圧)まで圧入した後、攪拌(800rpm)しながら250℃まで加熱した。なお、この水素化分解反応液は特許文献10の実施例1に記載されている方法により調製されたもので、1,6−ヘキサンジオール61.1重量%と、1,5−ペンタンジオール8.5重量%と、1,4−ブタンジオール0.8重量%とを含むものであった。
次いで、反応温度250℃で、水素ガスを補充しながら水素圧を90kg/cm(ゲージ圧)の定圧に保って3時間水素化分解を行った。反応終了後、反応液を濾過し、得られた濾液をガスクロマトグラフィーにより分析した。
その結果、エステルの転化率は50.2%であり、反応液中には1,6−ヘキサンジオールが26.9重量%含まれていた。また反応液中への銅と亜鉛の溶出量を蛍光X線で分析したが、銅の溶出は認められず亜鉛の溶出量は11ppmであった。
Example 2
In the same manner as described in Non-Patent Document 6, a carboxylic acid mixture (32.1 wt% adipic acid and 33.7 wt% oxycaproic acid) obtained by water extraction of a reaction solution subjected to liquid phase air oxidation of cyclohexane. %, Glutaric acid 6.1% by weight, and succinic acid 1.2% by weight) and hydrocracking reaction liquid containing 1,6-hexanediol 50% or more, carboxylic acid mixture / hydrocracking Reaction mixture (weight ratio) = 1 / 0.77 ratio, 40 g of esterified product (acid value 2 mg-KOH / g-sample) obtained by heating at 200 to 250 ° C. while draining water and Examples 1.0 g of the catalyst obtained in 1 was charged into a SUS autoclave having an internal volume of 200 ml, hydrogen gas was injected to 90 kg / cm 2 (gauge pressure), and then heated to 250 ° C. with stirring (800 rpm). This hydrocracking reaction solution was prepared by the method described in Example 1 of Patent Document 10, and 61.1% by weight of 1,6-hexanediol, and 8,5-pentanediol. It contained 5% by weight and 0.8% by weight of 1,4-butanediol.
Next, hydrogenolysis was performed at a reaction temperature of 250 ° C. for 3 hours while maintaining a constant hydrogen pressure of 90 kg / cm 2 (gauge pressure) while replenishing hydrogen gas. After completion of the reaction, the reaction solution was filtered, and the obtained filtrate was analyzed by gas chromatography.
As a result, the ester conversion was 50.2%, and the reaction solution contained 26.9% by weight of 1,6-hexanediol. Further, the elution amounts of copper and zinc into the reaction solution were analyzed by fluorescent X-ray, but no elution of copper was observed and the elution amount of zinc was 11 ppm.

比較例1
グルタル酸処理を行わない以外は、実施例1と同様にして調製した触媒、すなわち空気焼成した後の触媒前駆体1.0gを用いた以外は、実施例2と同様にエステル化物の水素還元反応を行った。
その結果、エステルの転化率は44.0%であり、反応液中には1,6−ヘキサンジオールが23.8重量%含まれていた。また反応液中には溶出した銅が5ppm、溶出した亜鉛が100ppm存在していた。
Comparative Example 1
Except not using the glutaric acid treatment, the catalyst prepared in the same manner as in Example 1, that is, the hydrogen reduction reaction of the esterified product in the same manner as in Example 2 except that 1.0 g of the catalyst precursor after air calcination was used. Went.
As a result, the ester conversion was 44.0%, and the reaction solution contained 23.8% by weight of 1,6-hexanediol. In the reaction solution, 5 ppm of eluted copper and 100 ppm of eluted zinc were present.

実施例3
実施例1で得られた触媒1.0gとアジピン酸ジメチル40gとを内容積200mlのSUS製オートクレーブに仕込み、水素ガスを90kg/cm(ゲージ圧)まで圧入した後、攪拌(800rpm)しながら250℃まで加熱した。次いで、反応温度250℃で、水素ガスを補充しながら水素圧を90kg/cm(ゲージ圧)の定圧に保って3時間水素化分解を行った。反応終了後、反応液を濾過し、得られた濾液をガスクロマトグラフィーにより分析した。
その結果、エステルの転化率は54.6%であり、反応液中には1,6−ヘキサンジオールが26.3重量%含まれていた。
Example 3
1.0 g of the catalyst obtained in Example 1 and 40 g of dimethyl adipate were charged into an SUS autoclave having an internal volume of 200 ml, hydrogen gas was injected to 90 kg / cm 2 (gauge pressure), and then stirred (800 rpm). Heated to 250 ° C. Next, hydrogenolysis was performed at a reaction temperature of 250 ° C. for 3 hours while maintaining a constant hydrogen pressure of 90 kg / cm 2 (gauge pressure) while replenishing hydrogen gas. After completion of the reaction, the reaction solution was filtered, and the obtained filtrate was analyzed by gas chromatography.
As a result, the ester conversion was 54.6%, and the reaction solution contained 26.3% by weight of 1,6-hexanediol.

比較例2
グルタル酸処理を行わない以外は、実施例1と同様にして調製した触媒、すなわち空気焼成した後の触媒前駆体1.0gを用いて、実施例3と同様にアジピン酸ジメチルの水素還元反応を行った。
その結果、エステルの転化率は52.5%であり、反応液中には1,6−ヘキサンジオールが24.2重量%含まれていた。
Comparative Example 2
A catalyst prepared in the same manner as in Example 1 except that no glutaric acid treatment was performed, that is, 1.0 g of a catalyst precursor after air calcination, was used to carry out a hydrogen reduction reaction of dimethyl adipate in the same manner as in Example 3. went.
As a result, the ester conversion was 52.5%, and the reaction solution contained 24.2% by weight of 1,6-hexanediol.

Claims (4)

銅含有水素化触媒前駆体を多価カルボン酸と接触させることを特徴とする銅含有水素化触媒の調製法。 A method for preparing a copper-containing hydrogenation catalyst, comprising contacting a copper-containing hydrogenation catalyst precursor with a polyvalent carboxylic acid. 銅含有水素化触媒前駆体と多価カルボン酸との接触を、エステル溶媒又はエーテル溶媒中、温度50〜300℃で行うことを特徴とする請求項1記載の銅含有耐酸性触媒の調製法。 The method for preparing a copper-containing acid-resistant catalyst according to claim 1, wherein the contact between the copper-containing hydrogenation catalyst precursor and the polyvalent carboxylic acid is carried out in an ester solvent or an ether solvent at a temperature of 50 to 300 ° C. 多価カルボン酸が炭素数4〜20の2価又は3価のカルボン酸であることを特徴とする請求項1又は2記載の銅含有水素化触媒の調製法。 The method for preparing a copper-containing hydrogenation catalyst according to claim 1 or 2, wherein the polyvalent carboxylic acid is a divalent or trivalent carboxylic acid having 4 to 20 carbon atoms. エステル類を水素で還元して対応するアルコール類を製造する方法において、請求項1、2又は3記載の銅含有水素化触媒を用いることを特徴とするアルコール類の製造法。
A method for producing an alcohol, wherein the copper-containing hydrogenation catalyst according to claim 1, 2 or 3 is used in a method for producing a corresponding alcohol by reducing an ester with hydrogen.
JP2005044892A 2005-02-22 2005-02-22 Methods for preparing copper-containing hydrogenation catalysts and producing alcohols Expired - Fee Related JP4479537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044892A JP4479537B2 (en) 2005-02-22 2005-02-22 Methods for preparing copper-containing hydrogenation catalysts and producing alcohols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005044892A JP4479537B2 (en) 2005-02-22 2005-02-22 Methods for preparing copper-containing hydrogenation catalysts and producing alcohols

Publications (2)

Publication Number Publication Date
JP2006231096A true JP2006231096A (en) 2006-09-07
JP4479537B2 JP4479537B2 (en) 2010-06-09

Family

ID=37039325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044892A Expired - Fee Related JP4479537B2 (en) 2005-02-22 2005-02-22 Methods for preparing copper-containing hydrogenation catalysts and producing alcohols

Country Status (1)

Country Link
JP (1) JP4479537B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109663592A (en) * 2017-10-13 2019-04-23 中国石油化工股份有限公司 High-carbon binary ester through hydrogenation prepares high-carbon dihydric alcohol catalyst
JP2022187494A (en) * 2021-06-07 2022-12-19 浙江博聚新材料有限公司 Production method and apparatus of high purity 1,6-hexanediol

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109663592A (en) * 2017-10-13 2019-04-23 中国石油化工股份有限公司 High-carbon binary ester through hydrogenation prepares high-carbon dihydric alcohol catalyst
CN109663592B (en) * 2017-10-13 2022-02-22 中国石油化工股份有限公司 Catalyst for preparing high-carbon dihydric alcohol by hydrogenation of high-carbon dibasic ester
JP2022187494A (en) * 2021-06-07 2022-12-19 浙江博聚新材料有限公司 Production method and apparatus of high purity 1,6-hexanediol
JP7305848B2 (en) 2021-06-07 2023-07-10 浙江博聚新材料有限公司 Method and apparatus for producing high-purity 1,6-hexanediol

Also Published As

Publication number Publication date
JP4479537B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP5275080B2 (en) Method for producing monohydric alcohol from monocarboxylic acid or its derivative
JP4991533B2 (en) Catalyst molding and hydrogenation method of carbonyl compounds
TW593242B (en) A process for the hydrogenation of carbonyl compounds
US7510591B2 (en) Catalyst and method for the hydration of carbonyl compounds
US20080207953A1 (en) Catalyst and Method for Hyrogenating Carbonyl Compounds
US5334779A (en) Catalyst compositions and the use thereof in the hydrogenation of carboxylic acid esters
US20080194397A1 (en) Palladium-copper chromite hydrogenation catalysts
TWI490034B (en) Process for preparing a supported hydrogenation catalyst with increased hydrogenation activity
US20080071120A1 (en) Catalyst and Method for Hydrogenation of Carbonyl Compounds
JP6268892B2 (en) Method for producing alcohol compound
CN112691674B (en) Ester hydrogenation catalyst, and preparation method and application thereof
CA2614520A1 (en) Catalyst and method for hydrogenating carbonyl compounds
US6787677B2 (en) Hydrogenation of carbonyl compounds
JP4479537B2 (en) Methods for preparing copper-containing hydrogenation catalysts and producing alcohols
KR920009791B1 (en) Process for the preparation of alcohols (two stages)
JP2019511511A (en) Process for hydrogenating carboxylic acids to alcohols
JP2000080053A (en) Production of cyloalkyldimethanol
JP2006232689A (en) Method for producing alcohols by using copper-containing catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees