JP2006230189A - Dynamo-electric machine - Google Patents

Dynamo-electric machine Download PDF

Info

Publication number
JP2006230189A
JP2006230189A JP2006011827A JP2006011827A JP2006230189A JP 2006230189 A JP2006230189 A JP 2006230189A JP 2006011827 A JP2006011827 A JP 2006011827A JP 2006011827 A JP2006011827 A JP 2006011827A JP 2006230189 A JP2006230189 A JP 2006230189A
Authority
JP
Japan
Prior art keywords
rotor
stator
skew
pieces
axial length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006011827A
Other languages
Japanese (ja)
Other versions
JP4894273B2 (en
Inventor
Kanako Nemoto
佳奈子 根本
靖 ▲高▼野
Yasushi Takano
Kazuhiko Takahashi
和彦 高橋
Kazuo Nishihama
和雄 西濱
Kazuo Shima
和男 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006011827A priority Critical patent/JP4894273B2/en
Publication of JP2006230189A publication Critical patent/JP2006230189A/en
Application granted granted Critical
Publication of JP4894273B2 publication Critical patent/JP4894273B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/641

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamo-electric machine, with which vibration/noise excited by radial electromagnetic force of the dynamo-electric machine can be suppressed. <P>SOLUTION: A rotor 1 is divided into four rotor pieces 3, 4, 5 and 6 with respect to rotor core axial length 2L, and the axial lengths of the rotor pieces 3, 4, 5 and 6 are 0.29L, 0.71L, 0.71L and 0.29L. A secondary conductor 2, forming an effective magnetic pole opening angle of the rotor pieces 3, 4, 5 and 6, forms skews so that electrical angle phase differences become the same between rotor piece axial direction cross-sections. The pieces are arranged and shifted by the same difference as the electrical angle phase difference between the rotor piece axial direction cross-sections so that the skew becomes continuous between the rotor pieces 3 and 4 and between the pieces 5 and 6, and the skew becomes discontinuous between the rotor pieces 4 and 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、誘導電動機,発電機における半径方向加振力により発生する電磁振動,騒音の発生を抑制する回転電機に関するものである。   The present invention relates to a rotating electric machine that suppresses generation of electromagnetic vibration and noise generated by radial excitation force in an induction motor and a generator.

回転電機は家電製品、或いは各種OA機器に多数使用され、さらに近年は電気自動車に搭載されるようになってきている。電気自動車に搭載される回転電機は、高出力のものが要求される一方で、電磁加振力による振動・騒音が問題となっている。一方、住居や電気自動車における快適環境の追求により振動・騒音低減の要求が非常に高い。さらには、発電機においても振動・騒音の低減は従来から問題となっている。   A large number of rotating electrical machines are used in home appliances or various OA devices, and in recent years, they have been installed in electric vehicles. While a rotating electric machine mounted on an electric vehicle is required to have a high output, vibration and noise due to electromagnetic excitation force are problematic. On the other hand, there are very high demands for vibration and noise reduction by pursuing comfortable environments in houses and electric vehicles. Furthermore, the reduction of vibration and noise has also been a problem for generators.

回転電機の半径方向電磁加振力は回転子と固定子との相対移動時に回転子の磁極から発生する界磁磁束の磁路が、固定子に設けられたスロットの開口部を回転子の磁極が横切る度に周期的に変化して、ギャップでの磁束分布に変化が生じることにより発生することが分かっている。半径方向の電磁加振力の回転次数,空間次数、および振幅は回転子の有効磁極開角の極数,回転子に設けられたスロット数,固定子に設けられたスロット数に依存する。   The electromagnetic excitation force in the radial direction of the rotating electrical machine is such that the magnetic path of the field magnetic flux generated from the rotor magnetic pole when the rotor and the stator are moved relative to each other, and the opening of the slot provided in the stator passes through the rotor magnetic pole. It is known that this occurs due to a change in the magnetic flux distribution in the gap, which changes periodically every time the crossing is performed. The rotational order, spatial order, and amplitude of the electromagnetic excitation force in the radial direction depend on the number of effective magnetic pole opening angles of the rotor, the number of slots provided in the rotor, and the number of slots provided in the stator.

振動・騒音低減低技術の一つとして回転電機の回転子、または固定子にスキューを設けることが行われている。このスキューを設ける手段としては例えば、以下の特許文献1〜6が挙げられる。   As one of the techniques for reducing vibration and noise, a skew is provided in a rotor or a stator of a rotating electric machine. Examples of means for providing the skew include the following Patent Documents 1 to 6.

特許文献1では、インナーロータ形の誘導電動機において、固定子を軸方向に分割してリング状に複数のコイルを巻装し、各コイルのリングの中心と回転軸の中心が一致するように配置して、各コイルの外周側と軸方向両端側に、各々磁気回路を構成する固定子鉄心を設け、固定子鉄心の内周側には、磁極歯部が当該コイルを挟んで回転軸の周方向に電気角でπずれた位置に交互に形成され、更に各コイルの磁極歯部を、回転軸の周方向に所定の角度ずらして、軸方向に重ね合わせた構成にしている。   In Patent Document 1, in an induction motor of an inner rotor type, a stator is divided in the axial direction and a plurality of coils are wound in a ring shape, and the center of the ring of each coil and the center of the rotating shaft are aligned. A stator iron core that constitutes a magnetic circuit is provided on each outer peripheral side and both axial ends of each coil, and magnetic pole teeth are arranged around the rotating shaft across the coil on the inner peripheral side of the stator core. The magnetic pole tooth portions of the coils are alternately shifted at a predetermined angle in the circumferential direction of the rotating shaft and overlapped in the axial direction.

特許文献2では、固定子が軸方向に分割された複数個の分割固定子からなり、1つの分割固定子は他の分割固定子に対して周方向にずれ角βだけずらして配置されている。   In Patent Document 2, the stator includes a plurality of split stators divided in the axial direction, and one split stator is arranged with a shift angle β in the circumferential direction with respect to the other split stator. .

特許文献3では、回転子に形成された閉スロット内に二次導体を鋳込んでかご形巻線を構成した誘導電動機において、回転子の鉄心の軸方向中央部に幅広の閉スロット構造のスロットを有する第1の鉄心部を設けるとともに、第1の鉄心部の両側に幅狭の閉スロット構造のスロットを有する第2及び第3の鉄心部を設け、第1の鉄心部の幅広閉スロット構造のスロット部分と第2及び第3の鉄心部の幅狭閉スロット構造を有するスロット幅狭の閉スロット構造を有するスロットの重なったスロットを連通させて二次導体を回転子鉄心の軸方向中央部で短絡させている。   In Patent Document 3, in an induction motor in which a secondary conductor is cast into a closed slot formed in a rotor to form a squirrel-cage winding, a slot having a wide closed slot structure is provided at the axial center of the rotor core. And a second and third iron core portions having slots of a narrow closed slot structure on both sides of the first iron core portion, and a wide closed slot structure of the first iron core portion. The secondary conductor is connected to the central portion in the axial direction of the rotor core by communicating the overlapping slot of the slot having the closed slot structure having the narrow slot width with the slot portion of the second and third iron core portions having the narrow closed slot structure. Is short-circuited.

特許文献4では、導体を収納するためのスロット形成用の打抜部が形成された鋼板を積層して積層鉄心を形成するかご形回転子において、鋼板の打抜部を外周側のブリッジ部或いは開口部が導体を収納する主部の中心線に対して   In Patent Document 4, in a squirrel-cage rotor that forms a laminated iron core by laminating steel plates on which slot forming punch portions for accommodating conductors are formed, the steel plate punch portion is used as a bridge portion on the outer peripheral side or With respect to the center line of the main part where the opening houses the conductor

Figure 2006230189
を満足する距離dだけずれた位置となる非対称形状に形成し、積層鉄心は、鋼板をスロットの方向が一致するようにして複数枚積層された複数の単位ブロックを複数組合せ、各単位ブロック間においてはスロットの方向が互いに異なりかつ主部が重なるように構成され、複数組の積層鉄心のうち少なくとも1個は所定量スキューしている。
Figure 2006230189
Is formed in an asymmetrical shape that is shifted by a distance d satisfying the above, and the laminated iron core is a combination of a plurality of unit blocks in which a plurality of steel plates are laminated so that the slot directions coincide with each other. Are configured such that the directions of the slots are different from each other and the main portions overlap each other, and at least one of the plural sets of laminated cores is skewed by a predetermined amount.

特許文献5では、軸方向に複数に分割された円筒状永久磁石を備えた回転子において、隣り合う円筒状永久磁石のスキュー方向を反転させ各々の円筒状永久磁石に1溝ピッチスキューを施して、W字型にスキューさせている。あるいは、回転子は軸方向に複数に分割され同一方向に1溝ピッチスキューされた円筒状永久磁石からなり、隣り合う円筒状永久磁石のスキューラインを1溝ピッチずらして稲妻型にスキューさせている。   In Patent Document 5, in a rotor provided with a cylindrical permanent magnet divided into a plurality of parts in the axial direction, the skew direction of adjacent cylindrical permanent magnets is reversed and each cylindrical permanent magnet is subjected to one groove pitch skew. , And skewed in a W shape. Alternatively, the rotor is composed of a cylindrical permanent magnet divided into a plurality of parts in the axial direction and skewed by one groove pitch in the same direction, and the skew lines of adjacent cylindrical permanent magnets are skewed by one groove pitch to be skewed in a lightning bolt shape. .

特許文献6では、回転子の有効磁極開角の1極分ずつ軸方向に複数個の回転子ピースに分割し、隣り合うピースを1/2スロットずらしてスキューさせている。   In Patent Document 6, the rotor is divided into a plurality of rotor pieces in the axial direction for each pole of the effective magnetic pole opening angle, and adjacent pieces are skewed by shifting 1/2 slot.

特開2003−333811号公報JP 2003-333811 A 特開平7−298578号公報JP 7-298578 A 特開平7−163108号公報JP 7-163108 A 第2854664号公報No. 2854664 特開平8−298735号公報JP-A-8-298735 特開2004−357405号公報JP 2004-357405 A

しかしながら、特許文献1についても固定子あるいは回転子にスキューを施すことにより、ギャップ磁束の高調波成分の影響を低減させ、振動・騒音を小さくすることができるが、固定子の軸方向モードを考慮して、背面固定子鉄心の軸長を最適化していないため半径方向電磁加振力による振動・騒音低減効果が十分ではない。   However, Patent Document 1 can also reduce the influence of the harmonic component of the gap magnetic flux and reduce the vibration and noise by skewing the stator or the rotor. However, the axial mode of the stator is considered. In addition, since the axial length of the back stator core is not optimized, the vibration / noise reduction effect by the radial electromagnetic excitation force is not sufficient.

特許文献2についてもトルク脈動による振動・騒音の低減には有効であるが、半径方向電磁加振力による振動・騒音低減効果は少ない。   Patent Document 2 is also effective in reducing vibration and noise due to torque pulsation, but has little effect on reducing vibration and noise due to radial electromagnetic excitation force.

特許文献3についても、横流損の発生を低減することについては有効であるが、電磁加振力による振動・騒音低減効果は少ない。   Patent Document 3 is also effective in reducing the occurrence of crossflow loss, but has little effect of reducing vibration and noise due to electromagnetic excitation force.

特許文献4についても、高調波成分による異常トルクの発生およびそれに起因する振動・騒音を抑制できるが、各単位ブロックの軸長とスキュー角を同時に最適化していないため半径方向電磁加振力による振動・騒音低減効果が十分ではない。   Also in Patent Document 4, generation of abnormal torque due to harmonic components and vibration / noise caused by the abnormal torque can be suppressed. However, since the axial length and skew angle of each unit block are not optimized at the same time, vibration due to radial electromagnetic excitation force is caused.・ Noise reduction effect is not enough.

特許文献5についてもコギングトルクを低減させることができるが永久磁石の長さを最適化していないため半径方向電磁加振力による振動・騒音低減効果が十分ではない。   Also in Patent Document 5, the cogging torque can be reduced, but since the length of the permanent magnet is not optimized, the vibration / noise reduction effect by the radial electromagnetic excitation force is not sufficient.

特許文献6についても有効磁極開角の1極分がたとえば誘導電動機の回転子に複数の溝を周方向に等間隔ピッチに形成し、前記溝にアルミダイカスト等により形成した有効磁極開角のように複数箇所に1/2スロットずらしたスキューを設けることがむずかしい構成には適用することができない問題点があった。   Also in Patent Document 6, one pole of the effective magnetic pole opening angle is, for example, an effective magnetic pole opening angle in which a plurality of grooves are formed at equal intervals in the circumferential direction on the rotor of the induction motor, and aluminum grooves are formed in the grooves. However, there is a problem that it cannot be applied to a configuration in which it is difficult to provide a skew shifted by 1/2 slot at a plurality of locations.

本発明の目的は、回転電機の半径方向電磁加振力に起因する振動を低減し、その結果より低騒音な回転電機を提供することにある。   An object of the present invention is to provide a rotating electrical machine that reduces vibrations caused by the radial electromagnetic excitation force of the rotating electrical machine, and as a result, lower noise.

上記目的は、回転子と複数のスロットを有する固定子とを備えた回転電機において、前記回転子を軸方向に複数の回転子ピースに分割し、分割された前記回転子ピースのうち、1つのピースは他の少なくとも1つのピースの軸長とスキュー角絶対値の組合せが異なることにより達成される。   In the rotating electrical machine including a rotor and a stator having a plurality of slots, the object is to divide the rotor into a plurality of rotor pieces in the axial direction, and one of the divided rotor pieces. Pieces are achieved by different combinations of axial length and absolute skew angle of at least one other piece.

また、上記目的は、回転子と複数のスロットを有する固定子とを備えた回転電機において、前記固定子を軸方向に複数の固定子ピースに分割し、分割された前記固定子ピースのうち、1つのピースは他の少なくとも1つのピースの軸長とスキュー角絶対値の組合せが異なることにより達成される。   In the rotating electrical machine including a rotor and a stator having a plurality of slots, the above object is obtained by dividing the stator into a plurality of stator pieces in the axial direction, and among the divided stator pieces, One piece is achieved by different combinations of axial length and skew angle absolute value of at least one other piece.

また、上記目的は、前記回転子ピースは軸長の中央部で2つの領域に分かれ、左側をA領域、右側をB領域とすると、A領域とB領域のスキュー角の符号が異なることにより達成される。   Further, the above object is achieved by dividing the rotor piece into two regions at the central part of the axial length, where the left side is the A region and the right side is the B region, the signs of the skew angles of the A region and the B region are different. Is done.

また、上記目的は、前記固定子ピースは軸長の中央部で2つの領域に分かれ、左側をA領域、右側をB領域とすると、A領域とB領域のスキュー角の符号が異なることにより達成される。   Further, the above object is achieved by the fact that the stator piece is divided into two regions at the central portion of the axial length, and the left side is the A region and the right side is the B region, the signs of the skew angles of the A region and the B region are different. Is done.

また、上記目的は、前記回転子は3n(nは2の倍数)個に分割され、3個を一組として左側をD領域、中央をE領域、右側をF領域とすると、E領域のスキュー角の絶対値はD領域とF領域のスキュー角の絶対値より小さくかつD領域,E領域,F領域のスキュー角の符号は同じであることにより達成される。   Further, the above object is that the rotor is divided into 3n (n is a multiple of 2), and when the three are set as a set, the left side is the D region, the center is the E region, and the right side is the F region. The absolute value of the angle is smaller than the absolute value of the skew angle of the D region and the F region, and the signs of the skew angles of the D region, the E region, and the F region are the same.

また、上記目的は、前記固定子は3n(nは2の倍数)個に分割され、3個を一組として左側をD領域、中央をE領域、右側をF領域とすると、E領域のスキュー角の絶対値はD領域とF領域のスキュー角の絶対値より小さくかつD領域,E領域,F領域のスキュー角の符号は同じであることにより達成される。   Also, the purpose of the above is to divide the stator into 3n (n is a multiple of 2), and set the three as a set, the left side is the D region, the center is the E region, and the right side is the F region. The absolute value of the angle is smaller than the absolute value of the skew angle of the D region and the F region, and the signs of the skew angles of the D region, the E region, and the F region are the same.

また、上記目的は、前記回転子を軸方向に4個の回転子ピースに分割し、それぞれの回転子ピースの長さとスキュー角は、回転子コアの軸長2Lとすると、0.29L,0.71L,0.71L,0.29L の長さを基準として、0.29Lの回転子ピースは回転子コアの軸長2Lの−4%〜+16%、0.71L の回転子ピースは回転子コアの軸長2Lの+4%〜−16%範囲のいずれかの長さに設定され、
軸長Lの分を構成する2個の回転子ピースの有効磁極開角はそれぞれの回転子ピースで連続してスキューを形成し、2個の回転子ピースの両端間の電気角位相差は同じで、2個の回転子ピース間ではスキューは連続して配置され、残り半分の軸長Lの分を構成する2個の回転子ピースは、前記軸長Lの分を構成する2個の回転子ピースを回転子コアの軸長の中心で対称となるように配置したものを、回転子コアの軸長中央でスキューが不連続となるよう周方向に回転子ピースの両端間の電気角位相差と同じ電気角位相差だけずらして配置されることにより達成される。
Further, the object is to divide the rotor into four rotor pieces in the axial direction, and the length and the skew angle of each rotor piece are 0.29L, 0 when the axial length of the rotor core is 2L. With reference to the lengths of 0.71L, 0.71L, and 0.29L, the 0.29L rotor piece is -4% to + 16% of the rotor core axial length 2L, and the 0.71L rotor piece is the rotor. It is set to any length in the range of + 4% to -16% of the axial length 2L of the core,
The effective magnetic pole opening angle of the two rotor pieces constituting the axial length L continuously forms a skew in each rotor piece, and the electrical angle phase difference between both ends of the two rotor pieces is the same. Thus, the skew is continuously arranged between the two rotor pieces, and the two rotor pieces constituting the remaining half of the axial length L have two rotations constituting the axial length L. An electrical angle position between both ends of the rotor piece in the circumferential direction so that the skew is discontinuous at the center of the axial length of the rotor core. This is achieved by shifting the phase difference by the same electrical angle phase difference as the phase difference.

また、上記目的は、前記固定子を軸方向に4個のピースに分割し、それぞれの固定子ピースの長さとスキュー角は、固定子コアの軸長2Lとすると、0.29L,0.71L,
0.71L,0.29Lの長さを基準として、0.29Lの固定子ピースは固定子コアの軸長2Lの−4%〜+16%、0.71Lの固定子ピースは固定子コアの軸長2Lの+4%〜−16%範囲のいずれかの長さに設定され、
軸長Lの分を構成する2個の固定子ピースの有効磁極開角はそれぞれの固定子ピースで連続してスキューを形成し、2個の固定子ピースの両端間の電気角位相差は同じで、2個の固定子ピース間ではスキューは連続して配置され、残り半分の軸長Lの分を構成する2個の固定子ピースは、前記軸長Lの分を構成する2個の固定子ピースを固定子コアの軸長の中心で対称となるように配置したものを、固定子コアの軸長中央でスキューが不連続となるよう周方向に固定子ピースの両端間の電気角位相差と同じ電気角位相差だけずらして配置されることにより達成される。
Further, the above object is that the stator is divided into four pieces in the axial direction, and the length and skew angle of each of the stator pieces are 0.29L and 0.71L when the axial length of the stator core is 2L. ,
Based on the 0.71L and 0.29L lengths, the 0.29L stator piece is -4% to + 16% of the stator core shaft length 2L, and the 0.71L stator piece is the stator core axis. The length is set to any length in the range of + 4% to -16% of 2L,
The effective magnetic pole opening angle of the two stator pieces constituting the axial length L continuously forms a skew in each stator piece, and the electrical angle phase difference between both ends of the two stator pieces is the same. Thus, the skew is continuously arranged between the two stator pieces, and the two stator pieces constituting the remaining half axial length L are the two fixed pieces constituting the axial length L. An electrical angle position between both ends of the stator piece in the circumferential direction so that the skew is discontinuous at the center of the axial length of the stator core. This is achieved by shifting the phase difference by the same electrical angle phase difference as the phase difference.

また、上記目的は、前記回転子を軸方向に6個のピースに分割し、それぞれの回転子ピースの長さとスキュー角は、回転子コアの軸長2Lとすると、0.25L,0.5L,
0.25L,0.25L,0.5L,0.25Lの長さを基準として、回転子コアの軸長2Lの±4%範囲のいずれかの長さに設定され、軸長Lの分を構成する3個の回転子ピースの有効磁極開角はそれぞれの回転子ピースで連続してスキューを形成し、3個の回転子ピースの両端間の電気角位相差は同じで、3個の回転子ピース間ではスキューは連続して配置され、残り半分の軸長Lの分を構成する3個の回転子ピースは、前記軸長Lの分を構成する3個の各回転子ピースを回転子コアの軸長の中心で対称となるように配置したものを、回転子コアの軸長中央でスキューが不連続となるよう周方向に回転子ピースの両端間の電気角位相差と同じ電気角位相差だけずらして配置されることにより達成される。
Further, the above object is that the rotor is divided into six pieces in the axial direction, and the length and the skew angle of each rotor piece are 0.25L and 0.5L when the axial length of the rotor core is 2L. ,
Based on the lengths of 0.25L, 0.25L, 0.5L, and 0.25L, it is set to any length within a range of ± 4% of the axial length 2L of the rotor core. The effective magnetic pole opening angles of the three rotor pieces constituting the same continuously form a skew in each rotor piece, and the electrical angle phase difference between both ends of the three rotor pieces is the same, and the three rotations The skew is continuously arranged between the child pieces, and the three rotor pieces constituting the remaining half of the axial length L are divided into three rotor pieces constituting the axial length L. An electrical angle equal to the electrical angle phase difference between both ends of the rotor piece in the circumferential direction is used so that the skew is discontinuous at the center of the axial length of the rotor core. This is achieved by shifting the phase difference.

また、上記目的は、前記固定子を軸方向に6個のピースに分割し、それぞれの固定子ピースの長さとスキュー角は、固定子コアの軸長2Lとすると、0.25L,0.5L,
0.25L,0.25L,0.5L,0.25Lの長さを基準として、固定子コアの軸長2Lの±4%範囲のいずれかの長さに設定され、軸長Lの分を構成する3個の固定子ピースの有効磁極開角はそれぞれの固定子ピースで連続してスキューを形成し、3個の固定子ピースの両端間の電気角位相差は同じで、3個の固定子ピース間ではスキューは連続して配置され、残り半分の軸長Lの分を構成する3個の固定子ピースは、前記軸長Lの分を構成する3個の各固定子ピースを固定子コアの軸長の中心で対称となるように配置したものを、固定子コアの軸長中央でスキューが不連続となるよう周方向に固定子ピースの両端間の電気角位相差と同じ電気角位相差だけずらして配置されることにより達成される。
Further, the above-mentioned object is that the stator is divided into six pieces in the axial direction, and the length and skew angle of each stator piece is 0.25L, 0.5L when the axial length of the stator core is 2L. ,
Based on the lengths of 0.25L, 0.25L, 0.5L, and 0.25L, it is set to any length within the range of ± 4% of the axial length 2L of the stator core. The effective magnetic pole opening angles of the three stator pieces that form are continuously skewed by the respective stator pieces, and the electrical angle phase difference between both ends of the three stator pieces is the same, and the three fixed pieces are fixed. The skew is continuously arranged between the child pieces, and the three stator pieces constituting the remaining half of the axial length L are divided into three stator pieces constituting the axial length L. An electrical angle equal to the electrical angle phase difference between both ends of the stator piece in the circumferential direction is used so that the skew is discontinuous at the center of the axial length of the stator core. This is achieved by shifting the phase difference.

ところで、回転子または固定子はそれぞれ軸長2Lに対し、4個以上の回転子ピースまたは固定子ピースに分割(ここで、「分割」としているが分割されているとみられる所定の数個からなるよう設定された場合を含む)される。各回転子ピースまたは固定子ピースは固定子の軸方向の変形モードに対し、直交するような力を発生するよう、各回転子ピースまたは固定子ピースに含まれる有効磁極開角の軸長と周方向の相対位置が決定される。有効磁極開角は回転軸に対して永久磁石等の実際の磁束がある角度である。   By the way, each rotor or stator is divided into four or more rotor pieces or stator pieces with respect to the axial length 2L (here, “divided” is made up of a predetermined number of pieces that are considered to be divided). (Including the case where it is set so). The axial length and circumference of the effective magnetic pole opening angle included in each rotor piece or stator piece is such that each rotor piece or stator piece generates a force that is orthogonal to the axial deformation mode of the stator. A relative position in the direction is determined. The effective magnetic pole opening angle is an angle at which there is an actual magnetic flux such as a permanent magnet with respect to the rotation axis.

前記回転子または固定子を軸方向に4または4n(nは整数)個以上のピースに分割し、それぞれのピースの長さおよび電気角は、回転子コアまたは固定子コアの軸長2L、軸方向x軸、軸の中心をx=0(xは−L以上,L以下)、半径方向の加振力をf(x)
(f(x)は複素数)とすると、着目している回転次数に対し次の3つの関係式、
固定子の軸方向の0次モードに対する関係式1
The rotor or stator is divided into 4 or 4n (n is an integer) or more pieces in the axial direction, and the length and electrical angle of each piece are the axial length 2L of the rotor core or stator core, the shaft Direction x-axis, axis center x = 0 (x is -L or more and L or less), radial excitation force is f (x)
(F (x) is a complex number), the following three relational expressions for the rotational order of interest:
Relational expression 1 for the 0th-order mode in the axial direction of the stator

Figure 2006230189
固定子の軸方向の1次モードに対する関係式2
Figure 2006230189
Relational expression 2 for the first axial mode of the stator

Figure 2006230189
固定子の軸方向の2次モードに対する関係式3
Figure 2006230189
Relational expression 3 for the secondary mode in the axial direction of the stator

Figure 2006230189
に基づいて、相当長さおよび前記ピース間で周方向にずらした相当位置とされた関係で設定され、設定された順序で配置される。
Figure 2006230189
Is set based on the relationship between the corresponding length and the corresponding position shifted in the circumferential direction between the pieces, and arranged in the set order.

回転子または固定子が4つ(4nを含めて)の回転子ピースまたは固定子ピースに分割された場合、上記3つの式によって理想的に求められる4つの回転子ピースまたは固定子ピースの軸長は、基本的に0.29L,0.71L,0.71L,0.29Lであり、この基準値に基づいて相当長さを設定し、かつそれぞれの回転子ピースまたは固定子ピースの有効磁極開角は、0.29L,0.71Lの回転子ピースまたは固定子ピースの軸方向断面の間で電気角の位相差がπ、0.71L,0.29Lの回転子ピースまたは固定子ピースの軸方向断面の間で電気角の位相差が−πとなるように各回転子ピースまたは固定子ピースの軸長間で連続してスキューを形成し、0.29Lと0.71L,0.71Lと0.29Lの回転子ピースまたは固定子ピースでスキューは連続、0.71Lと0.71Lの回転子ピースまたは固定子ピースの隣接面でスキューは不連続となるよう電気角の位相差πだけずらして設定する。   When the rotor or stator is divided into four (including 4n) rotor pieces or stator pieces, the axial lengths of the four rotor pieces or stator pieces that are ideally obtained by the above three formulas Are basically 0.29L, 0.71L, 0.71L, 0.29L, and the corresponding length is set based on this reference value, and the effective magnetic pole opening of each rotor piece or stator piece is set. The angle is the axis of the rotor piece or stator piece whose phase difference of electrical angle is π, 0.71L, 0.29L between the axial sections of the rotor piece or stator piece of 0.29L, 0.71L. A skew is continuously formed between the axial lengths of the rotor pieces or the stator pieces so that the phase difference of the electrical angle is −π between the directional cross sections, and 0.29L, 0.71L, and 0.71L. With a 0.29L rotor piece or stator piece, The queue is set to be continuous and shifted by the phase difference π of the electrical angle so that the skew is discontinuous on the adjacent surfaces of the 0.71L and 0.71L rotor pieces or stator pieces.

回転子または固定子が6つ(6nを含めて)の回転子ピースまたは固定子ピースに分割された場合、上記3つの式によって理想的に求められる6つの回転子ピースまたは固定子ピースの軸長は、0.25L,0.5L,0.25L,0.25L,0.5L,0.25Lであり、この基準値に基づいて相当長さを設定し、かつそれぞれの回転子ピースまたは固定子ピースの有効磁極開角は回転子または固定子の周方向に各回転子ピースまたは固定子ピースの軸方向断面の間で電気角の位相差が中央で2分される半分ではπ、もう半分では−πとなるように各回転子ピースまたは固定子ピースの軸長間で連続してスキューを形成し、中央で2分割される0.25L,0.5L,0.25L の回転子ピースまたは固定子ピースの隣接する各回転子ピースまたは固定子ピースでスキューは連続、中央の0.25L,
0.25L の回転子ピースまたは固定子ピースの隣接面でスキューは不連続となるよう電気角の位相差πだけずらして設定する。
When the rotor or stator is divided into six (including 6n) rotor pieces or stator pieces, the axial lengths of the six rotor pieces or stator pieces that are ideally obtained by the above three formulas Are 0.25L, 0.5L, 0.25L, 0.25L, 0.5L, 0.25L, and the corresponding length is set based on this reference value, and each rotor piece or stator The effective magnetic pole opening angle of the piece is π in the half of the phase difference of the electrical angle between the axial cross sections of each rotor piece or stator piece in the circumferential direction of the rotor or stator, and in the other half A skew is continuously formed between the axial lengths of the rotor pieces or the stator pieces so as to be −π, and the rotor pieces or fixed pieces of 0.25L, 0.5L, and 0.25L divided into two at the center Each adjacent rotor piece or stator Continuous skew child piece, the center of 0.25 L,
The skew is set by shifting the phase difference π of the electrical angle so that the skew becomes discontinuous on the adjacent surface of the 0.25L rotor piece or stator piece.

以上、着目している回転次数に対する電気角の位相差について述べてきたが、それ以外の回転次数に対して電気角の位相差は、πをγ、−πを−γと読み替えたものとなる。   The phase difference of the electrical angle with respect to the rotational order of interest has been described above. However, the phase difference of the electrical angle with respect to other rotational orders is obtained by replacing π with γ and −π with −γ. .

本発明によれば、駆動動作により発生する振動・騒音のうち、半径方向電磁加振力により励起されるモータの振動・騒音を低減した回転電機を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the rotary electric machine which reduced the vibration and noise of the motor excited by radial direction electromagnetic excitation force among the vibration and noise which generate | occur | produce by drive operation can be provided.

以下、図面を参考にして本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施例を備えた回転電機の一部の断面斜視図である。
図2は、加振力の直交条件を示す図である。
図3は、固定子コア(固定子)7の概念図を示し、8は固定子コア軸方向断面を示す。 図4は、各スキューパターンの直交条件式に対するF、M1,M2を示す図である。
図1において、回転子1のコアは積層鋼鈑の積み重ねで構成され、積層鋼鈑の積み重ねを軸長方向に複数のブロック状、すなわち回転子ピースに分割されている。図1中では回転子1は4つの回転子ピース3,4,5,6、シャフト10、回転子ピース3,4,5,6と軸方向の長さが同じ複数の溝を円周方向に等間隔ピッチに斜めにスキューを施し形成し、前記溝にアルミダイカスト等により形成した有効磁極開角をなす二次導体2(2a,2b,2c,2d)から構成されている。図1では有効磁極開角をなすのは二次導体2であるが、有効磁極開角が永久磁石により実現された構成でもよい。
以下、図1に示す構成を最適化することにより実現する電磁加振力のスキューパターンをλ字スキューと呼ぶ。
FIG. 1 is a partial cross-sectional perspective view of a rotating electrical machine including an embodiment of the present invention.
FIG. 2 is a diagram illustrating the orthogonal condition of the excitation force.
FIG. 3 shows a conceptual diagram of the stator core (stator) 7, and 8 shows a cross section in the axial direction of the stator core. FIG. 4 is a diagram showing F, M1, and M2 with respect to the orthogonal condition expression of each skew pattern.
In FIG. 1, the core of the rotor 1 is formed by stacking laminated steel plates, and the stacked steel plates are divided into a plurality of blocks, that is, rotor pieces in the axial direction. In FIG. 1, the rotor 1 has four rotor pieces 3, 4, 5, 6, a shaft 10, and a plurality of grooves having the same axial length as the rotor pieces 3, 4, 5, 6 in the circumferential direction. It is composed of secondary conductors 2 (2a, 2b, 2c, 2d) which are formed by obliquely skewing at equal pitches and having an effective magnetic pole opening angle formed by aluminum die casting or the like in the groove. In FIG. 1, it is the secondary conductor 2 that forms the effective magnetic pole opening angle. However, the effective magnetic pole opening angle may be realized by a permanent magnet.
Hereinafter, a skew pattern of electromagnetic excitation force realized by optimizing the configuration shown in FIG.

回転子ピース3,4,5,6の軸方向の長さ、および有効磁極開角の周方向の位置により決定される電気角を以下の考え方で決定する。本発明では電気特性により発生する半径方向の電磁加振力が固定子コア7の軸方向モードと直交するような軸長、電気角位相差の組合せパターンとしている。   The electrical angle determined by the axial length of the rotor pieces 3, 4, 5, and 6 and the circumferential position of the effective magnetic pole opening angle is determined by the following concept. In the present invention, a combination pattern of axial length and electrical angle phase difference is set such that the radial electromagnetic excitation force generated by the electrical characteristics is orthogonal to the axial mode of the stator core 7.

振動・騒音が発生する回転電機100の固定子コア7の固有モードを梁の0,1,2次の曲げモードであると仮定し、このモードの発生を抑制する電磁加振力のパターンを考える。
簡単に検討するために構造系は固定子コア7のみ、軸長は回転子1のコア軸長と同じ
2L、固定子コア7の境界条件は両端フリーまたは両端を完全拘束,固定子コア7を梁要素,回転子ピース3,4,5,6の軸長と、回転子ピース3,4,5,6に含まれる二次導体2の軸長方向の長さは同じとする。回転子1にエンドリングが存在する場合、軸長
2Lにはエンドリングの長さは含めないものとする。
Assuming that the natural mode of the stator core 7 of the rotating electrical machine 100 in which vibration and noise are generated is the 0, 1, and 2nd bending modes of the beam, and consider the pattern of electromagnetic excitation force that suppresses the generation of this mode. .
For the sake of simplicity, the structural system is only the stator core 7, the axial length is 2 L, which is the same as the core axial length of the rotor 1, and the boundary condition of the stator core 7 is free at both ends or completely constrained at both ends. The axial lengths of the beam elements and the rotor pieces 3, 4, 5 and 6 are the same as the axial lengths of the secondary conductors 2 included in the rotor pieces 3, 4, 5 and 6. When the end ring exists in the rotor 1, the length of the end ring is not included in the shaft length 2L.

各回転子ピース3,4,5,6には斜のスキューが設けられているため、加振力f(x)は複素数となる。このとき各次数の梁曲げモードに対して図2に示す以下の加振力の直交条件が考えられる。   Since each rotor piece 3, 4, 5, 6 is provided with a skew skew, the excitation force f (x) is a complex number. At this time, the following orthogonal conditions of the excitation force shown in FIG.

Figure 2006230189
Figure 2006230189

Figure 2006230189
Figure 2006230189

Figure 2006230189
Figure 2006230189

上記直交条件は、数式5は梁の曲げモード0次、数式6は梁の曲げモード1次、数式7は梁の曲げモード2次を励起させない加振力の条件を表しており、これが成り立つと、梁曲げの0次,1次,2次のモードに起因する振動を抑制することができる。   In the above orthogonal condition, Equation 5 represents the beam bending mode 0th order, Equation 6 represents the beam bending mode primary, and Equation 7 represents the condition of the excitation force that does not excite the beam bending mode secondary. The vibration caused by the 0th, 1st and 2nd modes of beam bending can be suppressed.

数式5,数式6,数式7を満足し、製造上実際的な個数の4分割したときの各回転子ピース3,4,5,6の軸方向の長さ,スキュー角,周方向位置を決定することを考える。   Formula 5, Formula 6, and Formula 7 are satisfied, and the axial length, skew angle, and circumferential position of each of the rotor pieces 3, 4, 5, and 6 are determined when a practical number is divided into four. Think about what to do.

式の展開を簡単にするために、固定子コア7をx軸方向の1次元梁、固定子コア7に加わる力をy軸方向の1次元加振力とする。固定子コア7の軸長は2Lとする。   In order to simplify the development of the expression, the stator core 7 is a one-dimensional beam in the x-axis direction, and the force applied to the stator core 7 is a one-dimensional excitation force in the y-axis direction. The axial length of the stator core 7 is 2L.

回転子1を4分割したときの電気角δを各回転子ピース3,4,5,6の両端間でπだけずらしたスキュー角を設けるものとすると図5(a)となる。簡単に考えるため、加振力f(x)を数式8,数式9で表す。   FIG. 5A shows a skew angle in which the electrical angle δ when the rotor 1 is divided into four parts is shifted by π between both ends of the rotor pieces 3, 4, 5, and 6. For the sake of simplicity, the excitation force f (x) is expressed by Equations 8 and 9.

Figure 2006230189
Figure 2006230189

Figure 2006230189
Figure 2006230189

数式8,数式9で求められた加振力を図5(b)に示す。   FIG. 5B shows the excitation force obtained by Equation 8 and Equation 9.

図5(a)の電気角δは数式10を満足する。   The electrical angle δ in FIG.

Figure 2006230189
Figure 2006230189

またモーメントM1のRe{M1}は数式11となる。   Further, Re {M1} of the moment M1 is expressed by Equation 11.

Figure 2006230189
となる。
このときIm{M1}は数式12となる。
Figure 2006230189
It becomes.
At this time, Im {M1} is expressed by Equation 12.

Figure 2006230189
Figure 2006230189

また、Re{M2},Im{M2}は奇関数となる。   Further, Re {M2} and Im {M2} are odd functions.

上記の関係は固定子コア7を円筒面、加振力がx軸を中心とする円環n次の3次元加振力としても成立する。   The above relationship also holds when the stator core 7 is a cylindrical surface and the excitation force is an n-order three-dimensional excitation force of an annular shape centering on the x axis.

したがって、回転子1を軸長   Therefore, the rotor 1 has an axial length

Figure 2006230189
Figure 2006230189

すなわち、0.29L,0.71L,0.71L,0.29Lの回転子ピース3,4,5,6に分割し、それぞれの電気角の位相差が、各回転子ピース3,4の軸方向断面の間でπ、各回転子ピース5,6の軸方向断面の間で−πとなるように連続してスキューを形成し、回転子ピース3と4、5と6の隣接面における電気角の位相差は連続、4と5の隣接面は不連続で電気角の位相差はπとなるように形成する。   That is, the rotor pieces are divided into 0.29L, 0.71L, 0.71L, and 0.29L rotor pieces 3, 4, 5, and 6, and the phase difference of each electrical angle is the axis of each rotor piece 3 and 4. A skew is continuously formed so that π is between the cross-sections and −π is between the cross-sections of the rotor pieces 5 and 6 in the axial direction, and electricity in the adjacent faces of the rotor pieces 3, 4, 5 and 6 is formed. The angle phase difference is continuous, and the adjacent surfaces of 4 and 5 are discontinuous, and the electrical angle phase difference is π.

したがって、両端の回転子ピース3,6のスキュー角は中央の回転子ピース4,5に対し、スキュー角の絶対値が大きくなる。これにより、固定子コア7の梁の曲げモード1次と加振力の間に発生するモーメントを効果的にキャンセルすることができ、スキューの切り替え位置がずれた構造でも振動を低減する効果を得ることができる。   Therefore, the absolute value of the skew angle of the rotor pieces 3 and 6 at both ends is larger than that of the central rotor pieces 4 and 5. As a result, the moment generated between the bending mode primary of the beam of the stator core 7 and the excitation force can be effectively canceled, and the effect of reducing vibration can be obtained even in a structure in which the skew switching position is shifted. be able to.

また、図1の構成のn倍(nは整数)も図2の直交条件を満足することができる。   Further, n times (n is an integer) of the configuration of FIG. 1 can also satisfy the orthogonal condition of FIG.

λ字スキューおよび他のスキューパターンについてF,M1,M2の値についてまとめたものを図4に示す。図中、スキューなしとあるのは回転子1または固定子コア7を分割せずスキューを設けない場合、1スロットスキューとは全軸長において回転子1または固定子コア7の軸方向断面の間で電気角位相差が2πとなるように連続して1スロット分だけずれるようにスキューを設けた場合、V字スキューとは中央部において折り返すようにスキューを設けた場合である。これらの構造は、既知の構造である。   FIG. 4 shows a summary of the values of F, M1, and M2 for the λ-shaped skew and other skew patterns. In the figure, no skew means that the rotor 1 or the stator core 7 is not divided and no skew is provided, and one-slot skew is between the axial cross sections of the rotor 1 or the stator core 7 in all axial lengths. In the case where the skew is provided so that the electrical angle phase difference becomes 2π continuously so as to be shifted by one slot, the V-shaped skew is a case where the skew is provided so as to be folded back at the center. These structures are known structures.

1スロットスキュー,V字スキューの電気角δと加振力を、図6,図7に示す。
図8に示す回転電機100の計算モデルを用いて、表面速度平均を求める。回転電機
100の計算モデルは外表面がフレーム20,ブラケット21からなる。フレーム20の内周に固定子コア7は焼き嵌めされている。回転子1はブラケットにはめ込まれた軸受けを介して回転電機100の内部に設けられている。
The electrical angle δ and the excitation force of 1 slot skew and V-shaped skew are shown in FIGS.
The average surface speed is obtained using the calculation model of the rotating electrical machine 100 shown in FIG. The calculation model of the rotating electrical machine 100 includes a frame 20 and a bracket 21 on the outer surface. The stator core 7 is shrink fitted on the inner periphery of the frame 20. The rotor 1 is provided inside the rotating electrical machine 100 via a bearing fitted in the bracket.

図9にスキューなし、1スロットスキュー,V字スキュー,λ字スキューにより、円環0次の軸方向に振幅一定の半径方向加振力を入力したときの表面速度平均の周波数応答を示す。   FIG. 9 shows the frequency response of the average surface velocity when a radial excitation force having a constant amplitude is input in the zero-order axial direction of the torus with no skew, one slot skew, V-shaped skew, and λ-shaped skew.

また、図10にλ字スキュー,W字スキュー,稲妻型スキューにより、円環0次の軸方向に振幅一定の半径方向加振力を入力したときの表面速度平均の周波数応答を示す。   FIG. 10 shows the frequency response of the surface velocity average when a radial excitation force having a constant amplitude is input in the axial direction of the 0th order of the circular ring by λ-shaped skew, W-shaped skew, and lightning-type skew.

図11に各スキューを入力した時の表面速度平均の最大振幅を示す。λ字スキューはピーク周波数における表面速度平均が他のスキューより3.7 〜8dB低い値となっており、振動低減効果がある。   FIG. 11 shows the maximum amplitude of the surface velocity average when each skew is input. The λ-shaped skew has a surface velocity average at a peak frequency of 3.7 to 8 dB lower than other skews, and has a vibration reducing effect.

次に、λ字スキューの切り替え位置に公差を設けたときの効果について検討する。   Next, the effect when a tolerance is provided at the switching position of the λ-shaped skew will be examined.

図12にP1の切り替え位置を0.29L のピースに対し回転子コアの軸長2Lの−8%〜+16%まで変更したときの表面速度平均の最大振幅を示す。表面速度平均は+4%において極小値を取り、−4%〜+16%の間でW字スキュー,稲妻型スキューにおける表面速度平均の最大振幅94.2dB よりも低い値となり、公差がこの範囲ならば振動低減効果がある。   FIG. 12 shows the maximum amplitude of the surface velocity average when the switching position of P1 is changed from −8% to + 16% of the axial length 2L of the rotor core with respect to the 0.29 L piece. The surface velocity average takes a minimum value at + 4%, and is between -4% and + 16%, which is lower than the maximum amplitude of surface velocity average of 94.2 dB for W-shaped skew and lightning-type skew. There is a vibration reduction effect.

図13にP2の切り替え位置を0.71L のピースに対し回転子コアの軸長2Lの−8%〜+8%まで変更したときの表面速度平均の最大振幅を示す。この公差範囲では表面速度平均の最大振幅はほとんど変化せず、中央のスキュー切り替え位置がずれても振動低減効果がある。   FIG. 13 shows the maximum amplitude of the surface speed average when the switching position of P2 is changed from −8% to + 8% of the axial length 2L of the rotor core with respect to the 0.71 L piece. In this tolerance range, the maximum amplitude of the surface velocity average hardly changes, and even if the center skew switching position is shifted, there is a vibration reducing effect.

本実施例の構成は、スラスト力を低減する効果もある。   The configuration of this embodiment also has an effect of reducing the thrust force.

本発明の他の実施形態を説明する。
図14は本発明になる回転電機100として、誘導電動機を例にとった場合の回転子1および固定子7の一実施例を示す図である。
図14において、回転子1のコアは積層鋼鈑の積み重ねで構成され、積層鋼鈑の積み重ねを軸長方向に複数個のブロック、すなわち回転子ピースに分割する。図14中では回転子1は6つの回転子ピース31,32,33,34,35,36から構成されている。シャフト10、回転子ピース31,32,33,34,35,36と軸方向の長さが同じ複数の溝を周方向に等間隔ピッチに斜めにスキューが施され、前記溝にアルミダイカスト等により形成した有効磁極開角をなす二次導体2a,2b,2c,2d,2e,2fを有している。7は固定子である。
Another embodiment of the present invention will be described.
FIG. 14 is a diagram showing an embodiment of the rotor 1 and the stator 7 when an induction motor is taken as an example of the rotating electrical machine 100 according to the present invention.
In FIG. 14, the core of the rotor 1 is formed by stacking laminated steel plates, and the stacked steel plates are divided into a plurality of blocks, that is, rotor pieces in the axial direction. In FIG. 14, the rotor 1 is composed of six rotor pieces 31, 32, 33, 34, 35 and 36. A plurality of grooves having the same axial length as the shaft 10 and the rotor pieces 31, 32, 33, 34, 35, and 36 are skewed obliquely at equal intervals in the circumferential direction, and the grooves are formed by aluminum die casting or the like. The secondary conductors 2a, 2b, 2c, 2d, 2e, and 2f having the formed effective magnetic pole opening angles are provided. 7 is a stator.

図14の実施例では、有効磁極開角をなす二次導体2は2a,2b,2c間、および、2d,2e,2f間では連続となるように形成されるが、2c,2d間では電気角がπだけずれるよう、たとえば1/2ピッチだけ周方向にずれた位置に形成される。また、二次導体2は2a,2b,2c間、および、2d,2e,2f間ではアルミダイカスト等がうまく流れるように接続部にRをつけた構造としてもよい。図14中では有効磁極開角をなすのは二次導体2であるが、有効磁極開角が永久磁石により実現された構成でもよい。   In the embodiment of FIG. 14, the secondary conductor 2 forming the effective magnetic pole opening angle is formed to be continuous between 2a, 2b, and 2c, and between 2d, 2e, and 2f, but between 2c and 2d, For example, it is formed at a position shifted in the circumferential direction by 1/2 pitch so that the angle is shifted by π. Further, the secondary conductor 2 may have a structure in which R is attached to the connecting portion so that aluminum die casting or the like flows between 2a, 2b and 2c and between 2d, 2e and 2f. In FIG. 14, the effective magnetic pole opening angle is formed by the secondary conductor 2, but a configuration in which the effective magnetic pole opening angle is realized by a permanent magnet may be used.

以下、図14に示す構成を最適化することにより実現する電磁加振力のスキューパターンを6分割最適化スキューと呼ぶ。   Hereinafter, the electromagnetic excitation force skew pattern realized by optimizing the configuration shown in FIG. 14 will be referred to as six-divided optimization skew.

回転子ピース31,32,33,34,35,36の軸方向の長さ、および有効磁極開角の周方向の位置により決定される電気角を実施例1の場合と同様の考え方で決定する。   The electrical angle determined by the axial length of the rotor pieces 31, 32, 33, 34, 35, 36 and the circumferential position of the effective magnetic pole opening angle is determined in the same way as in the first embodiment. .

以下,式を展開する座標系も実施例1の場合と同様とする。   Hereinafter, the coordinate system for expanding the equations is the same as in the first embodiment.

回転子1を6分割したときの電気角δを各回転子ピース31,32,33,34,35,36の両端間でπだけずらしたスキュー角を設けるものとすると図15(a)となる。簡単に考えるため、加振力f(x)を数式14,数式15で表す。   If the electrical angle δ when the rotor 1 is divided into six parts is provided with a skew angle shifted by π between both ends of each of the rotor pieces 31, 32, 33, 34, 35, 36, FIG. . For simplicity, the excitation force f (x) is expressed by Equations 14 and 15.

Figure 2006230189
Figure 2006230189

Figure 2006230189
Figure 2006230189

数式14,数式15で求められた加振力を図15(b)に示す。   FIG. 15 (b) shows the excitation force obtained by Expressions 14 and 15.

図15(a)の電気角δは数式16を満足する。   The electrical angle δ in FIG.

Figure 2006230189
Figure 2006230189

またモーメントM1のRe{M1}は数式17となる。   Further, Re {M1} of the moment M1 is expressed by Equation 17.

Figure 2006230189
Figure 2006230189

今、Re{M1}=0のとき、   Now, when Re {M1} = 0,

Figure 2006230189
となる。これを満足する値はたとえばa=0.25,b=0.75である。
Figure 2006230189
It becomes. Values satisfying this are, for example, a = 0.25, b = 0.75.

このときIm{M1}は数式19となる。   At this time, Im {M1} is expressed by Equation 19.

Figure 2006230189
Figure 2006230189

また、Re{M2},Im{M2}は奇関数となる。   Further, Re {M2} and Im {M2} are odd functions.

上記の関係は固定子コア7を円筒面、加振力がx軸を中心とする円環n次の3次元加振力としても成立する。   The above relationship also holds when the stator core 7 is a cylindrical surface and the excitation force is an n-order three-dimensional excitation force of an annular shape centering on the x axis.

したがって、回転子1を軸長0.25L,0.50L,0.25L,0.25L,0.50L,0.25L の回転子ピース31,32,33,34,35,36に分割し、それぞれの電気角の位相差が、各回転子ピース31,32,33の軸方向断面の間でπ、各回転子ピース34,35,36の軸方向断面の間で−πとなるように連続してスキューを形成し、回転子ピース31と32と33、34と35と36の隣接面における電気角の位相差は連続、33と34の隣接面における電気角の位相差はπとなるように形成する。   Therefore, the rotor 1 is divided into rotor pieces 31, 32, 33, 34, 35, and 36 having axial lengths of 0.25L, 0.50L, 0.25L, 0.25L, 0.50L, and 0.25L. The phase difference of each electrical angle is continuous so that it is π between the axial sections of the rotor pieces 31, 32, 33 and −π between the axial sections of the rotor pieces 34, 35, 36. Thus, a skew is formed so that the electrical angle phase difference between adjacent faces of the rotor pieces 31 and 32 and 33, 34 and 35 and 36 is continuous, and the electrical angle phase difference between the adjacent faces of 33 and 34 is π. To form.

また、図14の構成のn倍(nは整数)も図2の直交条件を満足することができる。   Further, n times (n is an integer) of the configuration of FIG. 14 can also satisfy the orthogonal condition of FIG.

図8に示した回転電機100の計算モデルを用い、スキューなし,1スロットスキュー,V字スキュー,6分割最適化スキューにより、円環0次の軸方向に振幅一定の半径方向加振力を入力したときの表面速度平均の周波数応答を図16に示した。   Using the calculation model of the rotating electrical machine 100 shown in FIG. 8, a radial excitation force having a constant amplitude is input in the axial direction of the 0th order of the circular ring with no skew, 1 slot skew, V-shaped skew, and 6-divided optimization skew. FIG. 16 shows the frequency response of the average surface velocity.

また、図17に6分割最適化スキュー,W字スキュー,稲妻型スキューにより、円環0次の軸方向に振幅一定の半径方向加振力を入力したときの表面速度平均の周波数応答を示した。   FIG. 17 shows the frequency response of the average surface velocity when a radial excitation force having a constant amplitude is input in the axial direction of the 0th order of the ring by the 6-part optimization skew, the W-shaped skew, and the lightning-type skew. .

図18に各スキューを入力した時の表面速度平均の最大振幅を示す。6分割最適化スキューはピーク周波数における表面速度平均が他のスキューより8.9〜15.5dB低い値となっており、振動低減効果がある。   FIG. 18 shows the maximum amplitude of the surface velocity average when each skew is input. The six-divided optimization skew has a surface velocity average at the peak frequency that is 8.9 to 15.5 dB lower than the other skews, and has a vibration reduction effect.

次に、位相の切り替え位置を回転子コアの軸長2Lの数%変更したときの表面速度平均について検討する。   Next, the surface speed average when the phase switching position is changed by several percent of the axial length 2L of the rotor core will be examined.

ピーク周波数における、P1を切り替えたときの表面速度平均を図19に、P2を切り替えたときの表面速度平均を図20に、P3を切り替えたときの表面速度平均を図21に示す。これらの図より、切り替え位置を±4%変更しても表面速度平均の変化量は±7.3dBとなり、他のスキューよりも振動低減効果を得ることができる。切り替え位置を±8%変更すると、P1を切り替えたときの表面速度平均は−8%で10dB高くなり、振動低減効果が落ちることとなる。   FIG. 19 shows the average surface speed when P1 is switched at the peak frequency, FIG. 20 shows the average surface speed when P2 is switched, and FIG. 21 shows the average surface speed when P3 is switched. From these figures, even if the switching position is changed by ± 4%, the change amount of the average surface speed becomes ± 7.3 dB, and the vibration reduction effect can be obtained more than other skews. If the switching position is changed by ± 8%, the average surface speed when P1 is switched increases by 10 dB at −8%, and the vibration reduction effect is reduced.

回転子ピース31,32,33,34,35,36の軸長に理想値を変更した多少ばらついた状態に形成しても最適化された軸長と電気角の条件に基づいている限り、6分割最適化スキューは振動低減効果があることになる。   Even if the rotor pieces 31, 32, 33, 34, 35, and 36 are formed in a slightly dispersed state with the ideal values changed, as long as they are based on the optimized shaft length and electrical angle conditions, 6 The division optimization skew has a vibration reduction effect.

実施例1,2では、回転電機単体の構成について述べたが、これら回転電機を組み込んだ構成についても振動・騒音の低減が可能である。   In the first and second embodiments, the configuration of the rotating electrical machine alone has been described. However, vibration and noise can also be reduced with a configuration incorporating these rotating electrical machines.

図22に示す構成は回転電機100とインバータ200から成る。また、図23に示す構成は回転電機100を組み込んだ圧縮機300の断面図である。   The configuration shown in FIG. 22 includes a rotating electrical machine 100 and an inverter 200. 23 is a cross-sectional view of a compressor 300 in which the rotating electrical machine 100 is incorporated.

また、スキューの構成であるが、図2の固定子コアの軸方向モードと電磁加振力が直交条件を満足すれば、直線ではなく曲線であっても良い。   Moreover, although it is a structure of a skew, if the axial direction mode and electromagnetic excitation force of the stator core of FIG. 2 satisfy orthogonal conditions, it may be a curve instead of a straight line.

W字スキューは図24に、稲妻型スキューは図25に示す特開平8−298735号公報の構成である。図26に比較の対象としたスキュー構造の一覧を示す。   The W-shaped skew is shown in FIG. 24, and the lightning-type skew is shown in FIG. 25 according to Japanese Patent Laid-Open No. 8-298735. FIG. 26 shows a list of skew structures to be compared.

本発明の一実施例を備えた回転電機用回転子の斜視図である。It is a perspective view of the rotor for rotary electric machines provided with one Example of this invention. 回転電機の固定子コアの軸方向モードと電磁加振力が満足すべき直交条件を示す図である。It is a figure which shows the orthogonal condition which the axial direction mode and electromagnetic excitation force of the stator core of a rotary electric machine should satisfy. 固定子コアと固定子コア軸方向断面の位置関係を示す図である。It is a figure which shows the positional relationship of a stator core and a stator core axial cross section. 各スキューパターンの直交条件式に対するF,M1,M2の値を示す図である。It is a figure which shows the value of F, M1, M2 with respect to the orthogonal conditional expression of each skew pattern. λ字スキューの電気角と加振力を示した図である。It is the figure which showed the electrical angle and excitation force of (lambda) character skew. 1スロットスキューの電気角と加振力を示した図である。It is the figure which showed the electrical angle and excitation force of 1 slot skew. V字スキューの電気角と加振力を示した図である。It is the figure which showed the electrical angle and excitation force of V-shaped skew. 表面速度平均を計算するのに用いた回転電機100のモデルを示した図である。It is the figure which showed the model of the rotary electric machine 100 used for calculating a surface speed average. スキューなし,1スロットスキュー,V字スキュー,λ字スキューを回転電機100のモデルに入力したときの表面速度平均を示した図である。FIG. 6 is a diagram showing an average surface velocity when no skew, 1 slot skew, V-shaped skew, and λ-shaped skew are input to the rotating electrical machine 100 model. λ字スキュー,W字スキュー,稲妻型スキューを回転電機100のモデルに入力したときの表面速度平均を示した図である。FIG. 5 is a diagram showing an average surface velocity when λ-shaped skew, W-shaped skew, and lightning-type skew are input to the rotating electrical machine 100 model. スキューなし,1スロットスキュー,V字スキュー,λ字スキュー,W字スキュー,稲妻型スキューを回転電機100のモデルに入力したときの表面速度平均の最大値を示した図である。FIG. 6 is a diagram showing the maximum value of the average surface velocity when no skew, 1 slot skew, V-shaped skew, λ-shaped skew, W-shaped skew, and lightning-type skew are input to the rotating electrical machine 100 model. λ字スキューで、スキュー切り替え位置P1を変化させた場合の表面速度平均の最大値を示した図である。It is the figure which showed the maximum value of the surface speed average at the time of changing skew switching position P1 by (lambda) character skew. λ字スキューで、スキュー切り替え位置P2を変化させた場合の表面速度平均の最大値を示した図である。It is the figure which showed the maximum value of the surface speed average at the time of changing skew switching position P2 by (lambda) character skew. 本発明の他の実施例を備えた回転電機を示す図である。It is a figure which shows the rotary electric machine provided with the other Example of this invention. 6分割最適化スキューの電気角と加振力を示した図である。It is the figure which showed the electrical angle and excitation force of 6 division | segmentation optimization skew. スキューなし,1スロットスキュー,λ字スキュー,6分割最適化スキューを回転電機100のモデルに入力したときの表面速度を示した図である。FIG. 6 is a diagram showing the surface speed when no skew, 1 slot skew, λ-shaped skew, and 6-divided optimization skew are input to the rotating electrical machine 100 model. 6分割最適化スキュー,W字スキュー,稲妻型スキューを回転電機100のモデルに入力したときの表面速度平均を示した図である。FIG. 6 is a diagram showing an average surface velocity when 6-divided optimization skew, W-shaped skew, and lightning-type skew are input to the model of the rotating electrical machine 100. スキューなし,1スロットスキュー,V字スキュー,6分割最適化スキュー,W字スキュー,稲妻型スキューを回転電機100のモデルに入力したときの表面速度平均の最大値を示した図である。FIG. 5 is a diagram showing the maximum value of the average surface velocity when no skew, 1 slot skew, V-shaped skew, 6-divided optimization skew, W-shaped skew, and lightning-type skew are input to the rotating electrical machine 100 model. 6分割最適化スキューのスキュー切り替え位置P1をずらして振動速度を計算した結果を示す図である。It is a figure which shows the result of having calculated the vibration speed by shifting the skew switching position P1 of 6 division | segmentation optimization skew. 6分割最適化スキューのスキュー切り替え位置P2をずらして振動速度を計算した結果を示す図である。It is a figure which shows the result of having calculated the vibration speed by shifting the skew switching position P2 of 6 division | segmentation optimization skew. 6分割最適化スキューのスキュー切り替え位置P3をずらして振動速度を計算した結果を示す図である。It is a figure which shows the result of having calculated the vibration speed by shifting the skew switching position P3 of 6 division | segmentation optimization skew. 本発明になる回転電機とインバータからなる構成を示す図である。It is a figure which shows the structure which consists of the rotary electric machine and inverter which become this invention. 本発明になる回転電機を組込んだ圧縮機の構成を示す図である。It is a figure which shows the structure of the compressor incorporating the rotary electric machine which becomes this invention. W字スキューの回転子の構成を示す図である。It is a figure which shows the structure of the rotor of a W-shaped skew. 稲妻型スキューの回転子の構成を示す図である。It is a figure which shows the structure of the rotor of a lightning bolt type skew. スキューの一覧を示す図である。It is a figure which shows the list of skews.

符号の説明Explanation of symbols

1…回転子、2(2a,2b,2c,2d,2e,2f)…二次導体、3,4,5,6,31,32,33,34,35,36…回転子ピース、7…固定子コア(固定子)、8…固定子コア軸方向断面、10…シャフト、20…フレーム、21…ブラケット、100…回転電機、200…インバータ、300…圧縮機。   DESCRIPTION OF SYMBOLS 1 ... Rotor, 2 (2a, 2b, 2c, 2d, 2e, 2f) ... Secondary conductor, 3, 4, 5, 6, 31, 32, 33, 34, 35, 36 ... Rotor piece, 7 ... Stator core (stator), 8 ... stator core axial cross section, 10 ... shaft, 20 ... frame, 21 ... bracket, 100 ... rotating electric machine, 200 ... inverter, 300 ... compressor.

Claims (10)

回転子と複数のスロットを有する固定子とを備えた回転電機において、
前記回転子を軸方向に複数の回転子ピースに分割し、分割された前記回転子ピースのそれぞれは軸長とスキュー角絶対値の組合せのうち、1つの回転子ピースは他の少なくとも1つの回転子ピースの軸長とスキュー角絶対値の組合せと異なる構成としたことを特徴とする回転電機。
In a rotating electrical machine including a rotor and a stator having a plurality of slots,
The rotor is divided into a plurality of rotor pieces in the axial direction, and each of the divided rotor pieces is a combination of an axial length and an absolute value of a skew angle, and one rotor piece is at least one other rotation. A rotating electrical machine having a different configuration from the combination of the axial length of a child piece and the absolute value of a skew angle.
回転子と複数のスロットを有する固定子とを備えた回転電機において、
前記固定子を軸方向に複数の固定子ピースに分割し、分割された前記固定子ピースのそれぞれは軸長とスキュー角絶対値の組合せのうち、1つの固定子ピースは他の少なくとも1つの固定子ピースの軸長とスキュー角絶対値の組合せと異なる構成としたことを特徴とする回転電機。
In a rotating electrical machine including a rotor and a stator having a plurality of slots,
The stator is axially divided into a plurality of stator pieces, and each of the divided stator pieces is a combination of axial length and skew angle absolute value, and one stator piece is at least one other fixed piece. A rotating electrical machine having a different configuration from the combination of the axial length of a child piece and the absolute value of a skew angle.
請求項1に記載の回転電機において、
前記回転子は軸長の中央部で2つの領域に分かれ、左側をA領域、右側をB領域とすると、A領域とB領域のスキュー角の符号が異なることを特徴とする回転電機。
In the rotating electrical machine according to claim 1,
The rotor is divided into two regions at the central portion of the axial length, and when the left side is an A region and the right side is a B region, the signs of skew angles of the A region and the B region are different.
請求項2に記載の回転電機において、
前記固定子は軸長の中央部で2つの領域に分かれ、左側をA領域、右側をB領域とすると、A領域とB領域のスキュー角の符号が異なることを特徴とする回転電機。
The rotating electrical machine according to claim 2,
The stator is divided into two regions at the center of the axial length, and the left side is an A region, and the right side is a B region, the sign of the skew angle between the A region and the B region is different.
請求項1に記載の回転電機において、
前記回転子は3n(nは2の倍数)個に分割され、3個を一組として左側をD領域、中央をE領域、右側をF領域とすると、E領域のスキュー角の絶対値はD領域とF領域のスキュー角の絶対値より小さくかつD領域,E領域,F領域のスキュー角の符号は同じであることを特徴とする回転電機。
In the rotating electrical machine according to claim 1,
The rotor is divided into 3n (n is a multiple of 2), and when the three are set as a set, the left side is the D region, the center is the E region, and the right side is the F region, the absolute value of the skew angle of the E region is D A rotating electrical machine characterized by being smaller than the absolute value of the skew angle of the region and the F region and having the same sign of the skew angle of the D region, the E region, and the F region.
請求項2に記載の回転電機において、
前記固定子は3n(nは2の倍数)個に分割され、3個を一組として左側をD領域、中央をE領域、右側をF領域とすると、E領域のスキュー角の絶対値はD領域とF領域のスキュー角の絶対値より小さくかつD領域,E領域,F領域のスキュー角の符号は同じであることを特徴とする回転電機。
The rotating electrical machine according to claim 2,
When the stator is divided into 3n (n is a multiple of 2) and the three are set as one set, the left side is the D region, the center is the E region, and the right side is the F region. A rotating electrical machine characterized by being smaller than the absolute value of the skew angle of the region and the F region and having the same sign of the skew angle of the D region, the E region, and the F region.
請求項1に記載の回転電機において、
回転子を軸方向に4個の回転子ピースに分割し、それぞれの回転子ピースの長さとスキュー角は、回転子コアの軸長2Lとすると、0.29L,0.71L,0.71L,0.29Lの長さを基準として、0.29L の回転子ピースは回転子コアの軸長2Lの−4%〜+
16%、0.71L のピースは回転子コアの軸長2Lの+4%〜−16%範囲のいずれかの長さに設定され、
軸長Lの分を構成する2個の回転子ピースの有効磁極開角はそれぞれの回転子ピースで連続してスキューを形成し、2個の回転子ピースの軸方向断面間の電気角位相差は同じで、2個の回転子ピース間ではスキューは連続して配置され、
残り半分の軸長Lの分を構成する2個の回転子ピースは、前記軸長Lの分を構成する2個の回転子ピースを回転子コアの軸長の中心で対称となるように配置したものを、回転子コアの軸長中央でスキューが不連続となるよう周方向に回転子ピースの両端間の電気角位相差と同じ電気角位相差だけずらして配置されることを特徴とする回転電機。
In the rotating electrical machine according to claim 1,
The rotor is divided into four rotor pieces in the axial direction, and the length and skew angle of each rotor piece are 0.29L, 0.71L, 0.71L, Based on the length of 0.29L, the rotor piece of 0.29L is -4% to +
The piece of 16%, 0.71L is set to any length in the range of + 4% to -16% of the axial length 2L of the rotor core,
The effective magnetic pole opening angle of the two rotor pieces constituting the axial length L continuously forms a skew in each rotor piece, and the electrical angle phase difference between the axial sections of the two rotor pieces. Are the same, and the skew between the two rotor pieces is continuously arranged,
The two rotor pieces constituting the remaining half of the axial length L are arranged so that the two rotor pieces constituting the axial length L are symmetrical at the center of the axial length of the rotor core. In such a case, the electrical angle phase difference between the two ends of the rotor piece is shifted in the circumferential direction so that the skew becomes discontinuous at the center of the axial length of the rotor core. Rotating electric machine.
請求項2に記載の回転電機において、
固定子を軸方向に4個の固定子ピースに分割し、それぞれの固定子ピースの長さとスキュー角は、固定子コアの軸長2Lとすると、0.29L,0.71L,0.71L,0.29Lの長さを基準として、0.29L の固定子ピースは固定子コアの軸長2Lの−4%〜+
16%、0.71L の固定子ピースは固定子コアの軸長2Lの+4%〜−16%範囲のいずれかの長さに設定され、
軸長Lの分を構成する2個の固定子ピースの有効磁極開角はそれぞれ固定子ピースで連続してスキューを形成し、2個の固定子ピースの軸方向断面間の電気角位相差は同じで、2個の固定子ピース間ではスキューは連続して配置され、
残り半分の軸長Lの分を構成する2個の固定子ピースは、前記軸長Lの分を構成する2個の固定子ピースを固定子コアの軸長の中心で対称となるように配置したものを、固定子コアの軸長中央でスキューが不連続となるよう周方向に固定子ピースの両端間の電気角位相差と同じ電気角位相差だけずらして配置されることを特徴とする回転電機。
The rotating electrical machine according to claim 2,
The stator is divided into four stator pieces in the axial direction, and the length and skew angle of each stator piece are 0.29L, 0.71L, 0.71L, Based on the length of 0.29L, the stator piece of 0.29L is -4% to + 2% of the axial length of the stator core.
The stator piece of 16%, 0.71L is set to any length in the range of + 4% to -16% of the axial length 2L of the stator core,
The effective magnetic pole opening angles of the two stator pieces constituting the axial length L continuously form a skew in the stator pieces, and the electrical angle phase difference between the axial sections of the two stator pieces is Same, the skew is placed continuously between the two stator pieces,
The two stator pieces constituting the remaining half of the axial length L are arranged so that the two stator pieces constituting the axial length L are symmetrical at the center of the axial length of the stator core. In such a case, the electrical angle phase difference between the two ends of the stator piece is shifted in the circumferential direction so that the skew is discontinuous at the center of the axial length of the stator core. Rotating electric machine.
請求項1に記載の回転電機において、
回転子を軸方向に6個の回転子ピースに分割し、それぞれの回転子ピースの長さとスキュー角は、回転子コアの軸長2Lとすると、0.25L,0.5L,0.25L,0.25L,0.5L,0.25Lの長さを基準として、回転子コアの軸長2Lの±4%範囲のいずれかの長さに設定され、
軸長Lの分を構成する3個の回転子ピースの有効磁極開角はそれぞれ回転子ピースで連続してスキューを形成し、3個の回転子ピースの両端間の電気角位相差は同じで、3個の回転子ピース間ではスキューは連続して配置され、
残り半分の軸長Lの分を構成する3個の回転子ピースは、前記軸長Lの分を構成する3個の各回転子ピースを回転子コアの軸長の中心で対称となるように配置したものを、回転子コアの軸長中央でスキューが不連続となるよう周方向に回転子ピースの両端間の電気角位相差と同じ電気角位相差だけずらして配置されることを特徴とする回転電機。
In the rotating electrical machine according to claim 1,
The rotor is divided into six rotor pieces in the axial direction, and the length and skew angle of each rotor piece are 0.25L, 0.5L, 0.25L, Based on the lengths of 0.25L, 0.5L, and 0.25L, it is set to any length within a range of ± 4% of the axial length 2L of the rotor core,
The effective magnetic pole opening angles of the three rotor pieces constituting the axial length L are continuously skewed by the rotor pieces, and the electrical angle phase difference between both ends of the three rotor pieces is the same. The skew is arranged continuously between the three rotor pieces,
The three rotor pieces constituting the remaining half of the axial length L are symmetrical with respect to the center of the axial length of the rotor core with respect to the three rotor pieces constituting the axial length L. It is characterized in that the arranged one is shifted by the same electrical angle phase difference as the electrical angle phase difference between both ends of the rotor piece in the circumferential direction so that the skew is discontinuous at the center of the axial length of the rotor core. Rotating electric machine.
請求項2に記載の回転電機において、
固定子を軸方向に6個の固定子ピースに分割し、それぞれの固定子ピースの長さとスキュー角は、固定子コアの軸長2Lとすると、0.25L,0.5L,0.25L,0.25L,0.5L,0.25Lの長さを基準として、固定子コアの軸長2Lの±4%範囲のいずれかの長さに設定され、
軸長Lの分を構成する3個の固定子ピースの有効磁極開角はそれぞれ固定子ピースで連続してスキューを形成し、3個の回転子ピースの両端間の電気角位相差は同じで、3個の固定子ピース間ではスキューは連続して配置され、
残り半分の軸長Lの分を構成する3個の固定子ピースは、前記軸長Lの分を構成する3個の各固定子ピースを固定子コアの軸長の中心で対称となるように配置したものを、固定子コアの軸長中央でスキューが不連続となるよう周方向に固定子ピースの両端間の電気角位相差と同じ電気角位相差だけずらして配置されることを特徴とする回転電機。
The rotating electrical machine according to claim 2,
The stator is divided into six stator pieces in the axial direction, and the length and skew angle of each stator piece are 0.25L, 0.5L, 0.25L, Based on the lengths of 0.25L, 0.5L, and 0.25L, it is set to any length within a range of ± 4% of the axial length 2L of the stator core,
The effective magnetic pole opening angles of the three stator pieces constituting the axial length L are continuously skewed by the stator pieces, and the electrical angle phase difference between both ends of the three rotor pieces is the same. The skew is arranged continuously between the three stator pieces,
The three stator pieces constituting the remaining half of the axial length L are symmetrical with respect to the center of the axial length of the stator core with respect to the three stator pieces constituting the axial length L. It is characterized in that the arranged one is shifted by the same electrical angle phase difference as the electrical angle phase difference between both ends of the stator piece in the circumferential direction so that the skew is discontinuous at the center of the axial length of the stator core. Rotating electric machine.
JP2006011827A 2005-01-21 2006-01-20 Rotating electric machine Expired - Fee Related JP4894273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006011827A JP4894273B2 (en) 2005-01-21 2006-01-20 Rotating electric machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005013480 2005-01-21
JP2005013480 2005-01-21
JP2006011827A JP4894273B2 (en) 2005-01-21 2006-01-20 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2006230189A true JP2006230189A (en) 2006-08-31
JP4894273B2 JP4894273B2 (en) 2012-03-14

Family

ID=36991012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006011827A Expired - Fee Related JP4894273B2 (en) 2005-01-21 2006-01-20 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP4894273B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1968081A1 (en) * 2007-03-09 2008-09-10 Jtekt Corporation Brushless motor and electric power steering device having brushless motor
JP2010206921A (en) * 2009-03-03 2010-09-16 Nissan Motor Co Ltd Electric motor
JP2012085477A (en) * 2010-10-14 2012-04-26 Hitachi Ltd Rotary electric machine
CN102638119A (en) * 2012-04-24 2012-08-15 河北科技大学 Permanent magnet motor rotor with small output torque ripple
JP2014110646A (en) * 2012-11-30 2014-06-12 Mitsubishi Electric Corp Rotor core and method of manufacturing the same
DE102018117886A1 (en) 2017-07-31 2019-02-28 Fanuc Corporation Electric motor rotor
CN112398266A (en) * 2019-08-19 2021-02-23 三菱电机株式会社 Rotating electrical machine

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285543A (en) * 1990-03-30 1991-12-16 Toshiba Corp Squirrel-cage rotor
JPH07163108A (en) * 1993-12-08 1995-06-23 Hitachi Ltd Induction motor
JPH07298578A (en) * 1994-04-28 1995-11-10 Meidensha Corp Rotating electric machine
JPH08298735A (en) * 1995-04-25 1996-11-12 Fuji Electric Co Ltd Cylindrical-permanent-magnet synchronous motor
JP2000278895A (en) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd Rotor of motor
JP2002136015A (en) * 2000-10-24 2002-05-10 Mitsubishi Heavy Ind Ltd Motor
JP2002369469A (en) * 2001-06-08 2002-12-20 Mitsubishi Electric Corp Single-phase induction motor
JP2003018771A (en) * 2001-07-03 2003-01-17 Mitsubishi Electric Corp Stator and its manufacturing method, and manufacturing device for core member of stator
JP2003070213A (en) * 2001-08-23 2003-03-07 Mitsubishi Electric Corp Method of manufacturing stator
JP2003333811A (en) * 2002-05-12 2003-11-21 Yoshimitsu Okawa Induction motor having a plurality of axially divided stator windings
JP2004328865A (en) * 2003-04-23 2004-11-18 Mitsui High Tec Inc Skew-form variable laminated iron core and its manufacturing method
JP2004357405A (en) * 2003-05-29 2004-12-16 Hitachi Ltd Motor
JP2006060951A (en) * 2004-08-23 2006-03-02 Matsushita Electric Ind Co Ltd Motor
EP1684400B1 (en) * 2005-01-21 2008-05-14 Hitachi, Ltd. Rotating electric machine

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285543A (en) * 1990-03-30 1991-12-16 Toshiba Corp Squirrel-cage rotor
JPH07163108A (en) * 1993-12-08 1995-06-23 Hitachi Ltd Induction motor
JPH07298578A (en) * 1994-04-28 1995-11-10 Meidensha Corp Rotating electric machine
JPH08298735A (en) * 1995-04-25 1996-11-12 Fuji Electric Co Ltd Cylindrical-permanent-magnet synchronous motor
JP2000278895A (en) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd Rotor of motor
JP2002136015A (en) * 2000-10-24 2002-05-10 Mitsubishi Heavy Ind Ltd Motor
JP2002369469A (en) * 2001-06-08 2002-12-20 Mitsubishi Electric Corp Single-phase induction motor
JP2003018771A (en) * 2001-07-03 2003-01-17 Mitsubishi Electric Corp Stator and its manufacturing method, and manufacturing device for core member of stator
JP2003070213A (en) * 2001-08-23 2003-03-07 Mitsubishi Electric Corp Method of manufacturing stator
JP2003333811A (en) * 2002-05-12 2003-11-21 Yoshimitsu Okawa Induction motor having a plurality of axially divided stator windings
JP2004328865A (en) * 2003-04-23 2004-11-18 Mitsui High Tec Inc Skew-form variable laminated iron core and its manufacturing method
JP2004357405A (en) * 2003-05-29 2004-12-16 Hitachi Ltd Motor
JP2006060951A (en) * 2004-08-23 2006-03-02 Matsushita Electric Ind Co Ltd Motor
EP1684400B1 (en) * 2005-01-21 2008-05-14 Hitachi, Ltd. Rotating electric machine
US7541710B2 (en) * 2005-01-21 2009-06-02 Hitachi, Ltd. Rotating electric machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1968081A1 (en) * 2007-03-09 2008-09-10 Jtekt Corporation Brushless motor and electric power steering device having brushless motor
JP2010206921A (en) * 2009-03-03 2010-09-16 Nissan Motor Co Ltd Electric motor
JP2012085477A (en) * 2010-10-14 2012-04-26 Hitachi Ltd Rotary electric machine
US8692435B2 (en) 2010-10-14 2014-04-08 Hitachi, Ltd. Rotating electric machine
CN102638119A (en) * 2012-04-24 2012-08-15 河北科技大学 Permanent magnet motor rotor with small output torque ripple
JP2014110646A (en) * 2012-11-30 2014-06-12 Mitsubishi Electric Corp Rotor core and method of manufacturing the same
DE102018117886A1 (en) 2017-07-31 2019-02-28 Fanuc Corporation Electric motor rotor
US10811917B2 (en) 2017-07-31 2020-10-20 Fanuc Corporation Rotor of electric motor
CN112398266A (en) * 2019-08-19 2021-02-23 三菱电机株式会社 Rotating electrical machine
JP2021035078A (en) * 2019-08-19 2021-03-01 三菱電機株式会社 Rotary electric machine
US11757340B2 (en) 2019-08-19 2023-09-12 Mitsubishi Electric Corporation Rotating electric machine
CN112398266B (en) * 2019-08-19 2024-02-06 三菱电机株式会社 Rotary electric machine

Also Published As

Publication number Publication date
JP4894273B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP5930253B2 (en) Permanent magnet embedded rotary electric machine
JP4270942B2 (en) Electric motor
US7541710B2 (en) Rotating electric machine
WO2020092647A1 (en) Torque ripple reduction in ac machines
JP4894273B2 (en) Rotating electric machine
JP2008283785A (en) Switched reluctance motor
JP6048191B2 (en) Multi-gap rotating electric machine
JP5120687B2 (en) Stator structure of permanent magnet type rotating machine
JP7159800B2 (en) Rotating electric machine
JP5609844B2 (en) Electric motor
JP2008148447A (en) Motor for electric power steering device
JP2011019335A (en) Rotary electric machine
JP2007336624A (en) Multi-phase claw tooth type permanent magnet motor
JP2016220382A (en) Rotor of rotary electric machine, and rotary electric machine using the same
JP5066820B2 (en) Magnet structure
US20080290754A1 (en) AC Motor
US10003244B2 (en) Squirrel-cage rotor and method for manufacturing squirrel-cage rotor
JP2009027849A (en) Permanent magnet type rotary electric machine
JP2013132154A (en) Rotary electric machine and rotor thereof
JP6631763B1 (en) Rotating electric machine
JP2017085745A (en) Reluctance synchronous rotary electric machine
JP7290863B2 (en) synchronous motor
US20230120571A1 (en) Rotary electric machine
JP2010154648A (en) Motor
EP4329152A1 (en) Rotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees