JP2006230056A - Estimation method of polarity of motor, and device - Google Patents

Estimation method of polarity of motor, and device Download PDF

Info

Publication number
JP2006230056A
JP2006230056A JP2005038221A JP2005038221A JP2006230056A JP 2006230056 A JP2006230056 A JP 2006230056A JP 2005038221 A JP2005038221 A JP 2005038221A JP 2005038221 A JP2005038221 A JP 2005038221A JP 2006230056 A JP2006230056 A JP 2006230056A
Authority
JP
Japan
Prior art keywords
phase
period
cycle
magnetic pole
pole position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005038221A
Other languages
Japanese (ja)
Other versions
JP4670044B2 (en
Inventor
Toshio Kubota
寿夫 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji University
Original Assignee
Meiji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji University filed Critical Meiji University
Priority to JP2005038221A priority Critical patent/JP4670044B2/en
Publication of JP2006230056A publication Critical patent/JP2006230056A/en
Application granted granted Critical
Publication of JP4670044B2 publication Critical patent/JP4670044B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an estimation method of the polarity of a motor that dispenses with a bandpass filter, does not need for constantly applying a high-frequency component, and can exactly estimate the position of the polarity even in low-speed driving and in a stop. <P>SOLUTION: Among three cycles to which triangle waves C are continued, the first cycle is set as T<SB>1</SB>, the next cycle is set as T<SB>2</SB>, and the last cycle is set as T<SB>3</SB>. Then, with respect to a u-phase 31u, currents measured at time points when the cycle T<SB>1</SB>is on a crest and the cycle T<SB>2</SB>is in a trough are set as iu-, iu+, and a difference between the currents is set as a harmonic content Iu. Similarly, with respect to a v-phase 31v, currents measured at time points when the cycle T<SB>2</SB>in on a crest and the cycle T<SB>3</SB>is in a trough are set as iv-, iv+, and a difference between the currents is set as a harmonic content Iv. Also similarly, with respect to a w-phase 31w, currents measured at time points when the cycle T<SB>3</SB>is on a crest and the cycle T<SB>1</SB>is in a trough are set as iw-, iw+, and a difference between the currents is set as Iw. Finally, the polarity position θ is obtained by a formula <A>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、突極性を有する電動機の磁極位置推定方法及び装置に関する。突極性を有する電動機には、埋め込み型永久磁石同期電動機やリラクタンス電動機などがある。   The present invention relates to a magnetic pole position estimation method and apparatus for an electric motor having saliency. Examples of the electric motor having saliency include an embedded permanent magnet synchronous motor and a reluctance motor.

永久磁石を回転子内に埋め込んだ構造の埋め込み型永久磁石同期電動機(以下「IPMSM(interior permanent magnet synchronous motor)」と略称する。)は、マグネットトルクの他にリラクタンストルクも利用できるため、高効率で可変速範囲の広い電動機として、エアコンなどの家電製品、電気自動車の走行用、及び一般産業用に広く用いられている。   An embedded permanent magnet synchronous motor (hereinafter abbreviated as “IPMSM (interior permanent magnet synchronous motor)”) having a structure in which a permanent magnet is embedded in a rotor can use reluctance torque in addition to magnet torque, so that it has high efficiency. As an electric motor with a wide variable speed range, it is widely used for home appliances such as air conditioners, electric vehicles and general industries.

IPMSMは、磁極位置に応じて電機子の電流位相を制御する必要があるので、一般にエンコーダなどの機械的センサを取り付けて磁極位置情報を得ている。しかし、機械的センサは、高価であり信頼性に欠け、また設置スペースが増加するという問題もある。そこで、IPMSM各相の交流電流を測定する電流センサのみを用いて磁極位置情報を得る、様々なセンサレス制御法が提案されている。   Since IPMSM needs to control the current phase of the armature according to the magnetic pole position, generally, a mechanical sensor such as an encoder is attached to obtain magnetic pole position information. However, mechanical sensors are expensive and unreliable, and there is a problem that installation space increases. Accordingly, various sensorless control methods have been proposed in which magnetic pole position information is obtained using only a current sensor that measures an alternating current of each phase of IPMSM.

その中で、搬送波周波数成分を用いることにより、停止時を含む低速時の磁極位置を推定する技術が、非特許文献1に開示されている。この非特許文献1の技術では、搬送波信号を三相三角波とすることにより、搬送波周波数成分を重畳することにより、電磁騒音を低減させている。   Among them, Non-Patent Document 1 discloses a technique for estimating a magnetic pole position at a low speed including a stop time by using a carrier frequency component. In the technique of Non-Patent Document 1, electromagnetic noise is reduced by superimposing a carrier frequency component by making a carrier signal a three-phase triangular wave.

また、インバータに供給される直流電流に基づき磁極位置を推定する技術が、非特許文献2に開示されている。   Further, Non-Patent Document 2 discloses a technique for estimating a magnetic pole position based on a direct current supplied to an inverter.

更に、停止時及び低速時に磁極位置推定を可能とするため、高周波成分やパルス上のパイロット電圧を加える方法が知られている。IPMSMでは、突極性があることにより、dq軸のインダクタンスが異なる。そのため、高周波成分によってそれぞれインダクタンスを検出できるので、磁極位置推定が可能となる。例えば、間欠的にパイロット電圧を印加して、電流変化率から磁極位置を推定する方法が、非特許文献3に開示されている。   Furthermore, a method of adding a high-frequency component or a pilot voltage on a pulse is known in order to enable estimation of the magnetic pole position at the time of stopping and at a low speed. In IPMSM, the dq axis inductance differs due to the saliency. Therefore, since the inductance can be detected by each high frequency component, the magnetic pole position can be estimated. For example, Non-Patent Document 3 discloses a method of applying a pilot voltage intermittently and estimating a magnetic pole position from a current change rate.

小山、樋口、阿部他「PWMインバータのキャリア周波数成分を用いたIPMモータのセンサレス制御の推定精度改善」、平成14年電気学会産業応用部門大会、No.149Oyama, Higuchi, Abe et al. “Improvement of sensorless control accuracy of IPM motor using carrier frequency component of PWM inverter”, 2002 IEEJ Industrial Application Conference, No. 149 川端、遠藤、高倉「位置センサレス・モータ電流センサレス永久磁石同期モータ制御に関する検討」、平成14年電気学会産業応用部門大会、No.171Kawabata, Endo, Takakura, “Study on position sensorless motor current sensorless permanent magnet synchronous motor control”, IEEJ Industrial Application Division Conference, No. 171 M.Scroedl,1996 IEEE IAS Annual Meeting,PP.270-277M. Scroedl, 1996 IEEE IAS Annual Meeting, PP.270-277

しかしながら、非特許文献1の技術では、電流検出を搬送波の十倍程度の頻度で行う必要がある、バンドパスフィルタを必要とする、常時高周波成分を印加する必要がある、などの欠点がある。   However, the technique of Non-Patent Document 1 has drawbacks such as that current detection needs to be performed at a frequency about ten times that of a carrier wave, a band-pass filter is required, and a high-frequency component needs to be constantly applied.

また、高周波成分として、搬送波周波数よりも十分に低い周波数の正弦波を加える方法では、電流検出は通常のPWM制御と同様、1サンプリングに一度で済むが、特定の周波数成分を抽出するためのバンドパスフィルタを必要とする、電磁騒音が発生する、常時高周波成分を印加する必要がある、などの欠点がある。   In addition, in the method of adding a sine wave having a frequency sufficiently lower than the carrier frequency as a high frequency component, current detection is performed once per sampling, as in normal PWM control, but a band for extracting a specific frequency component. There are drawbacks such as requiring a pass filter, generating electromagnetic noise, and constantly applying a high-frequency component.

非特許文献2の技術では、機械的センサもホールセンサも不要となり、安価なシャント抵抗器で直流電流を測定することができる。しかしながら、磁極位置の推定に速度起電力を用いているので、原理的に低速時及び停止時には使用できない。   In the technique of Non-Patent Document 2, neither a mechanical sensor nor a Hall sensor is required, and a direct current can be measured with an inexpensive shunt resistor. However, since the speed electromotive force is used for estimating the magnetic pole position, it cannot be used in principle at low speeds or at a stop.

一方、非特許文献3の技術では、パイロット電圧印加時の電流検出が複雑となる、パイロット電圧印加時には電流制御ができない、などの欠点がある。   On the other hand, the technique of Non-Patent Document 3 has drawbacks such that current detection at the time of applying a pilot voltage is complicated and current control cannot be performed at the time of applying a pilot voltage.

そこで、本発明の目的は、バンドパスフィルタが不要であり、かつ高周波成分を常時印加する必要がなく、しかも低速時及び停止時でも磁極位置を正確に推定できる、電動機の磁極位置推定方法及び装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method and apparatus for estimating the magnetic pole position of an electric motor that does not require a bandpass filter, does not need to constantly apply a high-frequency component, and can accurately estimate the magnetic pole position even at low speeds and when stopped. Is to provide.

本発明に係る磁極位置推定方法及び装置が併用される三相PWMインバータは、単相の三角波からなる搬送波を用いてPWM信号を得るとともに、直流電圧電源から直流電圧を入力し、PWM信号に応じてスイッチ素子をオンオフすることにより、突極性を有する電動機の三相巻線に直流電圧を三相交流電圧として出力するものである。そして、PWM信号を得る際に、三相巻線の各相ごとに、搬送波の連続する三周期の期間のうち、1/3の期間で本来の指令値を三倍し、残りの2/3の期間で高周波成分を重畳させる機能を有するものである。これにより、PWM信号には、搬送波の1/3の周波数の高周波成分が重畳される。そのため、各相に流れる電流にも高周波成分が発生する。   The three-phase PWM inverter used in combination with the magnetic pole position estimation method and apparatus according to the present invention obtains a PWM signal using a carrier wave composed of a single-phase triangular wave, inputs a DC voltage from a DC voltage power source, and responds to the PWM signal. By turning on and off the switch element, a DC voltage is output as a three-phase AC voltage to the three-phase winding of the motor having saliency. Then, when obtaining the PWM signal, for each phase of the three-phase winding, the original command value is tripled in one-third of the three consecutive periods of the carrier wave, and the remaining 2/3 It has a function to superimpose high-frequency components in the period. As a result, a high frequency component having a frequency of 1/3 of the carrier wave is superimposed on the PWM signal. Therefore, a high frequency component is also generated in the current flowing in each phase.

そして、本発明に係る磁極位置推定方法は、次のようなステップからなる。まず、各相ごとに、三角波の山及び谷の時点で当該各相に流れる電流を測定し、これらの測定値の差を高調波成分とする。続いて、これらの各相ごとの高調波成分に基づき、電動機の磁極位置を推定する。また、本発明に係る磁極位置推定装置は、電流センサと演算手段とを備えている。電流センサは、各相の電流を測定する。演算手段は、各相ごとに、三角波の山及び谷の時点で電流センサを介して当該各相に流れる電流を測定し、これらの測定値の差を高調波成分とし、これらの各相ごとの高調波成分に基づき電動機の磁極位置を推定する。   The magnetic pole position estimation method according to the present invention includes the following steps. First, for each phase, the current flowing in each phase at the time of the peak and valley of the triangular wave is measured, and the difference between these measured values is taken as the harmonic component. Subsequently, the magnetic pole position of the electric motor is estimated based on the harmonic component for each phase. The magnetic pole position estimation apparatus according to the present invention includes a current sensor and a calculation means. The current sensor measures the current of each phase. The calculation means measures the current flowing through each phase through the current sensor at the time of the peak and valley of the triangular wave for each phase, and uses the difference between these measured values as a harmonic component, The magnetic pole position of the motor is estimated based on the harmonic component.

より具体的に言えば、例えば次のようなステップ又は動作になる。三相巻線をu相、v相、w相とし、搬送波の三周期のうち、最初の周期を第一周期、次の周期を第二周期、最後の周期を第三周期とする。まず、u相について、第一周期の山及び第二周期の谷の時点で測定した電流をiu-,iu+とし、これらの差を高調波成分Iuとする。同様に、v相について、第二周期の山及び第三周期の谷の時点で測定した電流をiv-,iv+とし、これらの差を高調波成分Ivとする。w相について、第三周期の山及び第一周期の谷の時点で測定した電流をiw-,iw+とし、これらの差を高調波成分Iwとする。最後に、Iu、Iv及びIwを所定の演算式に代入して磁極位置θを求める。   More specifically, for example, the following steps or operations are performed. The three-phase windings are u-phase, v-phase, and w-phase, and among the three periods of the carrier wave, the first period is the first period, the next period is the second period, and the last period is the third period. First, for the u phase, the currents measured at the first period peak and the second period valley are iu−, iu +, and the difference between them is the harmonic component Iu. Similarly, for the v phase, the current measured at the time of the peak of the second cycle and the valley of the third cycle is iv−, iv +, and the difference between them is the harmonic component Iv. For the w phase, the current measured at the peak of the third period and the valley of the first period is iw−, iw +, and the difference between them is the harmonic component Iw. Finally, Iu, Iv, and Iw are substituted into a predetermined arithmetic expression to obtain the magnetic pole position θ.

又は、三相巻線をu相、v相、w相とし、搬送波の三周期のうち、最初の周期を第一周期、次の周期を第二周期、最後の周期を第三周期とし、この三周期の前後の周期を、それぞれ第零周期及び第四周期とする。まず、u相について、第一周期及び第零周期の谷並びに第三周期及び第二周期の山の時点で測定した電流をiu+1,iu+2,iu-1,iu-2とし、これらの差{(iu+1−iu+2)−(iu-1−iu-2)}を高調波成分Iuとする。同様に、v相について、第二周期及び第一周期の谷並びに第四周期及び第三周期の山の時点で測定した電流をiv+1,iv+2,iv-1,iv-2とし、これらの差{(iv+1−iv+2)−(iv-1−iv-2)}を高調波成分Ivとする。w相について、第三周期及び第二周期の谷並びに第二周期及び第一周期の山の時点で測定した電流をiw+1,iw+2,iw-1,iw-2とし、これらの差{(iw+1−iw+2)−(iw-1−iw-2)}を高調波成分Iwとする。最後に、Iu、前記Iv及び前記Iwを所定の演算式に代入して磁極位置θを求める。 Or, the three-phase winding is u-phase, v-phase, and w-phase, and among the three periods of the carrier wave, the first period is the first period, the next period is the second period, and the last period is the third period. The periods before and after the three periods are defined as a zeroth period and a fourth period, respectively. First, the u-phase, iu + 1 the current measured at the time of the peaks of the valley and the third period and the second period of the first cycle and a zero period, iu + 2, iu- 1, and Iu- 2, these differences {(Iu + 1- iu + 2 )-(iu- 1 -iu- 2 )} is defined as a harmonic component Iu. Similarly, the v-phase, the current measured at the peak of the second period and valleys as well as the fourth period and the third period of the first cycle iv + 1, iv + 2, iv- 1, and IV- 2, these the difference {(iv + 1 -iv + 2 ) - (iv- 1 -iv- 2)} is referred to as harmonic components iv. For w phase, the third period and iw + 1 the measured current at the time of the second cycle of the trough and the second period and the first period of the mountain, iw + 2, Iw- 1, and Iw- 2, these differences {( iw + 1 -iw + 2) - (iw- 1 -iw- 2)} it is referred to as harmonic components Iw. Finally, the magnetic pole position θ is obtained by substituting Iu, Iv, and Iw into a predetermined arithmetic expression.

ここで、所定の演算式とは、例えば次式<A>である。   Here, the predetermined arithmetic expression is, for example, the following expression <A>.

θ=(1/2)tan-1[{Iu−(1/2)(Iv+Iw)}/{(√3/2)(Iv−Iw)}] ・・・<A> θ = (1/2) tan −1 [{Iu− (1/2) (Iv + Iw)} / {(√3 / 2) (Iv−Iw)}]... <A>

また、三角波の山及び谷の時点とは、例えば三角波の周期をTとすると、山及び谷を中心とするT/2の範囲内のいずれかの時であるとしてもよく、三角波に代えて鋸歯状波としてもよく、電動機が埋め込み型永久磁石同期電動機であるとしてもよい。   Further, the time points of the peaks and valleys of the triangular wave may be any time within a range of T / 2 centered on the peaks and valleys, for example, where T is the period of the triangular wave. The electric motor may be an embedded permanent magnet synchronous motor.

本発明では、三角波の山と谷で電流を測定し、三角波の三周期又は四周期に得られる六点又は八点の電流情報に基づき計算により磁極位置を求める。この方法は、突極性に基づいているので、停止時及び低速時に使用可能である。また、上式<A>は、測定値のみからなるので、パラメータ誤差の影響を受けない。   In the present invention, the current is measured at the peaks and troughs of the triangular wave, and the magnetic pole position is obtained by calculation based on the current information of six points or eight points obtained in the three or four periods of the triangular wave. Since this method is based on the saliency, it can be used at a stop and at a low speed. Further, since the above formula <A> consists only of measured values, it is not affected by parameter errors.

本発明によれば、三角波の山及び谷の時点でインバータに供給される電流を測定し、これらの測定値の差を各相ごとの高調波成分とし、これらの高調波成分に基づき磁極位置を推定することにより、バンドパスフィルタが不要であり、かつ高周波成分を常時印加する必要がなく、しかも低速時及び停止時にも磁極位置を正確に推定できる(図5参照)。また、単純な演算式(式<A>)を用いることにより、処理に要する時間を短縮できるので、今までに無い高速制御を実現できる。また、高周波成分を常時印加する必要がないので、高周波成分を常時印加する場合に比べて、騒音の低減、効率の改善、トルクリプルの低減等の効果も奏する。   According to the present invention, the current supplied to the inverter at the time of the peak and trough of the triangular wave is measured, and the difference between these measured values is used as a harmonic component for each phase, and the magnetic pole position is determined based on these harmonic components. The estimation eliminates the need for a band-pass filter and does not require a high-frequency component to be constantly applied, and can accurately estimate the magnetic pole position even at low speeds and when stopped (see FIG. 5). Further, by using a simple arithmetic expression (formula <A>), the time required for processing can be shortened, so that unprecedented high-speed control can be realized. In addition, since it is not necessary to always apply a high frequency component, effects such as noise reduction, efficiency improvement, and torque ripple reduction can be achieved as compared with the case where a high frequency component is always applied.

その結果、低価格の可変速駆動装置の速度制御範囲を大幅に広げることができる。この応用製品としては、エアコンなどの家電製品や電動パワステアリングなどの自動車用機器が考えられる。このとき、停止時を含めた低速域において滑らかな運転が可能となる。   As a result, the speed control range of the low-cost variable speed drive can be greatly expanded. As this applied product, home appliances such as an air conditioner and automobile equipment such as an electric power steering can be considered. At this time, smooth operation is possible in a low speed range including when the vehicle is stopped.

図1は、本発明に係る磁極位置推定装置の第一実施形態を示すブロック図である。以下、この図面に基づき説明する。なお、本発明に係る磁極位置推定方法については、本実施形態の磁極位置推定装置の動作として説明する。   FIG. 1 is a block diagram showing a first embodiment of a magnetic pole position estimation apparatus according to the present invention. Hereinafter, description will be given based on this drawing. The magnetic pole position estimation method according to the present invention will be described as the operation of the magnetic pole position estimation apparatus of the present embodiment.

本実施形態の磁極位置推定装置40が併用される三相PWMインバータ10は、単相三角波からなる搬送波と三相正弦波からなる信号波とを用いてPWM信号を得るとともに、直流電圧電源20から直流電圧を入力し、PWM信号に応じてスイッチ素子をオンオフすることにより、IPMSM30の三相巻線に直流電圧を三相交流電圧として出力するものである。このとき、三相PWMインバータ10は、PWM信号を得る際に、三相巻線の各相ごとに、搬送波の連続する三周期の期間のうち、1/3の期間で本来の指令値を三倍し、残りの2/3の期間で高周波成分を重畳させる。これにより、PWM信号には、搬送波の1/3の周波数の高周波成分が重畳される。その結果、各相に流れる電流にも高周波成分が発生する。   The three-phase PWM inverter 10 used in combination with the magnetic pole position estimation device 40 of the present embodiment obtains a PWM signal using a carrier wave composed of a single-phase triangular wave and a signal wave composed of a three-phase sine wave, and from the DC voltage power supply 20. A DC voltage is input, and the switch element is turned on / off according to the PWM signal, so that the DC voltage is output to the three-phase winding of the IPMSM 30 as a three-phase AC voltage. At this time, when obtaining the PWM signal, the three-phase PWM inverter 10 sets the original command value in three-thirds of the three consecutive periods of the carrier wave for each phase of the three-phase winding. The high frequency component is superimposed in the remaining 2/3 period. As a result, a high frequency component having a frequency of 1/3 of the carrier wave is superimposed on the PWM signal. As a result, a high frequency component is also generated in the current flowing in each phase.

三相PWMインバータ10は、マイクロコンピュータ又はDSPを中心に構成された制御部11と、スイッチ素子12u+,12u-,12v+,12v-,12w+,12w-からなるスイッチ部12とを備えている。スイッチ素子12u+,…は、例えばIGBT(insulated
gate bipolar transistor)であり、三相ブリッジ回路を構成する。制御部11は、磁極位置推定装置40の一部としての機能の他に、IPMSM30の一般的な制御機能を有する。その一般的な制御機能については、周知であるので説明を省略する。
The three-phase PWM inverter 10 includes a control unit 11 mainly composed of a microcomputer or a DSP, and a switch unit 12 composed of switch elements 12u +, 12u−, 12v +, 12v−, 12w +, 12w−. The switch elements 12u +,... Are, for example, IGBT (insulated
gate bipolar transistor) and constitutes a three-phase bridge circuit. The control unit 11 has a general control function of the IPMSM 30 in addition to the function as a part of the magnetic pole position estimation device 40. The general control function is well known and will not be described.

直流電圧電源20は、商用交流電源21、整流回路22、平滑コンデンサ23等からなる一般的なものである。IPMSM30は、三相巻線であるu相31u、v相31v及びw相31wと、永久磁石を埋め込んだ構造の回転子32とからなる一般的なものである。   The DC voltage power supply 20 is a general one that includes a commercial AC power supply 21, a rectifier circuit 22, a smoothing capacitor 23, and the like. The IPMSM 30 is generally composed of a u-phase 31u, a v-phase 31v, and a w-phase 31w, which are three-phase windings, and a rotor 32 having a structure in which a permanent magnet is embedded.

磁極位置推定装置40は、ホールセンサ等の電流センサ41u,41vと、制御部11の一機能としてソフトウェアによって実現されている演算手段42とを備えている。電流センサ41u,41vは、それぞれu相31u、v相31vに流れる電流を測定する。u相31u、v相31v及びw相31wはY結線で接続されているので、u相31u、v相31vに流れる電流がわかれば、w相31wに流れる電流も自ずとわかる。ホールセンサから成る電流センサ41u,41vは、スイッチ部12とIPMSM30との間の配線に挿入され、電流に応じて発生した起電力を制御部11へ出力する。   The magnetic pole position estimation device 40 includes current sensors 41 u and 41 v such as Hall sensors, and a calculation means 42 realized by software as one function of the control unit 11. Current sensors 41u and 41v measure currents flowing through u-phase 31u and v-phase 31v, respectively. Since the u-phase 31u, the v-phase 31v, and the w-phase 31w are connected by a Y connection, if the current flowing through the u-phase 31u and the v-phase 31v is known, the current flowing through the w-phase 31w is also known. The current sensors 41u and 41v made up of Hall sensors are inserted into the wiring between the switch unit 12 and the IPMSM 30 and output the electromotive force generated according to the current to the control unit 11.

図2は、本実施形態における単相三角波、各相への指令値、上下アームのスイッチ状態、及び瞬時空間電圧ベクトルの相互関係を示す波形図である。図3[1]は本実施形態における瞬時空間電圧ベクトル図、図3[2]は本実施形態における搬送波三周期分の電圧指令を示す図表である。以下、図1乃至図3に基づき説明する。   FIG. 2 is a waveform diagram showing the interrelationship between the single-phase triangular wave, the command value for each phase, the switch state of the upper and lower arms, and the instantaneous space voltage vector in this embodiment. 3 [1] is an instantaneous space voltage vector diagram in the present embodiment, and FIG. 3 [2] is a chart showing voltage commands for three periods of the carrier wave in the present embodiment. Hereinafter, description will be given with reference to FIGS.

制御部11は、単相の三角波Cからなる搬送波と三相の正弦波Su,Sv,Sw(図示せず)からなる信号波とを比較しつつ図3[2]に基づいてPWM信号を得るとともに、そのPWM信号に応じてスイッチ素子12u+,…をオンオフする。その結果、相電圧vu,vv,vw及び線間電圧vuv,vvw,vwu(図示せず)が得られる。図3[2]において、指令値のαは、変調率であり、すなわち−1以上かつ1以下である。「α=1」のとき常に上アームオンであり、「α=−1」のとき常に下アームオンである。本来の指令値(vu0 *,vv0 *,vw0 *)の3倍の値を入力する理由は、その前後で「α」+「−α」=0になるからである。 The control unit 11 obtains a PWM signal based on FIG. 3 [2] while comparing a carrier wave made up of a single-phase triangular wave C and signal waves made up of three-phase sine waves Su, Sv, Sw (not shown). At the same time, the switch elements 12u +,... Are turned on / off according to the PWM signal. As a result, phase voltages vu, vv, vw and line voltages vuv, vvw, vwu (not shown) are obtained. In FIG. 3 [2], α of the command value is a modulation rate, that is, −1 or more and 1 or less. When “α = 1”, the upper arm is always on, and when “α = −1”, the lower arm is always on. The reason why a value three times the original command value (vu 0 * , vv 0 * , vw 0 * ) is input is that “α” + “− α” = 0 before and after that.

このとき、演算手段42は次のように動作する。三角波Cの連続する三周期のうち、最初の周期を周期T1、次の周期を周期T2、最後の周期を周期T3とする。そして、u相31uについて、周期T1の山及び周期T2の谷の時点で測定した電流をiu-,iu+とし、これらの差を高調波成分Iuとする。同様に、v相31vについて、周期T2の山及び周期T3の谷の時点で測定した電流をiv-,iv+とし、これらの差を高調波成分Ivとする。同様に、w相31wについて、周期T3の山及び周期T1の谷の時点で測定した電流をiw-,iw+とし、これらの差を高調波成分Iwとする。最後に、磁極位置θを前述の式<A>によって求める。 At this time, the calculating means 42 operates as follows. Of the three consecutive cycles of the triangular wave C, the first cycle is the cycle T 1 , the next cycle is the cycle T 2 , and the last cycle is the cycle T 3 . For the u phase 31u, the current measured at the time point of the peak of the cycle T 1 and the valley of the cycle T 2 is iu−, iu +, and the difference between them is the harmonic component Iu. Similarly, for the v phase 31v, the current measured at the time point of the peak of the period T 2 and the valley of the period T 3 is iv−, iv +, and the difference between them is the harmonic component Iv. Similarly, for the w phase 31w, the current measured at the peak of the period T 3 and the valley of the period T 1 is iw−, iw +, and the difference between them is the harmonic component Iw. Finally, the magnetic pole position θ is obtained by the above-described formula <A>.

PWM発生用の搬送波を単相の三角波Cにし、図3[2]に基づいてスイッチ素子12u+,…をオンオフすることにより、高周波成分が発生する。本実施形態では、三角波Cの山と谷で各相の電流を測定し、三角波Cの三周期T1〜T3で得られる六点の電流情報iu-,iu+,iv-,iv+,iw-,iw+に基づき計算により磁極位置θを求める。この方法は、突極性に基づいているので、低速時及び停止時に使用可能である。また、上式<A>は、測定値のみからなるので、パラメータ誤差の影響を受けない。 The carrier wave for generating PWM is a single-phase triangular wave C, and the switching elements 12u +,... Are turned on and off based on FIG. In the present embodiment, the current of each phase is measured at the peaks and valleys of the triangular wave C, and six points of current information iu−, iu +, iv−, iv +, iw− obtained in the three periods T 1 to T 3 of the triangular wave C are obtained. , Iw + to obtain the magnetic pole position θ by calculation. Since this method is based on saliency, it can be used at low speeds and when stopped. Further, since the above formula <A> consists only of measured values, it is not affected by parameter errors.

図4[1]はα−β座標系における磁極位置θを示すグラフであり、図4[2]は本実施形態における単相三角波と電流の測定タイミングとを示す波形図である。以下、図1乃至図4に基づき、上式<A>の導出方法について説明する。なお、図4[2]には、参考のため、三相三角波Cu,Cv,Cwを単相三角波Cに重ねて表示している。   FIG. 4 [1] is a graph showing the magnetic pole position θ in the α-β coordinate system, and FIG. 4 [2] is a waveform diagram showing the single-phase triangular wave and the current measurement timing in this embodiment. Hereinafter, a method for deriving the above formula <A> will be described with reference to FIGS. In FIG. 4 [2], the three-phase triangular waves Cu, Cv, and Cw are superimposed on the single-phase triangular wave C for reference.

IPMSMの一般的な電圧方程式は、α−β座標系で次式<1>のように表すことができる。   A general voltage equation of IPMSM can be expressed by the following equation <1> in the α-β coordinate system.

Figure 2006230056
ただし、L0=(Ld+Lq)/2、L1=(Ld−Lq)/2、Ld:d軸インダクタンス、Lq:q軸インダクタンス、R:電機子巻線抵抗、Ψ:永久磁石による界磁磁束である。
Figure 2006230056
However, L0 = (Ld + Lq) / 2, L1 = (Ld−Lq) / 2, Ld: d-axis inductance, Lq: q-axis inductance, R: armature winding resistance, Ψ: field magnetic flux by permanent magnet .

ここで、モータ回転角周波数ω1に対して十分大きい搬送波角周波数ωhを設定し、搬送波周波数成分について考える。すると、式<1>の右辺第1項の電機子巻線抵抗による電圧降下は、高周波電流による電機子巻線のリアクタンス電圧降下に比べ十分小さいので、無視できる。右辺第3項のインダクタンスの変化による電圧降下は、印加電圧の変化に対してインダクタンスの変化が十分に小さいため、無視できる。右辺第4項の速度起電力は、回転子位置の変化も十分に小さいため、無視できる。   Here, a sufficiently large carrier angular frequency ωh is set with respect to the motor rotational angular frequency ω1, and a carrier frequency component is considered. Then, the voltage drop due to the armature winding resistance in the first term on the right side of Equation <1> is sufficiently smaller than the reactance voltage drop of the armature winding due to the high-frequency current and can be ignored. The voltage drop due to the change in inductance in the third term on the right side can be ignored because the change in inductance is sufficiently small with respect to the change in applied voltage. The speed electromotive force of the fourth term on the right side is negligible because the change in the rotor position is sufficiently small.

したがって、α−β座標系における搬送波周波数の高周波電圧に対する電圧方程式は、次式<2>で表すことができる。   Therefore, the voltage equation for the high-frequency voltage of the carrier frequency in the α-β coordinate system can be expressed by the following equation <2>.

Figure 2006230056
ここで、添え字hは搬送波周波数成分であることを示す。
Figure 2006230056
Here, the suffix h indicates a carrier frequency component.

そして、各相の高調波電圧が対称波であるとし、式<2>を電流について解くと、各相それぞれの電流解を得ることができる。続いて、求めた電流から各相それぞれ測定値の差分をとって基本波成分を除去することにより、磁極位置推定に必要な電流を求める。なお、この磁極位置推定法はパラメータ誤差の影響を受けない。以下に詳しく説明する。   Then, assuming that the harmonic voltage of each phase is a symmetric wave and solving Equation <2> for the current, the current solution for each phase can be obtained. Subsequently, the current necessary for the magnetic pole position estimation is obtained by taking the difference between the measured values of each phase from the obtained current and removing the fundamental wave component. This magnetic pole position estimation method is not affected by parameter errors. This will be described in detail below.

式<2>は、次式<3>のように書き換えることができる。   Expression <2> can be rewritten as the following expression <3>.

Figure 2006230056
ただし。Δ=L0−L1である。
Figure 2006230056
However. Δ = L0 2 −L1 2

ここで、図4[2]に、単相三角波からなる搬送波と電流測定のタイミングとを示している。測定点↓近辺とは、三角波の一周期をTとすると、三角波の山及び谷を中心とするT/2(すなわち左右にT/4ずつ)の範囲内のことである。   Here, FIG. 4 [2] shows a carrier wave composed of a single-phase triangular wave and a current measurement timing. The vicinity of the measurement point ↓ is within a range of T / 2 (that is, T / 4 each on the left and right) centered on a peak and valley of the triangular wave, where T is one period of the triangular wave.

ここで、各相の高周波電圧が対称波であるとする。このことは、基本波が小さいほど成り立つ。つまり、   Here, it is assumed that the high-frequency voltage of each phase is a symmetric wave. This is true as the fundamental wave is smaller. That means

Figure 2006230056
となる。そして、iαhは、式<3>,<4>から次のように表せる。
Figure 2006230056
It becomes. And iαh can be expressed as follows from the formulas <3> and <4>.

diαh/dt=Vh{(L0−L1cos2θ)cosωht−L1sin2θ・sinωht} ・・・<5>
∴iαh=(Vh/ωhΔ){(L0−L1cos2θ)sinωht+L1sin2θ・cosωht} ・・・<6>
diαh / dt = Vh {(L0−L1cos2θ) cosωht−L1sin2θ · sinωht} <5>
∴iαh = (Vh / ωhΔ) {(L0−L1cos2θ) sinωht + L1sin2θ · cosωht} <6>

図2[2]の測定点↓は、対応する相のωht=0及びπである。そのため、u相では、式<6>にωht=0,πを代入して、
iuh=(Vh1/ωhΔ)(±L1sin2θ) ・・・<7>
となる。ただし、+:ωht=0、−:ωht=π、Vh1は相電圧の搬送波周波数成分である。
The measurement point ↓ in FIG. 2 [2] is ωht = 0 and π of the corresponding phase. Therefore, in the u phase, substituting ωht = 0, π into the formula <6>
iuh = (Vh1 / ωhΔ) (± L1sin2θ) (7)
It becomes. However, +: ωht = 0, −: ωht = π, and Vh1 are carrier frequency components of the phase voltage.

続いて、式<7>で示される±の二つの測定値の差分をとって、
2Iuh=(2Vh1/ωhΔ)L1sin2θ ・・・<8>
が得られる。v相、w相についても同様に考えると、測定点↓の位置での測定値により、
2Ivh=(2Vh1/ωhΔ)L1sin2(θ−2π/3) ・・・<9>
2Iwh=(2Vh1/ωhΔ)L1sin2(θ+2π/3) ・・・<10>
が得られる。
Subsequently, taking the difference between the two measured values of ± shown in Equation <7>,
2Iuh = (2Vh1 / ωhΔ) L1sin2θ ... <8>
Is obtained. Considering v phase and w phase in the same way, according to the measured value at the measurement point ↓,
2Ivh = (2Vh1 / ωhΔ) L1sin2 (θ-2π / 3) ... <9>
2Iwh = (2Vh1 / ωhΔ) L1sin2 (θ + 2π / 3) ... <10>
Is obtained.

そして、式<8>〜<10>により、
Iuh+(−1/2+j√3/2)Ivh+(−1/2−j√3/2)Iwh=(3/2)(Vh1/ωhΔ)(sinδ+jcosδ) ・・・<11>
が得られる。ただし、δ=2θとする。
And by formulas <8>-<10>
Iuh + (− 1/2 + j√3 / 2) Ivh + (− 1 / 2−j√3 / 2) Iwh = (3/2) (Vh1 / ωhΔ) (sinδ + jcosδ) (11)
Is obtained. However, δ = 2θ.

よって、式<11>により、
δ=2θ=tan-1(実部)/(虚部) ・・・<12>
として磁極位置θが求められる。
Therefore, by equation <11>
δ = 2θ = tan −1 (real part) / (imaginary part) ・ ・ ・ <12>
As a result, the magnetic pole position θ is obtained.

すなわち、式<12>は次のようになる。   That is, the formula <12> is as follows.

θ=(1/2)tan-1[{Iu−(1/2)(Iv+Iw)}/{(√3/2)(Iv−Iw)}] ・・・<A>
ただし、式<A>では、添え字hを省略して簡潔に表記している。
θ = (1/2) tan −1 [{Iu− (1/2) (Iv + Iw)} / {(√3 / 2) (Iv−Iw)}]... <A>
However, in the expression <A>, the subscript h is omitted, and the expression is concise.

以下に、本実施形態について幾つか補足する。   Below, some supplementary explanations will be given for this embodiment.

(1).各相の高調波成分は、ω1<<ωhの範囲において
|vuh|=(2E/π)cos(πvu/2E) ・・・<13>
|vvh|=(2E/π)cos(πvv/2E) ・・・<14>
|vwh|=(2E/π)cos(πvw/2E) ・・・<15>
となる。ただしE:Edc/2である。vu,vv,vwは、瞬時値であり、符号も考慮する。よって、5%の誤差範囲は、
|vu/E|≦0.202 ・・・<16>
となる。10%の誤差範囲は、
|vu/E|≦0.287 ・・・<17>
となる。
(1). The harmonic component of each phase is in the range of ω1 << ωh: | vuh | = (2E / π) cos (πvu / 2E) (13)
| Vvh | = (2E / π) cos (πvv / 2E) ... <14>
| Vwh | = (2E / π) cos (πvw / 2E) ... <15>
It becomes. However, E: Edc / 2. vu, vv, and vw are instantaneous values, and the sign is also taken into consideration. Therefore, the error range of 5% is
| Vu / E | ≦ 0.202 ... <16>
It becomes. The 10% error range is
| Vu / E | ≦ 0.287 ・ ・ ・ <17>
It becomes.

(2).元の電圧指令通りの電圧を平均値として加えるためには、
|vu|<E/3=0.333E ・・・<18>
である。又は、図4[2]に示す単相三角波Cの振幅は、三相正弦波の振幅の三倍よりも大きくする。
(2). To add the voltage according to the original voltage command as an average value,
| Vu | <E / 3 = 0.333E ... <18>
It is. Alternatively, the amplitude of the single-phase triangular wave C shown in FIG. 4 [2] is made larger than three times the amplitude of the three-phase sine wave.

(3).式<8>〜<10>などのようにωhが分母に有るので、ωhが大き過ぎると検出精度が下がる。   (3). Since ωh is in the denominator as in the formulas <8> to <10>, the detection accuracy decreases when ωh is too large.

(4).各相の電流(基本波成分)は、対応する二点の平均値をとる。   (4). The current (fundamental wave component) of each phase takes an average value of two corresponding points.

(5).電圧が大きくなる範囲では、誘起電圧情報を利用する。   (5). In the range where the voltage increases, the induced voltage information is used.

次に、本発明に係る磁極位置推定方法及び装置の第二実施形態を説明する。第一実施形態と異なる部分は、演算手段の動作だけであるので、図1乃至図3に基づき説明する。   Next, a second embodiment of the magnetic pole position estimation method and apparatus according to the present invention will be described. Since the part different from the first embodiment is only the operation of the calculation means, it will be described with reference to FIGS.

本実施形態の演算手段42は次のように動作する。図2に示すように、三角波Cの連続する三周期のうち、最初の周期を周期T1、次の周期を周期T2、最後の周期を周期T3とし、この三周期の前後の周期をそれぞれ周期T0及び周期T4とする。そして、u相31uについて、周期T1及び周期T0の谷並びに周期T3及び周期T2の山の時点で測定した電流をiu+1,iu+2,iu-1,iu-2とし、これらの差{(iu+1−iu+2)−(iu-1−iu-2)}を高調波成分Iuとする。同様に、v相31vについて、周期T2及び周期T1の谷並びに周期T4及び周期T3の山の時点で測定した電流をiv+1,iv+2,iv-1,iv-2とし、これらの差{(iv+1−iv+2)−(iv-1−iv-2)}を高調波成分Ivとする。w相31wについて、周期T3及び周期T2の谷並びに周期T2及び周期T1の山の時点で測定した電流をiw+1,iw+2,iw-1,iw-2とし、これらの差{(iw+1−iw+2)−(iw-1−iw-2)}を高調波成分Iwとする。最後に、磁極位置θを前述の式<A>によって求める。本実施形態も、第一実施形態と同等の効果を奏する。 The calculation means 42 of this embodiment operates as follows. As shown in FIG. 2, among the three consecutive cycles of the triangular wave C, the first cycle is the cycle T 1 , the next cycle is the cycle T 2 , and the last cycle is the cycle T 3. Let them be period T 0 and period T 4 , respectively. Then, the u-phase 31u, the period T 1 and period T 0 of the trough as well as the period T 3 and period T 2 of the current measured at the mountain iu + 1, iu + 2, iu- 1, and Iu- 2, these the difference {(iu + 1 -iu + 2 ) - (iu- 1 -iu- 2)} is referred to as harmonic components Iu. Similarly, the v-phase 31v, period T 2 and the period T 1 of the valley and the period T 4 and the period T current iv + 1 measured at the time of the mountain 3, iv + 2, iv- 1 , and IV- 2, these difference {(iv + 1 -iv + 2 ) - (iv- 1 -iv- 2)} is referred to as harmonic components iv. For w phase 31w, the current measured at the point of the mountain of the period T 3 and valleys as well as the period T 2 and the period T 1 of the cycle T 2 iw + 1, iw + 2, iw- 1, and Iw- 2, these differences { Let (iw + 1- iw + 2 )-(iw- 1 -iw- 2 )} be the harmonic component Iw. Finally, the magnetic pole position θ is obtained by the above-described formula <A>. This embodiment also has the same effect as the first embodiment.

次に、本発明について、別の観点から別の表現を用いて、もう一度説明する。   Next, the present invention will be described once again from another viewpoint using different expressions.

本発明では、搬送波信号の1/3の周波数成分を重畳することにより、搬送波の山と谷での電流検出のみでよく、バンドパスフィルタを不要とする磁極位置推定方法を提供する。バンドパスフィルタを用いないことから、高周波成分は間欠的に加えることも可能である。   The present invention provides a magnetic pole position estimation method that eliminates the need for a band-pass filter by superimposing a 1/3 frequency component of a carrier wave signal so that only current detection at the peaks and valleys of the carrier wave is required. Since no bandpass filter is used, high frequency components can be added intermittently.

1.磁極位置推定のためのPWM波形及び電流検出   1. PWM waveform and current detection for magnetic pole position estimation

1/3搬送波周波数成分を重畳するために、搬送波3周期分を1セットとし、これを6分割する。図3[2]に搬送波3周期分の各相の電圧指令を示す。各相ごとに、1/3の期間は本来の指令値(vu0 *,vv0 *,vw0 *)を3倍し、残りの2/3の期間は重畳させる高周波成分とする。重畳成分は大きさαの矩形波状となる。 In order to superimpose the 1/3 carrier frequency component, one set of 3 carrier wave periods is divided into 6 sets. FIG. 3 [2] shows voltage commands for each phase for three periods of the carrier wave. For each phase, the original command value (vu 0 * , vv 0 * , vw 0 * ) is tripled in the 1/3 period, and the remaining 2/3 period is a high frequency component to be superimposed. The superimposition component has a rectangular wave shape of size α.

図2に、各相の電圧指令を零、αをEdc/4(変調率0.5)としたときの搬送波波形とPWM信号を示す。瞬時空間ベクトル0〜7は図3[1]に示すものである。図2中の搬送波信号に○印で示したA〜Hは電流検出のタイミングを示しており、一般的なPWMによる電流制御の場合と同様、搬送波信号の山及び谷で検出する。   FIG. 2 shows a carrier wave waveform and a PWM signal when the voltage command of each phase is zero and α is Edc / 4 (modulation factor 0.5). Instantaneous space vectors 0 to 7 are shown in FIG. A to H indicated by circles in the carrier wave signal in FIG. 2 indicate current detection timings, and are detected at peaks and troughs of the carrier wave signal as in the case of current control by general PWM.

2.磁極位置推定方法   2. Magnetic pole position estimation method

上述のPWM信号及び検出タイミングで測定した電流から磁極位置を推定する方法を説明する。高周波成分を矩形波と考えるか、正弦波と考えるかによって、次の二種類の推定方法がある。   A method for estimating the magnetic pole position from the PWM signal and the current measured at the detection timing will be described. There are two types of estimation methods depending on whether the high frequency component is considered as a rectangular wave or a sine wave.

2−1.高周波成分を矩形波と考えた場合の推定方法(第二実施形態)   2-1. Estimation method when a high-frequency component is considered as a rectangular wave (second embodiment)

重畳した成分を矩形波と考え、パルス電圧印加時の電流変化率による磁極位置推定方法(非特許文献3)を参考にする。非特許文献3では、一つの空間ベクトルを印加中に二度電流検出を行い、連続した二点の検出値の差分により、電流変化率を求めている。これに対し、本発明では、搬送波の山と谷で電流検出を行い、搬送波一周期平均の電流変化率を用いる。図2に示すA点からH点で検出した電流を用いて、次のように磁極位置を推定する。   The superimposed component is considered as a rectangular wave, and a magnetic pole position estimation method based on the current change rate when applying a pulse voltage (Non-Patent Document 3) is referred to. In Non-Patent Document 3, current detection is performed twice while a single space vector is being applied, and the current change rate is obtained from the difference between two consecutive detection values. On the other hand, in the present invention, current detection is performed at the peak and valley of the carrier wave, and the average current change rate of the carrier wave is used. Using the current detected from point A to point H shown in FIG. 2, the magnetic pole position is estimated as follows.

1(2θ)=K1{cos(−2θ)+jsin(−2θ)}
=ΔΔiu+ΔΔivej2/3π+ΔΔiwe-j2/3π ・・・<21>
ただし、ΔΔiu=(iuC−iuA)−(iuF−iuD
ΔΔiv=(ivE−ivC)−(ivH−ivF
ΔΔiw=(iwG−iwE)−(iwD−iwB
θは磁極位置であり、添字A〜Hは図2中の電流検出タイミングを示す。式<21>の実部と虚部の比によって、磁極位置を求めることができる。
f 1 (2θ) = K 1 {cos (−2θ) + jsin (−2θ)}
= ΔΔiu + ΔΔive j2 / 3π + ΔΔiwe -j2 / 3π ... <21>
However, ΔΔiu = (iu C -iu A ) - (iu F -iu D)
ΔΔiv = (iv E −iv C ) − (iv H −iv F )
ΔΔiw = (iw G −iw E ) − (iw D −iw B )
θ is the magnetic pole position, and the subscripts A to H indicate the current detection timing in FIG. The magnetic pole position can be obtained from the ratio of the real part to the imaginary part of the formula <21>.

2−2.高周波成分を正弦波と考えた場合の推定方法(第一実施形態)   2-2. Estimation method when a high frequency component is considered as a sine wave (first embodiment)

重畳した成分を正弦波と考え、各相に重畳した搬送波の1/3周波数成分の正弦波電圧のピークにおける検出電流から含まれる高周波電流の大きさを求め、磁極位置を推定する。高周波電流を抽出するために、高周波電圧の正負それぞれのピークにおける電流の差分をとる。図2に示すB点からG点で検出した電流を用いて、以下のように磁極位置を推定する。   Considering the superimposed component as a sine wave, the magnitude of the high-frequency current contained in the detected current at the peak of the sine wave voltage of the 1/3 frequency component of the carrier wave superimposed on each phase is obtained, and the magnetic pole position is estimated. In order to extract the high-frequency current, the difference between the currents at the positive and negative peaks of the high-frequency voltage is taken. Using the current detected from point B to point G shown in FIG. 2, the magnetic pole position is estimated as follows.

2(2θ)=K2{sin(2θ)+jcos(2θ)}
=Δiu+Δivej2/3π+Δiwe-j2/3π ・・・<22>
ただし、Δiu=iuB−iuE
Δiv=ivD−ivG
Δiw=iwF−iwC
式<22>の実部と虚部の比によって、磁極位置を求めることができる。
f 2 (2θ) = K 2 {sin (2θ) + jcos (2θ)}
= Δiu + Δive j2 / 3π + Δiwe- j2 / 3π ... <22>
However, Δiu = iu B -iu E
Δiv = iv D −iv G
Δiw = iw F −iw C
The magnetic pole position can be obtained from the ratio of the real part and the imaginary part of the formula <22>.

なお、αをEdc/2とし、高周波成分印加時の変調率を1とすると、インバータ直流部電流(図1のidc)のみで検出すべき相の電流が把握できる。   If α is Edc / 2 and the modulation factor at the time of applying the high frequency component is 1, the current of the phase to be detected can be grasped only by the inverter DC section current (idc in FIG. 1).

3.まとめ   3. Summary

本発明に係るIPMSMの磁極位置推定方法よれば、PWM搬送波信号の1/3の周波数成分を重畳することにより、次の特長を有する。   According to the magnetic pole position estimation method of the IPMSM according to the present invention, by superimposing the 1/3 frequency component of the PWM carrier wave signal, it has the following features.

1)バンドパスフィルタを必要としない。
2)電流検出は搬送波信号の山及び谷のみで行う。
3)高周波成分を常時印加する必要は無い。
4)インバータ直流部電流のみを検出するシステムにも適用可能である。
1) No band pass filter is required.
2) Current detection is performed only at the peaks and valleys of the carrier signal.
3) There is no need to constantly apply high frequency components.
4) The present invention can also be applied to a system that detects only the inverter DC section current.

なお、本発明では、電圧指令の最大値が従来の1/3となるため、中・高速域では速度起電力を利用した方法などの別の磁極位置推定方法に切り替えてもよい。   In the present invention, since the maximum value of the voltage command is 1/3 of the conventional value, the method may be switched to another magnetic pole position estimation method such as a method using speed electromotive force in the middle / high speed range.

次に、本発明に係る磁極位置推定方法及び装置の実機実験結果を、実施例1として説明する。   Next, the actual machine experiment result of the magnetic pole position estimation method and apparatus according to the present invention will be described as a first embodiment.

図5[1][2]にそれぞれ、第一及び第二実施形態で述べた方法による磁極位置推定結果を示す。試料機は、富士電機製1.5kW、90HzのIPMSM(GNA152GA1−M2G)を用いた。実験では、V/f制御によるオープンループ制御でモータを駆動し、磁極位置を推定した。無負荷で基本波の周波数は5Hzで運転し、高周波成分の大きさαはEdc/4とした。いずれの方法も磁極位置を推定できていることが確認できた。   FIGS. 5 [1] and [2] show the magnetic pole position estimation results by the methods described in the first and second embodiments, respectively. As a sample machine, 1.5 kW, 90 Hz IPMSM (GNA152GA1-M2G) manufactured by Fuji Electric was used. In the experiment, the motor was driven by open loop control by V / f control, and the magnetic pole position was estimated. The fundamental frequency was operated at 5 Hz with no load, and the magnitude α of the high frequency component was Edc / 4. It was confirmed that both methods were able to estimate the magnetic pole position.

本発明に係る磁極位置推定装置の第一及び第二実施形態を示すブロック図である。It is a block diagram which shows 1st and 2nd embodiment of the magnetic pole position estimation apparatus which concerns on this invention. 本実施形態における単相三角波、各相への指令値、上下アームのスイッチ状態、及び瞬時空間電圧ベクトルの相互関係を示す波形図である。It is a wave form diagram which shows the interrelationship of the single phase triangular wave in this embodiment, the command value to each phase, the switch state of an upper and lower arm, and an instantaneous space voltage vector. 図3[1]は本実施形態における瞬時空間電圧ベクトル図であり、図3[2]は本実施形態における搬送波三周期分の電圧指令を示す図表である。FIG. 3 [1] is an instantaneous space voltage vector diagram in the present embodiment, and FIG. 3 [2] is a chart showing voltage commands for three periods of the carrier wave in the present embodiment. 図4[1]はα−β座標系における磁極位置θを示すグラフであり、図4[2]は本実施形態における単相三角波と電流の測定タイミングとを示す波形図である。FIG. 4 [1] is a graph showing the magnetic pole position θ in the α-β coordinate system, and FIG. 4 [2] is a waveform diagram showing the single-phase triangular wave and the current measurement timing in this embodiment. 第一及び第二実施形態における実機実験結果を示す波形図である。It is a wave form diagram which shows the actual machine experiment result in 1st and 2nd embodiment.

符号の説明Explanation of symbols

10 三相PWMインバータ
11 制御部
12 スイッチ部
12u+,12u-,12v+,12v-,12w+,12w- スイッチ素子
20 直流電圧電源
21 商用交流電源
22 整流回路
23 平滑コンデンサ
30 IPMSM
31u u相
31v v相
31w w相
32 回転子
40 磁極位置推定装置
41u,41v 電流センサ
42 演算手段
θ 磁極位置
DESCRIPTION OF SYMBOLS 10 Three-phase PWM inverter 11 Control part 12 Switch part 12u +, 12u-, 12v +, 12v-, 12w +, 12w- Switch element 20 DC voltage power supply 21 Commercial AC power supply 22 Rectifier circuit 23 Smoothing capacitor 30 IPMSM
31u u phase 31v v phase 31w w phase 32 rotor 40 magnetic pole position estimation device 41u, 41v current sensor 42 computing means θ magnetic pole position

Claims (14)

単相の三角波からなる搬送波を用いてPWM信号を得るとともに、直流電圧電源から直流電圧を入力し、前記PWM信号に応じてスイッチ素子をオンオフすることにより、突極性を有する電動機の三相巻線に前記直流電圧を三相交流電圧として出力する三相PWMインバータに併用され、前記電動機の磁極の位置を推定する方法であって、
前記PWM信号を得る際に、前記三相巻線の各相ごとに、前記搬送波の連続する三周期の期間のうち、1/3の期間で本来の指令値を三倍し、残りの2/3の期間で高周波成分を重畳させる機能を有する前記三相PWMインバータに併用され、
前記各相ごとに、前記三角波の山及び谷の時点で当該各相に流れる電流を測定し、これらの測定値の差を高調波成分とし、
これらの各相ごとの高調波成分に基づき前記電動機の磁極位置を推定する、
ことを特徴とする電動機の磁極位置推定方法。
A three-phase winding of an electric motor having saliency is obtained by obtaining a PWM signal using a carrier wave composed of a single-phase triangular wave, inputting a DC voltage from a DC voltage power supply, and turning on and off the switch element according to the PWM signal. Is used in combination with a three-phase PWM inverter that outputs the DC voltage as a three-phase AC voltage, and estimates the magnetic pole position of the motor,
When obtaining the PWM signal, for each phase of the three-phase winding, the original command value is tripled in one third of the three consecutive periods of the carrier wave, and the remaining 2 / Used in combination with the three-phase PWM inverter having a function of superimposing high-frequency components in three periods;
For each phase, measure the current flowing in each phase at the time of the peak and valley of the triangular wave, the difference between these measurements as a harmonic component,
Estimating the magnetic pole position of the motor based on the harmonic components for each of these phases,
A method for estimating the magnetic pole position of an electric motor.
前記三相巻線をu相、v相、w相とし、
前記三周期のうち、最初の周期を第一周期、次の周期を第二周期、最後の周期を第三周期としたとき、
前記u相について、前記第一周期の山及び前記第二周期の谷の時点で測定した電流をiu-,iu+とし、これらの差を高調波成分Iuとし、
前記v相について、前記第二周期の山及び前記第三周期の谷の時点で測定した電流をiv-,iv+とし、これらの差を高調波成分Ivとし、
前記w相について、前記第三周期の山及び前記第一周期の谷の時点で測定した電流をiw-,iw+とし、これらの差を高調波成分Iwとし、
前記Iu、前記Iv及び前記Iwを所定の演算式に代入して磁極位置θを求める、
請求項1記載の電動機の磁極位置推定方法。
The three-phase windings are u-phase, v-phase and w-phase,
Among the three periods, when the first period is the first period, the next period is the second period, and the last period is the third period,
For the u phase, the current measured at the time of the peak of the first cycle and the valley of the second cycle is iu−, iu +, and the difference between these is the harmonic component Iu,
For the v phase, the current measured at the time of the peak of the second cycle and the valley of the third cycle is iv−, iv +, and the difference between these is the harmonic component Iv,
For the w phase, the current measured at the peak of the third period and the valley of the first period is iw−, iw +, and the difference between these is the harmonic component Iw,
Substituting the Iu, the Iv, and the Iw into a predetermined arithmetic expression to obtain the magnetic pole position θ.
The method for estimating a magnetic pole position of an electric motor according to claim 1.
前記三相巻線をu相、v相、w相とし、
前記三周期のうち、最初の周期を第一周期、次の周期を第二周期、最後の周期を第三周期とし、
この三周期の前後の周期を、それぞれ第零周期及び第四周期としたとき、
前記u相について、前記第一周期及び前記第零周期の谷並びに前記第三周期及び前記第二周期の山の時点で測定した電流をiu+1,iu+2,iu-1,iu-2とし、これらの差{(iu+1−iu+2)−(iu-1−iu-2)}を高調波成分Iuとし、
前記v相について、前記第二周期及び前記第一周期の谷並びに前記第四周期及び前記第三周期の山の時点で測定した電流をiv+1,iv+2,iv-1,iv-2とし、これらの差{(iv+1−iv+2)−(iv-1−iv-2)}を高調波成分Ivとし、
前記w相について、前記第三周期及び前記第二周期の谷並びに前記第二周期及び前記第一周期の山の時点で測定した電流をiw+1,iw+2,iw-1,iw-2とし、これらの差{(iw+1−iw+2)−(iw-1−iw-2)}を高調波成分Iwとし、
前記Iu、前記Iv及び前記Iwを所定の演算式に代入して磁極位置θを求める、
請求項1記載の電動機の磁極位置推定方法。
The three-phase windings are u-phase, v-phase and w-phase,
Of the three cycles, the first cycle is the first cycle, the next cycle is the second cycle, the last cycle is the third cycle,
When the periods before and after these three periods are the zeroth period and the fourth period, respectively,
For the u-phase, the first period and the first zero-cycle valley and the third period and the current measured at the peak of the second period iu + 1, iu + 2, iu- 1, and Iu- 2, these differences {(iu + 1 -iu + 2 ) - (iu- 1 -iu- 2)} was used as a harmonic components Iu,
For the v phase, the second period and the current measured at the time of the peaks of valleys and the fourth period and the third period of the first cycle iv + 1, iv + 2, iv- 1, and IV- 2, these differences {(iv + 1 -iv + 2 ) - (iv- 1 -iv- 2)} was used as a harmonic components iv,
For the w-phase, the third period and the second period of the trough and the second period and the current measured at the time of the mountain of the first period iw + 1, iw + 2, iw- 1, and Iw- 2, these differences {(iw + 1 -iw + 2 ) - (iw- 1 -iw- 2)} was a harmonic component Iw,
Substituting the Iu, the Iv, and the Iw into a predetermined arithmetic expression to obtain the magnetic pole position θ.
The method for estimating a magnetic pole position of an electric motor according to claim 1.
前記所定の演算式が次式<A>である、
θ=(1/2)tan-1[{Iu−(1/2)(Iv+Iw)}/{(√3/2)(Iv−Iw)}] ・・・<A>
請求項2又は3記載の電動機の磁極位置推定方法。
The predetermined arithmetic expression is the following expression <A>.
θ = (1/2) tan −1 [{Iu− (1/2) (Iv + Iw)} / {(√3 / 2) (Iv−Iw)}]... <A>
The method of estimating a magnetic pole position of an electric motor according to claim 2 or 3.
前記三角波の山及び谷の時点とは、当該三角波の周期をTとすると、当該山及び谷を中心とするT/2の範囲内のいずれかの時である、
請求項1乃至4のいずれかに記載の電動機の磁極位置推定方法。
The time point of the peak and valley of the triangular wave is any time within a range of T / 2 centered on the peak and valley, where T is the period of the triangular wave.
The method for estimating a magnetic pole position of an electric motor according to any one of claims 1 to 4.
前記三角波に代えて鋸歯状波とした、
請求項1乃至5のいずれかに記載の電動機の磁極位置推定方法。
A sawtooth wave instead of the triangular wave,
The method for estimating a magnetic pole position of an electric motor according to claim 1.
前記電動機が埋め込み型永久磁石同期電動機である、
請求項1乃至6のいずれかに記載の電動機の磁極位置推定方法。
The electric motor is an embedded permanent magnet synchronous motor;
The method for estimating a magnetic pole position of an electric motor according to claim 1.
単相の三角波からなる搬送波を用いてPWM信号を得るとともに、直流電圧電源から直流電圧を入力し、前記PWM信号に応じてスイッチ素子をオンオフすることにより、突極性を有する電動機の三相巻線に前記直流電圧を三相交流電圧として出力する三相PWMインバータに併用され、前記電動機の磁極の位置を推定する装置であって、
前記PWM信号を得る際に、前記三相巻線の各相ごとに、前記搬送波の連続する三周期の期間のうち、1/3の期間で本来の指令値を三倍し、残りの2/3の期間で高周波成分を重畳させる機能を有する前記三相PWMインバータに併用され、
前記各相の電流を測定する電流センサと、
前記各相ごとに、前記三角波の山及び谷の時点で前記電流センサを介して当該各相に流れる電流を測定し、これらの測定値の差を高調波成分とし、これらの各相ごとの高調波成分に基づき前記電動機の磁極位置を推定する演算手段と、
を備えたことを特徴とする電動機の磁極位置推定装置。
A three-phase winding of an electric motor having saliency is obtained by obtaining a PWM signal using a carrier wave composed of a single-phase triangular wave, inputting a DC voltage from a DC voltage power supply, and turning on and off the switch element according to the PWM signal. Is used in combination with a three-phase PWM inverter that outputs the DC voltage as a three-phase AC voltage, and estimates the position of the magnetic pole of the motor,
When obtaining the PWM signal, for each phase of the three-phase winding, the original command value is tripled in one third of the three consecutive periods of the carrier wave, and the remaining 2 / Used in combination with the three-phase PWM inverter having a function of superimposing high-frequency components in three periods;
A current sensor for measuring the current of each phase;
For each phase, the current flowing through each phase is measured via the current sensor at the time of the peak and trough of the triangular wave, and the difference between these measured values is used as a harmonic component. Arithmetic means for estimating the magnetic pole position of the electric motor based on a wave component;
An apparatus for estimating a magnetic pole position of an electric motor.
前記演算手段は、
前記三相巻線をu相、v相、w相とし、
前記三周期のうち、最初の周期を第一周期、次の周期を第二周期、最後の周期を第三周期としたとき、
前記u相について、前記第一周期の山及び前記第二周期の谷の時点で測定した電流をiu-,iu+とし、これらの差を高調波成分Iuとし、
前記v相について、前記第二周期の山及び前記第三周期の谷の時点で測定した電流をiv-,iv+とし、これらの差を高調波成分Ivとし、
前記w相について、前記第三周期の山及び前記第一周期の谷の時点で測定した電流をiw-,iw+とし、これらの差を高調波成分Iwとし、
前記Iu、前記Iv及び前記Iwを所定の演算式に代入して磁極位置θを求める、
請求項8記載の電動機の磁極位置推定装置。
The computing means is
The three-phase windings are u-phase, v-phase and w-phase,
Among the three periods, when the first period is the first period, the next period is the second period, and the last period is the third period,
For the u phase, the current measured at the time of the peak of the first cycle and the valley of the second cycle is iu−, iu +, and the difference between these is the harmonic component Iu,
For the v phase, the current measured at the time of the peak of the second cycle and the valley of the third cycle is iv−, iv +, and the difference between these is the harmonic component Iv,
For the w phase, the current measured at the peak of the third period and the valley of the first period is iw−, iw +, and the difference between these is the harmonic component Iw,
Substituting the Iu, the Iv, and the Iw into a predetermined arithmetic expression to obtain the magnetic pole position θ.
The apparatus for estimating a magnetic pole position of an electric motor according to claim 8.
前記演算手段は、
前記三相巻線をu相、v相、w相とし、
前記三周期のうち、最初の周期を第一周期、次の周期を第二周期、最後の周期を第三周期とし、
この三周期の前後の周期を、それぞれ第零周期及び第四周期としたとき、
前記u相について、前記第一周期及び前記第零周期の谷並びに前記第三周期及び前記第二周期の山の時点で測定した電流をiu+1,iu+2,iu-1,iu-2とし、これらの差{(iu+1−iu+2)−(iu-1−iu-2)}を高調波成分Iuとし、
前記v相について、前記第二周期及び前記第一周期の谷並びに前記第四周期及び前記第三周期の山の時点で測定した電流をiv+1,iv+2,iv-1,iv-2とし、これらの差{(iv+1−iv+2)−(iv-1−iv-2)}を高調波成分Ivとし、
前記w相について、前記第三周期及び前記第二周期の谷並びに前記第二周期及び前記第一周期の山の時点で測定した電流をiw+1,iw+2,iw-1,iw-2とし、これらの差{(iw+1−iw+2)−(iw-1−iw-2)}を高調波成分Iwとし、
前記Iu、前記Iv及び前記Iwを所定の演算式に代入して磁極位置θを求める、
請求項9記載の電動機の磁極位置推定装置。
The computing means is
The three-phase windings are u-phase, v-phase and w-phase,
Of the three cycles, the first cycle is the first cycle, the next cycle is the second cycle, the last cycle is the third cycle,
When the periods before and after these three periods are the zeroth period and the fourth period, respectively,
For the u-phase, the first period and the first zero-cycle valley and the third period and the current measured at the peak of the second period iu + 1, iu + 2, iu- 1, and Iu- 2, these differences {(iu + 1 -iu + 2 ) - (iu- 1 -iu- 2)} was used as a harmonic components Iu,
For the v phase, the second period and the current measured at the time of the peaks of valleys and the fourth period and the third period of the first cycle iv + 1, iv + 2, iv- 1, and IV- 2, these differences {(iv + 1 -iv + 2 ) - (iv- 1 -iv- 2)} was used as a harmonic components iv,
For the w-phase, the third period and the second period of the trough and the second period and the current measured at the time of the mountain of the first period iw + 1, iw + 2, iw- 1, and Iw- 2, these differences {(iw + 1 -iw + 2 ) - (iw- 1 -iw- 2)} was a harmonic component Iw,
Substituting the Iu, the Iv, and the Iw into a predetermined arithmetic expression to obtain the magnetic pole position θ.
The apparatus for estimating a magnetic pole position of an electric motor according to claim 9.
前記所定の演算式が次式<A>である、
θ=(1/2)tan-1[{Iu−(1/2)(Iv+Iw)}/{(√3/2)(Iv−Iw)}] ・・・<A>
請求項9又は10記載の電動機の磁極位置推定装置。
The predetermined arithmetic expression is the following expression <A>.
θ = (1/2) tan −1 [{Iu− (1/2) (Iv + Iw)} / {(√3 / 2) (Iv−Iw)}]... <A>
The apparatus for estimating a magnetic pole position of an electric motor according to claim 9 or 10.
前記三角波の山及び谷の時点とは、当該三角波の周期をTとすると、当該山及び谷を中心とするT/2の範囲内のいずれかの時である、
請求項8乃至11のいずれかに記載の電動機の磁極位置推定装置。
The time point of the peak and valley of the triangular wave is any time within a range of T / 2 centered on the peak and valley, where T is the period of the triangular wave.
The motor magnetic pole position estimation apparatus according to any one of claims 8 to 11.
前記三角波に代えて鋸歯状波とした、
請求項8乃至12のいずれかに記載の電動機の磁極位置推定装置。
A sawtooth wave instead of the triangular wave,
The magnetic pole position estimation apparatus for an electric motor according to any one of claims 8 to 12.
前記電動機が埋め込み型永久磁石同期電動機である、
請求項8乃至13のいずれかに記載の電動機の磁極位置推定装置。
The electric motor is an embedded permanent magnet synchronous motor;
The motor magnetic pole position estimation apparatus according to any one of claims 8 to 13.
JP2005038221A 2005-02-15 2005-02-15 Method and apparatus for estimating magnetic pole position of electric motor Expired - Fee Related JP4670044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005038221A JP4670044B2 (en) 2005-02-15 2005-02-15 Method and apparatus for estimating magnetic pole position of electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005038221A JP4670044B2 (en) 2005-02-15 2005-02-15 Method and apparatus for estimating magnetic pole position of electric motor

Publications (2)

Publication Number Publication Date
JP2006230056A true JP2006230056A (en) 2006-08-31
JP4670044B2 JP4670044B2 (en) 2011-04-13

Family

ID=36990904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005038221A Expired - Fee Related JP4670044B2 (en) 2005-02-15 2005-02-15 Method and apparatus for estimating magnetic pole position of electric motor

Country Status (1)

Country Link
JP (1) JP4670044B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200460A (en) * 2009-02-24 2010-09-09 Mitsubishi Electric Corp Permanent magnet type rotary electric machine and electric power steering device
JP2011109870A (en) * 2009-11-20 2011-06-02 Mitsubishi Electric Corp Magnetic pole position estimation device of synchronous motor
CN103001578A (en) * 2011-09-15 2013-03-27 株式会社东芝 Motor control device
KR20150103662A (en) * 2012-11-30 2015-09-11 티알더블유 리미티드 Improvements in motor controllers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101618490B1 (en) 2012-02-22 2016-05-04 가부시키가이샤 야스카와덴키 Magnetic pole position estimating apparatus for electric motor, controlling apparatus for electric motor, and magnetic pole position estimating method for electric motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278389A (en) * 2004-02-27 2005-10-06 Meiji Univ Method and device for estimating magnetic pole position of motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278389A (en) * 2004-02-27 2005-10-06 Meiji Univ Method and device for estimating magnetic pole position of motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200460A (en) * 2009-02-24 2010-09-09 Mitsubishi Electric Corp Permanent magnet type rotary electric machine and electric power steering device
JP2011109870A (en) * 2009-11-20 2011-06-02 Mitsubishi Electric Corp Magnetic pole position estimation device of synchronous motor
CN103001578A (en) * 2011-09-15 2013-03-27 株式会社东芝 Motor control device
US8890450B2 (en) 2011-09-15 2014-11-18 Kabushiki Kaisha Toshiba Motor control device
CN103001578B (en) * 2011-09-15 2015-05-06 株式会社东芝 Motor control device
KR20150103662A (en) * 2012-11-30 2015-09-11 티알더블유 리미티드 Improvements in motor controllers
KR102077362B1 (en) 2012-11-30 2020-04-07 티알더블유 리미티드 Improvements in motor controllers

Also Published As

Publication number Publication date
JP4670044B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
CA2697610C (en) Controller of rotary electric machine
US9438153B2 (en) Rotary electric machine control device
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
EP2012425B1 (en) Synchronous motor control device and synchronous motor control method
JP2010051078A (en) Motor control device
JP6536473B2 (en) Control device of rotating electric machine
JP4670044B2 (en) Method and apparatus for estimating magnetic pole position of electric motor
WO2018047524A1 (en) Motor control method, motor control system, and electric power steering system
CN109391186B (en) Control device and control method
WO2018159101A1 (en) Motor control method, motor control system, and electric power steering system
JP2002320397A (en) Motor rotor position estimating apparatus, position estimating method and program thereof
JP2012165585A (en) Synchronous motor drive system
JP5082216B2 (en) Rotation detection device for turbocharger with electric motor and rotation detection method for turbocharger with electric motor
WO2018159103A1 (en) Motor control method, motor control system, and electric power steering system
JP6750364B2 (en) Rotation angle estimation device for rotating electric machine
JP4670045B2 (en) Method and apparatus for estimating magnetic pole position of electric motor
WO2018159104A1 (en) Motor control method, motor control system, and electric power steering system
JP6700954B2 (en) Control device for rotating electric machine
CN111034013B (en) Control device for three-phase synchronous motor and electric power steering device using same
JP5376218B2 (en) Motor control device
JP5186352B2 (en) Electric motor magnetic pole position estimation device
JP2009100544A (en) Motor controller
JP4735287B2 (en) Synchronous motor control device and control method using the synchronous motor control device
WO2018159099A1 (en) Motor control method, motor control system, and electric power steering system
JP4752124B2 (en) Magnetic pole estimation device for permanent magnet type synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees