JP2006229615A - Interpolated pixel generation circuit - Google Patents

Interpolated pixel generation circuit Download PDF

Info

Publication number
JP2006229615A
JP2006229615A JP2005041080A JP2005041080A JP2006229615A JP 2006229615 A JP2006229615 A JP 2006229615A JP 2005041080 A JP2005041080 A JP 2005041080A JP 2005041080 A JP2005041080 A JP 2005041080A JP 2006229615 A JP2006229615 A JP 2006229615A
Authority
JP
Japan
Prior art keywords
interpolation
pixel
pixels
horizontal
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005041080A
Other languages
Japanese (ja)
Inventor
Shin Arai
慎 新井
Koichi Sato
耕一 佐藤
Yasuhiro Hori
靖広 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Digital Media Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Digital Media Engineering Corp filed Critical Toshiba Corp
Priority to JP2005041080A priority Critical patent/JP2006229615A/en
Publication of JP2006229615A publication Critical patent/JP2006229615A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Television Systems (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an interpolated pixel generation circuit for generating scaling interpolated pixels in which any noise is hardly generated in a display image, or resolution is hardly deteriorated. <P>SOLUTION: The pixels of a current field adjacent to an interpolated phase are read from a field memory 1. The pixels decided to be still images by a movement deciding part 4 among the pixels of one field before the current field adjacent to the interpolated phase are read from a field delay memory 2, and stored in an adjacent pixel storage part 7. Correlation between the stored pixels is detected by an inter-adjacent pixel correlation detecting part 8, and the direction of the combination of the pixels whose correlation is the highest is decided as an interpolation direction by an interpolation direction deciding part 9. The combination of the pixels for interpolated pixel generation is selected by a pixel selecting part 10 on the basis of the decision, and the pixel values of the interpolated pixels are generated by an interpolated pixel generating part 11 by using the pixel values of the selected pixels, and outputted as a scaling interpolation output. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、インターレース走査画像のスケーリング処理に関し、特にスケーリング位相における補間画素を生成する補間画素生成回路に関する。   The present invention relates to a scaling process for an interlaced scanned image, and more particularly to an interpolation pixel generation circuit that generates an interpolation pixel in a scaling phase.

近年、テレビジョン放送などの映像信号を表示する装置として、様々な形式の表示画素数を有するドットマトリックス型のプラズマディスプレイ装置や液晶ディスプレイ示装置が用いられることが多い。このようなドットマトリックス型のディスプレイ装置にインターレース走査の映像信号を表示する場合、そのディスプレイ装置の画素数に合わせた補間画素を生成する必要がある。   In recent years, a dot matrix type plasma display device or a liquid crystal display device having a number of display pixels in various formats is often used as a device for displaying a video signal such as a television broadcast. When displaying an interlaced scanning video signal on such a dot matrix type display device, it is necessary to generate interpolation pixels according to the number of pixels of the display device.

従来、このような補間画素を生成する回路として、インターレース走査の映像信号を一旦プログレッシブ走査の映像信号に変換する処理を行った上で、画像を拡大/縮小するスケーリング処理を行う回路が用いられている(例えば、特許文献1参照。)。   Conventionally, as a circuit for generating such an interpolated pixel, a circuit for performing a scaling process for enlarging / reducing an image after once converting a video signal for interlace scanning into a video signal for progressive scanning has been used. (For example, refer to Patent Document 1).

このとき、インターレース走査の映像信号をプログレッシブ走査の映像信号に変換する処理において、現フィールドの走査線の中間位置にプログレッシブ変換補間ラインが形成され、このプログレッシブ変換補間ライン上に走査線補間画素を生成するプログレッシブ補間が先ず実行される。その後、この走査線補間画素を利用してスケーリング処理が行われてスケーリング補間画素が生成される。   At this time, in the process of converting the video signal of the interlace scanning into the video signal of the progressive scanning, a progressive conversion interpolation line is formed at an intermediate position of the scanning line of the current field, and a scanning line interpolation pixel is generated on the progressive conversion interpolation line. Progressive interpolation is first performed. Thereafter, scaling processing is performed using the scanning line interpolation pixels to generate scaling interpolation pixels.

このうちプログレッシブ補間の実行においては、補間すべき画素位置について現フィールドと2フィールド前の画素を用いて動き判定を行い、静止画と判定された場合は1フィールド前の画素を補間画素とし、動画と判定された場合は現フィールドの上下・左右・斜め方向の画素間で相関判定を行い最も相関の高い組み合わせの画素の画素値をもとに補間方向を決定し、その補間方向の画素の画素値をもとに走査線補間画素の画素値を生成することが行われている(例えば、特許文献2参照。)。   Of these, in the execution of progressive interpolation, motion determination is performed using the pixels in the current field and two fields before the pixel position to be interpolated, and if it is determined as a still image, the pixel in the previous field is set as the interpolation pixel, If it is determined, the correlation is determined between the pixels in the upper, lower, left, and right directions of the current field, the interpolation direction is determined based on the pixel value of the pixel with the highest correlation, and the pixel of the pixel in the interpolation direction A pixel value of a scanning line interpolation pixel is generated based on the value (see, for example, Patent Document 2).

しかし、このような走査線補間画素生成における画素間相関判定では、現フィールドの画素のみを用いて判定を行うため誤判定となる場合がある。例えば、画素値として輝度をとり、図3(a)に示す画素値の配列の映像信号に対して、動画と判定された画素b2の位置に走査線補間画素を生成すると、図10(a)に示すように画素の組み合わせ(a1,c3)の相関が最も高いと判定され、その画素値に基づいて走査線補間画素m5の画素値が生成される。ところが、この走査線補間画素m5の画素値は、その周辺の画素の画素値との調和がとれず、周辺全体の画素の中ではノイズとみなされる値となっている。   However, the inter-pixel correlation determination in such scanning line interpolation pixel generation may be erroneous determination because the determination is performed using only the pixels in the current field. For example, when luminance is taken as a pixel value and a scanning line interpolation pixel is generated at the position of the pixel b2 determined to be a moving image with respect to the video signal having the pixel value array shown in FIG. 3A, FIG. As shown in FIG. 5, it is determined that the correlation of the pixel combination (a1, c3) is the highest, and the pixel value of the scanning line interpolation pixel m5 is generated based on the pixel value. However, the pixel value of the scanning line interpolation pixel m5 is not in harmony with the pixel values of the surrounding pixels, and is a value regarded as noise in the entire surrounding pixels.

その後、この走査線補間画素m5の画素値とその周囲に隣接する画素(a1〜a3、b1、b3、c1〜c3)の画素値をもとに水平2倍・垂直4倍の拡大スケーリング処理を行うと、図10(b)に示すようなスケーリング画素m1〜m4およびm6〜m9が生成され、ノイズがさらに増加する。   Thereafter, an enlargement / scaling process of 2 × horizontal and 4 × vertical is performed based on the pixel value of the scanning line interpolation pixel m5 and the pixel values of neighboring pixels (a1 to a3, b1, b3, c1 to c3). If it does, the scaling pixels m1-m4 and m6-m9 as shown in FIG.10 (b) will be produced | generated, and noise will further increase.

このような誤判定に基づいて生成された走査線画素を用いてスケーリング処理を行うと、判定の誤りが拡散され、表示画像のノイズが増加したり、表示画像の解像度が劣化したりする問題が発生することがあった。
特開2003−324695号公報 (第4−5ページ、図1) 特開2003−230109号公報 (第5−6ページ、図2)
When scaling processing is performed using the scanning line pixels generated based on such erroneous determination, there is a problem that the determination error is diffused and noise of the display image is increased or the resolution of the display image is deteriorated. It sometimes occurred.
JP 2003-324695 A (page 4-5, FIG. 1) JP 2003-230109 A (page 5-6, FIG. 2)

そこで、本発明の目的は、スケーリング処理を行っても表示画像にノイズが生じたり、解像度が劣化したりすることの少ない補間画素を生成する補間画素生成回路を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an interpolation pixel generation circuit that generates an interpolation pixel that hardly causes noise in a display image or deteriorates resolution even when scaling processing is performed.

本発明の一態様によれば、インターレース走査の映像信号のフィールドごとにそのフィールドに含まれる画素が動画であるか静止画であるかの動き判定を画素ごとに行う動き判定手段と、前記映像信号を水平または垂直方向、あるいは水平および垂直方向に圧縮または伸長を行うスケーリングにより生成される補間走査線上の補間位相に対して、前記映像信号の現フィールドの隣接する走査線上の画素と、前記隣接する走査線の中間に位置する1フィールド前の走査線上の画素のうち前記動き判定手段により静止画と判定された画素との中から前記補間位相に隣接する画素の組み合わせを複数生成してそれぞれの画素の組み合わせごとに画素間の相関値を算出し、相関を有する画素の組み合わせを検出する隣接画素間相関検出手段と、前記隣接画素間相関検出手段により相関を検出された画素の組み合わせの中で最も相関の高い画素の組み合わせの方向を補間方向と判定する補間方向判定手段と、前記補間方向判定手段の判定結果に基づいて前記補間位相に隣接する現フィールドの画素および静止画と判定された1フィールド前の画素の中から補間画素生成用の画素の組み合わせを選択し、その画素値を用いて前記補間位相の補間画素の画素値を生成する補間画素生成手段とを有することを特徴とする補間画素生成回路が提供される。   According to one aspect of the present invention, for each field of a video signal for interlace scanning, a motion determination unit that performs a motion determination for each pixel, whether the pixel included in the field is a moving image or a still image, and the video signal For the interpolated phase on the interpolated scan line generated by scaling that compresses or expands in the horizontal or vertical direction, or in the horizontal and vertical directions, and the adjacent pixel on the adjacent scan line of the current field of the video signal A plurality of combinations of pixels adjacent to the interpolation phase are generated from among the pixels on the scanning line one field ahead positioned in the middle of the scanning line and the pixels determined as the still image by the motion determination means, and each pixel is generated. A correlation value between pixels for calculating a correlation value between pixels for each combination of pixels, and detecting a correlation between adjacent pixels; Based on the determination result of the interpolation direction determining means, the interpolation direction determining means for determining the direction of the combination of pixels having the highest correlation among the combinations of pixels whose correlation has been detected by the inter-pixel correlation detecting means as the interpolation direction, and A pixel combination for generating an interpolation pixel is selected from the pixels in the current field adjacent to the interpolation phase and the pixel in the previous field determined to be a still image, and the pixel value of the interpolation pixel in the interpolation phase is selected using the pixel value. There is provided an interpolation pixel generation circuit comprising interpolation pixel generation means for generating a value.

本発明によれば、インターレース映像信号に対してプログレッシブ補間を行うことなくスケーリング補間を行うことができるので、表示画像にノイズが生じたり、解像度が劣化したりすることの少ない補間画素を生成することができる。   According to the present invention, it is possible to perform scaling interpolation without performing progressive interpolation on an interlaced video signal, and therefore, it is possible to generate an interpolation pixel that is less likely to cause noise in the display image or deteriorate in resolution. Can do.

以下、本発明の実施例を図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例に係る補間画素生成回路の構成の例を示すブロック図である。   FIG. 1 is a block diagram illustrating an example of the configuration of an interpolation pixel generation circuit according to an embodiment of the present invention.

本実施例の補間画素生成回路は、入力されたインターレース走査の映像信号の各画素の現フィールドの画素値を格納するフィールドメモリ1と、1フィールド前の画素値を格納するフィールド遅延メモリ2と、2フィールド前すなわち1フレーム前の画素値を格納するフィールド遅延メモリ3と、フィールドメモリ1およびフィールド遅延メモリ3から画素値を読み出して同じ位相の画素の画素値の差分からフレーム間差分を算出して画素ごとの動き判定を行う動き判定部4と、1フィールド前の画素の動き判定結果を記憶する動き判定結果記憶部5とを有する。   The interpolated pixel generation circuit according to this embodiment includes a field memory 1 that stores a pixel value of a current field of each pixel of an input interlaced video signal, a field delay memory 2 that stores a pixel value of the previous field, The field delay memory 3 that stores the pixel values two fields before, that is, one frame before, and the pixel values are read from the field memory 1 and the field delay memory 3 to calculate the inter-frame difference from the difference between the pixel values of the pixels having the same phase. It has a motion determination unit 4 that performs motion determination for each pixel and a motion determination result storage unit 5 that stores a motion determination result of the pixel one field before.

さらに、本実施例の補間画素生成回路は、現フィールドの画素に対する補間画素の生成位置を指示する補間位相信号を生成する補間位相信号生成部6と、補間位相信号にもとづいて補間位相に隣接する画素の画素値をフィールドメモリ1およびフィールド遅延メモリ2から読み出して格納する隣接画素格納部7とを有する。ただし、フィールド遅延メモリ2からは、動き判定結果記憶部5から1フィールド前の画素の動き判定結果を読み出して、静止画と判定されている画素の画素値のみを読み出す。   Further, the interpolation pixel generation circuit of this embodiment is adjacent to the interpolation phase based on the interpolation phase signal generation unit 6 that generates an interpolation phase signal that indicates the generation position of the interpolation pixel for the pixel in the current field. An adjacent pixel storage unit 7 that reads out and stores the pixel value of the pixel from the field memory 1 and the field delay memory 2 is provided. However, from the field delay memory 2, the motion determination result of the pixel one field before is read from the motion determination result storage unit 5, and only the pixel value of the pixel determined to be a still image is read.

また、本実施例の補間画素生成回路は、隣接画素格納部7に格納された画素値を用いて補間位相信号により指示された補間位相に隣接する画素間の画素値の相関値を算出して相関を有する画素の組み合わせを検出する隣接画素間相関検出部8と、この隣接画素間相関検出部8で相関を検出された画素の組み合わせの中で最も相関の高い画素の組み合わせの方向を補間方向と判定する補間方向判定部9と、補間位相信号により指示された補間位相に隣接する画素のうち補間方向判定部9で判定された補間方向にある画素の組み合わせを隣接画素格納部7から選出する画素選出部10と、画素選出部10で選出された画素の画素値を用いて補間位相信号により指示された補間位相の画素値を算出してスケーリング補間出力として出力する補間画素生成部11とを有する。   Further, the interpolation pixel generation circuit according to the present embodiment calculates a correlation value of pixel values between pixels adjacent to the interpolation phase indicated by the interpolation phase signal using the pixel values stored in the adjacent pixel storage unit 7. The inter-adjacent-pixel correlation detection unit 8 that detects a combination of pixels having a correlation, and the direction of the pixel combination having the highest correlation among the pixel combinations detected by the correlation detection unit 8 between adjacent pixels is an interpolation direction. The combination of the pixels in the interpolation direction determined by the interpolation direction determination unit 9 among the pixels adjacent to the interpolation phase indicated by the interpolation phase signal is selected from the adjacent pixel storage unit 7. A pixel selection unit 10 and an interpolation pixel generation unit that calculates the pixel value of the interpolation phase indicated by the interpolation phase signal using the pixel value of the pixel selected by the pixel selection unit 10 and outputs it as a scaling interpolation output Having one and.

ここで、補間方向判定部9は、隣接画素間相関検出部8で相関を検出された画素の組み合わせの相関値をその組み合わせの方向ごとに加算し、その加算値を比較して補間方向を決定する。   Here, the interpolation direction determination unit 9 adds the correlation value of the combination of the pixels whose correlation is detected by the adjacent pixel correlation detection unit 8 for each direction of the combination, and compares the added value to determine the interpolation direction. To do.

また、補間画素生成部11は、補間位相信号および補間方向判定結果を用いて水平補間係数および垂直補間係数を生成する補間係数生成部111と、画素選出部10で選出された画素に対して補間係数生成部111で算出された水平補間係数を用いて補間位相に隣接する走査線上に補間処理の前処理として水平補間画素を生成する水平補間部112と、水平補間部112で生成された水平画素に対して補間係数生成部111で生成された垂直補間係数を用いて線形補間により最終の補間画素の画素値を生成する最終補間部113とを有する。   The interpolation pixel generation unit 11 interpolates the pixel selected by the pixel selection unit 10 and the interpolation coefficient generation unit 111 that generates a horizontal interpolation coefficient and a vertical interpolation coefficient using the interpolation phase signal and the interpolation direction determination result. A horizontal interpolation unit 112 that generates a horizontal interpolation pixel as a preprocessing of interpolation processing on a scanning line adjacent to the interpolation phase using the horizontal interpolation coefficient calculated by the coefficient generation unit 111, and a horizontal pixel generated by the horizontal interpolation unit 112 The final interpolation unit 113 generates a pixel value of the final interpolation pixel by linear interpolation using the vertical interpolation coefficient generated by the interpolation coefficient generation unit 111.

水平補間部112は、補間方向判定部9により判定された補間方向が走査線に対して斜めであるか、垂直または水平であるかによって、水平補間画素の生成位置を決定する。すなわち、補間方向が斜めであるときは、その補間方向と同じ傾きを持って補間位相を通過する線が交差する補間位相に隣接する走査線上に水平補間画素を生成し、補間方向が垂直または水平であるときは、補間位相に隣接する走査線上の補間位相と同一の水平位相に水平補間画素を生成する。   The horizontal interpolation unit 112 determines the generation position of the horizontal interpolation pixel depending on whether the interpolation direction determined by the interpolation direction determination unit 9 is oblique to the scanning line, vertical, or horizontal. That is, when the interpolation direction is diagonal, a horizontal interpolation pixel is generated on the scanning line adjacent to the interpolation phase where the line passing through the interpolation phase intersects with the same inclination as the interpolation direction, and the interpolation direction is vertical or horizontal. If it is, the horizontal interpolation pixel is generated in the same horizontal phase as the interpolation phase on the scanning line adjacent to the interpolation phase.

図2は、相関判定のために隣接画素間相関検出部8が相関値を算出する画素の組み合わせの例を示した図である。ここでは、現フィールドのNライン目およびN+1ライン目の走査線上の画素と1フィールド前のNライン目の走査線上の画素から、図2において矢印で示す水平、垂直、斜めの各方向の画素の組み合わせを生成している。このとき、1フィールド前のNライン目の走査線上の画素は静止画と判定された画素のみがフィールド遅延メモリ2から隣接画素格納部7へ読み出され、隣接画素間相関検出部8における相関値算出用の画素として用いられる。   FIG. 2 is a diagram illustrating an example of a combination of pixels for which the correlation detection unit 8 between adjacent pixels calculates a correlation value for correlation determination. Here, the pixels in the horizontal, vertical, and diagonal directions indicated by arrows in FIG. 2 are determined from the pixels on the Nth and N + 1th line scanning lines in the current field and the pixels on the Nth scanning line one field before. Generating combinations. At this time, only the pixels determined to be still images are read out from the field delay memory 2 to the adjacent pixel storage unit 7 and the correlation value in the adjacent pixel correlation detection unit 8 is read out. Used as a calculation pixel.

したがって、図2(a)に示すように1フィールド前のNライン目の走査線上の画素が総て静止画であるときは相関値を算出する画素の組み合わせが最も多くなり、図2(h)に示すように1フィールド前のNライン目の走査線上の画素が総て動画であるときは相関値を算出する画素の組み合わせが最も少なくなる。   Accordingly, as shown in FIG. 2A, when all the pixels on the Nth scanning line one field before are still images, the number of combinations of pixels for calculating the correlation value is the largest, and FIG. As shown in FIG. 5, when all the pixels on the scanning line of the Nth line before one field are moving images, the combination of pixels for calculating the correlation value is the smallest.

次に、本実施例の補間画素生成回路による補正画素生成の例を図3〜図9を用いて説明する。   Next, an example of correction pixel generation by the interpolation pixel generation circuit of this embodiment will be described with reference to FIGS.

ここでは、図3(a)に示すような1フィールド前の画素のうちb2の位置の画素のみが動画と判定された画素列に対して、水平2倍・垂直4倍の拡大スケーリング処理を行って、図3(b)に示すm1〜m9の位置に補間画素を生成する例について説明する。なお、各図において、画素の着色の濃淡の違いが画素値の違いを表わすものとする。   Here, as shown in FIG. 3A, among the pixels one field before, only the pixel at the position b2 is determined to be a moving image, and the scaling process is performed twice horizontally and vertically four times. An example in which interpolation pixels are generated at the positions m1 to m9 shown in FIG. In each figure, the difference in color density of pixels represents the difference in pixel values.

図4(a)〜(c)を用いて、補間画素m1の生成について説明する。   The generation of the interpolation pixel m1 will be described with reference to FIGS.

補間画素m1を生成する場合、隣接画素間相関検出部8は、図4(a)に矢印D1〜D5で示す補間画素m1に隣接する5組の画素間で画素値の絶対差分値による相関値を求めて任意のしきい値で絞込みを行い、相関値がしきい値以下の画素の組D1、D2、D3を相関ありと検出し、相関値がしきい値よりも大きい画素の組D4、D5を相関なしと検出する。   When generating the interpolated pixel m1, the inter-adjacent pixel correlation detection unit 8 uses the absolute difference value of the pixel value between the five sets of pixels adjacent to the interpolated pixel m1 indicated by arrows D1 to D5 in FIG. And a pixel set D1, D2, D3 having a correlation value equal to or lower than the threshold value is detected as being correlated, and a pixel set D4 having a correlation value greater than the threshold value is detected. D5 is detected as uncorrelated.

次に、補間方向判定部9が、補間位相信号をもとに相関の検出された画素の組D1、D2、D3の相関値に対して補間位相から各画素までの距離に非線形に反比例させた係数を掛けて相関評価値d1、d2、d3を算出し、相関方向ごとに加算した値(d1+d2)とd3を求め、その大小を比較する。この場合、(d1+d2)>d3となるので、補間方向判定部9は、矢印D1、D2が示す左下がり斜め方向を補間方向と判定する。   Next, the interpolation direction determination unit 9 makes the correlation values of the pixel sets D1, D2, and D3 whose correlations are detected based on the interpolation phase signal non-linearly inversely proportional to the distance from the interpolation phase to each pixel. The correlation evaluation values d1, d2, and d3 are calculated by multiplying the coefficients, and the value (d1 + d2) and d3 added for each correlation direction are obtained, and the magnitudes thereof are compared. In this case, since (d1 + d2)> d3 is satisfied, the interpolation direction determination unit 9 determines that the diagonally lower left direction indicated by the arrows D1 and D2 is the interpolation direction.

次に、画素選出部10が、補間方向判定部9により判定された補間方向の傾きを有し補間画素m1を通過する線とこの補間画素m1に隣接する走査線との交点に隣接する画素として、ここではa2、a3、b1、b3を選出する。   Next, the pixel selection unit 10 determines the pixel adjacent to the intersection of the line having the inclination in the interpolation direction determined by the interpolation direction determination unit 9 and passing through the interpolation pixel m1 and the scanning line adjacent to the interpolation pixel m1. Here, a2, a3, b1, and b3 are selected.

また、補間係数生成部111は、補間位相信号と補間方向判定結果に基づいて、補間画素m1に対する水平補間係数Kh0、Kh1を生成する。この場合、図4(b)に示すように、画素a1、a2間およびラインa、b間の位相をそれぞれ1.0として、補間画素m1の水平位相をHm、垂直位相をVmとすると、水平補間係数Kh0、Kh1は次の式で算出される。
Kh0=(Vm−0.5)+(Hm−0.5)
Kh1=(Vm−0.5)/2+(Hm−0.5)/2
水平補間部112は、この補間係数Kh0、Kh1を用いて、次の式でラインa上に水平補間画素k1、ラインb上に水平補間画素k2を作る。ただし、この水平補間画素k1、k2は、補間画素m1を生成する前の前処理として仮想的に生成されるものであって、実際の画素として生成されるものではない。
k1={a2×(1−Kh0)}+a3×Kh0
k2={b1×(1−Kh1)}+b3×Kh1
いま、Hm=0.5、Vm=0.5とすると、Kh0=0、Kh1=0となるので
k1=a2
k2=b1
となり、図4(c)に示すように、水平補間画素k1、k2は、それぞれ画素a2、画素b1の位置に生成され、画素値もそれぞれ画素a2、画素b1の画素値に等しくなる。
Further, the interpolation coefficient generation unit 111 generates horizontal interpolation coefficients Kh0 and Kh1 for the interpolation pixel m1 based on the interpolation phase signal and the interpolation direction determination result. In this case, as shown in FIG. 4B, when the phase between the pixels a1 and a2 and between the lines a and b is 1.0, the horizontal phase of the interpolation pixel m1 is Hm, and the vertical phase is Vm, the horizontal Interpolation coefficients Kh0 and Kh1 are calculated by the following equations.
Kh0 = (Vm−0.5) + (Hm−0.5)
Kh1 = (Vm−0.5) / 2 + (Hm−0.5) / 2
The horizontal interpolation unit 112 uses the interpolation coefficients Kh0 and Kh1 to create a horizontal interpolation pixel k1 on the line a and a horizontal interpolation pixel k2 on the line b using the following equations. However, the horizontal interpolation pixels k1 and k2 are virtually generated as preprocessing before the interpolation pixel m1 is generated, and are not generated as actual pixels.
k1 = {a2 × (1-Kh0)} + a3 × Kh0
k2 = {b1 × (1−Kh1)} + b3 × Kh1
Assuming that Hm = 0.5 and Vm = 0.5, Kh0 = 0 and Kh1 = 0, so k1 = a2.
k2 = b1
As shown in FIG. 4C, the horizontal interpolation pixels k1 and k2 are generated at the positions of the pixel a2 and the pixel b1, respectively, and the pixel values are also equal to the pixel values of the pixels a2 and b1, respectively.

最後に、最終補間部113が、水平補間画素k1、k2の画素値を線形補間して補間画素m1の画素値を算出し、スケーリング補間出力として出力する。   Finally, the final interpolation unit 113 calculates the pixel value of the interpolation pixel m1 by linearly interpolating the pixel values of the horizontal interpolation pixels k1 and k2, and outputs it as a scaling interpolation output.

次に、図5(a)〜(c)を用いて、補間画素m5の生成について説明する。   Next, generation of the interpolation pixel m5 will be described with reference to FIGS.

補間画素m5を生成する場合、隣接画素間相関検出部8は、図5(a)に矢印D1〜D8で示す補間画素m5に隣接する8組の画素間で画素値の絶対差分値による相関値を求めて任意のしきい値で絞込みを行い、相関値がしきい値以下の画素の組D1、D2、D3、D5を相関ありと検出し、相関値がしきい値よりも大きい画素の組D4、D6、D7、D8を相関なしと検出する。   When generating the interpolation pixel m5, the inter-adjacent pixel correlation detection unit 8 uses the absolute difference value of the pixel value between the eight sets of pixels adjacent to the interpolation pixel m5 indicated by arrows D1 to D8 in FIG. And a pixel group D1, D2, D3, D5 having a correlation value equal to or less than the threshold value is detected as being correlated, and a pixel group having a correlation value greater than the threshold value. D4, D6, D7, and D8 are detected as having no correlation.

次に、補間方向判定部9が、補間位相信号をもとに相関の検出された画素の組D1、D2、D3、D5の相関値に対して補間位相から各画素までの距離に非線形に反比例させた係数を掛けて相関評価値d1、d2、d3、d5を算出し、相関方向ごとに加算した値(d1+d2+d3)とd5を求め、その大小を比較する。この場合、(d1+d2+d3)>d5となるので、補間方向判定部9は、矢印D1、D2、D3が示す左下がり斜め方向を補間方向と判定する。   Next, the interpolation direction determination unit 9 is non-linearly inversely proportional to the distance from the interpolation phase to each pixel with respect to the correlation values of the pixel sets D1, D2, D3, and D5 whose correlation is detected based on the interpolation phase signal. The correlation evaluation values d1, d2, d3, and d5 are calculated by multiplying the calculated coefficients, the value (d1 + d2 + d3) and d5 added for each correlation direction are obtained, and the magnitudes thereof are compared. In this case, since (d1 + d2 + d3)> d5 is satisfied, the interpolation direction determination unit 9 determines the diagonally descending left direction indicated by the arrows D1, D2, and D3 as the interpolation direction.

次に、画素選出部10が、補間方向判定部9により判定された補間方向の傾きを有し補間画素m5を通過する線と隣接する走査線との交点に隣接する画素として、ここではa3、a4、c1、c2を選出する。   Next, the pixel selection unit 10 has a slope of the interpolation direction determined by the interpolation direction determination unit 9 and is a pixel adjacent to the intersection of the line passing through the interpolation pixel m5 and the adjacent scanning line, here a3, Select a4, c1, and c2.

また、補間係数生成部111は、補間位相信号と補間方向判定結果に基づいて、補間画素m5に対する水平補間係数Kh0、Kh1を生成する。この場合、図5(b)に示すように、画素a2、a3間およびラインa、b間の位相をそれぞれ1.0として、補間画素m5の水平位相をHm、垂直位相をVmとすると、水平補間係数Kh0、Kh1は次の式で算出される。
Kh0=Vm/2+Hm/2
Kh1=Vm/2+Hm/2
水平補間部112は、この補間係数Kh0、Kh1を用いて、次の式でラインa上に水平補間画素k1、ラインc上に水平補間画素k2を作る。ただし、この水平補間画素k1、k2は補間画素m5を生成する前の前処理として仮想的に生成されるものであって、実際の画素として生成されるものではない。
k1={a3×(1−Kh0)}+a4×Kh0
k2={c1×(1−Kh1)}+c2×Kh1
いま、Hm=0.0、Vm=0.0とすると、Kh0=0、Kh1=0となるので
k1=a3
k2=c1
となり、図5(c)に示すように、水平補間画素k1、k2は、それぞれ画素a3、画素c1の位置に生成され、画素値もそれぞれ画素a3、画素c1の画素値に等しくなる。
The interpolation coefficient generation unit 111 generates horizontal interpolation coefficients Kh0 and Kh1 for the interpolation pixel m5 based on the interpolation phase signal and the interpolation direction determination result. In this case, as shown in FIG. 5B, when the phase between the pixels a2 and a3 and between the lines a and b is 1.0, the horizontal phase of the interpolation pixel m5 is Hm, and the vertical phase is Vm, the horizontal Interpolation coefficients Kh0 and Kh1 are calculated by the following equations.
Kh0 = Vm / 2 + Hm / 2
Kh1 = Vm / 2 + Hm / 2
The horizontal interpolation unit 112 uses the interpolation coefficients Kh0 and Kh1 to create a horizontal interpolation pixel k1 on the line a and a horizontal interpolation pixel k2 on the line c using the following equations. However, the horizontal interpolation pixels k1 and k2 are virtually generated as preprocessing before generating the interpolation pixel m5, and are not generated as actual pixels.
k1 = {a3 × (1-Kh0)} + a4 × Kh0
k2 = {c1 * (1-Kh1)} + c2 * Kh1
Assuming that Hm = 0.0 and Vm = 0.0, Kh0 = 0 and Kh1 = 0, so k1 = a3
k2 = c1
As shown in FIG. 5C, the horizontal interpolation pixels k1 and k2 are generated at the positions of the pixel a3 and the pixel c1, respectively, and the pixel values are also equal to the pixel values of the pixel a3 and the pixel c1, respectively.

最後に、最終補間部113が、水平補間画素k1、k2の画素値を線形補間して補間画素m5の画素値を算出し、スケーリング補間出力として出力する。   Finally, the final interpolation unit 113 calculates the pixel value of the interpolation pixel m5 by linearly interpolating the pixel values of the horizontal interpolation pixels k1 and k2, and outputs it as a scaling interpolation output.

次に、図6(a)〜(c)を用いて、補間画素m2の生成について説明する。   Next, generation of the interpolation pixel m2 will be described with reference to FIGS.

補間画素m2を生成する場合、隣接画素間相関検出部8は、図6(a)に矢印D1〜D6で示す補間画素m2に隣接する6組の画素間で画素値の絶対差分値による相関値を求めて任意のしきい値で絞込みを行い、相関値がしきい値以下の画素の組D1、D2、D4を相関ありと検出し、相関値がしきい値よりも大きい画素の組D3、D5、D6を相関なしと検出する。   When generating the interpolation pixel m2, the inter-adjacent pixel correlation detection unit 8 uses the absolute difference value of the pixel value between the six sets of pixels adjacent to the interpolation pixel m2 indicated by arrows D1 to D6 in FIG. And a pixel set D1, D2, D4 having a correlation value less than or equal to the threshold is detected as being correlated, and a pixel set D3 having a correlation value greater than the threshold is detected. D5 and D6 are detected as having no correlation.

次に、補間方向判定部9が、補間位相信号をもとに相関の検出された画素の組D1、D2、D4の相関値に対して補間位相から各画素までの距離に非線形に反比例させた係数を掛けて相関評価値d1、d2、d4を算出し、相関方向ごとに加算した値(d1+d2)とd4を求め、その大小を比較する。この場合、(d1+d2)>d4となるので、補間方向判定部9は、矢印D1、D2が示す左下がり斜め方向を補間方向と判定する。   Next, the interpolation direction determination unit 9 makes the correlation values of the pixel sets D1, D2, and D4 whose correlation is detected based on the interpolation phase signal non-linearly inversely proportional to the distance from the interpolation phase to each pixel. The correlation evaluation values d1, d2, and d4 are calculated by multiplying the coefficients, and the value (d1 + d2) and d4 added for each correlation direction are obtained, and the magnitudes thereof are compared. In this case, since (d1 + d2)> d4 is satisfied, the interpolation direction determination unit 9 determines that the diagonally lower left direction indicated by the arrows D1 and D2 is the interpolation direction.

次に、画素選出部10が、補間方向判定部9により判定された補間方向の傾きを有し補間画素m2を通過する線と隣接する走査線との交点に隣接する画素として、ここではa2、a3、c0、c1を選出する。   Next, the pixel selection unit 10 has a slope of the interpolation direction determined by the interpolation direction determination unit 9 and is a pixel adjacent to the intersection of the line passing through the interpolation pixel m2 and the adjacent scanning line, here a2, Select a3, c0, and c1.

また、補間係数生成部111は、補間位相信号と補間方向判定結果に基づいて、補間画素m2に対する水平補間係数Kh0、Kh1を生成する。この場合、図6(b)に示すように、画素a2、a3間およびラインa、b間の位相をそれぞれ1.0として、補間画素m2の水平位相をHm、垂直位相をVmとすると、水平補間係数Kh0、Kh1は次の式で算出される。
Kh0=Vm+Hm
Kh1=Vm+Hm
水平補間部112は、この補間係数Kh0、Kh1を用いて、次の式でラインa上に水平補間画素k1、ラインc上に水平補間画素k2を作る。ただし、この水平補間画素k1、k2は補間画素m2を生成する前の前処理として仮想的に生成されるものであって、実際の画素として生成されるものではない。
k1={a2×(1−Kh0)}+a3×Kh0
k2={c0×(1−Kh1)}+c1×Kh1
いま、Hm=0.0、Vm=0.5とすると、Kh0=0.5、Kh1=0.5となるので
k1=0.5×a2+0.5×a3
k2=0.5×c0+0.5×c1
となり、図6(c)に示すように、水平補間画素k1は画素a2と画素a3との中間に生成され、水平補間画素k2は画素c0と画素c1との中間に生成される。また、水平補間画素k1の画素値は画素a2の画素値と画素a3の画素値との中間値となり、水平補間画素k2の画素値は画素c0の画素値と画素c1の画素値との中間値となる。
Further, the interpolation coefficient generation unit 111 generates horizontal interpolation coefficients Kh0 and Kh1 for the interpolation pixel m2 based on the interpolation phase signal and the interpolation direction determination result. In this case, as shown in FIG. 6B, when the phase between the pixels a2 and a3 and between the lines a and b is 1.0, the horizontal phase of the interpolation pixel m2 is Hm, and the vertical phase is Vm, the horizontal Interpolation coefficients Kh0 and Kh1 are calculated by the following equations.
Kh0 = Vm + Hm
Kh1 = Vm + Hm
The horizontal interpolation unit 112 uses the interpolation coefficients Kh0 and Kh1 to create a horizontal interpolation pixel k1 on the line a and a horizontal interpolation pixel k2 on the line c using the following equations. However, the horizontal interpolation pixels k1 and k2 are virtually generated as preprocessing before generating the interpolation pixel m2, and are not generated as actual pixels.
k1 = {a2 × (1-Kh0)} + a3 × Kh0
k2 = {c0 × (1-Kh1)} + c1 × Kh1
If Hm = 0.0 and Vm = 0.5, Kh0 = 0.5 and Kh1 = 0.5, so k1 = 0.5 × a2 + 0.5 × a3.
k2 = 0.5 × c0 + 0.5 × c1
As shown in FIG. 6C, the horizontal interpolation pixel k1 is generated in the middle between the pixel a2 and the pixel a3, and the horizontal interpolation pixel k2 is generated in the middle between the pixel c0 and the pixel c1. The pixel value of the horizontal interpolation pixel k1 is an intermediate value between the pixel value of the pixel a2 and the pixel value of the pixel a3, and the pixel value of the horizontal interpolation pixel k2 is an intermediate value between the pixel value of the pixel c0 and the pixel value of the pixel c1. It becomes.

最後に、最終補間部113が、水平補間画素k1、k2の画素値を線形補間して補間画素m2の画素値を算出し、スケーリング補間出力として出力する。   Finally, the final interpolation unit 113 calculates the pixel value of the interpolation pixel m2 by linearly interpolating the pixel values of the horizontal interpolation pixels k1 and k2, and outputs the result as a scaling interpolation output.

図7に、同様の処理を行って残りの補間画素を生成した結果を示す。図7に示す補間画素m1〜m9の画素値を図10に示す従来の補間方法による画素値と比較すると、明らかに図7に示す画素値の方が補間画素周囲の画素の画素値との調和がとれている。   FIG. 7 shows a result of generating the remaining interpolation pixels by performing the same processing. When the pixel values of the interpolation pixels m1 to m9 shown in FIG. 7 are compared with the pixel values obtained by the conventional interpolation method shown in FIG. 10, the pixel value shown in FIG. 7 clearly matches the pixel values of the pixels around the interpolation pixel. It is removed.

ここまで補間方向が斜めである場合の補間画素生成の例を説明してきたが、次に、補間方向が垂直あるいは水平であるときの補間画素生成の例を説明する。   The example of interpolation pixel generation when the interpolation direction is oblique has been described so far. Next, an example of interpolation pixel generation when the interpolation direction is vertical or horizontal will be described.

図8(a)〜(c)は、補間方向が垂直と判定されたときの補間画素生成の例を示す図である。   FIGS. 8A to 8C are diagrams illustrating an example of generating an interpolation pixel when the interpolation direction is determined to be vertical.

図8(a)に示す画素の配列に対して補間画素m1を生成する場合、隣接画素間相関検出部8は、図8(a)に矢印D1〜D5で示す補間画素m1に隣接する5組の画素間で画素値の絶対差分値による相関値を求めて補間判定を行うが、この場合、相関ありと判定される画素の組はD4だけである。したがって、補間方向判定部9は、この矢印D4が示す垂直方向を補間方向と判定する。   When the interpolation pixel m1 is generated for the pixel arrangement shown in FIG. 8A, the inter-adjacent pixel correlation detection unit 8 has five sets adjacent to the interpolation pixel m1 indicated by arrows D1 to D5 in FIG. Interpolation determination is performed by obtaining a correlation value based on the absolute difference value of the pixel values between the pixels, but in this case, the group of pixels determined to have correlation is only D4. Therefore, the interpolation direction determination unit 9 determines that the vertical direction indicated by the arrow D4 is the interpolation direction.

この判定を受けて、画素選出部10は、補間画素m1に隣接する走査線上で図8(b)に示す補間画素m1の水平位相Hmと同じ水平位相を有する点に隣接する画素a1、a2、b1、b3を選出する。   In response to this determination, the pixel selection unit 10 detects the pixels a1, a2, and the pixels adjacent to the point having the same horizontal phase as the horizontal phase Hm of the interpolation pixel m1 shown in FIG. 8B on the scanning line adjacent to the interpolation pixel m1. b1 and b3 are selected.

次に、水平補間部112は、補間画素m1に隣接する走査線上で図8(c)に示す補間画素m1の水平位相Hmと同じ水平位相を有する点に水平補間画素k1、k2を生成する。ただし、この水平補間画素k1、k2は補間画素m1を生成する前の前処理として仮想的に生成されるものであって、実際の画素として生成されるものではない。   Next, the horizontal interpolation unit 112 generates horizontal interpolation pixels k1 and k2 at points having the same horizontal phase as the horizontal phase Hm of the interpolation pixel m1 shown in FIG. 8C on the scanning line adjacent to the interpolation pixel m1. However, the horizontal interpolation pixels k1 and k2 are virtually generated as preprocessing before generating the interpolation pixel m1, and are not generated as actual pixels.

このとき、補間係数生成部111は、補間位相信号と補間方向判定結果に基づいて、補間画素m1に対する水平補間係数Kh0、Kh1を生成する。この場合、画素a1、a2間の位相を1.0とすると、水平補間係数Kh0、Kh1は次の式で算出される。
Kh0=Hm
Kh1=Hm/2
水平補間部112は、この補間係数Kh0、Kh1を用いて、次の式で水平補間画素k1、k2の画素値を求める。
k1={a1×(1−Kh0)}+a2×Kh0
k2={b1×(1−Kh1)}+b3×Kh1
いま、Hm=0.5とすると、Kh0=0.5、Kh1=0.25となるので
k1=0.5×a1+0.5×a2
k2=0.75×b1+0.25×b3
最後に、最終補間部113が、水平補間画素k1、k2の画素値を線形補間して補間画素m1の画素値を算出し、スケーリング補間出力として出力する。
At this time, the interpolation coefficient generation unit 111 generates horizontal interpolation coefficients Kh0 and Kh1 for the interpolation pixel m1 based on the interpolation phase signal and the interpolation direction determination result. In this case, assuming that the phase between the pixels a1 and a2 is 1.0, the horizontal interpolation coefficients Kh0 and Kh1 are calculated by the following equations.
Kh0 = Hm
Kh1 = Hm / 2
The horizontal interpolation unit 112 uses the interpolation coefficients Kh0 and Kh1 to obtain the pixel values of the horizontal interpolation pixels k1 and k2 using the following equation.
k1 = {a1 × (1-Kh0)} + a2 × Kh0
k2 = {b1 × (1−Kh1)} + b3 × Kh1
If Hm = 0.5, Kh0 = 0.5 and Kh1 = 0.25, so k1 = 0.5 × a1 + 0.5 × a2.
k2 = 0.75 × b1 + 0.25 × b3
Finally, the final interpolation unit 113 calculates the pixel value of the interpolation pixel m1 by linearly interpolating the pixel values of the horizontal interpolation pixels k1 and k2, and outputs it as a scaling interpolation output.

図9(a)〜(c)は、補間方向が水平と判定されたときの補間画素生成の例を示す図である。   FIGS. 9A to 9C are diagrams illustrating an example of generating an interpolation pixel when the interpolation direction is determined to be horizontal.

図9(a)に示す画素の配列に対して補間画素m1を生成する場合、隣接画素間相関検出部8は、図9(a)に矢印D1〜D5で示す補間画素m1に隣接する5組の画素間で画素値の絶対差分値による相関値を求めて補間判定を行うが、この場合、相関ありと判定される画素の組はD5だけである。したがって、補間方向判定部9は、この矢印D5が示す水平方向を補間方向と判定する。   When the interpolation pixel m1 is generated for the pixel arrangement shown in FIG. 9A, the inter-adjacent pixel correlation detection unit 8 has five sets adjacent to the interpolation pixel m1 indicated by arrows D1 to D5 in FIG. 9A. Interpolation determination is performed by obtaining a correlation value based on the absolute difference value of the pixel values between the pixels, but in this case, the group of pixels determined to have correlation is only D5. Therefore, the interpolation direction determination unit 9 determines the horizontal direction indicated by the arrow D5 as the interpolation direction.

この判定を受けて、画素選出部10は、補間画素m1に隣接する走査線上で図9(b)に示す補間画素m1の水平位相Hmと同じ水平位相を有する点に隣接する画素a1、a2、b1、b3を選出する。   In response to this determination, the pixel selection unit 10 detects the pixels a1, a2, and the pixels adjacent to the point having the same horizontal phase as the horizontal phase Hm of the interpolation pixel m1 shown in FIG. 9B on the scanning line adjacent to the interpolation pixel m1. b1 and b3 are selected.

次に、水平補間部112は、補間画素m1に隣接する走査線上で図9(c)に示す補間画素m1の水平位相Hmと同じ水平位相を有する点に水平補間画素k1、k2を生成する。ただし、この水平補間画素k1、k2は補間画素m1を生成する前の前処理として仮想的に生成されるものであって、実際の画素として生成されるものではない。   Next, the horizontal interpolation unit 112 generates horizontal interpolation pixels k1 and k2 at points having the same horizontal phase as the horizontal phase Hm of the interpolation pixel m1 shown in FIG. 9C on the scanning line adjacent to the interpolation pixel m1. However, the horizontal interpolation pixels k1 and k2 are virtually generated as preprocessing before generating the interpolation pixel m1, and are not generated as actual pixels.

このとき、補間係数生成部111は、補間位相信号と補間方向判定結果に基づいて、補間画素m1に対する水平補間係数Kh0、Kh1を生成する。この場合、画素a1、a2間の位相を1.0とすると、水平補間係数Kh0、Kh1は次の式で算出される。
Kh0=Hm
Kh1=Hm/2
水平補間部112は、この補間係数Kh0、Kh1を用いて、次の式で水平補間画素k1、k2の画素値を求める。
k1={a1×(1−Kh0)}+a2×Kh0
k2={b1×(1−Kh1)}+b3×Kh1
いま、Hm=0.5とすると、Kh0=0.5、Kh1=0.25となるので
k1=0.5×a1+0.5×a2
k2=0.75×b1+0.25×b3
最後に、最終補間部113が、水平補間画素k1、k2の画素値を線形補間して補間画素m1の画素値を算出し、スケーリング補間出力として出力する。
At this time, the interpolation coefficient generation unit 111 generates horizontal interpolation coefficients Kh0 and Kh1 for the interpolation pixel m1 based on the interpolation phase signal and the interpolation direction determination result. In this case, assuming that the phase between the pixels a1 and a2 is 1.0, the horizontal interpolation coefficients Kh0 and Kh1 are calculated by the following equations.
Kh0 = Hm
Kh1 = Hm / 2
The horizontal interpolation unit 112 uses the interpolation coefficients Kh0 and Kh1 to obtain the pixel values of the horizontal interpolation pixels k1 and k2 using the following equation.
k1 = {a1 × (1-Kh0)} + a2 × Kh0
k2 = {b1 × (1−Kh1)} + b3 × Kh1
If Hm = 0.5, Kh0 = 0.5 and Kh1 = 0.25, so k1 = 0.5 × a1 + 0.5 × a2.
k2 = 0.75 × b1 + 0.25 × b3
Finally, the final interpolation unit 113 calculates the pixel value of the interpolation pixel m1 by linearly interpolating the pixel values of the horizontal interpolation pixels k1 and k2, and outputs it as a scaling interpolation output.

このような本実施例の補間画素生成回路によれば、途中でプログレッシブ補間を行うことなく、現フィールドの画素および1フィールド前の静止画と判定された画素を用いて直接スケーリング補間画素を生成するので、表示画像にノイズが生じたり、解像度が劣化したりすることを少なくすることができる。   According to such an interpolation pixel generation circuit of this embodiment, a scaling interpolation pixel is directly generated using a pixel determined to be a current field pixel and a still image one field before, without performing progressive interpolation in the middle. Therefore, it is possible to reduce the occurrence of noise in the display image and the deterioration of the resolution.

本発明の実施例に係る補間画素生成回路の構成の例を示すブロック図。The block diagram which shows the example of a structure of the interpolation pixel production | generation circuit which concerns on the Example of this invention. 本発明の実施例に係る補間画素生成回路における相関判定用画素の組み合わせの例を示す図。The figure which shows the example of the combination of the pixel for correlation determination in the interpolation pixel production | generation circuit which concerns on the Example of this invention. 補間画素生成を行う画素の配列の例を示す図。The figure which shows the example of the arrangement | sequence of the pixel which performs an interpolation pixel production | generation. 本発明の実施例に係る補間画素生成回路における補間画素生成の例を示す図。The figure which shows the example of the interpolation pixel production | generation in the interpolation pixel production | generation circuit which concerns on the Example of this invention. 本発明の実施例に係る補間画素生成回路における補間画素生成の例を示す図。The figure which shows the example of the interpolation pixel production | generation in the interpolation pixel production | generation circuit which concerns on the Example of this invention. 本発明の実施例に係る補間画素生成回路における補間画素生成の例を示す図。The figure which shows the example of the interpolation pixel production | generation in the interpolation pixel production | generation circuit which concerns on the Example of this invention. 本発明の実施例に係る補間画素生成回路における補間画素生成の例を示す図。The figure which shows the example of the interpolation pixel production | generation in the interpolation pixel production | generation circuit which concerns on the Example of this invention. 本発明の実施例に係る補間画素生成回路における補間画素生成の例を示す図。The figure which shows the example of the interpolation pixel production | generation in the interpolation pixel production | generation circuit which concerns on the Example of this invention. 本発明の実施例に係る補間画素生成回路における補間画素生成の例を示す図。The figure which shows the example of the interpolation pixel production | generation in the interpolation pixel production | generation circuit which concerns on the Example of this invention. 従来のスケーリング補間画素生成の例を示す図。The figure which shows the example of the conventional scaling interpolation pixel production | generation.

符号の説明Explanation of symbols

1 フィールドメモリ
2、3 フィールド遅延メモリ
4 動き判定部
5 動き判定結果記憶部
6 補間位相信号生成部
7 隣接画素格納部
8 隣接画素間相関検出部
9 補間方向判定部
10 画素選出部
11 補間画素生成部
111 補間係数生成部
112 水平補間部
113 最終補間部
DESCRIPTION OF SYMBOLS 1 Field memory 2, 3 Field delay memory 4 Motion determination part 5 Motion determination result memory | storage part 6 Interpolation phase signal generation part 7 Adjacent pixel storage part 8 Correlation detection part between adjacent pixels 9 Interpolation direction determination part 10 Pixel selection part 11 Interpolation pixel generation 111 Interpolation coefficient generation unit 112 Horizontal interpolation unit 113 Final interpolation unit

Claims (5)

インターレース走査の映像信号のフィールドごとにそのフィールドに含まれる画素が動画であるか静止画であるかの動き判定を画素ごとに行う動き判定手段と、
前記映像信号を水平または垂直方向、あるいは水平および垂直方向に圧縮または伸長を行うスケーリングにより生成される補間走査線上の補間位相に対して、前記映像信号の現フィールドの隣接する走査線上の画素と、前記隣接する走査線の中間に位置する1フィールド前の走査線上の画素のうち前記動き判定手段により静止画と判定された画素との中から前記補間位相に隣接する画素の組み合わせを複数生成してそれぞれの画素の組み合わせごとに画素間の相関値を算出し、相関を有する画素の組み合わせを検出する隣接画素間相関検出手段と、
前記隣接画素間相関検出手段により相関を検出された画素の組み合わせの中で最も相関の高い画素の組み合わせの方向を補間方向と判定する補間方向判定手段と、
前記補間方向判定手段の判定結果に基づいて前記補間位相に隣接する現フィールドの画素および静止画と判定された1フィールド前の画素の中から補間画素生成用の画素の組み合わせを選出し、その画素値を用いて前記補間位相の補間画素の画素値を生成する補間画素生成手段と
を有することを特徴とする補間画素生成回路。
A motion determination means for performing a motion determination for each pixel of each field of the video signal of the interlaced scanning, whether the pixel included in the field is a moving image or a still image;
Pixels on a scan line adjacent to the current field of the video signal for an interpolation phase on the interpolation scan line generated by scaling that compresses or decompresses the video signal horizontally or vertically, or horizontally and vertically; A plurality of combinations of pixels adjacent to the interpolation phase are generated from the pixels on the scanning line one field before located in the middle of the adjacent scanning lines and the pixels determined to be a still image by the motion determination unit. Calculating a correlation value between pixels for each combination of pixels, and detecting a correlation between adjacent pixels for detecting a combination of pixels having a correlation;
Interpolation direction determination means for determining the direction of the combination of pixels having the highest correlation among the combinations of pixels detected by the correlation detection means between adjacent pixels as the interpolation direction;
Based on the determination result of the interpolation direction determination means, a combination of pixels for generating an interpolation pixel is selected from the pixels in the current field adjacent to the interpolation phase and the pixels in the previous field determined as a still image, and the pixels An interpolation pixel generation circuit comprising: interpolation pixel generation means for generating a pixel value of an interpolation pixel of the interpolation phase using a value.
前記補間方向判定手段は、前記補間位相と前記隣接画素間相関検出手段が相関を検出した組み合わせの画素との距離に応じて非線形な重み付けをした相関評価値を算出し、前記相関評価値に基づいて走査線に対して垂直または水平もしくは斜め方向の中から1つの方向を補間方向として決定することを特徴とする請求項1に記載の補間画素生成回路。   The interpolation direction determining means calculates a correlation evaluation value that is nonlinearly weighted according to the distance between the interpolation phase and a combination of pixels for which the correlation detection means between adjacent pixels has detected correlation, and based on the correlation evaluation value The interpolation pixel generation circuit according to claim 1, wherein one direction is determined as an interpolation direction from vertical, horizontal, or oblique directions with respect to the scanning line. 前記補間方向判定手段は、前記隣接画素間相関検出手段により相関が検出された画素の組み合わせが異なる方向に複数あるときは、前記相関評価値を前記画素の組み合わせの方向ごとに加算し、その加算値に基づいて前記補間方向を決定することを特徴とする請求項2に記載の補間画素生成回路。   The interpolation direction determination means adds the correlation evaluation value for each direction of the combination of pixels when there are a plurality of combinations of pixels in which the correlation is detected by the correlation detection means between adjacent pixels, and the addition The interpolation pixel generation circuit according to claim 2, wherein the interpolation direction is determined based on a value. 前記補間画素生成手段は、
補間処理の前処理として水平補間画素を生成する水平補間手段を有し、
前記水平補間手段が、前記補間方向判定手段により判定された補間方向が走査線に対して斜めであるときは、前記補間方向と同じ傾きを持って前記補間位相を通過する線が交差する前記補間位相に隣接する走査線上に前記水平補間画素を生成し、前記補間方向判定手段により判定された補間方向が走査線に対して垂直または水平であるときは、前記補間位相に隣接する走査線上の前記補間位相と同一の水平位相に前記水平補間画素を生成し、
最終補間として前記水平補間手段により生成された前記水平補間画素を用いて前記補間位相の補間画素を生成することを特徴とする請求項1乃至3のいずれか1項に記載の補間画素生成回路。
The interpolation pixel generation means includes
Horizontal interpolation means for generating horizontal interpolation pixels as preprocessing of interpolation processing;
When the interpolation direction determined by the interpolation direction determination means is oblique to the scanning line, the horizontal interpolation means intersects the lines passing through the interpolation phase with the same inclination as the interpolation direction. The horizontal interpolation pixel is generated on the scanning line adjacent to the phase, and when the interpolation direction determined by the interpolation direction determination unit is vertical or horizontal with respect to the scanning line, the scanning line adjacent to the interpolation phase Generating the horizontal interpolation pixel in the same horizontal phase as the interpolation phase;
4. The interpolation pixel generation circuit according to claim 1, wherein the interpolation pixel of the interpolation phase is generated by using the horizontal interpolation pixel generated by the horizontal interpolation unit as final interpolation. 5.
前記水平補間手段は、補間に用いようとした画素が1フィールド前の走査線上にあってかつ動画と判定されたものであるときはその画素の代わりにその画素に隣接する現フィールドの走査線上の画素を用いて前記水平補間画素を生成することを特徴とする請求項4に記載の補間画素生成回路。   When the pixel to be used for the interpolation is on the scanning line one field before and is determined to be a moving image, the horizontal interpolation means replaces the pixel on the scanning line of the current field adjacent to the pixel. The interpolation pixel generation circuit according to claim 4, wherein the horizontal interpolation pixel is generated using a pixel.
JP2005041080A 2005-02-17 2005-02-17 Interpolated pixel generation circuit Pending JP2006229615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005041080A JP2006229615A (en) 2005-02-17 2005-02-17 Interpolated pixel generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005041080A JP2006229615A (en) 2005-02-17 2005-02-17 Interpolated pixel generation circuit

Publications (1)

Publication Number Publication Date
JP2006229615A true JP2006229615A (en) 2006-08-31

Family

ID=36990558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041080A Pending JP2006229615A (en) 2005-02-17 2005-02-17 Interpolated pixel generation circuit

Country Status (1)

Country Link
JP (1) JP2006229615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035746A (en) * 2009-08-04 2011-02-17 Dainippon Printing Co Ltd Image processing apparatus and method for processing image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035746A (en) * 2009-08-04 2011-02-17 Dainippon Printing Co Ltd Image processing apparatus and method for processing image

Similar Documents

Publication Publication Date Title
US7012649B2 (en) Image processing apparatus and method, program, and recording medium
JP4869045B2 (en) Interpolation frame creation method and interpolation frame creation apparatus
US8189105B2 (en) Systems and methods of motion and edge adaptive processing including motion compensation features
JP4218640B2 (en) Image processing apparatus and method, video display apparatus, and recorded information reproducing apparatus
EP1646228B1 (en) Image processing apparatus and method
KR20070094796A (en) Spatio-temporal adaptive video de-interlacing
EP1039746B1 (en) Line interpolation method and apparatus
JPH07288778A (en) Method and device for detecting interpolation line
JP4991360B2 (en) Frame rate conversion device and video display device
JP5350501B2 (en) Video processing apparatus and video processing method
US9495728B2 (en) Method for edge detection, method for motion detection, method for pixel interpolation utilizing up-sampling, and apparatuses thereof
JP5241632B2 (en) Image processing circuit and image processing method
JP2006229615A (en) Interpolated pixel generation circuit
JP3212917B2 (en) Scanning line interpolation device and scanning line interpolation method
JP5448983B2 (en) Resolution conversion apparatus and method, scanning line interpolation apparatus and method, and video display apparatus and method
JP4250598B2 (en) Motion compensation IP conversion processing apparatus and motion compensation IP conversion processing method
JP4463171B2 (en) Autocorrelation value calculation method, interpolation pixel generation method, apparatus thereof, and program thereof
JP4736456B2 (en) Scanning line interpolation device, video display device, video signal processing device
JP2001094951A (en) Scanning line interpolation method
JP2009177524A (en) Scanning line interpolating device and scanning line interpolating method
JP2003289511A (en) Image scan converting method and apparatus
JP5287581B2 (en) Image processing apparatus and image processing method
US8494292B2 (en) Image processing apparatus
JP2009212851A (en) Scanning line interpolator and its control method
JP2009077029A (en) Signal converter and signal conversion method