JP2006228840A - Soft x-ray optical device and instrument - Google Patents

Soft x-ray optical device and instrument Download PDF

Info

Publication number
JP2006228840A
JP2006228840A JP2005038426A JP2005038426A JP2006228840A JP 2006228840 A JP2006228840 A JP 2006228840A JP 2005038426 A JP2005038426 A JP 2005038426A JP 2005038426 A JP2005038426 A JP 2005038426A JP 2006228840 A JP2006228840 A JP 2006228840A
Authority
JP
Japan
Prior art keywords
layer
soft
multilayer
ray
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005038426A
Other languages
Japanese (ja)
Inventor
Koji Teranishi
康治 寺西
Kenji Ando
謙二 安藤
Hidehiro Kanazawa
秀宏 金沢
Takako Imai
香子 今井
Takayuki Miura
隆幸 三浦
Kazue Takada
和枝 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005038426A priority Critical patent/JP2006228840A/en
Publication of JP2006228840A publication Critical patent/JP2006228840A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a higher-quality soft X-ray optical device and soft X-ray optical instrument by suppressing carbon contamination or oxidation of the surface. <P>SOLUTION: A multilayered film reflector is made by stacking on a substrate a plurality of paired layers, each consisting of a first layer and a second layer which have a different refractive index in a soft X-ray wavelength band (the second layer has a refractive index smaller than that of the first layer in vacuum). A protection layer consisting of Y3A15012 is formed on the uppermost layer of the multilayered film reflector to form the soft X-ray multilayered film optical device. The film thickness of the surface protection layer is smaller than that of the first layer and/or the second layer which constitute the multilayered film reflector and have a different refractive index. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体露光装置やその他の光学素子に用いられる多層膜反射鏡及びそれを用いた光学機器に関するものである。   The present invention relates to a multilayer reflector used in a semiconductor exposure apparatus and other optical elements, and an optical apparatus using the same.

半導体集積回路の微細化に伴い、従来の紫外線に代えてこれより短い波長(11〜14nm)のX線を使用した投影リソグラフィ技術が開発されている。この技術は、最近ではEUV(Extreme UltraViolet)リソグラフィとも呼ばれており、従来の波長190nmや157nmの光線を用いた光リソグラフィでは実現不可能な70nm以下の解像力を得られる技術として期待されている。   Along with miniaturization of semiconductor integrated circuits, a projection lithography technique using X-rays having a shorter wavelength (11 to 14 nm) instead of conventional ultraviolet rays has been developed. This technique is also recently called EUV (Extreme UltraViolet) lithography, and is expected as a technique capable of obtaining a resolution of 70 nm or less that cannot be realized by conventional optical lithography using light beams having a wavelength of 190 nm or 157 nm.

軟X線を用いる場合、この、X線波長域の光に対して考えると、物質の屈折率は、
n=1−δ−iβ (δ,β:正の実数)
と表され、δ,β共に1に比べて非常に小さい(屈折率の虚部βはX線の吸収を表す)値を示す。従って、屈折率がほぼ1に近くなりX線は殆ど屈折せず、又、必ずX線を吸収する。そのため、可視光領域の光のように屈折を利用したレンズ系はX線波長域の光には使用できない。そのため反射を利用した光学系が使用される。
When using soft X-rays, the refractive index of a substance is
n = 1−δ−iβ (δ, β: positive real number)
Both δ and β are very small compared to 1 (the imaginary part β of the refractive index represents X-ray absorption). Accordingly, the refractive index is close to 1, and X-rays are hardly refracted, and X-rays are always absorbed. Therefore, a lens system using refraction like light in the visible light region cannot be used for light in the X-ray wavelength region. Therefore, an optical system using reflection is used.

しかし、屈折率が1に近いために反射率は非常に低く、大部分のX線は透過するか或いは吸収されてしまう。この問題を解決するために、使用するX線の波長域での屈折率と真空の屈折率(=1)との差が大きい物質と、差の小さい物質とを交互に何層も積層することでそれらの界面である反射面を多数設け、それぞれの界面からの反射波の位相が一致するように光学的干渉理論に基づいて各層の厚さを調整した多層膜反射鏡が開発されている。   However, since the refractive index is close to 1, the reflectivity is very low, and most X-rays are transmitted or absorbed. In order to solve this problem, a material having a large difference between the refractive index in the wavelength region of the X-ray to be used and the refractive index of the vacuum (= 1) and a material having a small difference are stacked alternately. Thus, a multilayer reflector has been developed in which a large number of reflecting surfaces as the interfaces are provided, and the thicknesses of the respective layers are adjusted based on the optical interference theory so that the phases of the reflected waves from the interfaces coincide with each other.

このような多層膜反射鏡の代表的なものとして、W(タングステン)/C(炭素)、Mo(モリブデン)/Si(シリコン)等の組み合わせが知られている。そして、これらの多層膜は、スパッタリング、真空蒸着等の薄膜形成技術によって作製されていた。尚、多層膜反射鏡は、垂直にX線を反射することも可能であるため、全反射を用いた斜入射光学系よりも収差の少ない光学系を構成することができる。   As typical examples of such multilayer mirrors, combinations of W (tungsten) / C (carbon), Mo (molybdenum) / Si (silicon), and the like are known. And these multilayer films were produced by thin film formation techniques, such as sputtering and vacuum evaporation. In addition, since the multilayer mirror can also reflect X-rays vertically, an optical system with less aberration than the oblique incidence optical system using total reflection can be configured.

多層膜反射鏡は、ブラッグの式:2dsinθ=nλ(d:多層膜の周期長、θ:斜入射角度、π/2−入射角度、λ:X線の波長)を満たす場合にX線を強く反射する波長依存性を有するため、この式を満たすように各因子を選択する必要がある。   The multilayer mirror reflects X-rays strongly when Bragg's formula: 2dsin θ = nλ (d: period length of multilayer film, θ: oblique incident angle, π / 2−incident angle, λ: X-ray wavelength) is satisfied. Since it has wavelength dependency to reflect, it is necessary to select each factor to satisfy this equation.

多層膜としてモリブデン(Mo)/シリコン(Si)を用いた場合、波長12.6nmのシリコンのL吸収端の長波長側で高い反射率を示すことが知られている。このため、波長13nm付近で、直入射(入射角度が0°)で67%以上の高い反射率を有する多層膜反射鏡を比較的容易に作製することができる。   When molybdenum (Mo) / silicon (Si) is used as the multilayer film, it is known that a high reflectance is exhibited on the long wavelength side of the L absorption edge of silicon having a wavelength of 12.6 nm. Therefore, a multilayer film reflecting mirror having a high reflectance of 67% or more at a direct incidence (incident angle of 0 °) around a wavelength of 13 nm can be produced relatively easily.

軟X線反射鏡は、空気による吸収を防ぐために真空中で使用されるのが一般的である。又、縮小投影リソグラフィにおいて軟X線反射鏡を用いた場合、炭素による光学素子のコンタミネーションが問題となっている。以下に、炭素による光学素子コンタミネーションの発生のメカニズムを簡単に説明する。   The soft X-ray reflector is generally used in a vacuum in order to prevent absorption by air. In addition, when a soft X-ray reflecting mirror is used in reduction projection lithography, contamination of the optical element with carbon is a problem. Below, the mechanism of generation of optical element contamination by carbon will be briefly described.

軟X線光学機器で用いられる真空中には炭化水素を含有する残留ガスが含まれていることが多い。この炭化水素を含有する残留ガスとしては、例えば真空排気系(真空ポンプ)に用いられるオイルに起因するもの、装置内部の可動部分の潤滑剤に起因するもの等がある。   The vacuum used in soft X-ray optical equipment often contains residual gas containing hydrocarbons. Examples of the residual gas containing hydrocarbons include those caused by oil used in an evacuation system (vacuum pump) and those caused by a lubricant in a movable part inside the apparatus.

EUV露光装置の場合は、装置の内部に有機物(例えばフォトレジスト)が導入されており、この有機物を真空中におくことで、有機物が分解脱離や乖離を起こし、炭化水素を含むガスが装置内に放出されることになる。   In the case of an EUV exposure apparatus, an organic substance (for example, a photoresist) is introduced into the apparatus, and by placing the organic substance in a vacuum, the organic substance is decomposed, desorbed or separated, and a gas containing hydrocarbons is generated in the apparatus. Will be released inside.

この炭化水素を含んだ残留ガス分子は、装置内の多層膜反射鏡の表面に物理吸着する。   The residual gas molecules containing the hydrocarbon are physically adsorbed on the surface of the multilayer mirror in the apparatus.

多層膜反射鏡の表面に物理吸着した残留ガス分子は、表面上で脱離と吸着とを繰り返しており、そのままでは厚く成長することはない。しかし、多層膜反射鏡にEUV光が照射されると二次電子が発生し、この二次電子が表面に吸着している炭化水素を含有する残留ガス分子を分解して炭素が析出する。このように、吸着したガス分子がどんどん分解されて析出されていくので、多層膜反射鏡の表面には炭素層が形成され、その炭素層の厚さはEUV光の照射量に比例して増加する(非特許文献1参照)。   Residual gas molecules physically adsorbed on the surface of the multilayer mirror are repeatedly desorbed and adsorbed on the surface and do not grow thick as they are. However, when the multilayer mirror is irradiated with EUV light, secondary electrons are generated, and the secondary electrons decompose the residual gas molecules containing the hydrocarbons adsorbed on the surface to deposit carbon. In this way, the adsorbed gas molecules are gradually decomposed and deposited, so that a carbon layer is formed on the surface of the multilayer mirror, and the thickness of the carbon layer increases in proportion to the irradiation amount of EUV light. (See Non-Patent Document 1).

上記のように、多層膜反射鏡の表面に炭素層が形成されると、反射鏡の反射率が低下してしまうという問題がある。図1及び図2に、多層膜反射鏡の表面に炭素層が形成されたときの反射率の影響を示すグラフを示す(計算値)。具体的には、Mo/Si多層膜反射鏡(層数40対層、周期長6.94nm、最上層はSi)に炭素層の形成による反射率の変化(計算値)を示したグラフである。図2において、横軸は炭素層の厚さ(nm)であり、縦軸は反射率(%:13.5nm)を示す。図2に示すように、炭素層の厚さが2nm以下では反射率は殆ど低下しないが、2nmを超えると反射率は徐々に低下し、5nmでは反射率が約4.4%も低下する。   As described above, when a carbon layer is formed on the surface of the multilayer-film reflective mirror, there is a problem that the reflectance of the reflective mirror decreases. FIG. 1 and FIG. 2 show graphs showing the influence of reflectance when a carbon layer is formed on the surface of a multilayer mirror (calculated values). Specifically, it is a graph showing the change in reflectance (calculated value) due to the formation of a carbon layer on a Mo / Si multilayer mirror (number of layers: 40 pairs, period length: 6.94 nm, top layer is Si). . In FIG. 2, the horizontal axis represents the thickness (nm) of the carbon layer, and the vertical axis represents the reflectance (%: 13.5 nm). As shown in FIG. 2, the reflectivity hardly decreases when the thickness of the carbon layer is 2 nm or less. However, when the thickness exceeds 2 nm, the reflectivity gradually decreases, and at 5 nm, the reflectivity decreases by about 4.4%.

EUV露光装置においては、多層膜反射鏡の反射率が僅かに低下しただけでも露光装置のスループットに大きな影響を与える。   In the EUV exposure apparatus, even if the reflectivity of the multilayer mirror is slightly decreased, the throughput of the exposure apparatus is greatly affected.

上述したような、多層膜反射鏡の表面の炭素層析出による光学素子のコンタミネーションを防止する方法として、非特許文献2のように使用雰囲気中に酸素又は水蒸気を導入する技術が開発されている。   As described above, as a method for preventing the contamination of the optical element due to the carbon layer deposition on the surface of the multilayer reflector, a technique for introducing oxygen or water vapor into the use atmosphere as in Non-Patent Document 2 has been developed. Yes.

上記文献によれば、EUV光照射により酸素又は水蒸気が分解されてラジカルが生成される。生成された酸素ラジカルは光学素子の表面に物理吸着した炭化水素を含むガス分子及び表面に析出した炭素層と反応して炭酸ガスが形成される。形成される炭酸ガスは気体であるため、真空ポンプにより排気され炭素のコンタミネーションが除去される。   According to the above document, oxygen or water vapor is decomposed by EUV light irradiation to generate radicals. The generated oxygen radicals react with gas molecules containing hydrocarbons physically adsorbed on the surface of the optical element and a carbon layer deposited on the surface to form carbon dioxide gas. Since the carbon dioxide gas formed is a gas, it is exhausted by a vacuum pump to remove carbon contamination.

K. Boller etal., Nucl. Instr. And Meth. 208(1983273)K. Boller etal., Nucl. Instr. And Meth. 208 (1983273) M. Malinowskiet al., Proc. SPIE 4343(2001) 347M. Malinowskiet al., Proc.SPIE 4343 (2001) 347

しかしながら、上記文献に記載された方法は酸素ラジカルによる酸化反応を利用するものであり、表面に析出した炭素だけでなく多層膜表面も酸化してしまう。多層膜表面を酸化すると、表面酸化による反射率の低下が起こるという問題が生じる。   However, the method described in the above document utilizes an oxidation reaction by oxygen radicals and oxidizes not only the carbon deposited on the surface but also the multilayer film surface. When the surface of the multilayer film is oxidized, there arises a problem that the reflectance is lowered due to the surface oxidation.

本発明は上述した従来の問題点に鑑みてなされたものであり、その目的は、表面の炭素コンタミネーションもしくは酸化を抑制しより高品質な軟X線光学素子及び軟X線光学機器を提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a soft X-ray optical element and a soft X-ray optical instrument with higher quality by suppressing carbon contamination or oxidation on the surface. There is.

本発明は、軟X線波長域における屈折率が異なる第1の層と第2の層(真空の屈折率が前記第1の層より小さい)から成る層対を、基板上に複数積層して成る多層膜反射鏡において、前記、多層膜反射鏡の最上層上にY3A15012から成る保護層を設けたことを特徴とする軟X線多層膜光学素子及びそれを具備した光学機器であって以下の構成も含むものである。   In the present invention, a plurality of layer pairs composed of a first layer and a second layer (having a lower refractive index in vacuum than the first layer) having different refractive indexes in the soft X-ray wavelength region are stacked on a substrate. A multilayer X-ray mirror comprising: a soft X-ray multilayer optical element comprising a protective layer made of Y3A15012 provided on the uppermost layer of the multi-layer reflector; and an optical apparatus including the same. The configuration is also included.

・表面保護層の膜厚は、多層膜反射鏡を形成する屈折率が異なる第1の層と第2の層のうち、少なくともどちらかの膜厚より小さいことを特徴とする。   The film thickness of the surface protective layer is characterized by being smaller than at least one of the first layer and the second layer having different refractive indexes forming the multilayer film reflecting mirror.

・多層膜反射鏡と、前記多層膜反射鏡の使用雰囲気中に酸素を含んだ分子から成る気体を導入する手段とを備えていることを特徴とする。   A multilayer film reflecting mirror and means for introducing a gas composed of molecules containing oxygen into the use atmosphere of the multilayer film reflecting mirror are provided.

本発明の表面保護層を備えることにより、高品質で且つコンタミネーションに強い多層膜反射鏡を製作できる。   By providing the surface protective layer of the present invention, it is possible to produce a multilayer mirror having high quality and resistance to contamination.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

図3は本発明の実施の形態に係る多層膜反射鏡を示す概略断面図である。但し、簡略化するため実際の多層膜の積層数より少なく記載している。更に、露光機等で用いられる多層膜ミラー形状は一般に曲率を有しているが、本発明では平面形状を用いて説明する。   FIG. 3 is a schematic sectional view showing a multilayer-film reflective mirror according to an embodiment of the present invention. However, for the sake of simplicity, the number of layers is less than the actual number of multilayer films. Furthermore, although the multilayer mirror shape used in an exposure machine or the like generally has a curvature, the present invention will be described using a planar shape.

図3に示すように、本発明の実施の形態に係る多層膜反射鏡は、軟X線領域での屈折率と真空の屈折率との差が大きい物質からなる第1層(重原子層)3と前記屈折率と真空の屈折率との差が小さい物質から成る第2層(軽原子層)2とを基板4上に交互に積層して成る。基板4は、低熱膨張ガラスを用い、約0.3nmRMS以下の表面粗さに研磨したものを用いている。   As shown in FIG. 3, the multilayer-film reflective mirror according to the embodiment of the present invention includes a first layer (heavy atom layer) made of a material having a large difference between the refractive index in the soft X-ray region and the refractive index in vacuum. 3 and second layers (light atomic layers) 2 made of a material having a small difference between the refractive index and the refractive index of the vacuum are alternately stacked on the substrate 4. The substrate 4 is made of low thermal expansion glass and polished to a surface roughness of about 0.3 nm RMS or less.

次に、マグネトロンスパッタ装置(図示せず)を用い、基板4上にMo/Si多層膜を成膜した。成膜はSi層4.03nm、Mo層2.92nmを40周期成膜し、その上層にSi層を2.65nm成膜した。更に、再上層部に保護層1としてY3A15012を2.58nm成膜した(計算上反射率を図4に記載)。この多層膜を形成する方法としては、スパッタリング・蒸着等、何れの方法によって形成しても良い。   Next, a Mo / Si multilayer film was formed on the substrate 4 using a magnetron sputtering apparatus (not shown). Film formation was performed by depositing 40 cycles of a Si layer of 4.03 nm and a Mo layer of 2.92 nm, and a Si layer of 2.65 nm was formed thereon. Further, 2.58 nm of Y3A15012 was deposited as a protective layer 1 on the upper layer part (calculated reflectance is described in FIG. 4). The multilayer film may be formed by any method such as sputtering or vapor deposition.

又、再上層に保護層を成膜しないものも比較にため、同成膜膜厚にて成膜、上述した多層膜ミラーの反射率(入射角5度)をそれぞれ測定した。その後、この多層膜ミラーを真空装置内に設置し、真空下にてEUV光により照射実験を実施した。照射は1mW/mmの強度で6時間照射した。実際の露光環境と近い環境を作るためチャンバー内にはフォトレジストからの炭化水素を導入した。このガスの分圧はおよそ3×10―8Torrとした。 For comparison, a film without a protective layer formed on the upper layer was also formed with the same film thickness, and the reflectance (incident angle of 5 degrees) of the multilayer mirror described above was measured. Thereafter, the multilayer mirror was placed in a vacuum apparatus, and an irradiation experiment was performed with EUV light under vacuum. Irradiation was performed at an intensity of 1 mW / mm 2 for 6 hours. In order to create an environment close to the actual exposure environment, hydrocarbons from the photoresist were introduced into the chamber. The partial pressure of this gas was about 3 × 10 −8 Torr.

本発明の比較例として前記記載の表面に保護層を成膜していないサンプルも同環境で同実験を行った。このサンプルでは、多層膜成膜後にこの実験を行う前の13.5nmでの反射率を1とすると、本実験を行った後のサンプルでは0.91となり、反射率が約1割程度減少した。本発明の表面保護層を成膜したサンプルでは、本実験前の13.5nmでの反射率を1とすると本実験後では、相対的に0.93程度の反射率を示した。この原因を確認するため、オージェ電子分光法にてそれぞれのサンプルを分析したところ、サンプル表面に炭素の析出が確認でき、反射率低下の原因は、炭化水素の分解に起因するサンプル表面への炭素の析出であることが確認された。   As a comparative example of the present invention, the same experiment was performed in the same environment for a sample in which a protective layer was not formed on the surface described above. In this sample, if the reflectance at 13.5 nm before the experiment is performed after the multilayer film is formed is 1, the sample after the experiment is 0.91, and the reflectance is reduced by about 10%. . In the sample in which the surface protective layer of the present invention was formed, when the reflectance at 13.5 nm before this experiment was 1, the reflectance was relatively about 0.93 after this experiment. In order to confirm this cause, each sample was analyzed by Auger electron spectroscopy. As a result, carbon deposition was confirmed on the sample surface, and the cause of the decrease in reflectance was the carbon on the sample surface caused by the decomposition of hydrocarbons. It was confirmed that this was a precipitate.

しかしながら、この炭化物は水分を含む雰囲気中でEUV光を当てることで炭素層形成を抑制する効果があることが報告されている(M. Malinowski etal., Proc. SPIE 4343(2001) 347)。   However, it has been reported that this carbide has an effect of suppressing carbon layer formation by applying EUV light in an atmosphere containing moisture (M. Malinowski et al., Proc. SPIE 4343 (2001) 347).

次に、上記と同様に製作した表面保護層を有したサンプルと表面保護層を具えないサンプルを炭化水素を含むガスとともに、チャンバー内へ気化した水分を導入し、EUV光を照射させる実験を行った。導入した水分の分圧は4×10−6Torrとした。この結果、保護層を形成していない多層膜反射鏡においては、この実験を行う前の多層膜の反射率を1とすると、この実験後の反射率は約0.94と相対的に表す値まで低下した。   Next, an experiment was conducted to irradiate the sample with the surface protective layer and the sample without the surface protective layer, which were manufactured in the same manner as described above, with the gas containing hydrocarbons and the vaporized water introduced into the chamber and irradiate with EUV light. It was. The partial pressure of the introduced water was 4 × 10 −6 Torr. As a result, in a multilayer mirror without a protective layer, assuming that the reflectance of the multilayer film before this experiment is 1, the reflectance after this experiment is a relative value of about 0.94. It dropped to.

本発明の表面保護層を有した多層膜反射鏡においては反射率の低下は認められなかった。多層膜表面をオージェ電子分光法にて分析したところ、比較例として用いた表面層を有していない多層膜反射鏡においては多層膜表面の酸化が認められたが、本発明の多層膜反射鏡においては表面酸化は認められなかった。このように、本発明の表面層を有した多層膜反射鏡を製作することで、表面の酸化を低減でき、高品質な多層膜反射鏡を製作できる。   In the multilayer reflector having the surface protective layer of the present invention, no decrease in reflectance was observed. When the surface of the multilayer film was analyzed by Auger electron spectroscopy, oxidation of the multilayer film surface was observed in the multilayer film mirror that did not have a surface layer used as a comparative example. No surface oxidation was observed. Thus, by manufacturing the multilayer reflector having the surface layer of the present invention, the surface oxidation can be reduced, and a high-quality multilayer reflector can be manufactured.

上記実施の形態においては、多層膜材料としてMo/Si多層膜を用いたが、多層膜としては他の材料から成る多層膜を用いても良い。例えば、Mo/Be多層膜を用いた場合、波長11nm付近にて高反射率でコンタミネーションに強い多層膜を得ることが可能である。又、表面にコートされる保護層の膜厚は、余り厚いと保護層事態の吸収により、多層膜の無視できない反射率低下を引き起こすため、多層膜で用いられる各層の膜厚以下にした方が良い。   In the above embodiment, the Mo / Si multilayer film is used as the multilayer film material, but a multilayer film made of other materials may be used as the multilayer film. For example, when a Mo / Be multilayer film is used, it is possible to obtain a multilayer film with high reflectivity and resistance to contamination near a wavelength of 11 nm. In addition, if the film thickness of the protective layer coated on the surface is too thick, it will cause a loss of reflectance that cannot be ignored due to absorption of the protective layer situation, so it is better to make it less than the film thickness of each layer used in the multilayer film good.

表面にカーボンが堆積した場合の反射特性計算値である。This is a reflection characteristic calculation value when carbon is deposited on the surface. 表面にカーボンが堆積した場合の13.5nmでの反射率計算値である。This is a calculated reflectance at 13.5 nm when carbon is deposited on the surface. Mo/Si40周期多層膜反射特性図である。It is a Mo / Si40 periodic multilayer film reflection characteristic figure. 本実験で用いた保護層を有した多層膜の計算値である。It is a calculated value of a multilayer film having a protective layer used in this experiment.

符号の説明Explanation of symbols

1 表面保護層
2 重元素層
3 軽元素層
4 レンズ(基板)
1 Surface protective layer 2 Heavy element layer 3 Light element layer 4 Lens (substrate)

Claims (3)

軟X線波長域における屈折率が異なる第1の層と第2の層(真空の屈折率が前記第1の層より小さい)から成る層対を、基板上に複数積層して成る多層膜反射鏡において、前記、多層膜反射鏡の最上層上にY3A15012から成る保護層を設けたことを特徴とする軟X線多層膜光学素子。   Multi-layer film reflection in which a plurality of layer pairs composed of a first layer and a second layer having different refractive indexes in the soft X-ray wavelength region (a vacuum refractive index is smaller than the first layer) are stacked on a substrate. In the mirror, a soft X-ray multilayer optical element characterized in that a protective layer made of Y3A15012 is provided on the uppermost layer of the multilayer mirror. 前記表面保護層の膜厚は、多層膜反射鏡を形成する屈折率が異なる第1の層と第2の層のうち、少なくともどちらかの膜厚より小さいことを特徴とする請求項1記載の軟X線多層膜光学素子。   The film thickness of the surface protective layer is smaller than the film thickness of at least one of the first layer and the second layer having different refractive indexes forming the multilayer mirror. Soft X-ray multilayer optical element. 請求項1又は2記載の多層膜反射鏡と、前記多層膜反射鏡の使用雰囲気中に酸素を含んだ気体を導入する手段とを備えていることを特徴とする軟X線光学機器。   3. A soft X-ray optical instrument comprising: the multilayer mirror according to claim 1; and means for introducing a gas containing oxygen into an atmosphere in which the multilayer mirror is used.
JP2005038426A 2005-02-15 2005-02-15 Soft x-ray optical device and instrument Withdrawn JP2006228840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005038426A JP2006228840A (en) 2005-02-15 2005-02-15 Soft x-ray optical device and instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005038426A JP2006228840A (en) 2005-02-15 2005-02-15 Soft x-ray optical device and instrument

Publications (1)

Publication Number Publication Date
JP2006228840A true JP2006228840A (en) 2006-08-31

Family

ID=36989961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005038426A Withdrawn JP2006228840A (en) 2005-02-15 2005-02-15 Soft x-ray optical device and instrument

Country Status (1)

Country Link
JP (1) JP2006228840A (en)

Similar Documents

Publication Publication Date Title
JP7022110B2 (en) Extreme UV mask blank with multi-layer absorber and its manufacturing method
JP5511818B2 (en) Optical element for a lithographic apparatus, lithographic apparatus comprising such an optical element, and method for manufacturing such an optical element
CN106471603B (en) Extreme ultraviolet reflecting element with multilayer stack and manufacturing method thereof
JP2023052147A (en) Extreme ultraviolet mask blank with multilayer absorber and method of manufacturing the same
JP5087076B2 (en) Anti-reflective coating for EUV mask
TWI427334B (en) Reflective optical element for euv lithography devices
US20030147058A1 (en) Self-cleaning reflective optical elements for use in X-ray optical systems, and optical systems and microlithography systems comprising same
US20060024589A1 (en) Passivation of multi-layer mirror for extreme ultraviolet lithography
JP5860539B2 (en) Method for producing a cap layer made of silicon oxide on an EUV mirror, EUV mirror and EUV lithographic apparatus
JP2005505930A (en) Optical element and method for manufacturing the same, lithography apparatus and method for manufacturing semiconductor device
US20140199543A1 (en) Reflective optical element and optical system for euv lithography
US20200124957A1 (en) Photomask having reflective layer with non-reflective regions
EP2015139B1 (en) Reflective photomask blank, process for producing the same, reflective photomask and process for producing semiconductor device
JP2022519040A (en) Extreme UV mask absorber material
JP4460284B2 (en) Optical element and method for forming the same
US10916356B2 (en) Reflective optical element
KR102499455B1 (en) Materials, components and methods for use with EUV radiation in lithography and other applications
JP4144301B2 (en) MULTILAYER REFLECTOR, REFLECTIVE MASK, EXPOSURE APPARATUS AND REFLECTIVE MASK MANUFACTURING METHOD
JP2022505688A (en) Extreme UV mask with back coating
JP2014116498A (en) Optical element, exposure device, and manufacturing method of device
JPH0727198B2 (en) Multi-layer reflective mask
JP2003227898A (en) Multi-layer film reflecting mirror, soft x-ray optical equipment, exposure device and method for cleaning it
JP2006228840A (en) Soft x-ray optical device and instrument
CN115485616A (en) Extreme ultraviolet mask absorber material
JP3065706B2 (en) Multilayer reflector and optical device having the multilayer reflector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513