JP2006226437A - Conductive bearing - Google Patents

Conductive bearing Download PDF

Info

Publication number
JP2006226437A
JP2006226437A JP2005042043A JP2005042043A JP2006226437A JP 2006226437 A JP2006226437 A JP 2006226437A JP 2005042043 A JP2005042043 A JP 2005042043A JP 2005042043 A JP2005042043 A JP 2005042043A JP 2006226437 A JP2006226437 A JP 2006226437A
Authority
JP
Japan
Prior art keywords
conductive
bearing
grounding
external configuration
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005042043A
Other languages
Japanese (ja)
Inventor
Akitoshi Maeda
明年 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005042043A priority Critical patent/JP2006226437A/en
Publication of JP2006226437A publication Critical patent/JP2006226437A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive bearing having small electric resistance and capable of allowing electricity generated by static or various causes to smoothly and surely escape (to the ground) without being influenced by the formation of an insulation film in a high-temperature environment. <P>SOLUTION: This conductive bearing 6 is provided with: bearing rings (an inner ring 8 and an outer ring 10) relatively rotatably arranged oppositely to each other; a plurality of rolling elements 12 arranged so as to be rollable between the bearing rings; and sealing plates 22 mounted between the bearing rings on both sides of the rolling elements. The bearing is filled with conductive grease in its inside. The respective bearing rings are fixed to predetermined external structures (a shaft 4 and a housing 20), and at least either of the bearing rings is provided with a current-carrying grounding mechanism for grounding the ring to an external structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば複写機やプリンタに代表される事務機器のヒートロールやプレッシャロールに用いられる軸受であって、特に高温環境下において優れた通電接地機能を発揮する電気抵抗の小さい導電性軸受に関する。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing used for a heat roll and a pressure roll of office equipment represented by a copying machine and a printer, for example, and particularly relates to a conductive bearing having a low electrical resistance that exhibits an excellent energization / grounding function in a high temperature environment .

従来から、複写機やプリンタのヒートロールやプレッシャロールに用いる軸受として、導電性グリースを封入した導電性軸受が知られている(例えば、特許文献1)。例えば図3には、ヒートロール2に突設されたシャフト4を回転可能に支持する導電性軸受6の構成例が示されている。かかる導電性軸受6は、相対回転可能に対向配置された内輪8及び外輪10と、内外輪8,10間に転動自在に配列された複数の転動体12と、各転動体12を1つずつ回転可能に保持する保持器14とを備えており、内輪8はその内輪内周面8sが固定リング16を介してシャフト4に固定され、外輪10はその外輪外周面10sが止め輪18を介してハウジング20に固定されている。   2. Description of the Related Art Conventionally, a conductive bearing in which conductive grease is sealed is known as a bearing used for a heat roll or a pressure roll of a copying machine or a printer (for example, Patent Document 1). For example, FIG. 3 shows a configuration example of the conductive bearing 6 that rotatably supports the shaft 4 protruding from the heat roll 2. The conductive bearing 6 includes an inner ring 8 and an outer ring 10 that are opposed to each other so as to be relatively rotatable, a plurality of rolling elements 12 that are arranged so as to be able to roll between the inner and outer rings 8 and 10, and one each rolling element 12. The inner ring 8 has an inner ring inner peripheral surface 8 s fixed to the shaft 4 via a fixing ring 16, and the outer ring 10 has an outer ring outer peripheral surface 10 s fixed to the retaining ring 18. Via the housing 20.

また、導電性軸受6には、内外輪8,10の両側に密封板22が設けられており、その内部に導電性潤滑剤(例えば、基油、増ちょう剤、導電性カーボンブラックなどを含有する導電性グリース)が封入されている。このような導電性軸受6によれば、ヒートロール2(シャフト4)に帯電した静電気を例えば内輪8から導電性グリース及び外輪10を介してハウジング20に逃がす(接地する)ことで、トナー定着時において静電気により印字がにじんだり、乱れたりすることが防止されている。なお、密封板22としては、シールやシールドを適用することができるが、ここでは一例としてシールドを想定する。   Further, the conductive bearing 6 is provided with sealing plates 22 on both sides of the inner and outer rings 8 and 10 and contains a conductive lubricant (for example, base oil, thickener, conductive carbon black, etc.). Conductive grease) is enclosed. According to such a conductive bearing 6, static electricity charged on the heat roll 2 (shaft 4) is released (grounded) from the inner ring 8 to the housing 20 via the conductive grease and the outer ring 10, for example, at the time of toner fixing. In this case, the printing is prevented from being blurred or disturbed by static electricity. In addition, although a seal | sticker and a shield can be applied as the sealing board 22, a shield is assumed here as an example.

ところで、上述したようなヒートロール2は、そのトナー定着時において約200℃程度の高温に達するため、かかる高温環境下において例えば導電性軸受6の表面(例えば、内輪内周面8sや外輪外周面10s)が酸化して絶縁膜が生成される場合がある。この場合、従来の導電性軸受6では、シャフト4と内輪内周面8sとの接触部分や外輪外周面10sとハウジング20との接触部分などをアース接点としてそのまま利用しているため、内輪内周面8sや外輪外周面10sに絶縁膜が生成されると、接点不良により電気抵抗が大きくなり、その結果、ヒートロール2(シャフト4)に帯電した静電気を円滑且つ確実に逃がす(接地する)ことが困難になってしまう虞がある。
特開2004−162909号公報
By the way, since the heat roll 2 as described above reaches a high temperature of about 200 ° C. at the time of fixing the toner, for example, the surface of the conductive bearing 6 (for example, the inner ring inner peripheral surface 8s or the outer ring outer peripheral surface) under such a high temperature environment. 10s) may be oxidized to produce an insulating film. In this case, in the conventional conductive bearing 6, the contact portion between the shaft 4 and the inner ring inner peripheral surface 8 s and the contact portion between the outer ring outer peripheral surface 10 s and the housing 20 are used as they are as ground contacts. If an insulating film is formed on the surface 8s or the outer peripheral surface 10s of the outer ring, the electrical resistance increases due to a contact failure, and as a result, the static electricity charged on the heat roll 2 (shaft 4) is smoothly and reliably released (grounded). May become difficult.
JP 2004-162909 A

本発明は、このような問題を解決するためになされており、その目的は、高温環境下において絶縁膜の生成による影響を受けること無く、静電気や種々の要因で発生する電気を円滑且つ確実に逃がす(接地する)ことが可能な電気抵抗の小さい導電性軸受を提供することにある。   The present invention has been made to solve such problems, and its purpose is to smoothly and reliably generate electricity generated by static electricity and various factors without being affected by the formation of an insulating film in a high temperature environment. An object of the present invention is to provide a conductive bearing having a low electrical resistance that can be released (grounded).

このような目的を達成するために、本発明は、相対回転可能に対向配置された軌道輪と、軌道輪間に転動自在に配列された複数の転動体と、これら転動体の両側の軌道輪間に設けられた密封板とを備え、内部に導電性グリースが封入された導電性軸受であって、各軌道輪は所定の外部構成に固定されていると共に、少なくとも一方の軌道輪には、外部構成に対して接地させる通電接地機構が設けられている。   In order to achieve such an object, the present invention provides a bearing ring disposed so as to be relatively rotatable, a plurality of rolling elements arranged so as to be able to roll between the bearing rings, and tracks on both sides of these rolling elements. A conductive plate having a sealing plate provided between the rings, in which conductive grease is sealed, and each bearing ring is fixed to a predetermined external configuration, and at least one of the bearing rings An energization ground mechanism for grounding the external configuration is provided.

この発明において、通電接地機構としては以下の構成を適用することが可能である。
通電接地機構は、軌道輪に埋め込まれた導電性アース部材を備えており、当該導電性アース部材は、導線を介して外部構成に接地されている。また、通電接地機構は、軌道輪に部分的に埋め込まれた導電性アース部材を備えており、当該導電性アース部材は、その一部が外部構成に直接接地されている。更に、通電接地機構は、基端部が軌道輪に埋め込まれた導電性アース部材を備えており、当該導電性アース部材は、その先端部を外部構成に嵌め込んで接地されている。また更に、通電接地機構は、外部構成に対して直接接地可能な導電性アース部材と、当該導電性アース部材を外部構成に向けて付勢して直接接地させる付勢手段とを備えている。
In the present invention, the following configuration can be applied as the energization grounding mechanism.
The energization ground mechanism includes a conductive ground member embedded in the raceway, and the conductive ground member is grounded to an external configuration via a conductive wire. The energization grounding mechanism includes a conductive ground member partially embedded in the raceway, and a part of the conductive ground member is directly grounded to the external configuration. Further, the energization grounding mechanism includes a conductive earth member whose base end is embedded in the raceway ring, and the conductive earth member is grounded by fitting its distal end into an external configuration. Furthermore, the energization grounding mechanism includes a conductive grounding member that can be directly grounded to the external configuration, and a biasing unit that biases the conductive grounding member toward the external configuration and directly grounds the conductive grounding member.

本発明によれば、高温環境下において絶縁膜の生成による影響を受けること無く、静電気や種々の要因で発生する電気を円滑且つ確実に逃がす(接地する)ことが可能な電気抵抗の小さい導電性軸受を実現することができる。   According to the present invention, it is possible to smoothly and surely escape (ground) electricity generated by static electricity and various factors without being affected by the generation of an insulating film in a high-temperature environment, and has a low electrical resistance. A bearing can be realized.

以下、本発明の導電性軸受について添付図面を参照して説明する。本発明の導電性軸受としては、転動体として玉やコロが組込まれた例えばラジアル軸受或いはスラスト軸受を適用することができるが、ここでは一例として玉(転動体12:図3参照)が組込まれたラジアル軸受を想定する。この場合下記の説明では、上述した導電性軸受(図3)と同一の構成には同一符号を付してその説明を省略し、相違する構成についての説明にとどめる。なお、下記の図面において、導電性潤滑剤は特に図示しないが、当該導電性潤滑剤は、一対の密封板22で漏洩防止された状態で内外輪8,10の空間領域内に封入されている。   Hereinafter, the conductive bearing of the present invention will be described with reference to the accompanying drawings. As the conductive bearing of the present invention, for example, a radial bearing or a thrust bearing in which balls or rollers are incorporated as rolling elements can be applied, but here a ball (rolling element 12: see FIG. 3) is incorporated as an example. A radial bearing is assumed. In this case, in the following description, the same components as those of the above-described conductive bearing (FIG. 3) are denoted by the same reference numerals, the description thereof is omitted, and only different components are described. In the following drawings, the conductive lubricant is not particularly shown, but the conductive lubricant is sealed in the space region of the inner and outer rings 8 and 10 in a state where leakage is prevented by the pair of sealing plates 22. .

図1(a)には、第1の実施の形態に係る導電性軸受6の構成例が示されており、当該導電性軸受6において、各軌道輪(内輪8、外輪10)は所定の外部構成に固定されていると共に、少なくとも一方の軌道輪には、外部構成に対して接地させる通電接地機構が設けられている。ここで、外部構成としては、内輪8の内輪内周面8sが固定されたシャフト4や、外輪10の外輪外周面10sが固定されたハウジング20がそれぞれ該当する。   FIG. 1A shows a configuration example of the conductive bearing 6 according to the first embodiment. In the conductive bearing 6, each raceway ring (the inner ring 8 and the outer ring 10) is a predetermined external part. While being fixed to the configuration, at least one of the races is provided with an energization grounding mechanism for grounding to the external configuration. Here, the external configuration corresponds to the shaft 4 to which the inner ring inner peripheral surface 8s of the inner ring 8 is fixed and the housing 20 to which the outer ring outer peripheral surface 10s of the outer ring 10 is fixed.

この場合、通電接地機構は、内輪8及び外輪10の少なくとも一方に設ければ良いが、本実施の形態では一例として、通電接地機構は、内輪8及び外輪10の双方にそれぞれ設けられており、内輪8及び外輪10に埋め込まれた導電性アース部材24a,24bを備え、当該導電性アース部材24a,24bは、導線26a,26bを介して外部構成(シャフト4、ハウジング20)に接地されている。
導電性アース部材24a,24bや導線26a,26bの材料としては、電気抵抗の小さい導電性材料(例えば、炭素鋼、アルミニウム合金、ステンレス鋼、銅合金など)を適用すれば良い。この場合、導線26a,26bには、酸化防止(耐錆防止)のため絶縁材(図示しない)で被覆することが好ましい。また、導電性軸受6(例えば、内輪8、外輪10)の材料としては、例えば高炭素クロム軸受鋼やステンレス鋼などの導電性材料を適用すれば良い。
In this case, the energization grounding mechanism may be provided in at least one of the inner ring 8 and the outer ring 10, but in the present embodiment, as an example, the energization grounding mechanism is provided in both the inner ring 8 and the outer ring 10, respectively. Conductive grounding members 24a and 24b embedded in the inner ring 8 and the outer ring 10 are provided, and the conductive grounding members 24a and 24b are grounded to the external configuration (the shaft 4 and the housing 20) via the conductive wires 26a and 26b. .
As the material of the conductive ground members 24a and 24b and the conductive wires 26a and 26b, a conductive material having a low electrical resistance (for example, carbon steel, aluminum alloy, stainless steel, copper alloy, etc.) may be applied. In this case, the conductive wires 26a and 26b are preferably covered with an insulating material (not shown) for preventing oxidation (preventing rust). Further, as a material of the conductive bearing 6 (for example, the inner ring 8 and the outer ring 10), a conductive material such as high carbon chrome bearing steel or stainless steel may be applied.

ここで、導電性アース部材24a,24bを内輪8及び外輪10に埋め込む方法例について説明する。
導電性アース部材24a,24bは、内輪8及び外輪10にそれぞれ形成された溝8g,10gに押し込むことで当該内輪8及び外輪10に埋め込むことができる。この場合、溝8g,10gは、円筒形や矩形など任意の形状に設定することが可能であり、設定した溝形状に応じた形状に導電性アース部材24a,24bを構成することができる。例えば円筒形の溝8g,10gであれば、当該円筒形の溝8g,10gの内径よりも若干大きな外径を有する球状の導電性アース部材24a,24bを用意し、かかる導電性アース部材24a,24bを溝8g,10g内に押し込むことにより、当該導電性アース部材24a,24bを溝8g,10gに堅牢に埋め込むことができる。
Here, an example of a method of embedding the conductive ground members 24a and 24b in the inner ring 8 and the outer ring 10 will be described.
The conductive ground members 24a and 24b can be embedded in the inner ring 8 and the outer ring 10 by being pushed into grooves 8g and 10g formed in the inner ring 8 and the outer ring 10, respectively. In this case, the grooves 8g and 10g can be set to an arbitrary shape such as a cylindrical shape or a rectangular shape, and the conductive ground members 24a and 24b can be configured in a shape corresponding to the set groove shape. For example, in the case of cylindrical grooves 8g and 10g, spherical conductive earth members 24a and 24b having an outer diameter slightly larger than the inner diameter of the cylindrical grooves 8g and 10g are prepared, and such conductive earth members 24a, By pushing the 24b into the grooves 8g and 10g, the conductive ground members 24a and 24b can be firmly embedded in the grooves 8g and 10g.

また、導電性アース部材24a,24bの埋め込み個数は、内輪8及び外輪10の周方向に沿って所定間隔で複数(例えば等間隔に4箇所)設定することが好ましい。この場合には、設定した埋め込み個数に応じた数の溝8g,10gを内輪8及び外輪10の周方向に沿って所定間隔で断続的に形成し、これら各溝8g,10gにそれぞれ導電性アース部材24a,24bを埋め込んだ後、各々の導電性アース部材24a,24bから導線26a,26bを外部構成(シャフト4、ハウジング20)に延出させて接地すれば良い。なお、接地方法としては、導線26a,26bの延出端を例えばハンダ(半田)28で外部構成(シャフト4、ハウジング20)に蝋付けすれば良い。   Further, it is preferable to set the number of conductive ground members 24a and 24b to be embedded at a predetermined interval (for example, four locations at equal intervals) along the circumferential direction of the inner ring 8 and the outer ring 10. In this case, a number of grooves 8g and 10g corresponding to the set number of embedded holes are formed intermittently at predetermined intervals along the circumferential direction of the inner ring 8 and the outer ring 10, and a conductive ground is provided in each of the grooves 8g and 10g. After embedding the members 24a and 24b, the conductive wires 26a and 26b may be extended from the conductive ground members 24a and 24b to the external structure (the shaft 4 and the housing 20) and grounded. As a grounding method, the extended ends of the conductive wires 26a and 26b may be brazed to the external configuration (the shaft 4 and the housing 20) with, for example, solder (solder) 28.

また、上述したように導電性アース部材24a,24bを所定間隔で埋め込む代わりに、例えば内輪8及び外輪10の周方向に沿って連続的に埋め込んでも良い。この場合には、内輪8及び外輪10の周方向に沿って溝8g,10gを連続的に形成し、かかる溝8g,10gに長尺の導電性アース部材24a,24bを連続的に押し込めば良い。そして、いずれかの場所から1本又は複数本の導線26a,26bを外部構成(シャフト4、ハウジング20)に延出させて接地すれば良い。このように長尺に導電性アース部材24a,24bを適用することにより、導線26a,26bの接地位置の自由度を向上させることができる。   Further, as described above, instead of embedding the conductive ground members 24a and 24b at predetermined intervals, for example, they may be embedded continuously along the circumferential direction of the inner ring 8 and the outer ring 10. In this case, the grooves 8g and 10g are continuously formed along the circumferential direction of the inner ring 8 and the outer ring 10, and the long conductive ground members 24a and 24b are continuously pushed into the grooves 8g and 10g. . Then, one or a plurality of conducting wires 26a, 26b may be extended from any location to the external configuration (shaft 4, housing 20) and grounded. By thus applying the long conductive ground members 24a and 24b, the degree of freedom of the grounding positions of the conductors 26a and 26b can be improved.

以上、第1の実施の形態によれば、軌道輪(内輪8、外輪10)に埋め込んだ導電性アース部材24a,24bを導線26a,26bを介して外部構成(シャフト4、ハウジング20)に接地する通電接地機構を設けたことにより、高温環境下において例えば導電性軸受6の表面(例えば、内輪内周面8sや外輪外周面10s)が酸化して絶縁膜が生成された場合でも、その影響を受けることの無いアース接点(導電性アース部材24a,24bから導線26a,26bを経由したアース接点)を長期に亘って確保することができる。   As described above, according to the first embodiment, the conductive ground members 24a and 24b embedded in the race rings (the inner ring 8 and the outer ring 10) are grounded to the external configuration (the shaft 4 and the housing 20) via the conductive wires 26a and 26b. Even if an insulating film is generated by oxidizing the surface of the conductive bearing 6 (for example, the inner ring inner peripheral surface 8s or the outer ring outer peripheral surface 10s) in a high temperature environment by providing the energization grounding mechanism that performs It is possible to secure a ground contact (ground contact from the conductive ground members 24a and 24b via the conductive wires 26a and 26b) for a long period of time without receiving the ground.

この場合、シャフト4に帯電した静電気や種々の要因で発生した電気は、導線26aから導電性アース部材24aを介して内輪8に通電され、導電性潤滑剤を経由した後、外輪10から導電性アース部材24b及び導線26bを介してハウジング20に円滑且つ確実に逃がすこと(接地させること)ができる。この結果、高温環境下において優れた通電接地機能を長期に亘って発揮する電気抵抗の小さい導電性軸受6を実現することができるため、例えばトナー定着時において静電気により印字がにじんだり、乱れたりすることの無い再現性に優れた複写機やプリンタを提供することが可能となる。   In this case, static electricity charged on the shaft 4 and electricity generated due to various factors are energized from the lead wire 26a to the inner ring 8 via the conductive grounding member 24a, and after passing through the conductive lubricant, are electrically conductive from the outer ring 10. The housing 20 can be smoothly and reliably released (grounded) through the ground member 24b and the conductor 26b. As a result, it is possible to realize the conductive bearing 6 having a low electrical resistance that exhibits an excellent energization / grounding function in a high temperature environment for a long period of time. For example, printing is blurred or disturbed by static electricity during toner fixing. It is possible to provide a copying machine and a printer excellent in reproducibility.

次に、本発明の第2の実施の形態に係る導電性軸受について、図1(b)を参照して説明する。
本実施の形態の導電性軸受6において、通電接地機構は、内輪8及び外輪10の少なくとも一方に設ければ良いが、ここでは一例として、内輪8及び外輪10の双方にそれぞれ設けられている場合を想定する。この場合、通電接地機構は、軌道輪(内輪8、外輪10)に部分的に埋め込まれた導電性アース部材24a,24bを備えており、当該導電性アース部材24a,24bは、その一部が外部構成(シャフト4、ハウジング20)に直接接地されている。
なお、導電性アース部材24a,24bや導電性軸受6の材料は、上述した第1の実施の形態と同様であるため、その説明は省略する。
Next, a conductive bearing according to a second embodiment of the present invention will be described with reference to FIG.
In the conductive bearing 6 of the present embodiment, the energization / grounding mechanism may be provided in at least one of the inner ring 8 and the outer ring 10, but here, as an example, the case is provided in both the inner ring 8 and the outer ring 10, respectively. Is assumed. In this case, the energization grounding mechanism includes conductive ground members 24a and 24b partially embedded in the race rings (the inner ring 8 and the outer ring 10), and the conductive ground members 24a and 24b are partially formed. It is directly grounded to the external configuration (shaft 4, housing 20).
The materials of the conductive ground members 24a and 24b and the conductive bearing 6 are the same as those in the first embodiment described above, and thus the description thereof is omitted.

ここで、導電性アース部材24a,24bの一部を外部構成(シャフト4、ハウジング20)に直接接地させる方法例について説明する。
導電性アース部材24a,24bは、内輪8及び外輪10にそれぞれ形成された溝8g,10gに押し込むことで、その一部を当該内輪8及び外輪10に埋め込むことができる。この場合、溝8g,10gは、円筒形や矩形など任意の形状に設定することが可能であり、設定した溝形状に応じた形状に導電性アース部材24a,24bを構成することができる。例えば円筒形の溝8g,10gであれば、当該円筒形の溝8g,10gの内径よりも若干大きな外径を有する球状の導電性アース部材24a,24bを用意し、かかる導電性アース部材24a,24bを溝8g,10g内に押し込むことにより、当該導電性アース部材24a,24bの一部を溝8g,10gに堅牢に埋め込むことができる。
Here, an example of a method in which a part of the conductive ground members 24a and 24b is directly grounded to the external configuration (the shaft 4 and the housing 20) will be described.
The conductive ground members 24 a and 24 b can be partially embedded in the inner ring 8 and the outer ring 10 by being pushed into grooves 8 g and 10 g formed in the inner ring 8 and the outer ring 10, respectively. In this case, the grooves 8g and 10g can be set to an arbitrary shape such as a cylindrical shape or a rectangular shape, and the conductive ground members 24a and 24b can be configured in a shape corresponding to the set groove shape. For example, in the case of cylindrical grooves 8g and 10g, spherical conductive earth members 24a and 24b having an outer diameter slightly larger than the inner diameter of the cylindrical grooves 8g and 10g are prepared, and such conductive earth members 24a, By pushing the 24b into the grooves 8g and 10g, part of the conductive ground members 24a and 24b can be firmly embedded in the grooves 8g and 10g.

また、導電性アース部材24a,24bの埋め込み個数は、内輪8及び外輪10の周方向に沿って所定間隔で複数(例えば等間隔に4箇所)設定することが好ましい。この場合には、設定した埋め込み個数に応じた数の溝8g,10gを内輪8及び外輪10の周方向に沿って所定間隔で断続的に形成し、これら各溝8g,10gにそれぞれ導電性アース部材24a,24bを埋め込む。この状態において、導電性アース部材24a,24bは、その一部が溝8g,10gから突出した状態となるため、内輪内周面8sをシャフト4に固定すると共に外輪外周面10sをハウジング20に固定することにより、溝8g,10gから突出した導電性アース部材24a,24bの一部を外部構成(シャフト4、ハウジング20)に接地させることができる。   Further, it is preferable to set the number of conductive ground members 24a and 24b to be embedded at a predetermined interval (for example, four locations at equal intervals) along the circumferential direction of the inner ring 8 and the outer ring 10. In this case, a number of grooves 8g and 10g corresponding to the set number of embedded holes are formed intermittently at predetermined intervals along the circumferential direction of the inner ring 8 and the outer ring 10, and a conductive ground is provided in each of the grooves 8g and 10g. The members 24a and 24b are embedded. In this state, since the conductive ground members 24a and 24b partially protrude from the grooves 8g and 10g, the inner ring inner peripheral surface 8s is fixed to the shaft 4 and the outer ring outer peripheral surface 10s is fixed to the housing 20. Thus, a part of the conductive ground members 24a and 24b protruding from the grooves 8g and 10g can be grounded to the external configuration (the shaft 4 and the housing 20).

また、上述したように導電性アース部材24a,24bを所定間隔で埋め込む代わりに、例えば内輪8及び外輪10の周方向に沿って連続的に埋め込んでも良い。この場合には、内輪8及び外輪10の周方向に沿って溝8g,10gを連続的に形成し、かかる溝8g,10gに長尺の導電性アース部材24a,24bを連続的に押し込めば良い。このとき、長尺の導電性アース部材24a,24bの一部が溝8g,10gに沿って連続的に突出した状態となり、内輪内周面8sをシャフト4に固定すると共に外輪外周面10sをハウジング20に固定することにより、連続的に突出した導電性アース部材24a,24bの一部を外部構成(シャフト4、ハウジング20)に対して広い接地面積で接地させることができる。   Further, as described above, instead of embedding the conductive ground members 24a and 24b at predetermined intervals, for example, they may be embedded continuously along the circumferential direction of the inner ring 8 and the outer ring 10. In this case, the grooves 8g and 10g are continuously formed along the circumferential direction of the inner ring 8 and the outer ring 10, and the long conductive ground members 24a and 24b are continuously pushed into the grooves 8g and 10g. . At this time, a part of the long conductive ground members 24a and 24b continuously protrudes along the grooves 8g and 10g, the inner ring inner peripheral surface 8s is fixed to the shaft 4, and the outer ring outer peripheral surface 10s is housed in the housing. By fixing to 20, a part of the conductive ground members 24a, 24b protruding continuously can be grounded with a wide grounding area with respect to the external configuration (the shaft 4, the housing 20).

以上、第2の実施の形態によれば、軌道輪(内輪8、外輪10)に部分的に埋め込まれた導電性アース部材24a,24bの一部を外部構成(シャフト4、ハウジング20)に直接接地する通電接地機構を設けたことにより、高温環境下において例えば導電性軸受6の表面(例えば、内輪内周面8sや外輪外周面10s)が酸化して絶縁膜が生成された場合でも、その影響を受けることの無いアース接点(導電性アース部材24a,24bの一部を外部構成に直接接地させたアース接点)を長期に亘って確保することができる。   As described above, according to the second embodiment, part of the conductive ground members 24a and 24b partially embedded in the race rings (the inner ring 8 and the outer ring 10) is directly connected to the external configuration (the shaft 4 and the housing 20). Even if an insulating film is generated by oxidizing the surface of the conductive bearing 6 (for example, the inner ring inner peripheral surface 8 s or the outer ring outer peripheral surface 10 s) in a high temperature environment by providing an energization ground mechanism for grounding, An unaffected ground contact (a ground contact in which a part of the conductive ground members 24a and 24b is directly grounded to the external configuration) can be secured for a long period of time.

この場合、シャフト4に帯電した静電気や種々の要因で発生した電気は、導電性アース部材24aから内輪8に通電され、導電性潤滑剤を経由した後、外輪10から導電性アース部材24bを介してハウジング20に円滑且つ確実に逃がすこと(接地させること)ができる。この結果、高温環境下において優れた通電接地機能を長期に亘って発揮する電気抵抗の小さい導電性軸受6を実現することができるため、例えばトナー定着時において静電気により印字がにじんだり、乱れたりすることの無い再現性に優れた複写機やプリンタを提供することが可能となる。   In this case, static electricity charged on the shaft 4 and electricity generated due to various factors are energized from the conductive ground member 24a to the inner ring 8 and after passing through the conductive lubricant, the outer ring 10 passes through the conductive ground member 24b. Thus, the housing 20 can be smoothly and reliably released (grounded). As a result, it is possible to realize the conductive bearing 6 having a low electrical resistance that exhibits an excellent energization / grounding function in a high temperature environment for a long period of time. For example, printing is blurred or disturbed by static electricity during toner fixing. It is possible to provide a copying machine and a printer excellent in reproducibility.

次に、本発明の第3の実施の形態に係る導電性軸受について、図1(c)を参照して説明する。
本実施の形態の導電性軸受6において、通電接地機構の導電性アース部材24a,24bは、その基端部が軌道輪(内輪8、外輪10)に埋め込まれ、その先端部が外部構成(シャフト4、ハウジング20)に嵌め込まれて接地されている。なお、本実施の形態の通電接地機構も内輪8及び外輪10の少なくとも一方に設ければ良いが、ここでは一例として、内輪8及び外輪10の双方にそれぞれ設けられている場合を想定する。また、導電性アース部材24a,24bや導電性軸受6の材料は、上述した第1の実施の形態と同様であるため、その説明は省略する。
Next, a conductive bearing according to a third embodiment of the present invention will be described with reference to FIG.
In the conductive bearing 6 of the present embodiment, the conductive earth members 24a and 24b of the energizing and grounding mechanism have their base ends embedded in the race rings (inner ring 8 and outer ring 10), and their distal ends are externally configured (shafts). 4, fitted in the housing 20) and grounded. The energization / grounding mechanism of the present embodiment may be provided on at least one of the inner ring 8 and the outer ring 10, but here, as an example, it is assumed that both are provided on both the inner ring 8 and the outer ring 10. Further, the materials of the conductive ground members 24a and 24b and the conductive bearing 6 are the same as those in the first embodiment described above, and thus the description thereof is omitted.

ここで、導電性アース部材24a,24bの先端部を外部構成(シャフト4、ハウジング20)に嵌め込んで接地させる方法例について説明する。
この方法例では、棒状の導電性アース部材24a,24bを用意し、その基端部を内輪8及び外輪10にそれぞれ形成された溝8g,10gに埋め込むと共に、その先端部を外部構成(シャフト4、ハウジング20)に嵌め込む。この場合、導電性アース部材24a,24bの先端部を先細り形状に設計することが好ましい。これにより当該先端部を外部構成(シャフト4、ハウジング20)に堅牢に(タイトに)嵌め込むことができる。
Here, an example of a method in which the tips of the conductive ground members 24a and 24b are fitted to the external configuration (the shaft 4 and the housing 20) and grounded will be described.
In this method example, rod-shaped conductive ground members 24a and 24b are prepared, and the base ends thereof are embedded in grooves 8g and 10g formed in the inner ring 8 and the outer ring 10, respectively, and the distal ends thereof are externally configured (shaft 4). And is fitted into the housing 20). In this case, it is preferable to design the tips of the conductive ground members 24a and 24b to have a tapered shape. As a result, the tip portion can be securely (tightly) fitted to the external configuration (the shaft 4 and the housing 20).

また、当該先端部に例えば雄ネジを形成すると共に外部構成に雌ネジを形成し、雄ネジを雌ネジに螺合させても良い。これによれば、導電性アース部材24a,24bの先端部を外部構成(シャフト4、ハウジング20)に更に堅牢に嵌め込むことができる。   Further, for example, a male screw may be formed at the tip portion, a female screw may be formed in the external configuration, and the male screw may be screwed into the female screw. According to this, the front ends of the conductive ground members 24a and 24b can be more firmly fitted into the external structure (the shaft 4 and the housing 20).

また、外部構成に嵌め込む導電性アース部材24a,24bの個数や嵌め込み位置は、上述した第2の実施の形態と同様に、複数の導電性アース部材24a,24bを所定間隔に嵌め込んでも良いし、或いは、内輪8及び外輪10の周方向に沿って溝8g,10gを連続的に形成し、かかる溝8g,10gに長尺の導電性アース部材24a,24bを連続的に埋め込んで、その先端部を外部構成(シャフト4、ハウジング20)に連続的に嵌め込むようにしても良い。
なお、第3の実施の形態の効果は、上述した第2の実施の形態と同様であるため、その説明は省略する。
Further, the number of conductive ground members 24a and 24b to be fitted into the external configuration and the fitting positions may be set such that a plurality of conductive ground members 24a and 24b are fitted at predetermined intervals, as in the second embodiment. Alternatively, the grooves 8g and 10g are continuously formed along the circumferential direction of the inner ring 8 and the outer ring 10, and the long conductive ground members 24a and 24b are continuously embedded in the grooves 8g and 10g. You may make it a front-end | tip part fit continuously in an external structure (the shaft 4, the housing 20).
Note that the effect of the third embodiment is the same as that of the second embodiment described above, and a description thereof will be omitted.

次に、本発明の第4の実施の形態に係る導電性軸受について、図1(d)を参照して説明する。
本実施の形態の導電性軸受6において、通電接地機構の導電性アース部材24a,24bは、付勢手段30で外部構成(シャフト4、ハウジング20)に向けて付勢されており、当該外部構成に直接接地した状態に維持されている。なお、本実施の形態の通電接地機構も内輪8及び外輪10の少なくとも一方に設ければ良いが、ここでは一例として、内輪8及び外輪10の双方にそれぞれ設けられている場合を想定する。また、導電性アース部材24a,24bや導電性軸受6の材料は、上述した第1の実施の形態と同様であるため、その説明は省略する。
Next, a conductive bearing according to a fourth embodiment of the present invention will be described with reference to FIG.
In the conductive bearing 6 of the present embodiment, the conductive ground members 24a and 24b of the energization ground mechanism are urged toward the external configuration (the shaft 4 and the housing 20) by the urging means 30, and the external configuration It is maintained in a state where it is directly grounded. The energization / grounding mechanism of the present embodiment may be provided on at least one of the inner ring 8 and the outer ring 10, but here, as an example, it is assumed that both are provided on both the inner ring 8 and the outer ring 10. Further, the materials of the conductive ground members 24a and 24b and the conductive bearing 6 are the same as those in the first embodiment described above, and thus the description thereof is omitted.

ここで、導電性アース部材24a,24bを外部構成(シャフト4、ハウジング20)に向けて付勢して接地させる方法例について説明する。
この方法例では、筒状の溝8g,10gを内輪8及び外輪10に形成し、当該溝8g,10g内に付勢手段30を配置する。なお、付勢手段30としては、導電性を有する例えば圧縮バネやスプリングなどを適用すれば良い。そして、当該付勢手段30の先端に導電性アース部材24a,24bをセットする。この場合、導電性アース部材24a,24bを付勢手段30の先端にセットした状態において、導電性アース部材24a,24bの一部が溝8g,10gから突出するように設定する。
Here, an example of a method in which the conductive ground members 24a and 24b are urged toward the external configuration (the shaft 4 and the housing 20) and grounded will be described.
In this method example, cylindrical grooves 8g and 10g are formed in the inner ring 8 and the outer ring 10, and the urging means 30 is disposed in the grooves 8g and 10g. As the urging means 30, a conductive spring such as a compression spring or a spring may be applied. Then, conductive ground members 24 a and 24 b are set at the tip of the biasing means 30. In this case, the conductive ground members 24a and 24b are set so as to protrude from the grooves 8g and 10g in a state where the conductive ground members 24a and 24b are set at the tip of the urging means 30.

この後、内輪内周面8sをシャフト4に固定すると共に外輪外周面10sをハウジング20に固定することにより、溝8g,10gから突出した導電性アース部材24a,24bの一部を外部構成(シャフト4、ハウジング20)に接地させることができる。この場合、シャフト4に帯電した静電気は、導電性アース部材24aから付勢手段30を介して内輪8に通電され、導電性潤滑剤を経由した後、外輪10から付勢手段30及び導電性アース部材24bを介してハウジング20に円滑且つ確実に逃がすこと(接地させること)ができる。   Thereafter, the inner ring inner peripheral surface 8s is fixed to the shaft 4 and the outer ring outer peripheral surface 10s is fixed to the housing 20, whereby a part of the conductive ground members 24a and 24b protruding from the grooves 8g and 10g is externally configured (shaft 4. The housing 20) can be grounded. In this case, the static electricity charged in the shaft 4 is energized from the conductive ground member 24a to the inner ring 8 via the biasing means 30, and after passing through the conductive lubricant, the biasing means 30 and the conductive grounding from the outer ring 10 are conducted. The housing 20 can be smoothly and reliably released (grounded) via the member 24b.

以上、第4の実施の形態によれば、導電性アース部材24a,24bは付勢手段30により外部構成(シャフト4、ハウジング20)に対して弾性的に接地されている。この場合、例えば熱膨張により内外輪8,10や外部構成の寸法が変化しても、その変化量を付勢手段30が弾性的に吸収することができるため、外部構成に対する導電性アース部材24a,24bの接地状態(接地圧力)を常に一定に維持することが可能となる。この結果、高温環境下において優れた通電接地機能を長期に亘って発揮する電気抵抗の小さい導電性軸受6を実現することができる。   As described above, according to the fourth embodiment, the conductive ground members 24a and 24b are elastically grounded to the external structure (the shaft 4 and the housing 20) by the biasing means 30. In this case, for example, even if the dimensions of the inner and outer rings 8 and 10 and the external configuration change due to thermal expansion, the biasing means 30 can elastically absorb the change, so that the conductive earth member 24a for the external configuration can be obtained. Therefore, the grounding state (grounding pressure) of 24b can always be kept constant. As a result, it is possible to realize the conductive bearing 6 having a low electrical resistance that exhibits an excellent energization / grounding function over a long period of time in a high temperature environment.

また、導電性アース部材24a,24bの形状は、例えば球形或いは矩形など各種の形状に設計することが可能であるが、比較的長尺の円弧形に設計することにより、外部構成に対する接地面積を広く確保することができるため、通電接地効率を更に向上させることが可能となる。なお、その他の効果は、上述した第2の実施の形態と同様であるため、その説明は省略する。   The shape of the conductive earth members 24a and 24b can be designed in various shapes such as a spherical shape or a rectangular shape, for example. Therefore, the energization / grounding efficiency can be further improved. Since other effects are the same as those of the second embodiment described above, description thereof is omitted.

ここで、本実施の形態の導電性軸受6(図1)と既存の導電性軸受6(図3)の導電性について測定した比較結果について、図2を参照して考察する。
この測定では、双方の軸受の構成として、内径を30mm、外径を42mm、幅を7mmに設定し、20kgfの予圧を与えた状態で、200℃の高温環境下において150rpmの回転数で軸受を回転させた場合の耐久時間に対する最大抵抗値の変化を測定した。
なお、比較例1〜5は、既存の導電性軸受6(図3)を5個用意し、それぞれの軸受の最大抵抗値の変化を示しており、実施例1〜5は、上述した第1〜第4の実施の形態の導電性軸受6(図1)の中から任意に5個を選択し、それぞれの軸受の最大抵抗値の変化を示している。
Here, the comparison result measured about the electroconductivity of the electroconductive bearing 6 (FIG. 1) of this Embodiment and the existing electroconductive bearing 6 (FIG. 3) is considered with reference to FIG.
In this measurement, both bearings are configured with an inner diameter of 30 mm, an outer diameter of 42 mm, a width of 7 mm, and a preload of 20 kgf, and a bearing at a rotational speed of 150 rpm in a high temperature environment of 200 ° C. The change in the maximum resistance value with respect to the durability time when rotating was measured.
In Comparative Examples 1 to 5, five existing conductive bearings 6 (FIG. 3) are prepared and the change in the maximum resistance value of each bearing is shown. Examples 1 to 5 are the above-described first examples. ~ 5 conductive bearings 6 (FIG. 1) of the fourth embodiment are arbitrarily selected, and the change in the maximum resistance value of each bearing is shown.

かかる比較結果から明らかなように、既存の導電性軸受6(図3)は、耐久時間が長くなるに従って最大抵抗値にバラツキが生じ、これに対して、本実施の形態の導電性軸受6(図1)は、耐久時間の長短にかかわらず最大抵抗値がほぼ一定値を維持している。これにより、本実施の形態の導電性軸受6(図1)は、高温環境下において絶縁膜の生成による影響を受けること無く、静電気や種々の要因で発生する電気を円滑且つ確実に逃がす(接地する)ことができることが分かる。   As is apparent from the comparison results, the existing conductive bearing 6 (FIG. 3) has a variation in the maximum resistance value as the durability time becomes longer. On the other hand, the conductive bearing 6 (FIG. 3) of the present embodiment ( In Fig. 1), the maximum resistance value is maintained at a substantially constant value regardless of the endurance time. As a result, the conductive bearing 6 (FIG. 1) of the present embodiment smoothly and reliably releases electricity generated by static electricity and various factors without being affected by the generation of the insulating film in a high temperature environment (grounding). You can see that

(a)は、本発明の第1の実施の形態に係る導電性軸受の構成例を示す断面図、(b)は、本発明の第2の実施の形態に係る導電性軸受の構成例を示す断面図、(c)は、本発明の第3の実施の形態に係る導電性軸受の構成例を示す断面図、(d)は、本発明の第4の実施の形態に係る導電性軸受の構成例を示す断面図。(a) is sectional drawing which shows the structural example of the electroconductive bearing which concerns on the 1st Embodiment of this invention, (b) is the structural example of the electroconductive bearing which concerns on the 2nd Embodiment of this invention. Sectional drawing shown, (c) is a sectional view showing a configuration example of a conductive bearing according to a third embodiment of the present invention, (d) is a conductive bearing according to a fourth embodiment of the present invention Sectional drawing which shows the example of a structure. 本実施の形態の導電性軸受と既存の導電性軸受の導電性について測定した比較結果を示す図。The figure which shows the comparison result measured about the electroconductivity of the electroconductive bearing of this Embodiment, and the existing electroconductive bearing. 従来の導電性軸受の構成例を示す断面図。Sectional drawing which shows the structural example of the conventional electroconductive bearing.

符号の説明Explanation of symbols

4 シャフト
6 導電性軸受
8 内輪
10 外輪
12 転動体
22 密封板
24a,24b 導電性アース部材(通電接地機構)
4 Shaft 6 Conductive bearing 8 Inner ring 10 Outer ring 12 Rolling element 22 Sealing plate
24a, 24b Conductive grounding member (electrical grounding mechanism)

Claims (5)

相対回転可能に対向配置された軌道輪と、軌道輪間に転動自在に配列された複数の転動体と、これら転動体の両側の軌道輪間に設けられた密封板とを備え、内部に導電性グリースが封入された導電性軸受であって、
各軌道輪は所定の外部構成に固定されていると共に、少なくとも一方の軌道輪には、外部構成に対して接地させる通電接地機構が設けられていることを特徴とする導電性軸受。
It is provided with a bearing ring arranged so as to be capable of relative rotation, a plurality of rolling elements arranged so as to be able to roll between the bearing rings, and sealing plates provided between the bearing rings on both sides of these rolling elements. A conductive bearing filled with conductive grease,
Each of the bearing rings is fixed to a predetermined external configuration, and at least one of the race rings is provided with an energization grounding mechanism for grounding the external configuration.
通電接地機構は、軌道輪に埋め込まれた導電性アース部材を備えており、当該導電性アース部材は、導線を介して外部構成に接地されていることを特徴とする請求項1に記載の導電性軸受。   The conductive grounding mechanism includes a conductive grounding member embedded in the raceway ring, and the conductive grounding member is grounded to an external configuration through a conductive wire. Bearing. 通電接地機構は、軌道輪に部分的に埋め込まれた導電性アース部材を備えており、当該導電性アース部材は、その一部が外部構成に直接接地されていることを特徴とする請求項1に記載の導電性軸受。   The conductive grounding mechanism includes a conductive grounding member partially embedded in the race, and a part of the conductive grounding member is directly grounded to an external configuration. The conductive bearing described in 1. 通電接地機構は、基端部が軌道輪に埋め込まれた導電性アース部材を備えており、当該導電性アース部材は、その先端部を外部構成に嵌め込んで接地されていることを特徴とする請求項1に記載の導電性軸受。   The energization grounding mechanism is provided with a conductive grounding member whose base end is embedded in the raceway ring, and the conductive grounding member is grounded by fitting its distal end into an external configuration. The conductive bearing according to claim 1. 通電接地機構は、外部構成に対して直接接地可能な導電性アース部材と、当該導電性アース部材を外部構成に向けて付勢して直接接地させる付勢手段とを備えていることを特徴とする請求項1に記載の導電性軸受。
The energization grounding mechanism includes a conductive grounding member that can be directly grounded to an external configuration, and a biasing unit that biases the conductive grounding member toward the external configuration and directly grounds the conductive grounding member. The conductive bearing according to claim 1.
JP2005042043A 2005-02-18 2005-02-18 Conductive bearing Pending JP2006226437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005042043A JP2006226437A (en) 2005-02-18 2005-02-18 Conductive bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005042043A JP2006226437A (en) 2005-02-18 2005-02-18 Conductive bearing

Publications (1)

Publication Number Publication Date
JP2006226437A true JP2006226437A (en) 2006-08-31

Family

ID=36987975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005042043A Pending JP2006226437A (en) 2005-02-18 2005-02-18 Conductive bearing

Country Status (1)

Country Link
JP (1) JP2006226437A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520976A (en) * 2007-03-12 2010-06-17 アクティエボラゲット・エスコーエッフ Bearing unit with sensor
JP2014029216A (en) * 2013-11-11 2014-02-13 Ab Skf Bearing unit including sensor
US9464672B2 (en) 2013-05-09 2016-10-11 Schaeffler Technologies AG & Co. KG Rolling bearing with integrated electrical shunt
WO2016171929A1 (en) * 2015-04-22 2016-10-27 Schaeffler Technologies AG & Co. KG Shunt bearing with insulating coating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520976A (en) * 2007-03-12 2010-06-17 アクティエボラゲット・エスコーエッフ Bearing unit with sensor
US9464672B2 (en) 2013-05-09 2016-10-11 Schaeffler Technologies AG & Co. KG Rolling bearing with integrated electrical shunt
JP2014029216A (en) * 2013-11-11 2014-02-13 Ab Skf Bearing unit including sensor
WO2016171929A1 (en) * 2015-04-22 2016-10-27 Schaeffler Technologies AG & Co. KG Shunt bearing with insulating coating
US9581203B2 (en) 2015-04-22 2017-02-28 Schaeffler Technologies AG & Co. KG Shunt bearing with insulating coating

Similar Documents

Publication Publication Date Title
US5139425A (en) Rolling bearing with rotating electrical contacts
US8992091B2 (en) Closure design of a conductive rubber material for allowing current passage through a bearing in electric machines
JP5515246B2 (en) Axle bearing device
CA2193011C (en) Anti-friction rotating contact assembly
US20160312834A1 (en) Shunt bearing with insulating coating
JP2006226437A (en) Conductive bearing
US20110317953A1 (en) Bearing closure/shield for current passage in electric equipment
KR960043368A (en) Ball Contact Swivel Connectors
WO1989002543A1 (en) Electrical roller bearing
JP2018168967A (en) Rolling bearing
JP2000266067A (en) Rolling bearing
JP2008223843A (en) Rotatably supporting device with generating set
JP2008286331A (en) Conducting bearing
US3701072A (en) Mercury loaded brass ball bearing
JP2007113744A (en) Ball bearing and brushless motor
JP2008208928A (en) Rolling bearing
JP2005147329A (en) Bearing device for wind power generator
JP2008101696A (en) Rolling bearing
JP2540952Y2 (en) Current bearing
JP2007127267A (en) Rolling bearing
JP2009115237A (en) Rolling screw damage prevention device
JPH0614547U (en) Energized rolling bearing
JP2008008452A (en) Rolling bearing
KR20080002040U (en) Electric rotary joint
JP2008121830A (en) Bearing for alternator