JP2006225225A - Method for designing dropping nozzle for molten glass, dropping nozzle for molten glass using the method, and apparatus for manufacturing glass gob - Google Patents

Method for designing dropping nozzle for molten glass, dropping nozzle for molten glass using the method, and apparatus for manufacturing glass gob Download PDF

Info

Publication number
JP2006225225A
JP2006225225A JP2005044158A JP2005044158A JP2006225225A JP 2006225225 A JP2006225225 A JP 2006225225A JP 2005044158 A JP2005044158 A JP 2005044158A JP 2005044158 A JP2005044158 A JP 2005044158A JP 2006225225 A JP2006225225 A JP 2006225225A
Authority
JP
Japan
Prior art keywords
molten glass
nozzle
dropping nozzle
dropping
droplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005044158A
Other languages
Japanese (ja)
Inventor
Soji Ogami
聡司 大神
Shiro Funatsu
志郎 舩津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005044158A priority Critical patent/JP2006225225A/en
Publication of JP2006225225A publication Critical patent/JP2006225225A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/10Cutting-off or severing the glass flow with the aid of knives or scissors or non-contacting cutting means, e.g. a gas jet; Construction of the blades used
    • C03B7/12Cutting-off or severing a free-hanging glass stream, e.g. by the combination of gravity and surface tension forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for designing a dropping nozzle capable of forming a glass gob having a required mass, a dropping nozzle formed by using it, and an apparatus for manufacturing a glass gob using it. <P>SOLUTION: The method is for designing a dropping nozzle to prepare a molten glass droplet having a required mass. The shape of a molten glass droplet hanging at the tip of a dropping nozzle is calculated and the minimum diameter of the neck of the droplet shape is calculated so as to satisfy the formula: (the maximum volume of a molten glass droplet capable of hanging at the dropping nozzle)×(the density of the molten glass droplet)=(the required mass). The minimum diameter is used as the diameter of the dropping nozzle. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、所望の質量を有するガラス塊を製造するための溶融ガラス用滴下ノズルの設計法に関する。   The present invention relates to a method for designing a dropping nozzle for molten glass for producing a glass lump having a desired mass.

ガラスレンズなどの光学ガラス素子の製造方法として、ガラス塊を精密プレス成形してそのまま研磨せずに使用することが注目されている。このような光学ガラス素子のプレス成形法としては、精密に質量を制御された溶融ガラス塊を直接、プレス型に供給してプレス成形するダイレクトプレス法と、前記溶融ガラス塊を変形しない温度まで冷却してガラスプリフォームとした後、プレス型に供給して再度変形温度まで加熱してプレス成形するリヒートプレス法とに大別されるが、いずれのプレス方法においても光学ガラス素子の形状を高精度にするためには、前記溶融ガラス塊の質量を設計値どおりに厳密に制御することが必要である。   As a method for producing an optical glass element such as a glass lens, attention has been focused on using a glass lump without subjecting it to precision press molding and polishing it. As a press molding method of such an optical glass element, a molten glass lump whose mass is precisely controlled is directly supplied to a press die and press molded, and the molten glass lump is cooled to a temperature at which the molten glass lump is not deformed. The glass preform is then roughly divided into the reheat press method in which the glass preform is supplied to the press mold and heated to the deformation temperature again to perform press molding. In either press method, the shape of the optical glass element is highly accurate. In order to achieve this, it is necessary to strictly control the mass of the molten glass lump as designed.

すなわち、溶融ガラス塊の質量が設計値から離れると、光学ガラス素子の厚さが変わって光学特性や形状精度を満たさなくなる。例えば、前記質量が設計値より少ないと被成型材料であるガラス塊にかかる圧力が不足して転写不充分となり光学面を研磨する必要が出たり所定の形状を確保できないなどの問題がある。逆に、前記質量が設計値より多すぎると金型のキャビティからガラスが溢れる、後加工が必要となるなどの問題がある。したがって、光学ガラス素子を高精度に製造するためには、設計値どおりの質量を有する溶融ガラス塊を提供することが重要である。   That is, when the mass of the molten glass lump is deviated from the design value, the thickness of the optical glass element changes and the optical characteristics and shape accuracy are not satisfied. For example, if the mass is less than the design value, there is a problem that the pressure applied to the glass block, which is the material to be molded, is insufficient and transfer becomes insufficient, and the optical surface needs to be polished or a predetermined shape cannot be secured. On the other hand, if the mass is too larger than the design value, there is a problem that glass overflows from the mold cavity and post-processing is required. Therefore, in order to manufacture an optical glass element with high accuracy, it is important to provide a molten glass lump having a mass as designed.

溶融ガラス塊の製造方法の代表的なものとして、溶融ルツボと滴下ノズルとを有するガラス塊製造装置の前記滴下ノズルから溶融ガラスを滴下して製造する方法(以下、ノズル滴下方式という)がある。ノズル滴下方式は、製造装置が簡単で、生産性も高いなどの長所を有するものの、一つのノズルで質量制御できる範囲が狭いため、要求される溶融ガラス塊の質量に応じて最適なノズル直径を選択しなければならないが、従来はこのノズル径の選択を経験やトライアンドエラーで決定しなければならなかった。   As a typical method for producing a molten glass lump, there is a method (hereinafter referred to as a nozzle dropping method) in which molten glass is dropped from the dropping nozzle of a glass lump producing apparatus having a melting crucible and a dropping nozzle. Although the nozzle dripping method has advantages such as simple manufacturing equipment and high productivity, the range of mass control with a single nozzle is narrow, so the optimum nozzle diameter is selected according to the required mass of the molten glass lump. In the past, the selection of the nozzle diameter had to be determined by experience and trial and error.

溶融ガラス塊と滴下ノズルの先端半径Rとの間には概略、式3の関係が成り立つことが分かっている(特許文献1)。しかし、式3から算出されるノズルを使用しても実際には所望の質量M(kg)の溶融ガラス塊は得られず、あくまでもこれで計算されるノズル半径は目安にしかすぎなかった。   It is known that the relationship of Formula 3 is generally established between the molten glass block and the tip radius R of the dropping nozzle (Patent Document 1). However, even if the nozzle calculated from Equation 3 was used, a molten glass lump with a desired mass M (kg) was not actually obtained, and the nozzle radius calculated with this was only a guide.

したがって、ノズル滴下方式では最適なノズル径を実験的または経験的に選択しなければならず、設計値通りの質量のガラス塊が滴下するまで種々のノズル直径を有する滴下ノズルを何度も交換したり、前もって滴下実験を実施しなければならないなどの問題があり、所望の質量の溶融ガラス塊を得るまでに時間と手間が掛かり、生産性の点でも問題があった。
R=((M・g)/(2・π・σ))=0.16・M・g/σ・・・式3
特公平4−32772号公報(2頁)
Therefore, in the nozzle dripping method, the optimum nozzle diameter must be selected experimentally or empirically, and the dripping nozzles with various nozzle diameters are replaced many times until a glass lump with the mass as designed drops. In addition, there is a problem that a dripping experiment has to be performed in advance, and it takes time and labor to obtain a molten glass lump of a desired mass, and there is also a problem in terms of productivity.
R = ((M · g) / (2 · π · σ)) = 0.16 · M · g / σ Equation 3
Japanese Patent Publication No. 4-32772 (2 pages)

本発明は、所望の質量のガラス塊が得られる滴下ノズルの設計法およびそれで設計した滴下ノズルの提供を目的とする。   An object of the present invention is to provide a dripping nozzle design method capable of obtaining a glass mass having a desired mass and a dripping nozzle designed therewith.

本発明は、所望の質量を有する溶融ガラス液滴を製造するための滴下ノズルの設計法であって、前記滴下ノズル先端に懸垂される溶融ガラス液滴形状を計算して、(滴下ノズルに懸垂可能な溶融ガラス液滴の最大体積)×(溶融ガラス液滴の密度)=(所望の質量)となる前記液滴形状のくびれ部の最小直径を算出し、前記最小直径を滴下ノズルの直径とすることを特徴とする溶融ガラス用滴下ノズルの設計法を提供する。   The present invention relates to a dripping nozzle design method for producing a molten glass droplet having a desired mass, and calculates a molten glass droplet shape suspended at the tip of the dripping nozzle, Calculate the minimum diameter of the constricted portion of the droplet shape such that the maximum volume of the molten glass droplets) × (density of the molten glass droplets) = (desired mass), and calculate the minimum diameter as the diameter of the dropping nozzle. A method for designing a dropping nozzle for molten glass is provided.

本発明は、溶融ガラス液滴の所望の質量をM(kg)、溶融ガラスの表面張力をσ(N/m)、重力加速度g(m/s)、滴下ノズルの直径を2R(m)としたとき、滴下ノズルの先端半径Rを式4で計算する、溶融ガラス用滴下ノズルの設計法を提供する。
R=c・M・g/σ・・・式4
ただし、cは定数でc=0.20〜0.29
In the present invention, the desired mass of the molten glass droplet is M (kg), the surface tension of the molten glass is σ (N / m), the acceleration of gravity g (m / s 2 ), and the diameter of the dropping nozzle is 2R (m). Then, the design method of the dripping nozzle for molten glass is provided, in which the tip radius R of the dripping nozzle is calculated by Equation 4.
R = c · M · g / σ Equation 4
Where c is a constant and c = 0.20 to 0.29.

本発明による設計法で設計した滴下ノズルを使用することにより、ノズル直径の異なる滴下ノズルを何度も交換したり、前もって滴下実験を実施したりするなど非効率的な作業をせずに、質量を厳密に制御した溶融ガラス塊を簡便に製造できる。そのため、本発明により得られる所望の精度に制御されたガラス塊を使用して高精密なガラスレンズを簡便にしかも安定して製造できる。   By using the dripping nozzle designed by the design method according to the present invention, the mass of the dripping nozzle with different nozzle diameters can be changed many times or the dripping experiment can be carried out in advance. It is possible to easily produce a molten glass lump in which the above is strictly controlled. Therefore, a high-precision glass lens can be easily and stably manufactured using the glass block controlled to a desired accuracy obtained by the present invention.

また、ノズル直径を決定するためにノズル直径を何度も変えてテストする必要が無いため生産の準備期間が短く、納期の短縮、生産量の増大が期待できる。また、余分にノズルを準備しないため、開発コスト削減効果もある。さらに、質量の異なる溶融ガラス塊を製造する際にもノズルの選択が簡単にできるためジョブチェンジも容易となる。   In addition, since it is not necessary to change the nozzle diameter many times in order to determine the nozzle diameter, the production preparation period is short, and the delivery time can be shortened and the production volume can be expected to increase. In addition, since no extra nozzles are prepared, the development cost can be reduced. Further, when manufacturing molten glass lumps having different masses, the selection of nozzles can be easily performed, so that job change is facilitated.

本発明は、所望の質量を有する溶融ガラス液滴を製造するための滴下ノズルの設計法(以下、本設計法という)であって、前記滴下ノズル先端に懸垂される溶融ガラス液滴形状を計算して、(滴下ノズルに懸垂可能な溶融ガラス液滴の最大体積)×(溶融ガラス液滴の密度)=(所望の質量)となる前記液滴形状のくびれ部の最小直径を算出し、前記最小直径を滴下ノズルの直径とすることを特徴とする。滴下ノズルと溶融ガラス液滴の概念図を図1に示す。図1中、1は溶融ガラス液滴、Nは滴下ノズル、2Rは滴下ノズルの直径、をそれぞれ示す。なお、本明細書において、ノズル半径、ノズル直径は、滴下ノズルの先端部分での値をいうものとする。   The present invention relates to a dripping nozzle design method (hereinafter referred to as the present design method) for producing molten glass droplets having a desired mass, and calculates a molten glass droplet shape suspended from the tip of the dripping nozzle. Then, calculate the minimum diameter of the constricted portion of the droplet shape such that (maximum volume of the molten glass droplet that can be suspended by the dropping nozzle) × (density of the molten glass droplet) = (desired mass), The minimum diameter is the diameter of the dropping nozzle. The conceptual diagram of a dripping nozzle and a molten glass droplet is shown in FIG. In FIG. 1, 1 is a molten glass droplet, N is a dropping nozzle, and 2R is a diameter of the dropping nozzle. In the present specification, the nozzle radius and nozzle diameter refer to values at the tip of the dropping nozzle.

溶融ガラス液滴形状は、前記滴下ノズル先端における前記溶融ガラスの液圧と、前記溶融ガラスの表面張力との釣り合いに基づいて計算すると好ましい。この場合、溶融ガラスの液圧は、重力による液圧と滴下ノズル上流からの液圧との合力で表される。この関係を図2に示す。図2中、1は溶融ガラス液滴、Nは滴下ノズル、Pは滴下ノズル先端での溶融ガラスの液圧、Pは重力による液圧、Pは滴下ノズル上流からの液圧、をそれぞれ示す。図よりP=P+Pであるが、溶融ガラスの液圧Pと溶融ガラスの表面張力Pとは釣り合うことから、結局、P+P=Pとなる。 The molten glass droplet shape is preferably calculated based on the balance between the liquid pressure of the molten glass at the tip of the dropping nozzle and the surface tension of the molten glass. In this case, the liquid pressure of the molten glass is represented by the resultant force of the liquid pressure due to gravity and the liquid pressure from the upstream of the dropping nozzle. This relationship is shown in FIG. In Figure 2, 1 is the molten glass droplets, N is the dropping nozzle, P L is the molten glass in the dropping nozzle tip hydraulic, P G is the hydraulic by gravity, P N is the hydraulic pressure from the dropping nozzle upstream, the Shown respectively. It is a P L = P G + P N from FIG, since the balance the fluid pressure P L of the molten glass and the surface tension P S of the molten glass, after all, a P G + P N = P S .

本設計法において溶融ガラス液滴形状で滴下ノズル先端に懸垂可能な最大質量を算出する際の計算は、式5を利用して行うことが好ましい。   In this design method, the calculation for calculating the maximum mass that can be suspended at the tip of the dropping nozzle in the shape of a molten glass droplet is preferably performed using Equation 5.

Figure 2006225225
Figure 2006225225

ただし、式5において、y、zはz軸を対象軸として軸対称となる溶融ガラス液滴形状の界面位置を決める変数で、図3に示すようにy軸を水平方向に、z軸を垂直方向にそれぞれとる。y(z)は、溶融ガラス液滴の形状を表す関数で、y´(z)、y´´(z)は、zに関する一階微分、二階微分をそれぞれ示す。また、Pは溶融ガラス液滴先端での滴下ノズル上流からの液圧(N/m)(図2中のP)を、σは溶融ガラスの表面張力(N/m)を、gは重力加速度(m/s)を、ρは溶融ガラスの密度、をそれぞれ示す。 However, in Equation 5, y and z are variables that determine the interface position of the molten glass droplet shape that is symmetric with respect to the z axis as the target axis. As shown in FIG. 3, the y axis is horizontal and the z axis is vertical. Take in each direction. y (z) is a function representing the shape of the molten glass droplet, and y ′ (z) and y ″ (z) represent a first-order derivative and a second-order derivative with respect to z, respectively. P is the hydraulic pressure (N / m 2 ) (P N in FIG. 2) from the upstream of the dropping nozzle at the tip of the molten glass droplet, σ is the surface tension (N / m) of the molten glass, and g is The gravitational acceleration (m / s 2 ) and ρ represent the density of molten glass, respectively.

計算の手順は、任意のPを与え、式5が成立するy(>0)とz(>0)の関係を導き、軸対象に描図すると図3に示すような溶融ガラス液滴形状が算出される。図3中、11は計算で求めた仮想の溶融ガラス液滴を示す。溶融ガラス液滴形状の最初のくびれ部分の距離Δyneckを滴下ノズルの直径2Rとしたとき、当該滴下ノズルに懸垂される溶融ガラス液滴の体積は最大(以下、最大懸垂体積という)となり、これに密度を乗じた質量も最大(以下、最大懸垂質量という)となる。 The calculation procedure gives an arbitrary P, derives the relationship between y (> 0) and z (> 0) for which Equation 5 is established, and when drawn on an axis object, a molten glass droplet shape as shown in FIG. Calculated. In FIG. 3, reference numeral 11 denotes a virtual molten glass droplet obtained by calculation. When the distance Δy neck of the first constricted portion of the molten glass droplet shape is the diameter of the dropping nozzle 2R, the volume of the molten glass droplet suspended by the dropping nozzle is maximum (hereinafter referred to as the maximum suspended volume). The mass multiplied by the density is also the maximum (hereinafter referred to as the maximum suspended mass).

なお、計算に際して、溶融ガラスの表面張力σ(N/m)、密度ρ(kg/m)としてはノズルから滴下される温度における値を用いることが好ましい。重力加速度としては一般的な値でよいが、遠心力などの外力が加わっている環境下などでは適宜修正することが好ましい。 In the calculation, it is preferable to use values at the temperature dropped from the nozzle as the surface tension σ (N / m) and density ρ (kg / m 3 ) of the molten glass. The gravitational acceleration may be a general value, but is preferably corrected as appropriate in an environment where an external force such as a centrifugal force is applied.

実際に滴下する溶融ガラスは、滴下ノズル先端での溶融ガラスの液圧Pと溶融ガラスの表面張力Pとの釣り合いが取れなくなった時であるから、滴下する溶融ガラス液滴の質量は、最大懸垂質量とほぼ同じとみなせる。したがって、所望の溶融ガラス液滴の質量を前記最大懸垂質量とした場合の滴下ノズルの直径2Rを採用すれば、所望の質量を有する溶融ガラス液滴を高精度に製造できる。 Molten glass to be actually dropping, since it is when the balance between the surface tension P S of the hydraulic P L and the molten glass of the molten glass in the dropping nozzle tip is no longer achieved, the mass of molten glass droplets dripping is It can be regarded as almost the same as the maximum suspended mass. Therefore, if the diameter 2R of the dropping nozzle when the mass of the desired molten glass droplet is the maximum suspended mass is employed, the molten glass droplet having the desired mass can be manufactured with high accuracy.

さらに計算で得られたノズル半径Rと滴下される溶融ガラス液滴の質量Mとの関係から式6の近似が得られる。cは、ガラスの種類、ノズル材質などによって適宜選択される定数でc=0.20〜0.29の値をとると好ましい。cの下限としては0.21であるとさらに好ましく、0.22であると特に好ましい。cの上限としては0.26であるとさらに好ましく、0.25であると特に好ましい。
R=c・M・g/σ・・・式6。
Furthermore, the approximation of Formula 6 is obtained from the relationship between the nozzle radius R obtained by calculation and the mass M of the molten glass droplet to be dropped. c is a constant appropriately selected depending on the type of glass, the nozzle material, and the like, and preferably takes a value of c = 0.20 to 0.29. The lower limit of c is more preferably 0.21 and particularly preferably 0.22. The upper limit of c is more preferably 0.26, and particularly preferably 0.25.
R = c · M · g / σ Equation 6

実際の滴下ノズルでは肉厚があることから、滴下ノズルの直径としては、外径、内径、内径と外径の平均値(以下、単に内外径平均値という)等がある。本設計法において滴下ノズルの直径2Rとしては滴下ノズルの外径、内径、内外径平均値のいずれとしてもよい。溶融ガラスと滴下ノズルとの濡れ性が良い場合は滴下ノズルの直径2Rをノズルの外径とするのが好ましく、逆に、溶融ガラスと滴下ノズルとの濡れ性が悪い場合は直径2Rをノズルの内径とするのが好ましい。   Since an actual dropping nozzle has a thickness, the diameter of the dropping nozzle includes an outer diameter, an inner diameter, an average value of the inner diameter and the outer diameter (hereinafter, simply referred to as an inner and outer diameter average value), and the like. In this design method, the diameter 2R of the dropping nozzle may be any of the outer diameter, inner diameter, and inner / outer diameter average value of the dropping nozzle. When the wettability between the molten glass and the dropping nozzle is good, the diameter 2R of the dropping nozzle is preferably the outer diameter of the nozzle, and conversely, when the wettability between the molten glass and the dropping nozzle is poor, the diameter 2R of the nozzle is set. The inner diameter is preferred.

この関係を図4に示す。図4においてNは滴下ノズルを、dは滴下ノズル先端の内径を、dは滴下ノズル先端の外径を、dIOは図示しないが滴下ノズル先端の内外径平均値を、それぞれ示す。 This relationship is shown in FIG. In FIG. 4 N is a dropping nozzle, d I is the inner diameter of the dropping nozzle tip, d O is the outer diameter of the dropping nozzle tip, d IO is a not shown inner and outer diameters the mean value of the dropping nozzle tip, respectively.

本発明の滴下ノズル(以下、本ノズルという)は、本設計法で算出したノズル直径を有すること以外は特に制限されない。本ノズルの材質としては溶融ガラスに対して耐食性があり、しかも溶融ガラスを液滴として滴下できるものであれば特に制限はないが、Ptおよび/またはAuなどの貴金属が好ましい材質として挙げられる。   The dripping nozzle of the present invention (hereinafter referred to as the present nozzle) is not particularly limited except that it has the nozzle diameter calculated by the present design method. The material of the nozzle is not particularly limited as long as it has corrosion resistance to the molten glass and can drop the molten glass as droplets, but a noble metal such as Pt and / or Au is a preferable material.

また、本ノズルにおいては、使用上問題のない機械的強度を得られる範囲内で肉厚をできるだけ薄くし、滴下ノズルの内径と外径の差を小さくすると、溶融ガラスとノズルの材質との相性の影響を小さくできるので好ましい。本ノズルの製作にあたっては、ノズル先端をシャープエッジとなるように加工することが好ましい。   In addition, in this nozzle, if the thickness is made as thin as possible within the range where mechanical strength without problems in use can be obtained and the difference between the inner diameter and outer diameter of the dropping nozzle is reduced, the compatibility between the molten glass and the nozzle material This is preferable because the influence of the above can be reduced. In manufacturing this nozzle, it is preferable to process the tip of the nozzle to have a sharp edge.

本発明において、ガラス塊製造装置(以下、本製造装置という)としては、本ノズルを有するものであれば本ノズルを設けるガラス溶融ルツボ(以下、単にルツボと略す)と、溶融ガラスの温度計測手段と温度制御手段とがあれば他には制限されないが前記ルツボ内を撹拌するための手段を有すると溶融ガラスの品質が均一となるため好ましい。   In the present invention, a glass lump manufacturing apparatus (hereinafter referred to as the present manufacturing apparatus) includes a glass melting crucible (hereinafter simply referred to as a crucible) provided with the nozzle if it has the nozzle, and a temperature measuring means for the molten glass. However, it is preferable to have a means for stirring the inside of the crucible because the quality of the molten glass becomes uniform.

本製造装置において、本ノズルのルツボへの取付位置は特に制限されないが、底面部や側面部が好ましい取付位置として挙げられる。本ノズルをガラス溶融ルツボの側面部に樋を設け、その樋の先端部の底面に設けると、溶融ガラスの溶融量を充分に確保しながらノズル先端から溶融ガラス液面までの距離を短くできるため品質のバラツキが抑えられ、しかもノズル製作が容易となるため好ましい。   In this manufacturing apparatus, the mounting position of the nozzle on the crucible is not particularly limited, but a bottom surface portion and a side surface portion can be cited as preferable mounting positions. If this nozzle is provided on the side of the glass melting crucible and on the bottom of the tip of the glass, the distance from the nozzle tip to the molten glass liquid surface can be shortened while ensuring a sufficient amount of molten glass. This is preferable because variations in quality can be suppressed and nozzles can be easily manufactured.

上端の内径約80(mm)、下端の内径約60(mm)、高さ約90(mm)の内容積が約350(mL)の金製の容器をガラス溶融ルツボとして準備し、前記ルツボの底面部に後述する滴下ノズルを設けて、テルライト系硝材(表面張力0.165N/m、密度5169kg/m、重力加速度9.80665m/s)を溶融温度900℃で溶融滴下し、目標滴下質量104mgのガラス塊を製造する試験を行った。なお、表面張力についてはリング法で、密度については、アルキメデス2球法により実測した。 A gold container having an inner diameter of about 80 (mm) at the upper end, an inner diameter of about 60 (mm) at the lower end and a height of about 90 (mm) and an inner volume of about 350 (mL) is prepared as a glass melting crucible. A dropping nozzle described later is provided on the bottom surface, and a tellurite glass material (surface tension 0.165 N / m, density 5169 kg / m 3 , gravitational acceleration 9.80665 m / s 2 ) is melted and dropped at a melting temperature of 900 ° C., and target dropping is performed. A test for producing a mass of 104 mg of glass was conducted. The surface tension was measured by the ring method, and the density was measured by the Archimedes two-sphere method.

前記硝材の物性値を使用し、式4を用いてノズル半径を算出したところ1.40mmという値が得られた。そこでノズル外径が2.80mmと3.00mmで肉厚0.5mm、長さ8mmの2つのAu含有貴金属製滴下ノズルを製作し、実際にガラス塊製造を約40回実施して得られたガラス塊の平均質量を求めたところ、ノズル外径が2.80mm(式5中のc=0.23)では103mg、ノズル外径が3.00mm(式5中のc=0.24)では105mgと精度良くガラス塊が製造できることを確認した。   Using the physical properties of the glass material and calculating the nozzle radius using Equation 4, a value of 1.40 mm was obtained. Therefore, two Au-containing noble metal dripping nozzles having nozzle outer diameters of 2.80 mm and 3.00 mm, a thickness of 0.5 mm, and a length of 8 mm were produced, and the glass lump production was actually performed about 40 times. When the average mass of the glass block was determined, when the nozzle outer diameter was 2.80 mm (c = 0.23 in Equation 5), 103 mg, and the nozzle outer diameter was 3.00 mm (c = 0.24 in Equation 5). It was confirmed that a glass lump could be produced with an accuracy of 105 mg.

本設計法を用いることにより、最適な滴下ノズルの設計が容易になり、しかも本設計法に基づいた本ノズルを使用することにより、質量を厳密に制御したガラス塊を簡便に製造できる。   By using this design method, it becomes easy to design an optimum dropping nozzle, and by using this nozzle based on this design method, a glass lump whose mass is strictly controlled can be easily produced.

ノズルに懸垂される溶融ガラスの最大液滴形状の概念図。The conceptual diagram of the largest droplet shape of the molten glass suspended by the nozzle. 溶融ガラス液滴に働く力の釣り合いを示す概念図。The conceptual diagram which shows balance of the force which acts on a molten glass droplet. 溶融ガラスの液滴形状を計算する際の座標系の概念図。The conceptual diagram of the coordinate system at the time of calculating the droplet shape of a molten glass. ノズル先端の部分拡大図。The partial enlarged view of the nozzle tip.

符号の説明Explanation of symbols

1:溶融ガラス液滴
11:計算で求めた仮想の溶融ガラス液滴
:滴下ノズルの内径
:滴下ノズルの外径
N:滴下ノズル
:重力による液圧
:滴下ノズル先端での溶融ガラスの液圧(=P+P
:滴下ノズル上流からの液圧
:溶融ガラスの表面張力(=P
R:滴下ノズルの先端部半径
Δyneck:溶融ガラス液滴形状の最初のくびれ部分の距離(=2R)
1: molten glass droplet 11: molten glass droplets calculated by obtained virtual d I: inner diameter of the dropping nozzles d O: outer diameter of the dropping nozzle N: dropping nozzle P G: the hydraulic pressure due to gravity P L: dropping nozzle tip of the molten glass in the fluid pressure (= P G + P S)
P N : Liquid pressure from the upstream of the dropping nozzle P S : Surface tension of molten glass (= P L )
R: Radius of tip of dropping nozzle Δy neck : Distance of first constricted portion of molten glass droplet shape (= 2R)

Claims (6)

所望の質量を有する溶融ガラス液滴を製造するための滴下ノズルの設計法であって、前記滴下ノズル先端に懸垂される溶融ガラス液滴形状を計算して、(滴下ノズルに懸垂可能な溶融ガラス液滴の最大体積)×(溶融ガラス液滴の密度)=(所望の質量)となる前記液滴形状のくびれ部の最小直径を算出し、前記最小直径を滴下ノズルの直径とすることを特徴とする溶融ガラス用滴下ノズルの設計法。   A method of designing a dropping nozzle for producing a molten glass droplet having a desired mass, wherein a molten glass droplet shape suspended at the tip of the dropping nozzle is calculated, and (a molten glass that can be suspended on the dropping nozzle) Calculate the minimum diameter of the constricted portion of the droplet shape such that (maximum volume of droplet) × (density of molten glass droplet) = (desired mass), and use the minimum diameter as the diameter of the dropping nozzle. Design method of dripping nozzle for molten glass. 前記溶融ガラス液滴の形状は、前記滴下ノズル先端における前記溶融ガラスの液圧と、前記溶融ガラスの表面張力との釣り合いに基づいて計算する請求項1記載の溶融ガラス用滴下ノズルの設計法。   The molten glass droplet nozzle design method according to claim 1, wherein the shape of the molten glass droplet is calculated based on a balance between a liquid pressure of the molten glass at a tip of the dropping nozzle and a surface tension of the molten glass. 前記溶融ガラス液滴の所望の質量をM(kg)、溶融ガラスの表面張力をσ(N/m)、重力加速度g(m/s)、滴下ノズルの直径を2R(m)としたとき、滴下ノズルの半径Rを下記式1で計算する請求項1または2記載の溶融ガラス用滴下ノズルの設計法。
R=c・M・g/σ・・・式1
ただし、cは定数でc=0.20〜0.29
When the desired mass of the molten glass droplet is M (kg), the surface tension of the molten glass is σ (N / m), the acceleration of gravity g (m / s 2 ), and the diameter of the dropping nozzle is 2R (m) The method for designing a dropping nozzle for molten glass according to claim 1 or 2, wherein the radius R of the dropping nozzle is calculated by the following formula 1.
R = c · M · g / σ Equation 1
Where c is a constant and c = 0.20 to 0.29.
溶融ガラス液滴の所望の質量をM(kg)、溶融ガラスの表面張力をσ(N/m)、重力加速度g(m/s)、滴下ノズルの直径を2R(m)としたとき、前記滴下ノズルの半径Rを下記式2で計算することを特徴とする溶融ガラス用滴下ノズルの設計法。
R=c・M・g/σ・・・式2
ただし、cは定数でc=0.20〜0.29
When the desired mass of the molten glass droplet is M (kg), the surface tension of the molten glass is σ (N / m), the acceleration of gravity g (m / s 2 ), and the diameter of the dropping nozzle is 2R (m), A method of designing a dropping nozzle for molten glass, wherein the radius R of the dropping nozzle is calculated by the following formula 2.
R = c · M · g / σ Equation 2
Where c is a constant and c = 0.20 to 0.29.
請求項1〜4のいずれか記載の溶融ガラス用滴下ノズルの設計法により算出したノズル直径を有する溶融ガラス用滴下ノズル。   The dripping nozzle for molten glass which has the nozzle diameter computed by the design method of the dripping nozzle for molten glass in any one of Claims 1-4. 請求項5記載の溶融ガラス用滴下ノズルを有するガラス塊製造装置。
The glass lump manufacturing apparatus which has the dripping nozzle for molten glass of Claim 5.
JP2005044158A 2005-02-21 2005-02-21 Method for designing dropping nozzle for molten glass, dropping nozzle for molten glass using the method, and apparatus for manufacturing glass gob Withdrawn JP2006225225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044158A JP2006225225A (en) 2005-02-21 2005-02-21 Method for designing dropping nozzle for molten glass, dropping nozzle for molten glass using the method, and apparatus for manufacturing glass gob

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005044158A JP2006225225A (en) 2005-02-21 2005-02-21 Method for designing dropping nozzle for molten glass, dropping nozzle for molten glass using the method, and apparatus for manufacturing glass gob

Publications (1)

Publication Number Publication Date
JP2006225225A true JP2006225225A (en) 2006-08-31

Family

ID=36986914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044158A Withdrawn JP2006225225A (en) 2005-02-21 2005-02-21 Method for designing dropping nozzle for molten glass, dropping nozzle for molten glass using the method, and apparatus for manufacturing glass gob

Country Status (1)

Country Link
JP (1) JP2006225225A (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010023633, 作花済夫, ガラスハンドブック, 1987, P.772, 朝倉書店 *

Similar Documents

Publication Publication Date Title
US10435322B2 (en) Method of filling a mould and system for filling a mould
CN1867520B (en) Device and method for producing tubes or rods
CN102822101B (en) Gob forming device
JP7404443B2 (en) glass forming equipment
JP4835162B2 (en) Optical element manufacturing method and optical element manufacturing apparatus
JP2002154834A (en) Method for making glass droplet and method for producing glass microoptical element as well as apparatus for producing the same
JP2006225225A (en) Method for designing dropping nozzle for molten glass, dropping nozzle for molten glass using the method, and apparatus for manufacturing glass gob
JP2002154834A5 (en)
JP5263163B2 (en) Method for producing glass molded body
TW200829522A (en) A group of glass preforms and processes for the production of a group of glass preforms and optical elements
US5900033A (en) Apparatus and method for improved optical glass GOB preform production
JP4633377B2 (en) Pipe manufacturing method and manufacturing apparatus
JP5888328B2 (en) Optical element manufacturing apparatus and optical element manufacturing method
CN105417935B (en) Shaping glass sheets device and its forming method
JP2007145627A (en) Glass suitable for droplet-like glass
TWI579597B (en) Method for predicating difficulty in formation of aspherical glass molded lens and method for designing lens system containing aspherical glass molded lens
CN101665325A (en) Manufacturing process and supplying process of fluophosphate glass, and manufacturing process of optical elements
KR20080035971A (en) Nozzle and method of fabricating an optical glass lump using the same
CN112052536A (en) Control method for offset of mold core during injection molding of thin-wall product
JP2015189659A (en) Method and device for manufacturing glass tube
JP2006298727A (en) Base material for forming optical device, method of manufacturing base material for forming optical device, method of manufacturing optical device and optical device
JPH05139755A (en) Device and method for cutting softened glass
JP2009167069A (en) Member for micronizing fused glass drop, method for producing glass gob, and method for producing glass compact
JP2008297158A (en) Molten glass dropping nozzle, and method and apparatus for manufacturing shaped glass
JP2015227270A (en) Manufacturing method of glass preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100525