JP2006225184A - Manufacture of carbon nanotube and carbon nanohorn, manufacture of arc soot containing carbon nanotube or carbon nanohorn and carbon material used for manufacturing raw material for synthesizing carbon nanoballoon - Google Patents

Manufacture of carbon nanotube and carbon nanohorn, manufacture of arc soot containing carbon nanotube or carbon nanohorn and carbon material used for manufacturing raw material for synthesizing carbon nanoballoon Download PDF

Info

Publication number
JP2006225184A
JP2006225184A JP2005038039A JP2005038039A JP2006225184A JP 2006225184 A JP2006225184 A JP 2006225184A JP 2005038039 A JP2005038039 A JP 2005038039A JP 2005038039 A JP2005038039 A JP 2005038039A JP 2006225184 A JP2006225184 A JP 2006225184A
Authority
JP
Japan
Prior art keywords
carbon
nanohorn
manufacture
arc discharge
graphitized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005038039A
Other languages
Japanese (ja)
Other versions
JP4270138B2 (en
Inventor
Kazuo Yoshikawa
和男 吉川
Akira Kondo
明 近藤
Hiroshi Takigawa
浩史 滝川
Hiroaki Niwa
宏彰 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Toyohashi University of Technology NUC
Original Assignee
Tokai Carbon Co Ltd
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd, Toyohashi University of Technology NUC filed Critical Tokai Carbon Co Ltd
Priority to JP2005038039A priority Critical patent/JP4270138B2/en
Publication of JP2006225184A publication Critical patent/JP2006225184A/en
Application granted granted Critical
Publication of JP4270138B2 publication Critical patent/JP4270138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon material for manufacturing a carbon nanotube and a carbon nanohorn capable of increasing a yield of the carbonnanotube and the carbon nanohorn and also capable of obtaining a high-purity product and to provide the carbon material used for manufacturing an arc soot containing the carbon nanotube or the carbon nanohorn and used for manufacturing a raw material for synthesizing a nanoballoon. <P>SOLUTION: In a graphitized material obtained by treating at a high temperature a formed body obtained by compounding a coal-based coke powder having an average particle size of 2-15 μm as an aggregate and pitch or resin as a binder and forming the mixture or a formed body obtained by forming the aggregate composed of a mesophase, a specific resistance of the graphitized material at room tempereture is ≤20-8 μΩm, a bulk density is 1.85-1.95 g/cm<SP>3</SP>, a bending strength is ≥50 MPa and a gas transmittance is ≤0.10 cm<SP>2</SP>/sec. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アーク放電によるカーボンナノチューブおよびカーボンナノホーンの製造、カーボンナノチューブあるいはカーボンナノホーンを含有したアークスートの製造、ならびにカーボンナノバルーン合成用原料の製造に用いる炭素材料に関する。   The present invention relates to a carbon material used for production of carbon nanotubes and carbon nanohorns by arc discharge, production of arc soot containing carbon nanotubes or carbon nanohorns, and production of carbon nanoballoon synthesis raw materials.

近年、ナノメートルスケールの微細構造を有する黒鉛物質が、単層または多層のカーボンナノチューブやカーボンナノホーンなどとして注目され、これらのナノ構造黒鉛物質は、導電性フィラー、走査型プローブ顕微鏡の探針、フィールドエミッションによるディスプレー、燃料電池、水素吸蔵など種々の分野への応用が期待されている。   In recent years, graphite materials with nanometer-scale microstructures have attracted attention as single-walled or multi-walled carbon nanotubes or carbon nanohorns, and these nanostructured graphite materials are used for conductive fillers, scanning probe microscope probes, field Applications in various fields such as emission displays, fuel cells, and hydrogen storage are expected.

従来、上記ナノ構造黒鉛物質は、炭素材料にアーク放電、レーザー照射などの高エネルギー熱源を作用させるアーク放電法、レーザー蒸発法などにより製造されており、これらの製造方法においては、通常、Fe、Ni、Coなどの金属触媒を同時蒸発させることが生成条件となっている(特許文献1参照)。   Conventionally, the nanostructured graphite material has been produced by an arc discharge method in which a high energy heat source such as arc discharge or laser irradiation is applied to a carbon material, a laser evaporation method, etc. In these production methods, usually, Fe, The production condition is to co-evaporate a metal catalyst such as Ni or Co (see Patent Document 1).

しかしながら、アーク放電法、レーザー蒸発法により合成されたカーボンナノチューブは結晶性に優れているが、合成量が少ないという難点がある。また、金属触媒がカーボンナノチューブに混入するため純度が低下するという問題もある。CVD法によりカーボンナノチューブを得る手法もあり、この手法によれば、カーボンナノチューブの合成量は多くなるが、構造欠陥が多くなるという問題がある。   However, carbon nanotubes synthesized by the arc discharge method or laser evaporation method are excellent in crystallinity, but have a drawback that the amount of synthesis is small. In addition, the metal catalyst is mixed into the carbon nanotube, so that there is a problem that the purity is lowered. There is also a technique for obtaining carbon nanotubes by a CVD method. According to this technique, the synthesis amount of carbon nanotubes increases, but there is a problem that structural defects increase.

アーク放電法によりカーボンナノチューブを合成する場合、原料となる炭素材料として、電気抵抗値、熱伝導率を特定したものを使用して、カーボンナノチューブの合成比率を高めて収量を多くし、また結晶性の優れたカーボンナノチューブを得ることも提案されている(特許文献2、3参照)。
特開2002−201014号公報 特開2004−149335号公報 特開2004−189533号公報
When carbon nanotubes are synthesized by the arc discharge method, the carbon material used as the raw material is a material with specified electrical resistance and thermal conductivity, and the carbon nanotube synthesis ratio is increased to increase the yield and crystallinity. It has also been proposed to obtain excellent carbon nanotubes (see Patent Documents 2 and 3).
JP 2002-201014 A JP 2004-149335 A JP 2004-189533 A

本発明は、アーク放電法によるカーボンナノチューブおよびカーボンナノホーンの製造において、カーボンナノチューブ、カーボンナノホーンの合成比率を高め、さらに収量を多くするとともに、生成物中のカーボンナノチューブ、カーボンナノホーンの純度を高めることができるカーボンナノチューブおよびカーボンナノホーン製造用炭素原料を得るために、上記提案のものをベースとして、炭素原料について、とくに電気抵抗値などの物性と合成比率の関係についてさらに試験、検討を加えた結果としてなされたものであり、その目的は、カーボンナノチューブ、カーボンナノホーンを高純度で且つ多く生成することを可能とするカーボンナノチューブおよびカーボンナノホーン製造用炭素材料を提供することにある。また、本発明の他の目的は、カーボンナノチューブあるいはカーボンナノホーンを含有したアークスートの製造、ならびにカーボンナノバルーン合成用原料の製造に用いる炭素材料を提供することにある。   In the production of carbon nanotubes and carbon nanohorns by the arc discharge method, the present invention can increase the synthesis ratio of carbon nanotubes and carbon nanohorns, increase the yield, and increase the purity of carbon nanotubes and carbon nanohorns in the product. In order to obtain carbon nanotubes and carbon nanohorns that can be produced, the results of further examination and examination of the relationship between physical properties such as electrical resistance values and the synthesis ratio, in particular, based on the above-mentioned proposals. It is an object of the present invention to provide a carbon material for producing carbon nanotubes and carbon nanohorns that can produce a large amount of carbon nanotubes and carbon nanohorns with high purity. Another object of the present invention is to provide a carbon material used for production of arc soot containing carbon nanotubes or carbon nanohorns, and production of a raw material for carbon nanoballoon synthesis.

上記の目的を達成するための請求項1によるカーボンナノチューブおよびカーボンナノホーンの製造、カーボンナノチューブあるいはカーボンナノホーンを含有したアークスートの製造、ならびにカーボンナノバルーン合成用原料の製造に用いる炭素材料は、骨材として平均粒径2〜15μmの石炭系コークス粉、結合剤としてピッチもしくは樹脂を配合し、成形して得られた成形体、またはメソフェーズからなる骨材を成形して得られる成形体を高温処理してなる黒鉛化物であって、該黒鉛化物の室温における固有抵抗が20〜8μΩm、嵩密度が1.85〜1.95g/cm3 、曲げ強度が50MPa以上、気体透過度が0.10cm2 /sec以下であることを特徴とする。 In order to achieve the above object, the carbon material used for the production of carbon nanotubes and carbon nanohorns according to claim 1, the production of arc soot containing carbon nanotubes or carbon nanohorns, and the production of carbon nanoballoon synthesis raw materials, High-temperature treatment of coal-based coke powder having an average particle size of 2 to 15 μm, a molded product obtained by molding pitch or resin as a binder and molding, or a molded product obtained by molding an aggregate made of mesophase The graphitized material has a specific resistance at room temperature of 20 to 8 μΩm, a bulk density of 1.85 to 1.95 g / cm 3 , a bending strength of 50 MPa or more, and a gas permeability of 0.10 cm 2 / sec. It is characterized by the following.

請求項2によるカーボンナノチューブおよびカーボンナノホーンの製造、カーボンナノチューブあるいはカーボンナノホーンを含有したアークスートの製造、ならびにカーボンナノバルーン合成用原料の製造に用いる用炭素材料は、請求項1において、前記高温処理が2000〜3000℃で行われることを特徴とする。   The carbon material for use in the production of carbon nanotubes and carbon nanohorns according to claim 2, the production of arc soot containing carbon nanotubes or carbon nanohorns, and the production of carbon nanoballoon synthesis raw materials is the carbon material used in claim 1, wherein the high temperature treatment is 2000 It is performed at ˜3000 ° C.

本発明によれば、カーボンナノチューブ、カーボンナノホーンの収量を多くでき、且つ高純度の生成物を得ることを可能とするカーボンナノチューブおよびカーボンナノホーン製造用炭素材料が提供される。また、当該炭素材料は、カーボンナノチューブあるいはカーボンナノホーンを含有したアークスートの製造用、ならびにカーボンナノバルーン合成用原料の製造用としても好適に使用することができる。(特願2004−097875号)   ADVANTAGE OF THE INVENTION According to this invention, the carbon material for carbon nanotube and carbon nanohorn manufacture which can increase the yield of a carbon nanotube and carbon nanohorn and can obtain a highly purified product is provided. The carbon material can also be suitably used for the production of arc soot containing carbon nanotubes or carbon nanohorns, and for the production of carbon nanoballoon synthesis raw materials. (Japanese Patent Application No. 2004-097875)

本発明による炭素材料は、骨材として平均粒径2〜15μmの石炭系コークス粉、結合剤としてピッチもしくは樹脂を配合し、成形して成形体(第1の成形体)とし、またはメソフェーズからなる骨材を成形して成形体(第2の成形体)とし、これらの成形体を高温処理してなる黒鉛化物である。   The carbon material according to the present invention includes coal-based coke powder having an average particle diameter of 2 to 15 μm as an aggregate, pitch or resin as a binder, and is molded into a molded body (first molded body), or made of mesophase. It is a graphitized product obtained by forming an aggregate into a molded body (second molded body) and subjecting these molded bodies to a high temperature treatment.

第1の成形体は、例えば、骨材と結合剤を混練し、この混練物を粉砕して冷間等方性加圧成形により成形する。骨材としては、平均粒径2〜15μmの石炭系コークス粉を使用するのが好ましい。石炭系コークスの平均粒径が15μmを越えると、アーク放電の際に均一に蒸発され難く、完全に蒸発されなかった粒子が脱落するため、得られる煤(生成物)中に数μmの炭素片が混在し、生成物中のカーボンナノチューブおよびカーボンナノホーンの含有率が顕著に低下する。また、石炭系コークスの平均粒子径が2μmを下回ると、アーク放電の際に酸化消耗が多くなり、煤の回収量が低下する。   The first molded body is formed, for example, by kneading an aggregate and a binder, pulverizing the kneaded material, and cold isostatic pressing. As the aggregate, coal-based coke powder having an average particle diameter of 2 to 15 μm is preferably used. When the average particle size of coal-based coke exceeds 15 μm, it is difficult to evaporate uniformly during arc discharge, and particles that have not been completely evaporated fall off. Therefore, carbon fragments of several μm in the obtained soot (product) And the content of carbon nanotubes and carbon nanohorns in the product are significantly reduced. On the other hand, when the average particle diameter of coal-based coke is less than 2 μm, oxidation consumption increases during arc discharge, and the amount of soot recovered decreases.

第2の成形体は、例えば、メソカーボンマイクロビーズなど、メソフェーズからなる骨材を単独で冷間等方性加圧成形により成形する。第1の成形体、第2の成形体は、高温処理、例えば高温焼成し、ついで不活性雰囲気中でさらに高温まで加熱して黒鉛化処理し、黒鉛化物とする。この場合、黒鉛化のための高温処理は2000〜3000℃で行われることが望ましい。   The second molded body is formed by, for example, cold isotropic pressure molding of an aggregate made of mesophase such as mesocarbon microbeads alone. The first molded body and the second molded body are subjected to high-temperature treatment, for example, high-temperature firing, and then heated to a higher temperature in an inert atmosphere to be graphitized to obtain a graphitized product. In this case, the high temperature treatment for graphitization is desirably performed at 2000 to 3000 ° C.

得られる黒鉛化物については、室温における固有抵抗が20〜8μΩm、嵩密度が1.85〜1.95g/cm3 、曲げ強度が50MPa以上、気体透過度が0.10cm2 /sec以下の特性をそなえたものであることが、本発明によるカーボンナノチューブおよびカーボンナノホーンの製造、カーボンナノチューブあるいはカーボンナノホーンを含有するアークスートの製造、さらに、カーボンナノバルーン合成用原料の製造に用いる炭素材料として好ましい。 About the obtained graphitized material, the specific resistance at room temperature is 20 to 8 μΩm, the bulk density is 1.85 to 1.95 g / cm 3 , the bending strength is 50 MPa or more, and the gas permeability is 0.10 cm 2 / sec or less. It is preferable to provide the carbon material used for the production of carbon nanotubes and carbon nanohorns according to the present invention, the production of arc soot containing carbon nanotubes or carbon nanohorns, and the production of carbon nanoballoon raw materials.

固有抵抗が20μΩmを越えると、アーク放電法によるカーボンナノチューブおよびカーボンナノホーンの製造において、より高電圧が必要となるため多大の電力を要することとなり、カーボンナノチューブおよびカーボンナノホーンの製造コストの増大を招く。高電圧の使用は製造時に危険性が伴う。また、固有抵抗が8μΩmを下回るとアーク放電がし難く、発熱量が低下し、煤の蒸発量が低下する。黒鉛化のための高温処理温度が2000℃未満の場合には、黒鉛化物の固有抵抗が高くなって、アーク放電が不安定となり、十分な成形物(煤)の回収ができなくなる。また、炭素材自身の結晶性が悪いため、煤中のカーボンナノチューブおよびカーボンナノホーンの収率が低下する。   When the specific resistance exceeds 20 μΩm, a higher voltage is required in the production of carbon nanotubes and carbon nanohorns by the arc discharge method, so that a large amount of electric power is required, leading to an increase in production costs of the carbon nanotubes and carbon nanohorns. The use of high voltages can be dangerous during manufacturing. On the other hand, if the specific resistance is less than 8 μΩm, arc discharge is difficult to occur, the heat generation amount is reduced, and the evaporation amount of soot is reduced. When the high-temperature treatment temperature for graphitization is less than 2000 ° C., the specific resistance of the graphitized material becomes high, the arc discharge becomes unstable, and a sufficient molded product (soot) cannot be recovered. Moreover, since the crystallinity of the carbon material itself is poor, the yield of carbon nanotubes and carbon nanohorns in the soot is reduced.

嵩密度が1.85g/cm3 未満では、黒鉛化物の粒子間の空隙が多くなって、アーク放電の際にクラックが生じ易くなり、生成される煤の中に数μmの炭素片が大量に混在して、煤中のカーボンナノチューブおよびカーボンナノホーンの含有率を低下させる。また、嵩密度が1.95g/cm3 を上回る場合には、アーク放電中に亀裂の伝播の速度が速くなり、長大亀裂が発生し易くなる。 When the bulk density is less than 1.85 g / cm 3 , there are many voids between the graphitized particles, and cracks are likely to occur during arc discharge, and a large number of carbon pieces of several μm are generated in the generated soot. It mixes and the content rate of the carbon nanotube and carbon nanohorn in a soot is reduced. On the other hand, when the bulk density exceeds 1.95 g / cm 3 , the propagation speed of cracks is increased during arc discharge, and long cracks are likely to occur.

曲げ強度が50MPa未満では、強度や耐熱衝撃性が劣り、アーク放電時の衝撃に耐え難くなる。黒鉛化物の気体透過度は、カーボンナノチューブおよびカーボンナノホーン製造用炭素材料として重要であり、気体透過度が0.10cm2 /secを越えると、連続的な気泡が多く存在するようになり、そのような気泡にはアーク放電の際に電流が流れず、ミクロ的な偏流が生じることとなり、ミクロ的に均一なアーク放電が生じなくなる。従って、均一なカーボンナノチューブおよびカーボンナノホーンが得られず、異物などが多くなるから、生成物(煤)中のカーボンナノチューブおよびカーボンナノホーンの含有率(収率)が低下する。 If the bending strength is less than 50 MPa, the strength and thermal shock resistance are inferior, and it becomes difficult to withstand the impact during arc discharge. The gas permeability of the graphitized material is important as a carbon material for producing carbon nanotubes and carbon nanohorns. When the gas permeability exceeds 0.10 cm 2 / sec, a lot of continuous bubbles are present. In such a bubble, current does not flow during arc discharge, and micro drift occurs, so that micro arc uniform arc discharge does not occur. Accordingly, uniform carbon nanotubes and carbon nanohorns cannot be obtained, and foreign matters and the like increase, so that the content (yield) of the carbon nanotubes and carbon nanohorns in the product (soot) decreases.

純度の低下が許容される場合には、アーク放電の際、Fe、Ni、Coなどの金属触媒を同時蒸発させてもよい。金属触媒の添加方法としては、原料配合時に金属粉末を混合する方法、炭素材を金属を含有する溶液に浸漬して、含浸させる方法などが適用できる。   When the decrease in purity is allowed, metal catalysts such as Fe, Ni, and Co may be co-evaporated during arc discharge. As a method for adding the metal catalyst, a method of mixing metal powder at the time of mixing raw materials, a method of impregnating a carbon material by immersing it in a metal-containing solution, and the like can be applied.

以下、本発明の実施例を比較例と対比して説明する。これらの実施例はカーボンナノホーンの合成に関する本発明の一実施態様を示すものであり、本発明はこれに限定されるものではない。なお、本発明に従うカーボンナノチューブの合成についてもカーボンナノホーンの合成の場合と同様の結果が得られた。   Examples of the present invention will be described below in comparison with comparative examples. These examples show one embodiment of the present invention relating to the synthesis of carbon nanohorns, and the present invention is not limited thereto. In addition, the result similar to the case of the synthesis | combination of the carbon nanohorn was obtained also about the synthesis | combination of the carbon nanotube according to this invention.

実施例1
石炭系コークス(平均粒径10μm)100質量部に対して、コールタールピッチ(中ピッチ、軟化点90℃)60質量部を加え、150〜200℃の温度で混練りを行った。生成された混練物を、平均粒径50μmに粉砕後、100MPaの加圧力で冷間等方性加圧成形した。
Example 1
60 parts by mass of coal tar pitch (medium pitch, softening point 90 ° C.) was added to 100 parts by mass of coal-based coke (average particle size 10 μm), and kneaded at a temperature of 150 to 200 ° C. The resulting kneaded product was pulverized to an average particle size of 50 μm and then cold isostatically pressed with a pressure of 100 MPa.

得られた成形体を1000℃の温度で焼成し、さらに不活性雰囲気中で3000℃まで昇温して黒鉛化処理し黒鉛化物とした。この黒鉛化物の室温における固有抵抗、嵩密度、三点曲げ強度、気体透過度を表1に示す。なお、黒鉛化物の結晶格子間間隔(d002)は0.3360nm、結晶子の厚み(Lc)は90nmであった。   The obtained molded body was fired at a temperature of 1000 ° C., further heated to 3000 ° C. in an inert atmosphere, and graphitized to obtain a graphitized product. Table 1 shows the specific resistance, bulk density, three-point bending strength, and gas permeability of this graphitized material at room temperature. The crystal lattice spacing (d002) of the graphitized product was 0.3360 nm, and the crystallite thickness (Lc) was 90 nm.

使用したアーク放電用装置を図1に示す。図1に示すように、ガスボンベ13からガス調整器および流量計12を通じて、不活性ガスを充填した反応チャンバー7内に、直径6.4mm、長さ150mmの寸法に加工した黒鉛化物5,6の電極を向かい合わせてセットした。その後、モータ8を用いて2つの電極を接触させておき、そこに直流供給装置10を使用して直流電流を流した。2つの電極を引き離すと、電極間にアークが発生し、電極と電極との間を数mm程度にすることで、陽極が激しく蒸発した。生成した蒸発物11がアークプラズマ中を経由して広い空間に逃げ出し、その後チャンバー7内に付着したものを生成物(煤)として回収した。1はスケールスクリーン、2はフィルター、3はレンズ、4は圧力ゲージ、9は水冷ジャケット、14は真空ポンプ、15はバルブである。   The arc discharge apparatus used is shown in FIG. As shown in FIG. 1, the graphitized materials 5 and 6 processed into dimensions of 6.4 mm in diameter and 150 mm in length are passed from a gas cylinder 13 through a gas regulator and a flow meter 12 into a reaction chamber 7 filled with an inert gas. The electrodes were set facing each other. Then, two electrodes were made to contact using the motor 8, and direct current was sent using the direct current supply device 10 there. When the two electrodes were separated, an arc was generated between the electrodes, and the anode was evaporated violently by setting the distance between the electrodes to about several mm. The generated evaporant 11 escaped to a wide space via the arc plasma, and then the substance adhering in the chamber 7 was recovered as a product (soot). 1 is a scale screen, 2 is a filter, 3 is a lens, 4 is a pressure gauge, 9 is a water cooling jacket, 14 is a vacuum pump, and 15 is a valve.

アーク放電の条件および消費電力を表1に示す。また、アーク放電により得られた煤(カーボンナノホーン)の回収量、透過型電子顕微鏡(TEM)で観察した煤中のカーボンナノホーンの含有率(CNH含有率)を表2に示す。   Table 1 shows arc discharge conditions and power consumption. In addition, Table 2 shows the recovered amount of soot (carbon nanohorn) obtained by arc discharge and the carbon nanohorn content (CNH content) in the soot observed with a transmission electron microscope (TEM).

実施例2
メソカーボンマイクロビーズ(平均粒子径6μm)を骨材とし、これを単独で冷間等方性加圧成形した以外は、実施例1と同様に処理して黒鉛化物を得た。黒鉛化物の室温における固有抵抗、嵩密度、三点曲げ強度、気体透過度を表1に示す。
Example 2
A graphitized product was obtained in the same manner as in Example 1 except that mesocarbon microbeads (average particle size 6 μm) were used as an aggregate, and this was cold isostatically pressed alone. Table 1 shows the specific resistance, bulk density, three-point bending strength, and gas permeability of the graphitized material at room temperature.

黒鉛化物を実施例1と同一の寸法に加工し、これをアーク放電用装置に設置してアーク放電を行った。アーク放電の条件および消費電力を表1に示す。また、アーク放電により得られた煤(カーボンナノホーン)の回収量、透過型電子顕微鏡(TEM)で観察した煤中のカーボンナノホーンの含有率(CNH含有率)を表2に示す。   The graphitized material was processed into the same dimensions as in Example 1, and this was placed in an arc discharge device to perform arc discharge. Table 1 shows arc discharge conditions and power consumption. In addition, Table 2 shows the recovered amount of soot (carbon nanohorn) obtained by arc discharge and the carbon nanohorn content (CNH content) in the soot observed with a transmission electron microscope (TEM).

比較例1
石炭系コークス(平均粒子径6μm)を骨材として使用した以外は、実施例1と同様に処理して黒鉛化物を得た。黒鉛化物の室温における固有抵抗、嵩密度、三点曲げ強度、気体透過度を表1に示す。なお、表1において、比較例について本発明の条件を外れたものには下線を付した。
Comparative Example 1
A graphitized product was obtained in the same manner as in Example 1 except that coal-based coke (average particle size: 6 μm) was used as an aggregate. Table 1 shows the specific resistance, bulk density, three-point bending strength, and gas permeability of the graphitized material at room temperature. In Table 1, the comparative examples that are outside the conditions of the present invention are underlined.

黒鉛化物を実施例1と同一の寸法に加工し、これをアーク放電用装置に設置してアーク放電を行った。アーク放電の条件および消費電力を表2に示す。また、アーク放電により得られた煤(カーボンナノホーン)の回収量、透過型電子顕微鏡(TEM)で観察した煤中のカーボンナノホーンの含有率(CNH含有率)を表2に示す。   The graphitized material was processed into the same dimensions as in Example 1, and this was placed in an arc discharge device to perform arc discharge. Table 2 shows arc discharge conditions and power consumption. In addition, Table 2 shows the recovered amount of soot (carbon nanohorn) obtained by arc discharge and the carbon nanohorn content (CNH content) in the soot observed with a transmission electron microscope (TEM).

比較例2
石炭系コークス(平均粒子径10μm)100質量部に対して、コールタールピッチ(中ピッチ、軟化点90℃)100質量部を加えた以外は、実施例1と同様に処理して黒鉛化物を得た。黒鉛化物の室温における固有抵抗、嵩密度、三点曲げ強度、気体透過度を表1に示す。
Comparative Example 2
A graphitized material is obtained by treating in the same manner as in Example 1 except that 100 parts by mass of coal tar pitch (medium pitch, softening point 90 ° C.) is added to 100 parts by mass of coal-based coke (average particle diameter 10 μm). It was. Table 1 shows the specific resistance, bulk density, three-point bending strength, and gas permeability of the graphitized material at room temperature.

黒鉛化物を実施例1と同一の寸法に加工し、これをアーク放電用装置に設置してアーク放電を行った。アーク放電の条件および消費電力を表2に示す。また、アーク放電により得られた煤(カーボンナノホーン)の回収量、透過型電子顕微鏡(TEM)で観察した煤中のカーボンナノホーンの含有率(CNH含有率)を表2に示す。   The graphitized material was processed into the same dimensions as in Example 1, and this was placed in an arc discharge device to perform arc discharge. Table 2 shows arc discharge conditions and power consumption. In addition, Table 2 shows the recovered amount of soot (carbon nanohorn) obtained by arc discharge and the carbon nanohorn content (CNH content) in the soot observed with a transmission electron microscope (TEM).

比較例3
骨材として石油系コークス(平均粒子径10μm)を使用した以外は、実施例1と同様に処理して黒鉛化物を得た。黒鉛化物の室温における固有抵抗、嵩密度、三点曲げ強度、気体透過度を表1に示す。
Comparative Example 3
A graphitized product was obtained in the same manner as in Example 1 except that petroleum coke (average particle size: 10 μm) was used as the aggregate. Table 1 shows the specific resistance, bulk density, three-point bending strength, and gas permeability of the graphitized material at room temperature.

黒鉛化物を実施例1と同一の寸法に加工し、これをアーク放電用装置に設置してアーク放電を行った。アーク放電の条件および消費電力を表2に示す。また、アーク放電により得られた煤(カーボンナノホーン)の回収量、透過型電子顕微鏡(TEM)で観察した煤中のカーボンナノホーンの含有率(CNH含有率)を表2に示す。   The graphitized material was processed into the same dimensions as in Example 1, and this was placed in an arc discharge device to perform arc discharge. Table 2 shows arc discharge conditions and power consumption. In addition, Table 2 shows the recovered amount of soot (carbon nanohorn) obtained by arc discharge and the carbon nanohorn content (CNH content) in the soot observed with a transmission electron microscope (TEM).

比較例4
ランプブラック(電子顕微鏡により測定した平均粒子径0.1μm)100質量部に対して、コールタールピッチ(中ピッチ、軟化点90℃)70質量部を加えた以外は、実施例1と同様に処理して黒鉛化物を得た。黒鉛化物の室温における固有抵抗、嵩密度、三点曲げ強度、気体透過度を表1に示す。
Comparative Example 4
The same treatment as in Example 1 except that 70 parts by mass of coal tar pitch (medium pitch, softening point 90 ° C.) was added to 100 parts by mass of lamp black (average particle diameter 0.1 μm measured by electron microscope). Thus, a graphitized product was obtained. Table 1 shows the specific resistance, bulk density, three-point bending strength, and gas permeability of the graphitized material at room temperature.

黒鉛化物を実施例1と同一の寸法に加工し、これをアーク放電用装置に設置しようとしたが、黒鉛化物が脆く、設置の際に破壊したため、アーク放電を行うことができなかった。   The graphitized material was processed into the same dimensions as in Example 1, and this was tried to be installed in an arc discharge device. However, since the graphitized material was brittle and destroyed at the time of installation, arc discharge could not be performed.

比較例5
焼成、黒鉛化処理温度を1000℃とした以外は、実施例1と同様に処理して黒鉛化物を得た。黒鉛化物の室温における固有抵抗、嵩密度、三点曲げ強度、気体透過度を表1に示す。なお、黒鉛化物の結晶格子間間隔(d002)は0.3340nm、結晶子の厚み(Lc)は5nmであった。
Comparative Example 5
A graphitized product was obtained in the same manner as in Example 1 except that the firing and graphitizing temperature was 1000 ° C. Table 1 shows the specific resistance, bulk density, three-point bending strength, and gas permeability of the graphitized material at room temperature. The crystal lattice spacing (d002) of the graphitized product was 0.3340 nm, and the crystallite thickness (Lc) was 5 nm.

黒鉛化物を実施例1と同一の寸法に加工し、これをアーク放電用装置に設置してアーク放電を行った。アーク放電の条件および消費電力を表2に示す。また、アーク放電により得られた煤(カーボンナノホーン)の回収量、透過型電子顕微鏡(TEM)で観察した煤中のカーボンナノホーンの含有率(CNH含有率)を表2に示す。   The graphitized material was processed into the same dimensions as in Example 1, and this was placed in an arc discharge device to perform arc discharge. Table 2 shows arc discharge conditions and power consumption. In addition, Table 2 shows the recovered amount of soot (carbon nanohorn) obtained by arc discharge and the carbon nanohorn content (CNH content) in the soot observed with a transmission electron microscope (TEM).

比較例6
石炭系コークス(平均粒子径10μm)100質量部に対して、コールタールピッチ(中ピッチ、軟化点90℃)50質量部を加えた以外は、実施例1と同様に処理して黒鉛化物を得た。黒鉛化物の室温における固有抵抗、嵩密度、三点曲げ強度、気体透過度を表1に示す。
Comparative Example 6
A graphitized product is obtained by treating in the same manner as in Example 1 except that 50 parts by mass of coal tar pitch (medium pitch, softening point 90 ° C.) is added to 100 parts by mass of coal-based coke (average particle size 10 μm). It was. Table 1 shows the specific resistance, bulk density, three-point bending strength, and gas permeability of the graphitized material at room temperature.

黒鉛化物を実施例1と同一の寸法に加工し、これをアーク放電用装置に設置してアーク放電を行った。アーク放電の条件および消費電力を表2に示す。また、アーク放電により得られた煤(カーボンナノホーン)の回収量、透過型電子顕微鏡(TEM)で観察した煤中のカーボンナノホーンの含有率(CNH含有率)を表2に示す。   The graphitized material was processed into the same dimensions as in Example 1, and this was placed in an arc discharge device to perform arc discharge. Table 2 shows arc discharge conditions and power consumption. In addition, Table 2 shows the recovered amount of soot (carbon nanohorn) obtained by arc discharge and the carbon nanohorn content (CNH content) in the soot observed with a transmission electron microscope (TEM).

Figure 2006225184
Figure 2006225184

Figure 2006225184
Figure 2006225184

表1〜2にみられるように、本発明に従う実施例1〜2はいずれも、生成物(煤)の回収量が多く、煤中のカーボンナノホーンの含有率(CNH含有率)も高い値を示した。   As can be seen from Tables 1 and 2, all of Examples 1 and 2 according to the present invention have a large amount of recovered product (soot) and a high content of carbon nanohorns in the soot (CNH content). Indicated.

これに対して、比較例1は骨材の平均粒子径が大きいため、嵩密度が小さく気体透過度が大きくなり、生成された煤中のCNH含有率が低くなっている。比較例2は固有抵抗が大きいため、アーク放電時における消費電力が大きくなっている。比較例3は石油系コークスを骨材としたため、煤回収量が低い。   On the other hand, in Comparative Example 1, since the average particle diameter of the aggregate is large, the bulk density is small, the gas permeability is large, and the CNH content in the produced soot is low. Since Comparative Example 2 has a large specific resistance, power consumption during arc discharge is large. Since Comparative Example 3 uses petroleum-based coke as an aggregate, the amount of recovered soot is low.

比較例4は平均粒子径0.1μmのランプブラックを骨材として使用したため、強度が小さく、アーク放電に耐えることができない。比較例5は黒鉛化処理温度が低いため、煤中のCNH含有率が低く、また固有抵抗が大きいたアーク放電時の消費電力も大きくなっている。比較例6は気体透過度が大きいため、生成された煤中のCNH含有率が低くなっている。   In Comparative Example 4, lamp black having an average particle diameter of 0.1 μm was used as the aggregate, so that the strength was small and the arc discharge could not be endured. Since Comparative Example 5 has a low graphitization temperature, the CNH content in the soot is low, and the specific resistance is large, and the power consumption during arc discharge is also large. Since Comparative Example 6 has a high gas permeability, the CNH content in the produced soot is low.

図1は、実施例および比較例で使用したアーク放電装置の概略図である。FIG. 1 is a schematic view of arc discharge devices used in Examples and Comparative Examples.

符号の説明Explanation of symbols

1 スケールスクリーン
2 フィルター
3 レンズ
4 圧力ゲージ
5 陰極
6 陽極
7 反応チャンバー
8 モータ
9 水冷ジャケット
10 直流供給装置
11 生成物(煤)
12 ガス調整器および流量計
13 ガスボンベ
14 真空ポンプ
15 バルブ
DESCRIPTION OF SYMBOLS 1 Scale screen 2 Filter 3 Lens 4 Pressure gauge 5 Cathode 6 Anode 7 Reaction chamber 8 Motor 9 Water-cooling jacket 10 DC supply device 11 Product (煤)
12 Gas regulator and flow meter 13 Gas cylinder 14 Vacuum pump 15 Valve

Claims (2)

骨材として平均粒径2〜15μmの石炭系コークス粉、結合剤としてピッチもしくは樹脂を配合し、成形して得られた成形体、またはメソフェーズからなる骨材を成形して得られる成形体を高温処理してなる黒鉛化物であって、該黒鉛化物の室温における固有抵抗が20〜8μΩm、嵩密度が1.85〜1.95g/cm3 、曲げ強度が50MPa以上、気体透過度が0.10cm2 /sec以下であることを特徴とするカーボンナノチューブおよびカーボンナノホーンの製造、カーボンナノチューブあるいはカーボンナノホーンを含有したアークスートの製造、ならびにカーボンナノバルーン合成用原料の製造に用いる炭素材料。 A coal-based coke powder having an average particle diameter of 2 to 15 μm as an aggregate, a pitch or a resin as a binder, and a molded body obtained by molding, or a molded body obtained by molding an aggregate made of mesophase is heated to a high temperature. A graphitized material obtained by treatment, wherein the graphitized material has a specific resistance at room temperature of 20 to 8 μΩm, a bulk density of 1.85 to 1.95 g / cm 3 , a bending strength of 50 MPa or more, and a gas permeability of 0.10 cm. The carbon material used for manufacture of the carbon nanotube and carbon nanohorn characterized by being 2 / sec or less, manufacture of the arc soot containing a carbon nanotube or carbon nanohorn, and manufacture of the raw material for carbon nanoballoon synthesis. 前記高温処理が2000〜3000℃で行われることを特徴とする請求項1記載のカーボンナノチューブおよびカーボンナノホーンの製造、カーボンナノチューブあるいはカーボンナノホーンを含有したアークスートの製造、ならびにカーボンナノバルーン合成用原料の製造に用いる炭素材料。 The high-temperature treatment is performed at 2000 to 3000 ° C, the production of carbon nanotubes and carbon nanohorns according to claim 1, the production of arc soot containing carbon nanotubes or carbon nanohorns, and the production of raw materials for carbon nanoballoon synthesis Carbon material used for
JP2005038039A 2005-02-15 2005-02-15 Carbon materials used for the production of carbon nanotubes and carbon nanohorns, the production of arc soot containing carbon nanotubes or carbon nanohorns, and the production of carbon nanoballoon raw materials Active JP4270138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005038039A JP4270138B2 (en) 2005-02-15 2005-02-15 Carbon materials used for the production of carbon nanotubes and carbon nanohorns, the production of arc soot containing carbon nanotubes or carbon nanohorns, and the production of carbon nanoballoon raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005038039A JP4270138B2 (en) 2005-02-15 2005-02-15 Carbon materials used for the production of carbon nanotubes and carbon nanohorns, the production of arc soot containing carbon nanotubes or carbon nanohorns, and the production of carbon nanoballoon raw materials

Publications (2)

Publication Number Publication Date
JP2006225184A true JP2006225184A (en) 2006-08-31
JP4270138B2 JP4270138B2 (en) 2009-05-27

Family

ID=36986877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005038039A Active JP4270138B2 (en) 2005-02-15 2005-02-15 Carbon materials used for the production of carbon nanotubes and carbon nanohorns, the production of arc soot containing carbon nanotubes or carbon nanohorns, and the production of carbon nanoballoon raw materials

Country Status (1)

Country Link
JP (1) JP4270138B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096848A (en) * 2013-10-07 2015-05-21 株式会社日本自動車部品総合研究所 Carbon soot generator and carbon soot generation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007651A1 (en) 2005-07-12 2007-01-18 Matsushita Electric Industrial Co., Ltd. Glass composition for lamp, glass part for lamp, and process for producing lamp or glass composition for lamp
CN109485252B (en) * 2018-06-19 2021-09-28 原思平 Coloring additive for functional glass with high visible light transmittance and near infrared ray absorption, application and functional glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096848A (en) * 2013-10-07 2015-05-21 株式会社日本自動車部品総合研究所 Carbon soot generator and carbon soot generation method

Also Published As

Publication number Publication date
JP4270138B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP3937962B2 (en) Conductive curable resin composition
US8524067B2 (en) Electrochemical method of producing nano-scaled graphene platelets
EP1869120B1 (en) Electrically conducting curable resin composition, cured product thereof and molded article of the same
KR101446638B1 (en) Carbon material and manufacturing method therefor
WO2010137592A1 (en) Carbon material and method for producing the same
WO2011102473A1 (en) Carbon material and method for producing same
JP2018534221A (en) Carbon black derived from natural gas
WO2005095274A1 (en) Carbon nanotubes aggregate, method for forming same, and biocompatible material
US9422164B2 (en) Electrochemical method of producing nano graphene platelets
JP5207596B2 (en) Conductive curable resin composition, cured product thereof and molded product thereof
KR100762883B1 (en) Curable composition, cured product thereof, molded product thereof and use as fuel cell separator
JP4628143B2 (en) Conductive resin composition and molded body thereof
Lin et al. Ultra-strong nanographite bulks based on a unique carbon nanotube linked graphite onions structure
Huang et al. Improving effect of carbonized quantum dots (CQDs) in pure copper matrix composites
JP4270138B2 (en) Carbon materials used for the production of carbon nanotubes and carbon nanohorns, the production of arc soot containing carbon nanotubes or carbon nanohorns, and the production of carbon nanoballoon raw materials
JP4883361B2 (en) Conductive curable resin composition, cured product thereof, and molded product thereof
Tepale-Cortés et al. Multi-walled carbon nanotubes synthesis by arc discharge method in a glass chamber
TW591068B (en) Conductive curable resin composition
JP2004119386A (en) Carbon fiber material and its composite material
Zhou et al. Near net-shape fabrication and properties of graphitic carbon foam with a continuous network of graphite nanosheets
JP5144925B2 (en) Carbon-based composite composition and molded article comprising the same
Wu et al. Nitrogen-doped multilayered nanographene derived from Ni 3 C with efficient electron field emission
JP5013680B2 (en) Curable composition, cured product thereof and molded article thereof
JP2005129507A (en) Graphitic powder for fuel cell separator, and fuel cell separator
CN109970047B (en) Method for preparing graphene quantum dots from carbon nanohorns

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4