JP2006224836A - Extraction method for alternating current underwater electric field signal or alternating current magnetic signal accompanying with vessel and device - Google Patents

Extraction method for alternating current underwater electric field signal or alternating current magnetic signal accompanying with vessel and device Download PDF

Info

Publication number
JP2006224836A
JP2006224836A JP2005041649A JP2005041649A JP2006224836A JP 2006224836 A JP2006224836 A JP 2006224836A JP 2005041649 A JP2005041649 A JP 2005041649A JP 2005041649 A JP2005041649 A JP 2005041649A JP 2006224836 A JP2006224836 A JP 2006224836A
Authority
JP
Japan
Prior art keywords
signal
electric field
noise
filter
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005041649A
Other languages
Japanese (ja)
Other versions
JP4016115B2 (en
Inventor
Kentaro Kusada
健太郎 草田
Toshiji Kimura
利治 木村
Yoko Teranishi
陽子 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP2005041649A priority Critical patent/JP4016115B2/en
Publication of JP2006224836A publication Critical patent/JP2006224836A/en
Application granted granted Critical
Publication of JP4016115B2 publication Critical patent/JP4016115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a signal processing method and a device extracting an alternating current underwater electric field signal or an alternating current magnetic signal, i.e., a detection signal buried in noise regarding detection of a vessel. <P>SOLUTION: The alternating current underwater electric field signal is taken-in from an electric field sensor or the alternating current magnetic signal is taken-in from a magnetic sensor at a predetermined sampling frequency and frequency band area division is performed by discrete wavelet conversion DSP 45 to separate the detection signal and the colored noise. Thereafter, the detection signal is extracted by removing the white noise by DSP47 for noise canceling part. Further, since a noise canceler body 47b is enlarged to an unsteady signal such as the detection signal, it includes Kalman filter making filter coefficient of an FIR filter as a state parameter, successively adjusts the filter coefficient to the optimum value in every data point and extracts the signal buried in the white noise. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、船舶の探知に関して、雑音中に埋もれた探知信号である船舶に伴う交流水中電界信号又は交流磁気信号を抽出する信号処理技術に関する。   The present invention relates to a signal processing technique for extracting an AC underwater electric field signal or an AC magnetic signal associated with a ship, which is a detection signal buried in noise.

航行している船舶は、その船体の腐食や防食に起因して水中に電流が流れ、電磁界を発生している。この電磁界は船舶の有するプロペラの回転等により周期的(極低周波)に変化する性質がある。   In a ship that is navigating, current flows in water due to corrosion and corrosion prevention of the hull, and an electromagnetic field is generated. This electromagnetic field has the property of changing periodically (very low frequency) by the rotation of the propeller of the ship.

従来、本出願人において、前記航行している船舶の腐食や防食に起因する交流水中電界信号又は交流磁気信号の検出による探知方法として、電界又は磁界のセンサシステムから得られた離散測定データに対して、自己相関処理を行うことにより雑音を取り除き、フーリエ解析を用いて周波数解析を行う方法が採られていた。   Conventionally, in the present applicant, as a detection method based on detection of an AC underwater electric field signal or an AC magnetic signal caused by corrosion or corrosion prevention of the navigating ship, discrete measurement data obtained from an electric field or magnetic field sensor system is used. Thus, a method of removing noise by performing autocorrelation processing and performing frequency analysis using Fourier analysis has been adopted.

また、白色雑音除去のためのノイズキャンセラとしては、適応フィルタを用いたものがある。適応フィルタとは信号、雑音ともに定常性があるという仮定の下、観測信号を入力として抽出したい信号(所望信号)との平均2乗誤差を最小にするようにフィルタ係数を少しずつ自己調整し、最適推定値を出力するフィルタである。この最適フィルタ係数を求めるアルゴリズムを適応アルゴリズムといい、代表的なもとのとして、LMSアルゴリズムやSDMアルゴリズムがある。その適応フィルタを利用したノイズキャンセラの一例として、白色雑音によって乱された正弦波を観測信号とし、その観測信号から原信号、この場合正弦波、を抽出する適応ラインエンハンサと呼ばれるものがある。図5に適応ラインエンハンサの構成図を示す。   Some noise cancellers for removing white noise use an adaptive filter. Under the assumption that the adaptive filter is stationary for both signal and noise, the filter coefficients are self-adjusted little by little so as to minimize the mean square error with the signal (desired signal) to be extracted from the observed signal as input. It is a filter that outputs an optimum estimated value. An algorithm for obtaining the optimum filter coefficient is called an adaptive algorithm, and typical examples include an LMS algorithm and an SDM algorithm. As an example of a noise canceller using the adaptive filter, there is a so-called adaptive line enhancer that uses a sine wave disturbed by white noise as an observation signal and extracts an original signal, in this case, a sine wave from the observation signal. FIG. 5 shows a configuration diagram of the adaptive line enhancer.

図5の適応ラインエンハンサは、FIR(有限インパルス応答)フィルタ30と適応アルゴリズム(LMSアルゴリズム等)31とを備え、FIRフィルタ30はN個(N:整数)の遅延演算子30aとN個のフィルタ係数部30bを有している。yk−1,yk−2,…,yk−Nは離散時刻kでの1段目〜N段目の遅延演算子30aの出力信号、h1,k,h2,k,…,hN,kは離散時刻kでの1段目〜N段目のフィルタ係数部30bのフィルタ係数である。フィルタ係数h1,k,h2,k,…,hN,kはFIRフィルタ30の入力信号yと出力z^との誤差eに応じて所定の適応アルゴリズムで変化させる。 The adaptive line enhancer of FIG. 5 includes an FIR (finite impulse response) filter 30 and an adaptive algorithm (LMS algorithm or the like) 31. The FIR filter 30 includes N (N: integer) delay operators 30a and N filters. It has a coefficient part 30b. y k−1 , y k−2 ,..., y k−N are the output signals of the first to N-th delay operators 30a at discrete time k, h 1, k , h 2, k ,. h N, k is a filter coefficient of the filter coefficient unit 30b in the first to Nth stages at the discrete time k. Filter coefficients h 1, k, h 2, k, ..., h N, k is varied in a predetermined adaptive algorithm according to the error e k of the input signal y k and an output z ^ k of the FIR filter 30.

この場合、例えば、白色雑音vによって乱された正弦波信号zを入力信号yとしたとき、その入力信号から白色雑音の抑圧された原信号(正弦波)を出力z^として抽出することができる。 In this case, for example, when the sine wave signal z k disturbed by the white noise v k is used as the input signal y k , the original signal (sine wave) in which the white noise is suppressed is extracted from the input signal as the output z ^ k. can do.

しかしながら、以上の従来技術によっては、自己相関性のある有色雑音は自己相関処理では除去できず、また、探知信号(船舶の腐食や防食に起因する交流水中電界信号又は交流磁気信号)のような時間局所的に存在する非定常信号は、時間積分するフーリエ解析では積分時間間隔に対して探知信号の存在する時間間隔が短い場合、必ずしも探知信号の周波数スペクトルが抽出できるとは言えない。また、図5のような従来の適応ラインエンハンサを用いたノイズキャンセラでは、信号と雑音に定常性が仮定されており、探知信号のように時間局所的に存在する交流水中電界信号又は交流磁気信号では、観測信号のパワースペクトルが時間に伴って変化し、必ずしも適応アルゴリズムにより最適フィルタ係数が求められるとは言えない。   However, depending on the above prior art, colored noise having autocorrelation cannot be removed by autocorrelation processing, and detection signals (such as AC underwater electric field signals or AC magnetic signals caused by ship corrosion and corrosion prevention) In the time-integrated Fourier analysis, if the time interval in which the detection signal exists is short with respect to the integration time interval, the frequency spectrum of the detection signal cannot always be extracted from the unsteady signal that exists locally in time. In addition, in the noise canceller using the conventional adaptive line enhancer as shown in FIG. 5, the signal and the noise are assumed to be stationary, and the AC underwater electric field signal or AC magnetic signal that exists locally in time like the detection signal is used. The power spectrum of the observation signal changes with time, and it cannot be said that the optimum filter coefficient is always obtained by the adaptive algorithm.

そこで、本発明は、広帯域雑音中の非定常信号である交流水中電界信号又は交流磁気信号を効果的に抽出可能な船舶に伴う交流水中電界信号又は交流磁気信号抽出方法を提供することを目的とする。   Then, this invention aims at providing the alternating current underwater electric field signal or alternating current magnetic signal extraction method accompanying the ship which can extract the alternating current underwater electric field signal or alternating current magnetic signal which is a non-stationary signal in broadband noise effectively. To do.

本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。   Other objects and novel features of the present invention will be clarified in embodiments described later.

上記目的を達成するために、本発明に係る船舶に伴う交流水中電界信号又は交流磁気信号抽出方法は、船舶の探知を行うため、水中での船舶の腐食や防食に起因する交流水中電界信号又は交流磁気信号を探知信号として抽出する場合において、
所定のサンプリング周波数で電界センサより交流水中電界信号を、又は磁気センサより交流磁気信号を取り込み、離散ウェーブレット変換で周波数帯域分割することにより、前記探知信号の存在する周波数帯域と測定環境下での有色雑音の周波数帯域とを分離し、さらに前記周波数帯域分割後の離散測定データに対して、白色雑音除去のためのディジタルフィルタであるノイズキャンセラを適用して、前記探知信号を抽出することを特徴としている。
In order to achieve the above object, an AC underwater electric field signal or an AC magnetic signal extraction method associated with a ship according to the present invention performs detection of a ship. When extracting AC magnetic signal as detection signal,
Color signal under measurement environment and frequency band where the detection signal exists by taking AC underwater electric field signal from electric field sensor at predetermined sampling frequency or AC magnetic signal from magnetic sensor and dividing frequency band by discrete wavelet transform The frequency band of noise is separated, and further, the detection signal is extracted by applying a noise canceller, which is a digital filter for removing white noise, to the discrete measurement data after the frequency band division. .

前記交流水中電界信号又は交流磁気信号抽出方法において、前記ノイズキャンセラは、前記探知信号のような雑音に埋もれた時間局所的に存在する非定常信号を抽出するため、フィルタ係数を状態変数としてカルマンフィルタによりデータ点毎に最適フィルタ係数を逐次求め、当該最適フィルタ係数により構成されるFIRフィルタによって、白色雑音中に埋もれた所望の探知信号を出力する構成であるとよい。   In the AC underwater electric field signal or AC magnetic signal extraction method, the noise canceller extracts unsteady signals that are locally present in the time, such as the detection signal, in order to extract unsteady signals locally. It is preferable that the optimum filter coefficient is sequentially obtained for each point, and a desired detection signal buried in white noise is output by the FIR filter constituted by the optimum filter coefficient.

前記ノイズキャンセラは、事前に白色雑音除去対象データを適応フィルタにかけ、所定の適応アルゴリズムにより一度フィルタ係数を求め、該フィルタ係数を正規化したものを、前記状態変数であるフィルタ係数の初期値とするとよい。   The noise canceller may preliminarily apply white noise removal target data to an adaptive filter, obtain a filter coefficient once by a predetermined adaptive algorithm, and normalize the filter coefficient as an initial value of the filter coefficient that is the state variable. .

本発明に係る交流水中電界信号又は交流磁気信号抽出装置は、船舶の探知を行うため、水中での船舶の腐食や防食に起因する交流水中電界信号又は交流磁気信号を探知信号として抽出する構成において、
交流水中電界信号を検出する電界センサ又は交流磁気信号を検出する磁気センサと、
所定のサンプリング周波数で前記電界センサより交流水中電界信号を、又は前記磁気センサより交流磁気信号を取り込み、離散ウェーブレット変換で周波数帯域分割して前記探知信号の存在する周波数帯域と測定環境下での有色雑音の周波数帯域とを分離する離散ウェーブレット変換手段と、
前記周波数帯域分割後の離散測定データから白色雑音を除去して前記探知信号を抽出するディジタルフィルタであるノイズキャンセラとを備えたことを特徴としている。
An AC underwater electric field signal or an AC magnetic signal extraction device according to the present invention is configured to extract an AC underwater electric field signal or an AC magnetic signal resulting from corrosion or corrosion prevention of a ship underwater as a detection signal in order to detect a ship. ,
An electric field sensor for detecting an AC underwater electric field signal or a magnetic sensor for detecting an AC magnetic signal;
AC signal underwater from the electric field sensor at a predetermined sampling frequency, or AC magnetic signal from the magnetic sensor, frequency band division by discrete wavelet transform and color in the measurement environment where the detection signal exists Discrete wavelet transform means for separating the frequency band of noise;
A noise canceller, which is a digital filter for extracting the detection signal by removing white noise from the discrete measurement data after the frequency band division, is provided.

前記交流水中電界信号又は交流磁気信号抽出装置において、前記ノイズキャンセラは、前記周波数帯域分割後の離散測定データが入力されるFIRフィルタと、前記FIRフィルタのフィルタ係数を状態変数としてデータ点毎に最適フィルタ係数を逐次求めるカルマンフィルタとを有しており、白色雑音中に埋もれた所望の探知信号を出力する構成であるとよい。   In the AC underwater electric field signal or AC magnetic signal extraction device, the noise canceller includes an FIR filter to which the discrete measurement data after the frequency band division is input, and an optimum filter for each data point using a filter coefficient of the FIR filter as a state variable. And a Kalman filter that sequentially obtains the coefficients, and may be configured to output a desired detection signal buried in white noise.

前記交流水中電界信号又は交流磁気信号抽出装置において、前記ノイズキャンセラは、事前に白色雑音除去対象データを適応フィルタにかけ、所定の適応アルゴリズムにより一度フィルタ係数を求め、そのフィルタ係数を正規化したものを、前記状態変数であるフィルタ係数の初期値とするとよい。   In the AC underwater electric field signal or AC magnetic signal extraction device, the noise canceller previously applies white noise removal target data to an adaptive filter, obtains a filter coefficient once by a predetermined adaptive algorithm, and normalizes the filter coefficient, The initial value of the filter coefficient that is the state variable may be used.

本発明によれば、広帯域雑音の中から非定常信号である船舶に伴う交流水中電界信号又は交流磁気信号を船舶探知のために抽出することができる。   ADVANTAGE OF THE INVENTION According to this invention, the alternating current underwater electric field signal or alternating current magnetic signal accompanying the ship which is a nonstationary signal can be extracted for ship detection from broadband noise.

以下、本発明を実施するための最良の形態として、船舶に伴う交流水中電界信号又は交流磁気信号抽出方法及び装置の実施の形態を図面に従って説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an AC underwater electric field signal or AC magnetic signal extraction method and apparatus associated with a ship will be described below with reference to the drawings as the best mode for carrying out the present invention.

図1は本発明の実施の形態に係る信号抽出装置の概略構成図、図2はその信号抽出手順の説明図、図3は図1のノイズキャンセラ本体47bの構成図、図4は信号抽出手順の内部データ(フィルタ係数等)の流れを含むフローチャートである。   1 is a schematic configuration diagram of a signal extraction apparatus according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the signal extraction procedure, FIG. 3 is a configuration diagram of a noise canceller main body 47b of FIG. 1, and FIG. It is a flowchart including the flow of internal data (filter coefficient etc.).

図1に示すように、信号抽出装置は、電界又は磁気センサ41と、センサ41の検知出力信号を増幅するアンプ42と、AD変換器43と、測定データ用バッファ(Data Buffer)としてのメモリ(RAM)44と、離散ウェーブレット変換手段としての離散ウェーブレット変換用DSP(Digital Signal Processor)45と、離散ウェーブレット変換用DSP45による帯域分割後データ用バッファ(Data Buffer)としてのメモリ(RAM)46と、ノイズキャンセラ(Noise Canceller)としてのノイズキャンセル部用DSP(Digital Signal Processor)47と、処理波形表示のためのディスプレイ48とを備えている。   As shown in FIG. 1, the signal extraction apparatus includes an electric field or magnetic sensor 41, an amplifier 42 that amplifies a detection output signal of the sensor 41, an AD converter 43, and a memory (data buffer) as a memory (data buffer). RAM) 44, a discrete wavelet transform DSP (Digital Signal Processor) 45 as a discrete wavelet transform means, a memory (RAM) 46 as a data buffer after band division by the discrete wavelet transform DSP 45, and a noise canceller. A DSP (Digital Signal Processor) 47 for noise cancellation unit as a (Noise Canceller) and a display 48 for processing waveform display are provided.

ノイズキャンセル部用DSP47は、適応ラインエンハンサとしての適応フィルタ(Adaptive Filter)47aと、雑音を除去するディジタルフィルタとしてのFIRフィルタ及びカルマンフィルタ(Kalman Filter)とを含むノイズキャンセラ本体47bとを有している。ノイズキャンセラ本体47bは探知信号のような非定常信号用に適用範囲を拡張するため、前記FIRフィルタのフィルタ係数を状態変数とする前記カルマンフィルタを内蔵するものである。また、カルマンフィルタは状態変数の初期値を必要とする。前記適応フィルタ47aはノイズキャンセラ本体47b内のFIRフィルタの各フィルタ係数(カルマンフィルタの状態変数)の初期値設定のための設けられている。このノイズキャンラ本体47bの詳細は図3で後述する。   The noise canceling unit DSP 47 includes an adaptive filter 47a as an adaptive line enhancer and a noise canceller body 47b including an FIR filter and a Kalman filter as digital filters for removing noise. The noise canceller main body 47b incorporates the Kalman filter having the filter coefficient of the FIR filter as a state variable in order to extend the application range for a non-stationary signal such as a detection signal. In addition, the Kalman filter requires an initial value of the state variable. The adaptive filter 47a is provided for setting an initial value of each filter coefficient (Kalman filter state variable) of the FIR filter in the noise canceller main body 47b. Details of the noise canceller main body 47b will be described later with reference to FIG.

前記電界又は磁気センサ41は、航行している船舶の探知を行うため、水中での船舶の腐食や防食に起因する探知信号としての交流水中電界信号又は交流磁気信号を検知するものであり、電界センサの場合には交流水中電界信号を、磁気センサの場合には交流磁気信号を検知する。この検知出力信号はアンプ42で増幅される。AD変換器43はアンプ42で増幅されたセンサ出力信号(アナログ信号)を所定のサンプリング周波数で取り込みディジタル信号として出力し、ディジタル信号の測定データがメモリ44に記憶される。これが、センサ41〜AD変換器43により所定のサンプリング周波数で取り込まれた図2の交流水中電界信号又は交流磁気信号の離散測定データ10であり、離散ウェーブレット変換用DSP45による離散ウェーブレット変換11により周波数帯域のオクターブ等分割が行われ、帯域分割後離散データ12となる。   The electric field or magnetic sensor 41 detects an AC underwater electric field signal or an AC magnetic signal as a detection signal due to corrosion or corrosion prevention of the ship in water in order to detect a navigating ship. In the case of a sensor, an AC underwater electric field signal is detected, and in the case of a magnetic sensor, an AC magnetic signal is detected. This detection output signal is amplified by the amplifier 42. The AD converter 43 takes in the sensor output signal (analog signal) amplified by the amplifier 42 at a predetermined sampling frequency and outputs it as a digital signal. The measured data of the digital signal is stored in the memory 44. This is the discrete measurement data 10 of the AC underwater electric field signal or AC magnetic signal of FIG. 2 captured by the sensors 41 to AD converter 43 at a predetermined sampling frequency, and the frequency band by the discrete wavelet transform 11 by the discrete wavelet transform DSP 45. Is divided into octave divisions, and becomes discrete data 12 after band division.

この離散ウェーブレット変換11により探知信号と有色雑音を分離できる。例えば、有色雑音が、目的とする探知信号とは周波数帯域が異なる場合、その周波数帯域は除去できる。仮にサンプリング周波数が20Hzの場合、オクターブ等分割により、Level−1は5Hzから10Hzまでの帯域、Level−2は2.5Hzから5Hzまでの帯域、Level−3は1.25Hzから2.5Hzまでの帯域といったように分割される。   This discrete wavelet transform 11 can separate the detection signal and the colored noise. For example, when the colored noise has a different frequency band from the target detection signal, the frequency band can be removed. If the sampling frequency is 20 Hz, Level-1 is a band from 5 Hz to 10 Hz, Level-2 is a band from 2.5 Hz to 5 Hz, and Level-3 is from 1.25 Hz to 2.5 Hz. It is divided like a band.

次に、図2において、各帯域分割後離散データ12はノイズキャンセル部13(図1のノイズキャンセル部用DSP47)に入力され、各帯域におけるノイズキャンセル部13にて白色雑音の除去が行われる。   Next, in FIG. 2, the discrete data 12 after each band division is input to the noise canceling unit 13 (the noise canceling unit DSP 47 in FIG. 1), and white noise is removed by the noise canceling unit 13 in each band.

図1に示したように、前記ノイズキャンセル部用DSP47は、ノイズキャンセラ本体47bとそれの初期値設定のための適応フィルタ47aとを有している。まず、白色雑音除去対象データである帯域分割後離散データ12に適応フィルタ47aを適用し、そのデータにおける適応アルゴリズム(LMSアルゴリズム等)が算出するフィルタ係数を求める。そしてそのフィルタ係数をL1ノルムによりスケーリング(正規化)したものをノイズキャンセラ本体47b内部で使われているカルマンフィルタの状態変数の初期値(つまり、後述する図3のFIRフィルタ20のフィルタ係数の初期値)として設定し、再度、帯域分割後離散データ12をノイズキャンセラ本体47bに適用することにより、各帯域において白色雑音除去後離散データ(交流信号抽出)14が得られる。また、ここで用いる適応フィルタ47aは図5に示す従来技術としてある適応ラインエンハンサを使用している。以上に示した信号抽出手順の内部データ(フィルタ係数等)の流れを含むフローチャートを図4に示す。   As shown in FIG. 1, the noise canceling unit DSP 47 includes a noise canceller main body 47b and an adaptive filter 47a for setting an initial value thereof. First, the adaptive filter 47a is applied to the band-divided discrete data 12 which is white noise removal target data, and a filter coefficient calculated by an adaptive algorithm (LMS algorithm or the like) in the data is obtained. Then, an initial value of the state variable of the Kalman filter used in the noise canceller main body 47b (that is, the initial value of the filter coefficient of the FIR filter 20 in FIG. 3 described later) is obtained by scaling (normalizing) the filter coefficient by the L1 norm. Then, the discrete data 12 after band division is applied to the noise canceller main body 47b again to obtain discrete data (AC signal extraction) 14 after white noise removal in each band. Moreover, the adaptive filter 47a used here uses an adaptive line enhancer as a prior art shown in FIG. FIG. 4 shows a flowchart including the flow of internal data (filter coefficients and the like) of the signal extraction procedure described above.

図3は、図1におけるノイズキャンセラ本体47bの構成図である。このノイズキャンセラ本体47bおいて、FIRフィルタ20が雑音を除去するディジタルフィルタであり、N個(N:整数)の遅延演算子20aとN個のフィルタ係数部20bとを有している。これらのフィルタ係数部20bのフィルタ係数値をカルマンフィルタ21により観測データ毎に逐次最適な値に調整する。このようにカルマンフィルタ21を適用するためには、状態方程式と観測方程式と呼ばれる2つの方程式で構成される状態モデルを構築する必要がある。   FIG. 3 is a configuration diagram of the noise canceller main body 47b in FIG. In the noise canceller main body 47b, the FIR filter 20 is a digital filter that removes noise, and includes N (N: integer) delay operators 20a and N filter coefficient units 20b. The filter coefficient values of these filter coefficient units 20b are sequentially adjusted to optimum values for each observation data by the Kalman filter 21. In order to apply the Kalman filter 21 in this way, it is necessary to construct a state model composed of two equations called a state equation and an observation equation.

まず、離散時刻kにおける観測値(入力信号)yは下記(1)式のように表される。 First, the observed value (input signal) y k at the discrete time k is expressed as the following equation (1).

= z + v …(1)
ここで、zは原信号(換言すれば探知信号:交流水中電界信号又は交流磁気信号)、vは広帯域雑音(白色雑音)である。
y k = z k + v k (1)
Here, z k is an original signal (in other words, detection signal: AC underwater electric field signal or AC magnetic signal), and v k is broadband noise (white noise).

さらに、観測値yk−1,yk−2,…,yk−Nから、FIRフィルタ20によりzを抽出したものをz^とすると下記(2)式のようになり、(1)式は(2)式を用いて下記(3)式のように表される。 Furthermore, the observed values y k-1, y k- 2, ..., from y k-N, becomes a material obtained by extracting the z k as When z ^ k equation (2) by the FIR filter 20, (1 ) Is expressed by the following equation (3) using equation (2).

Figure 2006224836
但し、h1,k,h2,k,…,hN,kは離散時刻kでの1段目〜N段目のフィルタ係数部30bのフィルタ係数である。
Figure 2006224836
Here, h 1, k , h 2, k ,..., H N, k are filter coefficients of the first to Nth stage filter coefficient units 30b at the discrete time k.

次に(3)式を状態方程式と観測方程式からなる状態空間モデルで表現する。本発明のカルマンフィルタ適用の目的は、白色雑音を除去し原信号を抽出するための最適フィルタ係数を推定することであるから、hi,k を状態変数X(ベクトル量)とし、状態方程式として下記(4)式、観測方程式として下記(5)式のような状態空間モデルが構築される。 Next, Equation (3) is expressed by a state space model composed of a state equation and an observation equation. The purpose of the application of the Kalman filter of the present invention is to estimate the optimum filter coefficient for extracting the original signal by removing the white noise, so that h i, k is the state variable X k (vector quantity) and the state equation is A state space model such as the following equation (5) is constructed as the following equation (4) and the observation equation.

Figure 2006224836
Figure 2006224836

この状態空間モデルにカルマンフィルタ21を適用し、推定された状態変数Xを用いて、(2)式により時刻kにおける原信号データを抽出する。抽出された原信号データ(処理波形)はディスプレイ48で表示される。 The Kalman filter 21 is applied to this state space model, and the original signal data at the time k is extracted by the equation (2) using the estimated state variable Xk . The extracted original signal data (processed waveform) is displayed on the display 48.

このようにして、ノイズキャンセル部用DSP47は、前記探知信号のような雑音に埋もれた時間局所的に存在する非定常信号を抽出するために、FIRフィルタ20のフィルタ係数を状態変数としてカルマンフィルタ21によりデータ点毎(離散時間k毎)に最適フィルタ係数を逐次求め、当該最適フィルタ係数により構成されるFIRフィルタ20によって、白色雑音中に埋もれた所望の探知信号を出力することができる。   In this manner, the noise canceling unit DSP 47 uses the Kalman filter 21 with the filter coefficient of the FIR filter 20 as a state variable in order to extract a non-stationary signal that exists locally in the time buried in the noise such as the detection signal. An optimum filter coefficient is sequentially obtained for each data point (every discrete time k), and a desired detection signal buried in white noise can be output by the FIR filter 20 configured by the optimum filter coefficient.

この実施の形態によれば、次の通りの効果を得ることができる。   According to this embodiment, the following effects can be obtained.

(1) 所定のサンプリング周波数で電界センサより交流水中電界信号を、又は磁気センサより交流磁気信号を取り込み、離散ウェーブレット変換11で周波数帯域分割することにより、探知信号の存在する周波数帯域と測定環境下での有色雑音の周波数帯域を分離して、有色雑音を除去することができる。 (1) By taking an AC underwater electric field signal from an electric field sensor at a predetermined sampling frequency or an AC magnetic signal from a magnetic sensor and dividing the frequency band by a discrete wavelet transform 11, the frequency band where the detection signal exists and the measurement environment It is possible to remove the colored noise by separating the frequency band of the colored noise.

(2) さらに前記周波数帯域分割後の離散測定データに対して、白色雑音除去のためのディジタルフィルタであるノイズキャンセル部用DSP47を適用して、白色雑音中に埋もれた前記探知信号を抽出することができる。 (2) Extracting the detection signal buried in the white noise by applying a noise canceling unit DSP 47, which is a digital filter for white noise removal, to the discrete measurement data after the frequency band division. Can do.

(3) 前記ノイズキャンセル部用DSP47は、FIRフィルタ20のフィルタ係数を状態変数としてカルマンフィルタ21によりデータ点毎に最適フィルタ係数を逐次求め、当該最適フィルタ係数により構成される前記FIRフィルタ20によって、白色雑音を効果的に抑圧して前記探知信号のような雑音に埋もれた時間局所的に存在する非定常信号を抽出可能である。 (3) The noise canceling unit DSP 47 sequentially obtains the optimum filter coefficient for each data point by the Kalman filter 21 using the filter coefficient of the FIR filter 20 as a state variable, and the FIR filter 20 configured by the optimum filter coefficient It is possible to effectively suppress noise and extract a nonstationary signal that exists locally in time, such as the detection signal, buried in the noise.

なお、図3のノイズキャンセル部用DSP47において、適応フィルタ47aを適用し、そのデータにおける適応アルゴリズムが算出するフィルタ係数を求め、それらのフィルタ係数をL1ノルム(各フィルタ係数値の絶対値の和)によりスケーリング(正規化)したものをノイズキャンセラ本体47b内部で使われているカルマンフィルタの状態変数の初期値としたが、L1ノルム以外の所定値で正規化してもよい。   In the noise canceling unit DSP 47 of FIG. 3, the adaptive filter 47a is applied to obtain filter coefficients calculated by the adaptive algorithm in the data, and these filter coefficients are L1 norm (sum of absolute values of filter coefficient values). The initial value of the state variable of the Kalman filter used in the noise canceller main body 47b is scaled (normalized) by the above, but may be normalized by a predetermined value other than the L1 norm.

以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。   Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.

本発明に係る船舶に伴う交流水中電界信号又は交流磁気信号抽出方法及び装置の実施の形態を示す概略構成図である。It is a schematic block diagram which shows embodiment of the alternating current underwater electric field signal or alternating current magnetic signal extraction method and apparatus accompanying the ship which concerns on this invention. 本発明の実施の形態に示した信号抽出手順の説明図である。It is explanatory drawing of the signal extraction procedure shown to embodiment of this invention. 図1のノイズキャンセル部中のノイズキャンセラ本体の構成図である。It is a block diagram of the noise canceller main body in the noise cancellation part of FIG. 実施の形態に示した信号抽出手順の内部データの流れを含むフローチャートである。It is a flowchart including the flow of the internal data of the signal extraction procedure shown in the embodiment. 従来技術の適応ラインエンハンサの構成図である。It is a block diagram of the adaptive line enhancer of a prior art.

符号の説明Explanation of symbols

10 離散測定データ
11 離散ウェーブレット変換
12 帯域分割後離散データ
13 ノイズキャンセル部
14 白色雑音除去後離散データ
20,30 FIRフィルタ
20a,30a 遅延演算子
20b,30b フィルタ係数部
21 カルマンフィルタ
41 電界センサ又は磁気センサ
42 アンプ
44 メモリ(測定データ用バッファ)
45 離散ウェーブレット変換用DSP
46 メモリ( 帯域分割後データ用バッファ)
47 ノイズキャンセル部用DSP
47a 適応フィルタ(適応ラインエンハンサ)
47b ノイズキャンセラ本体
48 ディスプレイ
DESCRIPTION OF SYMBOLS 10 Discrete measurement data 11 Discrete wavelet transform 12 Discrete data after band division 13 Noise cancellation part 14 Discrete data after white noise removal 20, 30 FIR filter 20a, 30a Delay operator 20b, 30b Filter coefficient part 21 Kalman filter 41 Electric field sensor or magnetic sensor 42 Amplifier 44 Memory (Measurement data buffer)
45 DSP for discrete wavelet transform
46 memory (buffer for data after band division)
47 DSP for noise canceling part
47a Adaptive filter (Adaptive line enhancer)
47b Noise canceller body 48 Display

Claims (6)

船舶の探知を行うため、水中での船舶の腐食や防食に起因する交流水中電界信号又は交流磁気信号を探知信号として抽出する船舶に伴う交流水中電界信号又は交流磁気信号抽出方法であって、
所定のサンプリング周波数で電界センサより交流水中電界信号を、又は磁気センサより交流磁気信号を取り込み、離散ウェーブレット変換で周波数帯域分割することにより、前記探知信号の存在する周波数帯域と測定環境下での有色雑音の周波数帯域とを分離し、さらに前記周波数帯域分割後の離散測定データに対して、白色雑音除去のためのディジタルフィルタであるノイズキャンセラを適用して、前記探知信号を抽出することを特徴とする船舶に伴う交流水中電界信号又は交流磁気信号抽出方法。
In order to detect a ship, an AC underwater electric field signal or an AC magnetic signal extraction method associated with a ship that extracts an AC underwater electric field signal or an AC magnetic signal caused by corrosion or corrosion prevention of the ship underwater as a detection signal,
Color signal under measurement environment and frequency band where the detection signal exists by taking AC underwater electric field signal from electric field sensor at predetermined sampling frequency or AC magnetic signal from magnetic sensor and dividing frequency band by discrete wavelet transform The frequency band of noise is separated, and the detection signal is extracted by applying a noise canceller, which is a digital filter for removing white noise, to the discrete measurement data after the frequency band division. AC underwater electric field signal or AC magnetic signal extraction method for ships.
前記ノイズキャンセラは、前記探知信号のような雑音に埋もれた時間局所的に存在する非定常信号を抽出するため、フィルタ係数を状態変数としてカルマンフィルタによりデータ点毎に最適フィルタ係数を逐次求め、当該最適フィルタ係数により構成されるFIRフィルタによって、白色雑音中に埋もれた所望の探知信号を出力することを特徴とする請求項1記載の船舶に伴う交流水中電界信号又は交流磁気信号抽出方法。   The noise canceller sequentially extracts the optimum filter coefficient for each data point by a Kalman filter using the filter coefficient as a state variable in order to extract an unsteady signal that exists locally in the time, such as the detection signal. 2. The method of extracting an AC underwater electric field signal or AC magnetic signal associated with a ship according to claim 1, wherein a desired detection signal buried in white noise is output by an FIR filter constituted by coefficients. 前記ノイズキャンセラは、事前に白色雑音除去対象データを適応フィルタにかけ、所定の適応アルゴリズムにより一度フィルタ係数を求め、該フィルタ係数を正規化したものを、前記状態変数であるフィルタ係数の初期値とすることを特徴とする請求項2記載の船舶に伴う交流水中電界信号又は交流磁気信号抽出方法。   The noise canceller preliminarily applies the white noise removal target data to an adaptive filter, obtains a filter coefficient by a predetermined adaptive algorithm, and normalizes the filter coefficient as an initial value of the filter coefficient that is the state variable. An AC underwater electric field signal or AC magnetic signal extraction method for a ship according to claim 2. 船舶の探知を行うため、水中での船舶の腐食や防食に起因する交流水中電界信号又は交流磁気信号を探知信号として抽出する船舶に伴う交流水中電界信号又は交流磁気信号抽出装置であって、
交流水中電界信号を検出する電界センサ又は交流磁気信号を検出する磁気センサと、
所定のサンプリング周波数で前記電界センサより交流水中電界信号を、又は前記磁気センサより交流磁気信号を取り込み、離散ウェーブレット変換で周波数帯域分割して前記探知信号の存在する周波数帯域と測定環境下での有色雑音の周波数帯域とを分離する離散ウェーブレット変換手段と、
前記周波数帯域分割後の離散測定データから白色雑音を除去して前記探知信号を抽出するディジタルフィルタであるノイズキャンセラとを備えたことを特徴とする船舶に伴う交流水中電界信号又は交流磁気信号抽出装置。
In order to detect a ship, an AC underwater electric field signal or an AC magnetic signal extraction device associated with a ship that extracts an AC underwater electric field signal or an AC magnetic signal caused by corrosion or corrosion prevention of the ship underwater as a detection signal,
An electric field sensor for detecting an AC underwater electric field signal or a magnetic sensor for detecting an AC magnetic signal;
AC signal underwater from the electric field sensor at a predetermined sampling frequency, or AC magnetic signal from the magnetic sensor, frequency band division by discrete wavelet transform and color in the measurement environment where the detection signal exists Discrete wavelet transform means for separating the frequency band of noise;
An AC underwater electric field signal or AC magnetic signal extraction apparatus for a ship, comprising: a noise canceller, which is a digital filter that removes white noise from the discrete measurement data after frequency band division and extracts the detection signal.
前記ノイズキャンセラは、前記周波数帯域分割後の離散測定データが入力されるFIRフィルタと、前記FIRフィルタのフィルタ係数を状態変数としてデータ点毎に最適フィルタ係数を逐次求めるカルマンフィルタとを有しており、白色雑音中に埋もれた所望の探知信号を出力することを特徴とする請求項4記載の船舶に伴う交流水中電界信号又は交流磁気信号抽出装置。   The noise canceller includes an FIR filter to which discrete measurement data after the frequency band division is input, and a Kalman filter that sequentially obtains an optimum filter coefficient for each data point using the filter coefficient of the FIR filter as a state variable. 5. A device for extracting an AC underwater electric field signal or an AC magnetic signal accompanying a ship according to claim 4, wherein a desired detection signal buried in noise is output. 前記ノイズキャンセラは、事前に白色雑音除去対象データを適応フィルタにかけ、所定の適応アルゴリズムにより一度フィルタ係数を求め、そのフィルタ係数を正規化したものを、前記状態変数であるフィルタ係数の初期値とすることを特徴とする請求項5記載の船舶に伴う交流水中電界信号又は交流磁気信号抽出装置。   The noise canceller preliminarily applies the white noise removal target data to an adaptive filter, obtains a filter coefficient once by a predetermined adaptive algorithm, and normalizes the filter coefficient as an initial value of the filter coefficient that is the state variable. 6. An AC underwater electric field signal or AC magnetic signal extraction device for a ship according to claim 5.
JP2005041649A 2005-02-18 2005-02-18 AC underwater electric field signal or AC magnetic signal extraction method and apparatus for ships Active JP4016115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005041649A JP4016115B2 (en) 2005-02-18 2005-02-18 AC underwater electric field signal or AC magnetic signal extraction method and apparatus for ships

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005041649A JP4016115B2 (en) 2005-02-18 2005-02-18 AC underwater electric field signal or AC magnetic signal extraction method and apparatus for ships

Publications (2)

Publication Number Publication Date
JP2006224836A true JP2006224836A (en) 2006-08-31
JP4016115B2 JP4016115B2 (en) 2007-12-05

Family

ID=36986564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041649A Active JP4016115B2 (en) 2005-02-18 2005-02-18 AC underwater electric field signal or AC magnetic signal extraction method and apparatus for ships

Country Status (1)

Country Link
JP (1) JP4016115B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127589A (en) * 2005-11-07 2007-05-24 Universal Shipbuilding Corp Electric field detection method and device, and program for electric field detection method; and mobile position etc. estimation detection method and device, and program for mobile position etc. estimation detection method
JP2009002680A (en) * 2007-06-19 2009-01-08 Shimadzu Corp Method of measuring electric field or magnetic field
JP2009020030A (en) * 2007-07-13 2009-01-29 Shimadzu Corp Device for measuring underwater electromagnetic field
KR100930907B1 (en) * 2007-10-25 2009-12-10 국방과학연구소 Wireless communication station recognition device and method
JP2010047038A (en) * 2008-08-19 2010-03-04 Universal Shipbuilding Corp Sensitive mine-sweeping device
JP2017049136A (en) * 2015-09-02 2017-03-09 三菱電機株式会社 Magnetometer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127589A (en) * 2005-11-07 2007-05-24 Universal Shipbuilding Corp Electric field detection method and device, and program for electric field detection method; and mobile position etc. estimation detection method and device, and program for mobile position etc. estimation detection method
JP2009002680A (en) * 2007-06-19 2009-01-08 Shimadzu Corp Method of measuring electric field or magnetic field
JP2009020030A (en) * 2007-07-13 2009-01-29 Shimadzu Corp Device for measuring underwater electromagnetic field
KR100930907B1 (en) * 2007-10-25 2009-12-10 국방과학연구소 Wireless communication station recognition device and method
JP2010047038A (en) * 2008-08-19 2010-03-04 Universal Shipbuilding Corp Sensitive mine-sweeping device
JP2017049136A (en) * 2015-09-02 2017-03-09 三菱電機株式会社 Magnetometer

Also Published As

Publication number Publication date
JP4016115B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
JP4016115B2 (en) AC underwater electric field signal or AC magnetic signal extraction method and apparatus for ships
JP2003534570A (en) How to suppress noise in adaptive beamformers
CN106441288A (en) Adaptive wavelet denoising method for accelerometer
CN104133195B (en) A kind of sea wave disturbance suppressing method
JP2014126523A (en) Speed calculation device, speed calculation method, and program
Li et al. Enhancement of oil debris sensor capability by reliable debris signature extraction via wavelet domain target and interference signal tracking
KR101581885B1 (en) Apparatus and Method for reducing noise in the complex spectrum
CN110244360B (en) Seismic data separation method and system based on effective frequency wave number domain de-aliasing
KR101396873B1 (en) Method and apparatus for noise reduction in a communication device having two microphones
CN112649882B (en) Low-frequency magnetic signal enhancement method and aviation magnetic measurement system using same
KR101519087B1 (en) Method and Apparatus for sound reception based on digital signal processing for ships
JP2836271B2 (en) Noise removal device
Ou et al. Frame-based time-scale filters for underwater acoustic noise reduction
JP3815735B2 (en) Noise reduction circuit and underwater detection apparatus having the noise reduction circuit
JP6388448B2 (en) Biological information signal source identification apparatus and biological information signal source identification method
JP6926695B2 (en) Amplitude modulation component analysis method and modulation signal analysis system
JP2010156742A (en) Signal processing device and method thereof
CN104994250B (en) Reduce echo cancel method and device that cavity resonance influences
Wu et al. De-noising algorithm based on compression of wavelet coefficient for MEMS accelerometer signal
CN115950529B (en) Micro-angle resonance signal estimation method and device based on spectrum enhancement and electronic equipment
CN113269210B (en) Method for detecting floating frequency of liquid level meter pointer based on image processing
Piotrowski Angle phase drift correction method effectiveness
WO2019056372A1 (en) An adaptive filter
Jing et al. A signal denoise algorithm based on wavelet transform
PC et al. De-noising algorithm for SNR improvement of underwater acoustic signals using CWT based on Fourier Transform

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350